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Abstract. There is an obstruction to the existence

of Kähler-Einstein metrics which is used to define

the GIT weight for K-stability, and it has been

extended to various geometric problems. This survey

paper considers such extended obstructions to the

existence problem of Kähler-Ricci solitons, Sasaki-

Einstein metrics and (conformally) Einstein-Maxwell

Kähler metrics. These three cases have a common

feature that the obstructions are parametrized by a

space of vector fields. We see, in these three cases, the

obstructions are obtained as the derivative of suitable

volume functionals. This tells us for which vector

fields we should try to solve the existence problems.

1. Introduction

The existence of a Kähler-Einstein metric on a

compact complex manifold M has been known since

1970’s in the case when c1(M) < 0 by Aubin [3] and

Yau [51] where the Kähler class is the canonical class

KM , and in the case when c1(M) = 0 by Yau [51] where

the Kähler class is arbitrary positive (1,1)-class. In the

remaining case when c1(M)> 0, i.e. in the case when M
is a Fano manifold, the existence of a Kähler-Einstein

metric is characterized by a condition called the K-

stability by the recent works of Chen-Donaldson-Sun
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[11] and Tian [47]. The K-stability is a condition in ge-

ometric invariant theory where the GIT weight, called

the Donaldson-Futaki invariant [19], is defined ex-

tending an obstruction, now called the classical Fu-

taki invariant, obtained in [25], [26]. The latter is de-

fined for smooth compact Kähler manifolds and is

an obstruction to admit a constant scalar curvature

Kähler metrics (cscK metrics for short). Note that

for a Kähler form in the anti-canonical class on a

Fano manifold, being a cscK metrics is equivalent to

being a Kähler-Einstein metric. On the other hand,

the Donaldson-Futaki invariant is defined for possi-

bly singular central fibers of C∗-equivariant degen-

erations, called the test configurations, and a polar-

ized Kähler manifold (M,L) is said to be K-stable if

the Donaldson-Futaki invariant of the central fiber is

non-negative for any test configurations and if the

equality holds exactly when the test configuration is

product. Note that for the product configurations the

Donaldson-Futaki invariant coincides with the classi-

cal Futaki invariant. The Fano case is the core of the

conjecture known as the Yau-Tian-Donaldson conjec-

ture stating that a polarized Kähler manifold (M,L)
should admit a cscK metric with its Kähler form in

c1(L) if and only if (M,L) is K-stable. In the Kähler-

Einstein problem for the Fano case we take L = K−1
M .

The Yau-Tian-Donaldson conjecture for cscK problem

with general polarizations is still remaining unsolved.

There are many variants of the Yau-Tian-Donaldson

conjecture. For example, K-stability characterizations

for Kähler-Ricci solitons and Sasaki-Einstein metrics

have been obtained respectively in [16] and [15]. It

is usually difficult to check whether a manifold is
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K-stable since there are infinitely many test config-

urations. However, in the cases with large symme-

try groups checking K-stability can be easier, see

[31], [17], [18]. For alternate proofs for the Yau-Tian-

Donaldson conjecture for the Fano case, other impor-

tant contributions, recent further developments and

applications, the reader is referred to the two survey

papers of Donaldson [21], [22].

The present survey paper focuses on extensions

of the classical Futaki invariants for Kähler-Ricci soli-

tons, Sasaki-Einstein metrics and Einstein-Maxwell

Kähler metrics. Existence problems for these three

types of metrics have a common feature that they de-

pend on the choice of a holomorphic Killing vector

field, and accordingly their obstructions have param-

eter space consisting of holomorphic Killing vector

fields in an appropriate Lie algebra. The Ricci soli-

tons are self-similar solutions of the Ricci flow and

important object in the study of singularity forma-

tions of the Ricci flow. On a compact Kähler manifold,

a Kähler-Ricci soliton is a Kähler metric g satisfying

(1) Ricg = g+Lgrad f g

which is equivalent to

ρg = ωg + i∂∂ f

where f is a Hamiltonian function for a holomorphic

Killing vector field X , i.e. X = Jgrad f , and ρg and ωg

are respectively the Ricci form and the Kähler form

of g. Since ρg/2π represents the first Chern class, if

a Kähler-Ricci soliton exists, the compact manifold

M is necessarily a Fano manifold. Note also a Killing

vector field on a compact Kähler manifold is neces-

sarily holomorphic. Given a Killing vector field X we

consider the toral group T obtained by taking the

closure of the flow generated by X , and ask if there

is a T -invariant Kähler-Ricci soliton g satisfying (1)

with X = Jgrad f . This problem is reduced to solving

a Monge-Ampère type equation. However, Tian and

Zhu [48] showed that there is an obstruction FutX
to solving (1). Thus if one choose an X with non-

vanishing FutX then one can never get a solution to the

Monge-Ampère equation. Tian and Zhu [48] showed

that there is a twisted volume functional Vol on the

space of X such that the derivative at X of Vol is equal
to FutX :

(2) dVolX = FutX .

