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Abstract. In this paper, we describe the interaction

and similarity between locally symmetric spaces and

moduli spaces of Riemann surfaces, through the

example of how the Borel–Serre compactification of

locally symmetric spaces led to the curve complex

of surfaces, which is a fundamental object in low

dimensional topology and geometric group theory.
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1. Introduction

The modular group SL(2,Z) is a basic group, and

its action on the upper-half plane H2 has several

important generalizations. For example, one gener-

alization consists of arithmetic groups Γ and their

action on symmetric spaces X of noncompact type,

and another generalization consists of mapping class

groups Modg of compact surfaces and their actions

on Teichmüller spaces Tg. In the former case, quo-

tient spaces are locally symmetric spaces, and in the

latter case, they are the moduli spaces Mg = Modg\Tg

of compact Riemann surfaces, which were defined by

Riemann in 1857.

Like SL(2,Z), many arithmetic groups Γ are not

cocompact, i.e., the locally symmetric spaces Γ\X are

not compact. One natural problem is to compact-

ify Γ\X which are suitable for various applications.

In this paper, we discuss the celebrated Borel–Serre

compactification [BS] of Γ\X which is a basic tool to

understand the topology of Γ and Γ\X , and explain

how its generalization to Mg led to the introduction

of the notion of curve complex of compact Riemann

surfaces by Harvey [Har].

2. Borel–Serre Compactification of
Locally Symmetric Spaces

Borel and Serre wrote joint 10 papers, in-

cluding a write-up of Grothendieck’s work on the

Grothendieck–Riemann–Roch theorem: Le théorème

de Riemann–Roch. Bull. Soc. Math. France 86 (1958)

97–136.

32 NOTICES OF THE ICCM VOLUME 6, NUMBER 2



Among these papers, the one with by far the

largest citation number, 205, is the paper [BS]: Cor-

ners and arithmetic groups.

To satisfy the possible curiosity of the reader, the

citation numbers of the other 9 papers are

46+4+0+68+68+42+21+4+3 = 256,

where the paper with the 0 citation number is an an-

nouncement of the paper [BS].1

One natural question is: What is contained in this

paper? Another question is: Why is it so special and

influential?

The purpose of this paper is to answer these

questions.

2.1 Statements

The main results of [BS] include the following:

1. The construction of the Borel–Serre compactifi-

cation Γ\X
BS

of locally symmetric spaces Γ\X .

2. A description of the topology of ∂Γ\X
BS

in terms

of the Tits building of the linear algebraic group

corresponding to the space Γ\X .

3. Application of the compactification Γ\X
BS

to the

duality property and determination of the coho-

mology dimension of arithmetic groups Γ.

We will also discuss the following generaliza-

tions:

1. The Borel–Serre compactification of moduli

space Mg of Riemann surfaces.

2. The curve complex defined by Harvey as an ana-

logue of Tits buildings of linear semisimple alge-

braic groups.

3. Duality property and determination of cohomo-

logical dimension of mapping class group Modg

by Harer.

Specifically, the result of Borel and Serre [BS] can

be stated as:

Theorem 2.1. Let Γ be any arithmetic subgroup of a

semisimple Lie group G. Assume the Q-rank r of Γ is

positive, and hence Γ\X is noncompact. Then Γ is a

virtual duality group (or a generalized Poincaré du-

ality group) of dimension dimX − r, but is not a virtual

Poincaré duality group.

Corollary 2.2. The virtual cohomological dimension

of Γ, vcd(Γ), is equal to dimX − r.

The Borel–Serre compactification Γ\X
BS

was used

to prove the duality property of and to compute

the virtual cohomological dimension of arithmetic

groups Γ. This was the first proof and is still the only

proof up to now.

1 These citation numbers were copied from MathSciNet in
the middle of April, 2017.

2.2 Motivations and Definitions

In the following we will describe motivations of

constructing the Borel–Serre compactification Γ\X
BS

and explain all the terminologies in the statements in

the previous subsection.

One of the most basic and important infinite dis-

crete groups is Z, which is a discrete subgroup of the

Lie group R. It admits several generalizations. The ob-

vious ones are Zn ⊂ Rn, and more generally lattices

Λ ⊂ Rn. These are abelian groups.

Another class of generalizations consists of non-

abelian groups, for example, SL(2,Z), which a discrete

subgroup of SL(2,R), and SL(n,Z) ⊂ SL(n,R), n ≥ 2,
which form a natural family containing SL(2,Z).

The group SL(2,Z) is an arithmetic subgroup of

SL(2,R). More generally, any subgroup Γ of SL(2,R)
commensurable with SL(2,Z) is also called an arith-

metic subgroup. We recall that two subgroups Γ1,Γ2

of a common group are called commensurable if the

intersection Γ1 ∩Γ2 has finite index in both Γ1 and Γ2.