They further showed that the volume functional is

proper and convex on the space of X . Since holo-

morphic Killing vector fields on a compact Kähler

manifold constitute a finite dimensional vector space

the volume functional has a unique minimum on the

space of X . This gives the right choice to solve the

equation (1).

Sasaki-Einstein metrics caught considerable at-

tention in mathematical physics through its role in

the AdS/CFT correspondence, and the volume min-

imization is the key to find Sasaki-Einstein metrics.

The Sasakian structure on an odd dimensional man-

ifold S is by definition a Riemannian structure on S
such that its Riemannian coneC(S) has a Kähler struc-
ture. Fixing a complex structure on the cone C(S), the
deformation of the Sasakian structure on S is given by

the deformation of the cone structure onC(S), namely

the deformation of the radial function r. The Reeb

vector field is then given by Jr∂/∂ r. To each Reeb

vector field one can assign a Sasakian structure on

S. Thus one can define the volume functional Vol on
the space of Reeb vector fields. The volume depends

only on the Reeb vector field and is independent of

the choice of the Sasakian structure with the given

Reeb vector field. This fact is similar to the fact in

Kähler geometry that the volume depends only on the

Kähler class and is independent of the choice of the

Kähler form in the given Kähler class. The space of

Reeb vector fields is the inside of the dual cone to the

moment map image of the Kähler cone C(S), and the

volume functional Vol is a homogeneous function on

this space. Thus wemay consider a slice which gives a

bounded domain sitting inside the dual cone. On the

other hand the Sasaki-Einstein condition is equivalent

to the Kähler cone C(S) being Ricci-flat, and is also

equivalent to the local transverse geometry of the

Reeb flow being Kähler-Einstein with positive scalar

curvature. One can then associate to each Reeb vec-

tor field ξ an obstruction Futξ similarly to the Fano

Kähler-Einstein problem [30], [7]. Martelli-Sparks-Yau

[43] show for transversely Fano Sasakian manifolds

(3) dVolξ = Futξ .

In the case when S is toric Sasakian, meaning when

the cone C(S) is toric Kähler, Martelli-Sparks-Yau fur-

ther show that Vol is a proper convex function on the

slice in the dual cone consisting of the Reeb vector

fields for which the volume functional Vol is defined.
Thus there is a unique minimum ξ , and it is shown

in [30], for any transversely Fano toric Sasakian man-

ifold, there is a Sasaki-Einstein metric with the choice

of the unique minimum ξ as the Sasakian structure.

Conformally Kähler Einstein-Maxwell metrics are

relatively newer subject. The Einstein-Maxwell equa-

tion has been studied in general relativity in real di-

mension 4. In [34], LeBrun showed that, on a com-

pact Kähler surface (M,g), if there is a positive smooth

function f with Jgrad f being a Killing vector field

such that the Hermitian metric g̃ = f−2g has constant

scalar curvature then g̃ corresponds to a solution of

the Einstein-Maxwell equation. Thus, fixing a holo-

morphic Killing vector field K and a Kähler class Ω,
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to find a Kähler form ωg ∈ Ω such that g̃ = f−2
K g has

constant scalar curvature is a problem in Kähler ge-

ometry, where fK is the Hamiltonian function of K
with respect to ω . In fact, if K = 0 then the problem

is exactly the same as the Yau-Tian-Donaldson con-

jecture. Apostolov and Maschler [2] further set the

problem into the Donaldson-Fujiki picture, and for-

mulated an extension FutK of the classical Futaki in-

variant parametrized by K. In [2], such g̃ is called a

conformally Kähler, Einstein-Maxwell metric. But we

consider the problem of finding (g, fK) with ωg in a

fixed Kähler class, and therefore it is more convenient

to call such g a (conformally) Einstein-Maxwell Kähler

metric, or even preferably omitting the word “confor-

mally”. We then showed in [28] that the derivative at

K of a suitably defined volume functional Vol on the

space of K satisfies

(4) dVolK = FutK .

However the volume functional is neither convex nor

proper in general, and can have several critical points.

In all these three cases, the critical points corre-

spond to the cases when the classical Futaki invariant

vanishes. However, this may not be enough to have a

solution, but the K-stability may be the next issue.

In section 2, 3 and 4 we give more details on

Kähler-Ricci solitons, Einstein-Maxwell Kähler met-

rics and Sasaki-Einstein metrics respectively.

2. Kähler-Ricci Solitons

In this section, we see how a holomorphic Killing

vector field which admits a Kähler-Ricci soliton is de-

termined through the idea of volume minimization

[48].

Let M be an m-dimensional Fano manifold. A Käh-

ler metric g on M with the Kähler form ωg ∈ 2πc1(M) is

called a Kähler-Ricci soliton if there exists a holomor-

phic vector field X on M such that

(5) ρg −ωg = LX ωg

holds, where ρg denotes the Ricci form of g and LX

is the Lie derivative along X . In particular, if X = 0, g
is a Kähler-Einstein metric. Since ρg and ωg represent

2πc1(M), there exists a real-valued smooth function hg

such that

(6) ρg −ωg = i∂∂hg.