Similarly, SL(n,Z) and its subgroups of finite in-

dex are also arithmetic subgroups of SL(n,R). Impor-

tant examples include congruence subgroups.

The reason for calling them arithmetic subgroups

is that arithmetic deals with Z ⊂ R. The general defi-

nition of arithmetic groups is as follows.

Definition 2.3. Let G ⊂ GL(n,C) be a linear algebraic

group defined over Q. Then G = G(R) is a Lie group

with finitely many connected components. Let G(Z) =
G(Q)∩GL(n,Z). Then any subgroup Γ of G(Q) which is

commensurable with G(Z) is called an arithmetic sub-

group of G.

Some people also call any subgroup of G which

is commensurable with G(Z) an arithmetic subgroup.

Any arithmetic subgroup Γ is a discrete subgroup

of the Lie G, since Z is a discrete subgroup of R.
In some sense, arithmetic subgroups are essentially

the only way to produce cofinite volume subgroups,

i.e., lattices, of semisimple Lie groups G, except for
G = SL(2,R). For example, the Poincaré polygon the-

orem allows to produce many discrete subgroups of

SL(2,R), but there is no analogue of it for other sym-

metric spaces.

This is the reason for all these questions and re-

sults on rigidity of lattices of semisimple Lie groups

by Selberg, who had a motto that whatever cannot

be constructed should not exist, and by Piateski–

Shiparo, Mostow, Margulis.

Arithmetic subgroups of Lie groups enjoy many

desirable properties, hence providing important ex-

amples of infinite discrete groups in geometric group

theory.

These properties of arithmetic subgroups Γ come

from, or proofs for them depend on, their actions

on symmetric spaces, which also give rise to arith-
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metic locally symmetric spaces Γ\X . Locally symmet-

ric spaces are interesting and special spaces, and

they play a basic role in the theory of automorphic

forms and automorphic representations. Many mod-

uli spaces can be identified with locally symmetric

spaces.

We will concentrate on the case when G is a

semisimple Lie group. Let Γ be an arithmetic sub-

group of Γ. Then it enjoys the following finiteness

properties:

1. Γ is finitely generated and finitely presented.

2. Γ has finitely many conjugacy classes of finite

subgroups.

3. Γ has finite cohomological dimension.

4. Γ admits finite index subgroups Γ′ which are

torsion-free.

2.3 Group Cohomology and Cohomological

Properties

For a topological space M, its basic topological in-

variants include cohomological groups H i(M) and ho-

mological group Hi(M). They can have coefficients in

Z, R, or other rings, fields, and local systems.

For a group Γ, it also has cohomological and ho-

mological groups. It can be defined as follows. There

is a CW-complex BΓ such that

π1(BΓ) = Γ, for i ≥ 2, π2(BΓ) = 1.

The space BΓ is called the classifying space of Γ

and is unique up to homotopy equivalence. Using the

classifying space BΓ, we can define cohomology and

homology groups of the group Γ as follows:

H i(Γ) = H i(BΓ), Hi(Γ) = Hi(BΓ).

More generally, if A is a ZΓ-module, then we can

define cohomology and homology groups with coef-

ficient A,

H i(Γ,A), Hi(Γ,A).

Definition 2.4. The cohomology dimension of Γ is

cd(Γ) = sup{i | H i(Γ,A) 6= 0, for some Γ−module A}.

Proposition 2.5. If Γ contains nontrivial elements of

finite order, i.e., torsion elements, then cd(Γ) = +∞.

Many natural groups such as SL(n,Z), Sp(2g,Z) and
the mapping class groups Modg are not torsion-free.

If Γ admits torsion-free subgroups Γ′ of finite in-

dex, we can define virtual cohomology dimension by

vcd(Γ) = cd(Γ′).

It is known that this is well-defined, i.e., indepen-

dent of the choice of Γ′. As mentioned before, arith-

metic subgroups always admit torsion-free finite sub-

groups.

For a general group Γ, there is a Milnor construc-

tion of the classifying space BΓ which is always infi-

nite dimensional. On the other hand, for many pur-

poses, such as computing explicitly the cohomology

and homology groups of Γ, it is desirable to have

small and explicit models of BΓ. One important point

about arithmetic groups Γ is that they admit explicit

finite dimensional models of BΓ.

Recall that G is a semisimple Lie group. Let K ⊂ G
be a maximal compact subgroup. Then X = G/K with

an invariant Riemannian metric is a symmetric space

of noncompact type, hence it is diffeomorphic to Rn,

n = dimX . Since Γ is a discrete subgroup of G, Γ acts

properly and isometrically on X .
If Γ is torsion-free, then Γ acts fixed point freely

on X , and X is the universal covering space of Γ\X ,
and hence Γ\X is a finite dimensional model of BΓ.