On the other hand, for any holomorphic vector

field X , the (0,1)-form ιX ωg is ∂ -closed. Therefore, by

the Hodge theorem, there exists a unique complex-

valued smooth function θX (g) such that

(7) ιX ωg = i∂θX (g),
∫

M
eθX (g)ω

m
g =

∫
M

ω
m
g .

Hence we have

(8) LX ωg = i∂∂θX (g).

By (5), (6) and (8), a Kähler metric g is a Kähler-

Ricci soliton with respect to a holomorphic vector

field X if and only if hg −θX (g) is constant.
It is difficult to determine hg − θX (g) explicitly.

However, Tian and Zhu [48] proved that the integral

of v(hg −θX (g))eθX (g) is independent of the choice of g,
where v is a holomorphic vector fields, and it defines

a holomorphic invariant.

Theorem 2.1 ([48]). Let h(M) be the Lie algebra which

consists of all holomorphic vector fields on M. For a

Kähler form ωg ∈ 2πc1(M) and X ∈ h(M), we define a

linear function FutX on h(M) as

(9) FutX (v) =
∫

M
v(hg −θX (g))e

θX (g)ω
m
g , v ∈ h(M).

Then FutX is independent of the choice of ωg ∈ 2πc1(M).

If M admits a Kähler-Ricci soliton with respect to

X ∈ h(M), then FutX vanishes identically on h(M).

Note here that when X = 0, this holomorphic in-

variant coincides with the Futaki invariant, which is

an obstruction to the existence of Kähler-Einstein

metrics in c1(M) [25].

We next see that the invariant FutX can be ob-

tained as the first variation of some function on h(M)

[48]. Such characterization of the holomorphic invari-

ant plays a key role in §3 and §4.

Let X ∈ h(M). We renormalize the function θX (g)
defined by (7) to θ̃X (g) by adding a constant such

that

(10)

∫
M

θ̃X (g)e
hg ω

m
g = 0.

Proposition 2.2 ([48]). Let a function f on h(M) be

given by

(11) f (Z) =
∫

M
eθ̃Z(g)ω

m
g .

Then f (Z) is independent of the choice of Kähler met-

rics with the Kähler class 2πc1(M). Moreover the differ-

ential of f at X in the direction of v ∈ h(M) is a constant

multiple of FutX (v).

By this proposition, if there exists a Kähler-Ricci

soliton with respect to a holomorphic vector field X ,
it is a critical point of f .

Let Aut0(M) be the identity component of the holo-

morphic automorphism group of M and K a maximal

compact subgroup. Then the Chevalley decomposi-

tion allows us to write Aut0(M) as a semi-direct prod-

uct

(12) Aut0(M) = Autr(M)nRu,
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where Autr(M) is a reductive algebraic subgroup of

Aut0(M) which is the complexification of K, and Ru is

the unipotent radical of Aut0(M). Let hr(M) and hu(M)

be the Lie algebras of Autr(M) and Ru respectively.

From the decomposition (12), we obtain

(13) h(M) = hr(M)+hu(M).

Proposition 2.3 ([48]). Let Vol be the restriction of

f to hr(M). Then Vol is a convex, proper real-valued

function. Hence there exists a unique minimum point

X0 ∈ hr(M) of Vol.

By Proposition 2.2, FutX0 vanishes identically on

hr(M). This minimum X0 is the right choice to solve

the Kähler-Ricci soliton equation. Note here that, to

combine Proposition 2.3 with the result of Saito [46],

FutX0 vanishes identically on h(M).

For toric Fanomanifold, we can calculate X0 as fol-

lows [50]. Let M be an m-dimensional toric Fano man-

ifold with the Kähler class c1(M) and ∆M ⊂ Rm the cor-

responding moment polytope. It is well-known that

∆M is an m-dimensional reflexive Delzant polytope.

Let T be the maximal torus of Aut(M) and h0(M) its

Lie algebra. T is isomorphic to the m-dimensional al-

gebraic torus (C×)m and h0(M) is the maximal Abelian

Lie subalgebra of h(M). If we take the affine logarithm

coordinates (w1, . . . ,wm) = (x1 + iθ1, . . . ,xm + iθm) on T ∼=
Rm × (S1)m, h0(M) is spanned by the basis { ∂

∂w1
, . . . ∂

∂wm
}.

Since X0 ∈ h0(M), X0 can be expressed in the form

(14) X0 =
m

∑
i=1

ci
∂

∂wi
.

Proposition 2.4 ([50]). The constants c1, . . . ,cm in (14)

are given by the following conditions:

(15)

∫
∆M

yi exp

{
m

∑
l=1

clyl

}
dy = 0, i = 1, . . . ,m.

3. Einstein-Maxwell Kähler Geometry

In this section, we first introduce the notion

of conformally Kähler, Einstein-Maxwell (cKEM for

short) metrics defined by Apostolov-Maschler [2] and

give non Kähler examples of cKEM metrics in any di-

mension. We then define an obstruction to the exis-

tence of cKEM metrics called cKEM-Futaki invariant

and consider it from the view point of volume min-

imization. At the end of this section we give some

results of computations on toric surfaces.