Note that it follows from the definition H i(Γ) =

H i(BΓ) that

cd(Γ)≤ dimBΓ,

for every model of BΓ. Consequently, we obtain

Proposition 2.6. For any torsion-free discrete sub-

group Γ of G, Γ\X is a finite dimensional model of BΓ,

and cd(Γ)≤ dimX .

On the other hand, if Γ is not torsion-free, then

cd(Γ) = +∞, and consequently BΓ does not admit any

finite dimensional model. Therefore, Γ\X is not a

model of BΓ. Since Γ\X is a natural space associated

with Γ, one natural question is

Question 2.7. Assume that Γ is not torsion-free, what

is this space Γ\X as far as Γ is concerned?

Given any BΓ, its universal covering space EΓ= B̃Γ

has the properties:

1. Γ acts properly and fixed point freely on EΓ.

2. EΓ is contractible.

The space EΓ is the universal space for fixed-

point-free and proper actions of Γ. Consequently,

when Γ ⊂ G is torsion-free, the symmetric space X is

a finite dimensional model of EΓ.

On the other hand, when Γ contains nontrivial ele-

ments of finite order, it does not act fixed point freely

on X . The Cartan fixed point theorem says that any fi-

nite isometry group acting on a complete Hadamard

Riemann manifold, i.e., a simply connected and non-

positively curved manifold, has a fixed point, which

can be taken as the center of gravity of any finite orbit

of the group.

But the action of a non-torsion free group Γ on

the symmetric space X satisfies the following condi-

tions:

1. Γ acts properly on X .
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2. For any fixed subgroup F ⊂ Γ, the fixed point set

XF is nonempty and contractible, since it is a to-

tally geodesic submanifold.

Consequently, X is a finite dimensional model of

EΓ, the universal space for proper actions of Γ, which

is characterized by the two conditions above.

2.4 Locally Symmetric Spaces and Cohomology of

Arithmetic Groups

As mentioned before, arithmetic subgroups Γ

lead to the locally symmetric space Γ\X . Locally sym-

metric spaces are rather special and enjoy several

finiteness and rigidity properties:

1. With respect to the measure induced from the in-

variant Riemannian metric on X , Γ\X has finite

volume.

2. The locally symmetric space Γ\X is compact if

and only if the Q-rank of G is equal to 0. For ex-

ample, for G = SL(n), Γ = SL(n,Z), the Q-rank is

equal to n−1 > 0. This is consistent with that fact

that SL(2,Z)\H2 is noncompact.

3. Γ\X is the interior of a compact manifold with

corners (or with boundary if the Q-rank is equal

to 1), and hence has finite topology.

4. Γ\X has important rigidity properties: the

Mostow strong rigidity and super-rigidity of Mar-

gulis.

The above description shows that locally symmet-

ric spaces Γ\X are very special Riemannian manifolds

(orbifolds) in geometric analysis. The spectral theory

of Γ\X with respect to the Laplacian operator of the

invariant Riemannian metric is closely related to the

spectral theory of automorphic forms. Hence they are

also basic spaces in number theory. One point of this

paper is to show that they are special spaces in topol-

ogy, in particular as classifying spaces.

Assume that Γ is a torsion-free arithmetic sub-

group. As discussed earlier, Γ\X is a finite dimen-

sional model of BΓ and it can be used to study coho-

mological properties of Γ. For such a purpose, we of-

ten need compact models of BΓ, or more precisely fi-

nite CW-complexes, in order to prove finiteness prop-

erties of Γ, in particular finite cohomological proper-

ties.

More precisely, we have the following conse-

quences of having a good compact model of BΓ:

1. Γ is finitely generated and finitely presented. It

also enjoys other cohomological finiteness prop-

erties.

2. Suppose BΓ is a compact oriented manifold with-

out boundary. Then the cohomology groups of

BΓ satisfy the Poincaré duality property:

H i(BΓ,Z)×Hn−i(BΓ,Z)→ Hn(BΓ,Z)∼= Z.

or equivalently,

Hi(BΓ,Z)∼= Hn−i(BΓ,Z).

Consequently, the cohomology groups of Γ also

satisfy the Poincaré duality property.

We note that a group Γ is called a Poincaré duality

group of dimension n if for every i = 0, · · · ,n,

Hi(Γ,A)∼= Hn−i(Γ,A),

where A is any ZΓ-module.

More generally, we have

Definition 2.8. A group Γ is called a duality group (or

a generalized Poincaré duality group) of dimension

n if there exists a ZΓ-module D such that for every i =
0, · · · ,n, and every Γ-module A,

Hi(Γ,A)∼= Hn−i(Γ,A⊗D).

The module D is called the dualizing module of Γ.

One basic result in the theory of cohomology of

groups (see [Br, Theorem 10.1, p. 220]) is the follow-

ing result.