Let (M,J) be a compact Kähler manifold. We call

a Hermitian metric g̃ on (M,J) a conformally Kähler,

Einstein-Maxwell metric if it satisfies the following

three conditions:

(a) There exists a positive smooth function f on M
such that g = f 2g̃ is Kähler.

(b) The Hamiltonian vector field K = Jgradg f is Killing
for both g and g̃.

(c) sg̃ is constant.

As we mentioned in the Introduction, we call the

Kähler metric g in (a) an Einstein-Maxwell Kähler met-

ric.

By the definition above, cscK metrics are cKEM

metrics. However we consider them as trivial cKEM

metrics.

The notion of cKEM metrics were introduced

by Apostolov-Maschler in [2] as a generalization of

strongly Hermitian solutions of the Einstein-Maxwell

equation. We review some results by LeBrun on

strongly Hermitian solutions, see [34], [35].

Let M be a compact manifold. A pair (g,F) of a

Riemannian metric g and a real 2-form F is called a

solution of the Einstein-Maxwell equation if it satisfies

dF = 0, d ∗g F = 0, [Ricg +F ◦F ]0 = 0,

where (F ◦F) jk = Fj
`F̀ k and [ ]0 denotes the trace free

part. This equation is the Euler-Lagrange equation of

the following functional which is studied in general

relativity:

(g,F) 7→
∫

M

(
sg + |F |2g

)
dvg.

LeBrun investigated Einstein-Maxwell equation when

M is a complex surface in detail, especially he intro-

duced the notion of strongly Hermitian solutions: Let

(g,F) be a solution of Einstein-Maxwell equation on a

complex surface (M,J). It is called a strongly Hermi-

tian solution if it satisfies

Ricg(J·,J·) = Ricg(·, ·), F(J·,J·) = F(·, ·).

LeBrun [34] pointed out that the metric component of

a strongly Hermitian solution is a cKEM metric. Con-

versely, he also showed that for a cKEM metric g̃, one
obtains a strongly Hermitian solution

(g̃,ωg +
1
2

f−2[ρg̃]0).

We next give some examples of cKEM metrics

other than cscK metrics. Typical known examples

are conformally Kähler, Einstein metrics by Page [45]

on the one point blow up of CP2, by Chen-LeBrun-

Weber [12] on the two point blow up of CP2, by

Apostolov-Calderbank-Gauduchon [1] on 4-orbifolds
and by Bérard-Bergery [4] on CP1-bundle over Fano

Kähler-Einstein manifolds. Non-Einstein cKEM exam-

ples are constructed by LeBrun [34], [35] showing that

there are ambitoric examples on CP1 × CP1 and the

one point blow up of CP2, and by Koca-Tønnesen-

Friedman [32] on ruled surfaces of higher genus. The

authors extended LeBrun’s construction on CP1 ×CP1

to CP1 ×M where M is a compact cscK manifold of

arbitrary dimensions as follows [28].
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Let g1 be an S1-invariant metric on CP1 with

Vol(CP1,g1) = 2π and g2 a Kähler metric with sg2 = c on
an (m−1)-dimensional compact complex manifold M.

The S1-invariant metric g1 can be written in the action-

angle coordinates (t,θ) ∈ (a,a+1)× (0,2π] as

g1 =
dt2

Ψ(t)
+Ψ(t)dθ

2

for some smooth function Ψ(t)which satisfies the fol-

lowing boundary condition:

Ψ(a) = Ψ(a+1) = 0,(16)

Ψ
′(a) =−Ψ

′(a+1) = 2, Ψ > 0 on (a,a+1).

Then we see that the constant scalar curvature equa-

tion sg̃ = d for the metric g̃ = (g1 + g2)/t2 on CP1 ×M
reduces to the following ODE:

(17) t2
Ψ

′′−2(2m−1)tΨ′+2m(2m−1)Ψ = ct2 −d.

Theorem 3.1 ([28]). Let c > 8m − 8. Then there exist

a > 0 and d > 0 such that there exists a unique solution

Ψ of the ODE (17) which satisfies the condition (16).

As a result, for any Kähler metric g2 with sg2 = c on an

(m−1)-dimensional compact complex manifold M,

g̃ =
1
t2

(
dt2

Ψ(t)
+Ψ(t)dθ

2 +g2

)
is an S1-invariant cKEM metric on CP1 ×M.

We next consider the existence problem of cKEM

metrics. Let (M,J) be a compact complex manifold of

dimC M = m. We fix a compact subgroup G ⊂ Aut(M,J),
a Kähler class Ω, K ∈ g and a sufficiently large a ∈ R.
Denote by KG

Ω
the space of G-invariant Kähler metrics

g with ωg ∈ Ω. For g ∈ KG
Ω
, there exists a unique func-

tion fK,a,g ∈C∞(M) satisfying the following two condi-

tions:

(18) ιKωg =−d fK,a,g,
∫

M
fK,a,g

ωm
g

m
= a.

Note here that, for fixed (K,a), min{ fK,a,g(x) |x ∈ M} is

independent of g ∈KG
Ω
, see [2]. So if we choose a suffi-

ciently large, fK,a,g is positive for any g ∈KG
Ω
. Then we

can ask the following existence problem; does there

exists a Kähler metric g in KG
Ω
such that g̃K,a = f−2

K,a,gg is

a cKEM metric?

When K = 0, this is just the existence problem of

cscK metrics in KG
Ω
. As a generalization of the Futaki

invariant [25], [26], Apostolov-Maschler [2] defined

the following integral invariant for non-zero K.

Theorem 3.2 ([2]). The linear function

(19)

FutGΩ,K,a : g→ R, FutGΩ,K,a(H) :=
∫

M

sg̃K,a − cΩ,K,a

f 2m+1
K,a,g

fH,b,g
ωm

g

m!
,

is independent of the choice of Kähler metric g ∈ KG
Ω

and b ∈ R. Here

(20) cΩ,K,a :=

∫
M

sg̃K,a f−2m−1
K,a,g

ωm
g

m!∫
M

f−2m−1
K,a,g

ωm
g

m!

.

is a constant which is independent of the choice of g ∈
KG

Ω
. If there exists a Kähler metric g ∈KG

Ω
such that g̃K,a

is a cKEM metric, then FutG
Ω,K,a vanishes identically.

We call this linear function FutG
Ω,K,a as the cKEM-

Futaki invariant for (K,a). We notice here that cKEM-

Futaki invariant is parametrized by the pair (K,a).
This situation bears resemblance to the holomorphic

invariant (9) which is an obstruction to the existence

of Kähler-Ricci solitons. In fact, we now see that the

cKEM-Futaki invariant can be characterized as the

first variation of the volume function. To that end, we

recall that constant scalar curvature Riemannianmet-

rics can be characterized as follows. Let M be a com-

pact manifold with n = dimM ≥ 3 and Riem(M) the set

consists of all Riemannian metrics on M. The scalar

curvature sg0 of a Riemannian metric g0 ∈ Riem(M) is

constant if and only if g0 is a critical point of the fol-

lowing normalized Einstein-Hilbert functional on the

conformal class of g0:

(21) EH(g) :=

∫
M

sgdvg

(Vol(M,g))
n−2

n

In our case, this functional gives the “integral” of

the cKEM-Futaki invariant!

Proposition 3.3 ([2]). For a fixed (K,a), EH(g̃K,a) is in-

dependent of the choice of g ∈KG
Ω
.

As a consequence, if there exists g ∈KG
Ω
such that

g̃K,a is a cKEM metric, then the pair (K,a) is a critical

point of the function

(22) (K,a) 7→ EH(K,a) := EH(g̃K,a).

The set of pairs

PG
Ω := {(K,a) ∈ g×R | fK,a,g > 0, g ∈KG

Ω}

is a cone in the finite dimensional real vector space

g×R. Since the normalized Einstein-Hilbert functional

is scale invariant, the function EH on PG
Ω

reduces

to the function on the quotient space PG
Ω
/R+. If we

choose representatives normalized as follows, EH can

be represented as a power of the volume function. We

define a constant dΩ.K,a by

(23) dΩ,K,a :=

∫
M

sg̃K,a dvg̃K,a

Vol(M, g̃K,a)
=

∫
M

sg̃K,a f−2m
K,a,g

ωm
g

m!∫
M

f−2m
K,a,g

ωm
g

m!

.

By the argument in [2], dΩ,K,a is independent of the

choice of g∈KG
Ω
. Note here that, for general (K,a)∈PG

Ω
,
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cΩ,K,a 6= dΩ,K,a. However if there exists a cKEM metric

g̃K,a then cΩ,K,a = dΩ,K,a. Hence cΩ,K,a − dΩ,K,a gives an

obstruction to the existence of cKEM metric g̃K,a. If

we set

P̃G
Ω(γ) := {(K,a) ∈ PG

Ω |dΩ,k,a = γ}

for a constant γ , then

(24) EH(K,a) = γ Vol(K,a)
1
m := γ Vol(g̃K,a)

1
m

on P̃G
Ω
(γ). By the first variation formula of the normal-

ized Einstein-Hilbert functional (cf. [5]), we have

d
dt |t=0

EH(K + tH,a)(25)

=
2−2m

Vol(K,a)
m−1

m

∫
M

(
sg̃K.a −dΩ,K,a

f 2m+1
K,a,g

)
fH,0,g

ωm
g

m!

and

d
dt |t=0

EH(K,a+ tb)(26)

=
2−2m

Vol(K,a)
m−1

m

(cΩ,K,a −dΩ,K,a)
∫

M

1

f 2m+1
K,a,g

ωm
g

m!
.

Therefore cKEM metrics have the following vol-

ume minimizing property.