Proposition 2.9. If Γ is a duality group of dimension n,
then cd(Γ) = n.

This is an effective way to compute cd(Γ), though
groups with cd(Γ)<+∞ are often not duality groups.

The above discussions, especially those on prop-

erties resulting from compact models of BΓ, show

that there is an issue when Γ\X is noncompact, which

is the case with many basic examples of arithmetic

subgroups such as Γ⊂ SL(n,Z),Sp(2g,Z). This suggests
the problem of constructing a compactification of

Γ\X which gives a compact model of BΓ.

Now back to a torsion-free arithmetic group Γ⊂G.
If Γ\X is compact, then Γ is a Poincaré duality group

of dimension dimX .
A natural question is what if Γ\X is noncom-

pact? The above setup may suggest that in this case,

Γ is a duality group, but not a Poincaré duality group.

It turns out that the answer is positive and the

proof depends crucially on a suitable compactifica-

tion of Γ\X . One of the main results of [BS] can be

stated as

Theorem 2.10. Let Γ ⊂ G be a torsion-free arith-

metic subgroup of a semisimple Lie group. Assume the

Q-rank r of G is positive, and hence Γ\X is noncompact.

Then Γ is a duality group of dimension dimX − r, but is
not a Poincaré duality group.

Corollary 2.11. Under the same assumption on Γ as

in Theorem 2.10, the cohomological dimension of Γ is

equal to dimX − r.
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Example 2.12. When Γ⊂ SL(2,Z) is a torsion-free sub-
group of finite index, the Q-rank r is equal to 1. Since

X =H2, dimX − r = 2−1 = 1. Therefore, cd(Γ) = 1.
This conclusion can also be seen from the fact

that Γ is a free group in this case. Note that the fun-

damental group of any noncompact surface is a free

group.

When Γ is not torsion-free, it admits finite index

torsion-free subgroups Γ′. In this case, we say Γ is a

virtual duality group if Γ′ is a duality group. Then the

more general result of Borel–Serre [BS] can be stated

as:

Theorem 2.13. Let Γ ⊂ G be any arithmetic subgroup

of a semisimple Lie group G. Assume the Q-rank r of

G is positive. Then Γ is a virtual duality group of di-

mension dimX − r, but is not a virtual Poincaré dual-

ity group. Consequently, the virtual cohomological di-

mension of Γ is equal to dimX − r.

2.5 Borel–Serre Compactification of Locally

Symmetric Spaces

To prove the above results on cohomological

properties of arithmetic groups, Borel and Serre [BS]

defined a compactification Γ\X
BS

of Γ\X , which is a

compact model of BΓ with the following properties:

1. Γ\X
BS

is a compact manifold with corners and

hence is a finite CW-complex by triangulation.

2. The inclusion Γ\X ↪→ Γ\X
BS
is an homotopy equiv-

alence, and hence Γ\X
BS

is a compact model of

BΓ.

3. The topology of the boundary ∂Γ\X
BS

can be de-

scribed explicitly and is homotopy equivalent to

a bouquet of spheres of dimension r−1, where r
is the Q-rank of Γ\X .

The third condition will be explained more pre-

cisely later, and it leads to the duality property of Γ

and an explicit determination of its dualizing mod-

ule.

Borel and Serre constructed the compactification

Γ\X
BS

in [BS] in the following steps:

1. Construct a partial compactification (or bor-

dification) X
BS

which is a real analytic mani-

fold with corners whose boundary faces eP are

parametrized by proper Q-parabolic subgroups

P of G, and whose interior is equal to X .
2. The action of Γ on X extends to a proper action

on X
BS
.

3. The quotient Γ\X
BS

gives the compactification

Γ\X
BS
.

When Γ is torsion-free, Γ acts fixed point freely

on X
BS
, and X

BS
is a cocompact model of EΓ.

Example 2.14. Before we explain the general con-

struction, we consider a special example when Γ ⊂
SL(2,Z) is a torsion-free subgroup of finite index, and

X =H2.

In this case, Γ\H2 is noncompact and has finite

area with respect to the hyperbolic metric. Conse-

quently, Γ\H2 is the union of a compact core and

finitely many cusp neighborhoods.

The most obvious compactification of Γ\H2 is ob-

tained by adding one point for each cusp neighbor-

hood to get a compact Riemann surface Γ\H2∗.

But there is a problem: the inclusion

Γ\H2 ↪→ Γ\H2∗

is not a homotopy equivalence.

Note that each cusp neighborhood of Γ\H2 is

topologically an open cylinder. To obtain a compact-

ification of Γ\H2 without changing its topology, we

should add a boundary circle at infinity.

By adding a boundary circle to every cusp of Γ\H2,

we obtain the Borel–Serre compactification Γ\H2BS
. It

satisfies all the desired properties.