Theorem 3.4 ([28]). Suppose that there exists a Käh-

ler metric g ∈ KG
Ω
such that g̃K,a is a cKEM metric for

(K,a) ∈ P̃G
Ω
(γ). Then (K,a) is a critical point of the vol-

ume function Vol : P̃G
Ω
(γ)→ R. Furter, (K,a) is a critical

point of Vol if and only if FutG
Ω,K,a ≡ 0.

For example, let (M,J,g) be an m-dimensional com-

pact toric Kähler manifold. We denote by ∆ ⊂ Rm the

moment polytope. Then we see that

(27) EH(K,a) =
4π

(m!)
1
m

∫
∂∆

1

f 2m−2
K,a

dσ

(∫
∆

1

f 2m
K,a

dµ

)m−1
m

for

(28) (K,a) ∈ PT m

∆ ' { fK,a(µ) :=
m

∑
i=1

Kiµi +a | fK,a > 0 on ∆}

(cf. [2] or [28].) Therefore, when m = 2, we want to

know the critical points of

(29) EH(a,b,c)2 = 8π
2

(∫
∂∆

1
(aµ1 +bµ2 + c)2 dσ

)2

∫
∆

1
(aµ1 +bµ2 + c)4 dµ

with aµ1 + bµ2 + c is positive on ∆. For CP2,CP1 ×CP1

and the one point blow up of CP2, we summarize re-

sults of computations.

• M = CP2 : In this case, up to scale and trans-

lations, ∆ is the convex hull of the three points

(0,0),(1,0) and (0,1). The critical point of the function
EH on PT 2

∆
/R+ is only [(0,0,1)].

• M = CP1 × CP1 : Let ∆p be the convex hull of

(0,0),(p,0),(p,1) and (0,1), where p ≥ 1.
When 1 ≤ p ≤ 2, EH has the unique critical point

[(0,0,1)].
On the other hand, when p > 2, there exist three

critical points

[(0,0,1)],

[(
±1,0,

1
2

(
p

3
2

√
p−2

∓ p

))]
.

We emphasize that this result shows that the vol-

ume function is not convex unlike the case of Kähler-

Ricci solitons and of Sasaki-Einstein metrics, see §2

and §4.

• M = one point blow up of CP2 :
Let ∆p be the convex hull of (0,0),(p,0),(p,1− p)

and (0,1), where 0 < p < 1.
For 0 < p < 1,

(30)

[(
1,0,

p(1−
√

1− p)

2
√

1− p+ p−2

)]
is a critical point of EH.

When 8
9 < p < 1 there are the following two more

critical points

(31)

[(
−1,0,

p(3p±
√

9p2 −8p)

2(p±
√

9p2 −8p)

)]
.

Let 0 < α < β < 1 be the real roots of

F(p) := p4 −4p3 +16p2 −16p+4 = 0.

When 0< p<α , there are the following two critical

points

(32)[(
p2 −4p+2±

√
F(p),±2

√
F(p), p2 +2p−2∓

√
F(p)

)]
.

An extension of Lichnerowicz-Matsushima theo-

rem asserting the reductiveness of the automorphism

group on a cKEMmanifold is obtained in [29] and [33].

4. Sasakian Geometry

A Sasakian structure is often referred to as an

odd dimensional analogue of the Kähler structure. It

roughly consists of a contact structure, a Riemannian

structure compatible with the contact structure and

an almost complex structure on the contact bundle.

There are many equivalent definitions, but the follow-

ing definition is the most simple and rigorous one. In

Riemannian point view, a Sasakian manifold is a Rie-

mannian manifold (S,g) whose cone manifold (C(S),g)
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with C(S) ∼= S×R+ and g = dr2 + r2g is Kähler, where r
is the standard coordinate on R+. In this paper we al-

ways assume S is closed and connected. From the def-

inition, S is odd-dimensional and we put dimS = 2m+1,
and thus dimC C(S) = m+1. S is identified with the sub-

manifold {r = 1} ⊂ C(S). The Kähler form on C(S) is
given by i∂∂ r2. From this we see that, fixing the holo-

morphic structure on C(S), the Sasakian structure is

determined by the radial function r since the Rieman-

nian structure is induced from the Kähler structure of

C(S). We consider the deformations of the Sasakian

structure on S fixing the complex structure J on C(S).
On the other hand, S also inherits a contact struc-

ture with the contact form

η = (i(∂ −∂ ) logr)|r=1.

It is well known [6] that the Sasakian structure is de-

termined by the transverse Kähler structure of the

flow generated by the Reeb vector field ξ of η . The

Reeb vector field ξ is obtained by restricting the vec-

tor field ξ̃ := J(r ∂

∂ r ) on C(S) to S = {r = 1} ⊂ C(S). This
is a standard fact known as the “Kähler sandwich”:

The Sasakian structure is equivalently given by the

Kähler structure on the cone or given by the trans-

verse Kähler structure on the local orbit spaces of

the Reeb flow, see [6] for the detail. From this we see

that the Sasakian structure can be deformed by the

deformation of the choice of Reeb vector field in the

Lie algebra Lie(Tξ ) of the torus Tξ obtained by taking

the closure of the flow generated by ξ since the de-

formed Reeb flow still has transverse Kähler struc-

ture. Then by choosing a rational point in Lie(Tξ ) we

obtain a Reeb vector field obtained as an S1-action on

an ample line bundle over an orbifold. Thus C(S) has
an affine algebraic variety A with only one singular

point at the apex as an underlying space.

Let G be the group of biholomorphisms of A =

C(S) preserving the cone structure, that is, Lie(G) con-

sists of the real parts of holomorphic vector fields on

A commuting with r ∂

∂ r . Let T be the maximal torus of

G containing Tξ . Note here that it is a standard fact

that r ∂

∂ r preserves J and that ξ̃ − iJξ̃ is a holomorphic

vector field. The deformation space of T -invariant
Sasakian structures containing the Sasakian structure

of S, or equivalently T -invariant Kähler cone struc-

tures on A, is given by the space R of T -invariant
smooth positive functions r : A → R such that i∂∂ r2

is positive (1,1)-form:

R := {r : A→ R | T -invariant, i∂∂ r2 > 0}.

Since the Reeb vector field ξ̃ = Jr ∂

∂ r is the real part of a

holomorphic Killing vector field and T is the maximal

torus in G, Jr ∂

∂ r is in Lie(T ) for any r ∈R. The set of all

Reeb vector fields corresponding to r ∈R is the dual

cone of the cone obtained as the moment map image

of C(S), and is called the Sasaki cone. We define the

volume functional Vol : R→ R by

(33) Vol(r) = vol(Sr)

where vol(Sr) denotes the volume of the Sasakianman-

ifold Sr = {r = 1} for r ∈ R. Let r(t)−ε<t<ε be a one pa-

rameter family inRwith r(0)= r, and putY := d
dt |t=0ξ̃ (t)

where ξ̃ (t) = Jr(t) ∂

∂ r(t) . Then the first variaton of Vol(r)

is given by

(34)
dVol(r(t))

dt
|t=0 =−4(m+1)

∫
Sr

η(Y )dvolr

where dvolr is the volume element of Sr, see [30],

Proposition 8.3, or [43], Appendix C1. The second

variation is given by

d
dt
|t=0

(
−4(m+1)

∫
Sr(t)

η(X)dvolr(t)

)
(35)

= 4(m+1)(2m+4)
∫

Sr

η(X)η(Y )dvolr,

see [30], Proposition 8.4, or [43], Appendix C2. The

second variation formula shows that the volume

functional is convex.

A Sasakian manifold S is called a Sasaki-Einstein

manifold if it is an Einstein manifold as a Rieman-

nian manifold. This occurs exactly when C(S) is a

Ricci-flat Kähler cone (i.e. Calabi-Yau cone). From the

view point of the Kähler sandwich, this occurs exactly

when the transverse Kähler structure of the Reeb

flow is Kähler-Einstein with positive scalar curvature.

A typical example is the (2m + 1)-dimensional stan-

dard sphere which is Sasaki-Einstein. In this case, the

cone is Cm+1 which is Ricci-flat Kähler, the Reeb flow

is the standard S1-action, and the orbit space is the

complex projective space which is a Kähler-Einstein

manifold of positive scalar curvature.

When the Reeb flow generates an S1-action

the quotient space is a Fano orbifold. For general

Sasakian structures the complex geometry of the lo-

cal orbit spaces are described as “basic” geometry.

For example, we have the basic ∂ -operator ∂B, the

basic ∂ -operator ∂ B, the basic Dolbeault cohomology

H∗
∂ B
, the basic Kähler metric gB, the basic Kähler form

ωB, and the basic Ricci form ρB, the basic first Chern

class cB
1 and etc. With these notations, the Sasaki-

Einstein equation becomes

ρB = (2m+2)ωB.

Thus a necessary condition for the existence of a

Sasaki-Einstein metric is that the basic first Chern

class is represented by a positive multiple of the basic

Kähler class:

2πcB
1 = (2m+2)[ωB]
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in H2
∂ B
. This last condition is equivalent to the topo-

logical condition that c1(D) = 0 and that cB
1 > 0 where D

denotes the contact structure determined by the con-

tact form η , see [30], Proposition 4.3. We say in this

paper that S is transversely Fano if c1(D)= 0 and cB
1 > 0.

Let ξ be the Reeb vector field on a Sasakian man-

ifold S. A smooth function f on S is said to be basic if

ξ f = 0. A basic function is obtained locally by pulling

back a smooth function on the local orbit space of

the Reeb flow. A holomorphic vector field Y in Lie(G)

descends to a complex vector field on S and also to a

complex vector field on each local orbit space of the

Reeb flow, both of which we also denote by the same

letter Y . Then Y is written on the local orbit space of

the Reeb flow, which is Kähler, as

(36) Y = grad′gB
u = gi j

B
∂u

∂ z j

∂

∂ zi

where z1, · · · ,zm are local holomorphic coordinates and

gB is the transverse Kähler metric on the local orbit

space of the Reeb flow. There is a real valued basic

function FB such that

(37) ρB − (2m+2)ωB = i∂B∂ BFB.