The above construction of Γ\H2BS
is explicit but

could not be generalized directly to other locally sym-

metric spaces Γ\X , since it is not group-theoretical

enough.

Now we follow a procedure which can be general-

ized. The upper triangular subgroup

P∞ =

{(
a b
0 a−1

)
| a 6= 0,b ∈ R

}
is a Q-parabolic subgroup of SL(2,R). It is the stabi-

lizer of i∞, a boundary point in ∂H2 = R∪ {∞}, with
respected to the action of SL(2,R) on the compactifi-

cation

H2 =H2 ∪∂H2 =H2 ∪R∪{∞}.

Other proper parabolic subgroups defined over Q are

stabilizers of the rational boundary points inQ⊂ ∂H2.

They are conjugates of P∞ by elements of SL(2,Q),

since SL(2,Q) acts transitively on the rational bound-

ary points Q∪{∞}.
The parabolic subgroup P∞ acts transitively onH2,

and the a,b parameters in elements of P∞ give the

x,y-coordinates of H2:(
a b
0 a−1

)
· i = a2i+ab.

The unipotent subgroup of P∞ is

NP∞
=

{(
1 b
0 1

)
| b ∈ R

}
,

and its orbits give the horocircles of i∞ (or horizontal

lines), which are parallel translates of x-coordinates
in C.
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The orbit of the diagonal subgroup

AP∞
=

{(
a 0
0 a−1

)
| a > 0

}
through the point i gives the y-coordinate.

General Borel–Serre Compactification

For a general symmetric space X = G/K, every
Q-parabolic subgroup P of G admits a Langlands de-

composition:

P = NPAPMP,

where NP is the unipotent radical of P, AP is the

split component, and MP is a reductive subgroup. The

Langlands decomposition of P and the transitive ac-

tion of P on X gives a horospherical decomposition

of X ,

X = P · x0 ∼= NP ×AP ×XP,

where x0 = K ∈ X = G/K, and XP = MP/MP ∩K = MP · x0.

We note that the space XP is a symmetric space of

nonpositive curvature, hence is contractible, and NP is

also contractible. This generalizes the xy-coordinate
decomposition of H2 and is hence called the horo-

spherical decomposition of X .
The boundary face or component eP of the

parabolic subgroup P is

eP = NP ×XP.

It is added at the infinity of X in the direction corre-

sponding to P (or rather in the direction of the posi-

tive chamber corresponding to P), or at the infinity of
AP. Then we obtain the Borel–Serre partial compacti-

fication

X
BS

= X ∪
∏

P
eP = X ∪

∏

P
NP ×XP.

Proposition 2.15. The Borel–Serre partial compacti-

fication X
BS

is a real analytic manifold with corners.

The codimension of the corner is equal to the Q-rank
of G, and Γ acts properly and real analytically on X

BS
.

The quotient Γ\X
BS
is a compact real analytic manifold

with corners, with the interior equal to Γ\X .

Since the inclusion X ↪→ X
BS

is a homotopy equiv-

alence, the same is true for the inclusion of the quo-

tients

Γ\X ↪→ Γ\X
BS
.

Example 2.16. Now we explain the Borel–Serre par-

tial compactification H2BS
in terms of the above group

theoretical formulation. The group P∞ admits the

Langlands decomposition

P∞ = NP∞
AP∞

MP∞
∼= NP∞

×AP∞
,

where

MP∞
=

{(
a 0
0 a−1

)
| a = 1,−1

}
.

The x,y-coordinates of H2 can be described by the

above decomposition

H2 = P∞ · i ∼= NP∞
×AP∞

.

Using this decomposition, we can add a copy of NP∞
∼=

R at the infinity of AP∞
. This is the boundary face eP∞

associated with the parabolic subgroup P∞.

The Borel–Serre partial compactification H2BS
is

obtained by adding one copy of R to every rational

boundary point of H2. We can also imagine to blow

up every rational boundary point of H2, or of its com-

pactification H2, into a copy of R. It is a real analytic

manifold with boundary, and the quotient Γ\H2BS
is

also a compact real analytic manifold with boundary,

where each boundary component is a circle. It is the

Borel–Serre compactification of Γ\H2.

Topology of the Boundary ∂X
BS

For each parabolic subgroup P, the boundary

component eP is contractible since both NP and XP are

contractible. Therefore, the topology of the boundary

∂X
BS

is controlled by the inclusion relations between

these boundary components.

It can be shown that when P is bigger, its bound-

ary component eP is also bigger in the sense: if P′ is a

subgroup of P, then eP′ is in the closure of eP. This is

most clear in the case of G = SL(2)×SL(2).
The above description of the boundary ∂X

BS

shows that its topology is related to the Tits build-

ing of G.

Definition 2.17. Given a linear semisimple algebraic

group G defined over Q, its Tits building ∆(G) of G
is an infinite simplicial complex whose simplices are

parametrized by proper Q-parabolic subgroups of G
satisfying the following conditions:

1. Denote the simplex for a Q-parabolic subgroup P
by σP. Then for two parabolic subgroups P1,P2, σP1

is contained in the closure of σP2 as a face if and

only if P1 properly contains P2.

2. Maximal proper Q-parabolic subgroups of G cor-

responds to simplices of dimension 0.

3. For every simplex σP, its vertices correspond to

the maximal properQ-parabolic subgroups which
contain P.

The topology of Tits building ∆(G) can be de-

scribed by the Solomon–Tits Theorem as follows.

Proposition 2.18. Let r be the Q-rank of G. Then

∆(G) is homotopy equivalent to an infinite bouquet of

spheres of dimension r−1.
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When r = 1, each sphere of dimension 0 consists

of two points 1,−1 in R1. Every proper Q-parabolic
subgroup is both maximal and minimal. So ∆(G) is

just a countable union of points. This happens when

G = SL(2).
Note that the inclusion relation for the boundary

components eP is the opposite of the inclusion rela-

tion for the simplices σP of the Tits building ∆(G).

Both eP and σP are cells. Therefore, we have

Proposition 2.19. The Borel–Serre boundary ∂X
BS

and the Tits building ∆(G) are cell-complexes dual to

each other, and hence they are homotopy equivalent.

Consequently, ∂X
BS

is homotopy equivalent to a bou-

quet of infinitely many spheres of dimension r−1.

Once we have the above properties of the Borel–

Serre compactification X
BS
, it follows from the gen-

eral argument using the Poincaré–Lefschetz duality

for manifolds with boundary (or with corners) that a

torsion-free arithmetic group Γ is a duality group of

dimension dimX − r, the dualizing module D is equal

to Hr−1(∂X
BS
) = Z∞.

We outline the arguments. For more details, see

[BS, Theorem 11.4.1, Theorem 11.4.2], [Iv, Theo-

rem 6.1, Corollary 6.1], [Br, pp. 209–211], and [IJ, §3].

To compute cd(Γ), we use the equality

cd(Γ) = max{n | Hn
c (X

BS
,Z) 6= 0},

where Hn
c (X

BS
,Z) denotes the cohomology with com-

pact support. Denote the dimension of X by d. Then
the Poincaré–Lefschetz duality theorem implies

Hn
c (X

BS
,Z) = Hd−n(X

BS
,∂X

BS
,Z).

Since X
BS

is contractible, the long exact sequence

gives

Hd−n(X
BS
,∂X

BS
,Z)∼= Hd−n−1(∂X

BS
,Z).

Since ∂X
BS

is homotopy equivalent to a bouquet of in-

finitely many spheres of dimension r−1, we conclude
that for n > 0,

Hn
c (X

BS
,Z) 6= 0

if and only if n = d − r, and

Hd−r
c (X

BS
,Z)∼= Z∞.

This shows that

cd(Γ) = dimX − r.

Furthermore, by [Br, Proposition 7.5, p. 209], it im-

plies Γ is a duality group with the dualizing module

equal to Hd−r(Γ,Z[Γ]), which, by [BS, Theorem 11.4.2],

is equal to

Hd−r
c (X

BS
,Z)∼= Z∞.

Therefore Γ is a duality group but not a Poincaré du-

ality group.

The Case When Γ Is Not Torsion-Free

We mentioned before that when Γ is torsion-free,

X
BS

is a model of EΓ with a compact quotient, since

Γ\X
BS

is a model of BΓ.

We also mentioned that when Γ is not torsion-

free, X is a model of EΓ. When Γ\X is not compact,

X is not a cofinite (or cocompact) model of EΓ. One

question is

Question 2.20. Is X
BS

is a cofinite model of EΓ when

Γ is not torsion-free?

The answer is positive and was given in [J1, The-

orem 3.2]. This is important in the integral Novikov

conjectures in geometric topology [J1, Theorem 3.1].

3. Analogy Between Arithmetic
Groups and Mapping Class Groups

In the above discussion of the Borel–Serre com-

pactification of locally symmetric spaces, we used the

example of the group SL(2,Z) acting on the upper

halfplane H2. We want to interpret it as amoduli space

in order to obtain another generalization.

3.1 Moduli Space and Teichmuller Space

For every point τ ∈H2, there is a lattice Z+τZ in C,
which gives a compact Riemann surface of genus 1,

Z+ τZ\C.

It follows from the uniformization theorem for Rie-

mann surfaces that every compact Riemann surface

is of this form, and the locally symmetric space

SL(2,Z)\H2 can be identified with the moduli space

M1 of compact Riemann surfaces of genus 1.