Just as in the case of Fano manifolds (cf. [27], The-

orem 2.4.3), there is an isomorphism between Lie(G)

and the space Λ2m+2 of eigenfunctions u of the elliptic

operator ∆F
B defined by

(38) ∆
F
B u := ∆Bu−∇

iu∇iFB

where ∆B = ∂
∗
B∂ B is the transverse ∂ B-Laplacian and ∇

denotes the Levi-Civita connection of the transverse

Kähler structure, see [30], Theorem 5.1. Noting η(Y )
in (34) is basic, if η(Y ) = u in Λ2m+2, then the right hand

side of (34) is equal to

−2
∫

S
(2m+2)u dvol =−2

∫
S
(∆Bu−∇

iu∇iFB)dvol(39)

= 2
∫

S
(grad′gB

u)FB dvl.(40)

The right hand side is equal to Futξ where ξ is the

Reeb vector field which is determined by the Sasakian

structure of S. This proves the volume minimization

formula (3).

A Sasakian manifold (S,g) is said to be toric if the

Kähler cone manifold C(S) is toric, namely dimC G =

m+1. When S is toric and transversely Fano, Martelli-

Sparks-Yau [43] showed that the volume functional is

proper on the space Σ of Reeb vector fields of charge

n, which is a slice in the Sasaki cone, i.e. the dual cone

of the moment map image of C(S). Since the volume

functional is convex by (35), there is a unique mini-

mum on Σ at which Futξ vanishes. In [30] it is shown

that for this minimum ξ there is a Sasaki-Einstein

metric. Uniqueness assertion is also shown in [13].

To sum up the following holds.

Theorem 4.1 ([30], [13]). Let (S,g) be a compact toric

Sasakian manifold with cB
1 > 0 and c1(D) = 0. Then

there exists a Sasaki-Einstein metric. Further, the iden-

tity component of the automorphism group for the

transverse holomorphic structure acts transitively on

the space of all Sasaki-Einstein metrics.

In Kähler geometry, the Yau-Tian-Donaldson con-

jecture relates the existence problem of constant

scalar curvature Kähler (cscK for short) metrics to

K-stability. Similarly in Sasakian geometry, the exis-

tence problem of constant scalar curvature Sasaki

(cscS for short) metrics is related to K-stability, see

[14], [15], [49], [10] for example.

The cscS metrics are critical points of the

Einstein-Hilbert functional H : R→ R defined by

(41) H(r) =
TS(r)m+1

Vol(r)m

where TS(r) denotes the total scalar curvature of Sr.

In the transversely Fano case, TS(r) = Vol(r) and the

Einstein-Hilbert functional coincides with the volume

functional. For general Sasakian manifolds, i.e. for

Sasakian manifolds which are not necessarily trans-

versely Fano, it is known that the convexity fails for

the Einstein-Hilbert functional, and there can be sev-

eral critical points, see Legendre [37], and also [9].

This fact has resemblance in the study of Einstein-

Maxwell Kähler metrics as can be seen in the am-

bitoric examples by LeBrun [35] on the one-point-

blow-up of CP2. But it is shown by Boyer-Huang-

Legendre [8] that all of the volume functional, the

total scalar curvature and the Einstein-Hilbert func-

tional are proper in that they tend to +∞ as the Reeb

vector field tends to the boundary of the Sasaki cone.

This was shown by using the Duistermaat-Heckman

formula.

The idea of volume minimization for Sasaki-

Einstein metrics has been extended and applied to

algebraic geometry. Odaka [44] considered general-

izations of the normalized volume functional and

Donaldson-Futaki invariant obtained as the deriva-

tive of the volume functional. Odaka observed the

decrease of the Donaldson-Futaki invariant along the

minimal model program using the concavity of the

volume functional. Li [38], [39] considered normal-

ized volume functional on the space of valuations

on Fano manifolds and characterized K-semistability

in terms of volume minimization. Note that when a

Sasakian manifold is the circle bundle of an ample

line bundle L over M, then the Reeb vector field de-

fines a valuation of the ring ⊕∞
k=0H0(M,Lk). In view of

this, to define volume functional for valuations is nat-
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ural. The normalization corresponds to the restric-

tion of the Reeb vector fields to the ones with charge

n. On the other hand the Gromov-Hausdorff limit of

a sequence of Kähler-Einstein manifolds is homeo-

morphic to a normal algebraic variety and admits a

Kähler-Einstein metric in the sense of pluripotential

theory [23]. The tangent cone at a singular point ad-

mits a Ricci-flat cone structure, and thus it is a cone

over a Sasaki-Einstein manifold on the regular set. Li-

Xu [42] applies the volume minimization to show an

algebraic nature of those tangent cones, answering to

a question of Donaldson-Sun [24]. See also [40], [41].
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