From this perspective, it is clear that one gener-

alization of SL(2,Z)\H2 consists of the moduli spaces

Mg of compact Riemann surfaces of genus g ≥ 1.
The space Mg was introduced by Riemann in

1857. Many people studied it after Riemann, includ-

ing Klein, Poincaré, Hurwitz, Severi, Fricke. But Te-

ichmüller was the first one who made substantial

progress towards understanding its topology and

complex analytic structure.

Briefly, after defining Mg, Riemann counted the

number of effective complex parameters needed to

describe points of Mg and came up with the answer

3g − 3 when g ≥ 2. The so-called Riemann’s moduli

problem is to make Mg into a complex space such

that its complex dimension is equal to 3g−3. For more

detailed discussions on its complicated history, see

the papers [J2] [J3].

Teichmüller realized that nontrivial automor-

phisms of Riemann surfaces will produce singulari-

ties of Mg, and he introduced the notion of marked
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Riemann surfaces to kill automorphisms and defined

the moduli space of marked Riemann surfaces, which

is called Teichmüller space Tg. He defined a natural

metric, hence a topology, on Tg, and showed that Tg is

homeomorphic to R6g−6. He also announced a natural

complex structure on Tg so that it becomes a complex

manifold. In fact, he was the first person to define the

notion of fine moduli spaces, and Tg is a fine moduli

space of marked Riemann surfaces.

To go back to the moduli space Mg of unmarked

Riemann surfaces, we need the mapping class group

Modg of genus g, which is defined as

Modg = Diff+(Sg)/Diff0(Sg),

where Sg is a compact oriented surface of genus g.
The group Modg acts on Tg by changing the mark-

ings of Riemann surfaces, and we have the following

identification:

Mg = Modg\Tg.

When g = 1, T1 =H2, and Mod1 = SL(2,Z).
It can be shown that Modg acts properly and holo-

morphically on Tg. Consequently, Mg is a complex

orbifold of dimension 3g− 3. This solves the moduli

problem of Riemann mentioned earlier.

The above discussion suggests a strong analogy

between the following three pairs:

1. Tg ⇐⇒ X = G/K.
2. Modg ⇐⇒ Γ.

3. Mg ⇐⇒ Γ\X .

There are several reasons which make such an

analogy interesting. Themost obvious one is that they

have a common root in the action of SL(2,Z) on H2.

On the other hand, there are also some subtle dif-

ferences. For example, when g ≥ 2, Tg with the natu-

ral Teichmüller metric is never a homogeneous space,

even though it is contractible. This follows from the

famous theorem of Royden on the automorphism

group of Tg.

The above analogy has motivatedmany questions

about Modg, Tg andMg. Though formulations of ques-

tions look similar, methods to answer them are often

very different. Maybe this makes the analogy more in-

teresting: the beauty and attractiveness lies in the half

way. See [J5] for other aspects of the analogy between

these two classes of objects.

There are many questions one can ask. Here are

several related to the earlier discussions of this paper.

Question 3.1. 1. Can we compute its cohomological

dimension of Modg?

2. Can we prove that Modg is a virtual duality group?

(Note that Modg is not torsion-free.)

3. Is there a Borel–Serre compactification of Mg

which arises from a partial Borel–Serre compact-

ification of Tg?

4. Is there an analogue of the Tits building which

describes the boundary of the partial Borel–Serre

compactification of Tg?

It is satisfying and also nontrivial that the an-

swers to all these all turn out to be yes. We will ex-

plain them in the rest of this section.

3.2 Compactifications of Moduli Spaces and Curve

Complexes

We start with compactifications. First we note

that Mg is noncompact, since Riemann surfaces can

degenerate. One differential geometric way to view

this is that when g ≥ 2, every compact Riemann sur-

face of genus g admits a canonical hyperbolic met-

ric. With respect to the hyperbolic metric, each homo-

topy class of simple nontrivial closed curve contains

a unique simple closed geodesic. We can obtain a de-

generating family of hyperbolic surfaces by pinching

simple closed geodesics.

If two simple closed geodesics are disjoint, we

can pinch them separately and independently. Oth-

erwise, we cannot due to the collar theorem for hy-

perbolic surfaces. The resulting pinched surfaces are

complete, noncompact hyperbolic surfaces of finite

area. By adding such hyperbolic surfaces of finite area

with Euler characteristic equal to 2 − 2g, which cor-

respond to stable Riemann surfaces of Euler charac-

teristic 2− 2g, to the boundary of Mg, we obtain the

Deligne–Mumford compactification Mg
DM

of Mg. In

fact, Deligne and Mumford showed that Mg
DM

is an

irreducible projective variety.

But there is one problem with the Deligne–

Mumford compactification Mg
DM

for the purpose of

this paper. The inclusion

Mg ↪→Mg
DM

is not a homotopy equivalence.

Therefore, it is not an analogue of the Borel–Serre

compactification Γ\X
BS
. In [Hav], Harvey constructed

an analogue of the Borel–Serre compactification for

Mg by imitating the procedures for Γ\X
BS
.

1. Construct the Borel–Serre partial compactifica-

tion Tg
BS

by adding at infinity products of suit-

able Teichmuller spaces and Euclidean spaces,

which are analogues of boundary components

of parabolic subgroups. (Note the similarity with

the two factors XP and NP in the boundary compo-

nent eP.) Briefly, the Fenchel–Nielsein coordinates

of the Teichmüller space Tg are similar to the

horospherical coordinates of symmetric spaces.

2. These boundary components of Tg
BS

are

parametrized by pinching collections of dis-

joint simple closed geodesics. One can build
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an infinite simplicial complex whose simplices

correspond to collections of disjoint simple

closed curves on the base compact oriented

surface Sg of genus g.
This is the so-called curve complex of the sur-

face Sg, denoted by C(Sg), and corresponds to the

Tits building ∆(G) used in the Borel–Serre partial

compactification X
BS
.

3. The action of the mapping class group Modg on Tg

extends to a proper action on Tg
BS
, and the quo-

tient

Modg\Tg
BS

is the Borel–Serre compactification of Mg.

The curve complex C(Sg) is the crucial notion and

we explain more about it. Let Sg be the base compact

oriented surface of genus g which is used to define

markings on Riemann surfaces. Then the curve com-

plex C(Sg) is an infinite simplicial complex such that

1. The vertices of C(Sg) correspond to homotopy

classes of simple closed nontrivial curves in Sg.

2. Simplexes of C(Sg) correspond to distinct homo-

topy classes of disjoint simple closed nontrivial

curves in Sg.

Since the boundary components added to Tg
BS
are

parametrized by the simplices of C(Sg) and are con-

tractible, we have the following result:

Corollary 3.2. The Borel–Serre boundary ∂Tg
BS

is ho-

motopy equivalent to the curve complex C(Sg).

Harer [Har] showed an analogue of the Solomon–

Tits Theorem.

Proposition 3.3. For g ≥ 2, the curve complex C(Sg) is

of the homotopy type of a bouquet of spheres of di-

mension 2g−2.

Using this, he proved the following result.

Proposition 3.4. The mapping class group Modg is a

duality group of cohomological dimension cd(Modg) =

4g−5.

Harer also proved other fundamental results on

cohomological properties of Modg. In proving all these

results, the curve complex C(Sg) and related com-

plexes play an important role. See [Har] for more de-

tails.

It seems that one natural question was not asked

nor answered in his work.

Question 3.5. Is Modg not a virtual Poincare duality

group?

This is related to a question about the topology

of curve complex C(Sg). Harer’s result says that C(Sg)

is homotopy equivalent to a bouquet of spheres. But

he did not say how many spheres there are in the

bouquet. There could be none. If this is the case, Modg

is a virtual Poincare duality group.

In [IJ], we showed that

Proposition 3.6. The curve complex C(Sg) is homotopy

equivalent to a bouquet of infinitely many spheres,

and hence Modg is not a virtual Poincare duality group.

This is consistent with the result for non-

cocompact arithmetic subgroups in Theorem 2.1.

3.3 Application of Curve Complexes of Surfaces

When Harvey [Hav] introduced the curve complex

C(Sg), it was more like a formal analogy of Tits build-

ings ∆(G) in order to parametrize the boundary com-

ponents of the Borel–Serre partial compactification

T BS
g .

Later, it turned out that C(Sg) has many appli-

cations in low dimensional topology. For example,

Masur and Minsky proved that C(Sg) is a hyperbolic

space, and this was used by Minsky et al. to prove the

ending lamination conjecture of Thurston. See the pa-

pers [Mi] and [BCM] for more details. It was also used

to prove that the asymptotic dimension of Modg is fi-

nite in [BBF], which is a large scale geometric invari-

ant of finitely generated groups endowed with word

metric and implies that the Novikov conjectures are

satisfied by Modg.

The curve complex was also used to understand

Heegard splittings of 3-manifolds. See the paper [J4]

for more references and some details about applica-

tions of curve complexes and their similarities with

Tits buildings.

The curve complex C(Sg) is now a basic tool in

geometric group theory and low dimensional topol-

ogy. It is perhaps worthwhile to recall that the whole

discussion started with the question to understand

cohomology properties of arithmetic subgroups of

semisimple Lie groups in the paper of Borel and Serre

[BS].

Let us conclude with a quote from Serre who told

the author of this paper about 20 years ago at Univer-

sity of Michigan: “Everything is cohomology!”

We hope that the discussion in this paper gives

some support to his assertion. The reader can also

take a look at the works of Serre and Grothendieck

to see how cohomology theories appeared and were

used.
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