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Abstract. We study Noether’s problem from the

perspective of torsors under linear algebraic groups

and descent.
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Introduction

This note is inspired by the theory of universal

torsors developed by Colliot-Thélène and Sansuc in

connection with arithmetic problems on del Pezzo

surfaces [CTS87b]. This theory associates to a geo-

metrically rational surface X over a field k, with X(k) 6=
/0, a torsor

(1) π : T T−→ X ,

where T is the Néron-Severi torus of X , i.e., the char-

acter group of Tk̄ is isomorphic, as a Galois module,

to the geometric Néron-Severi lattice NS(Xk̄) of X . The
torsor is viewed as a descent variety. Basic arithmetic

problems on X , such as Weak Approximation, are re-

duced to the following geometric hypothesis: T is ra-

tional over k. The gist of this hypothesis is that on

T , the arithmetic complexity of X is untwisted: while

X may have nontrivial (algebraic) Brauer group, it is

eliminated via passage to a universal torsor. A posi-

tive answer to this would imply in particular that X is

unirational over k, which is an open problem for del

Pezzo surfaces of degree 1.
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In higher dimensions, unirational varieties may

have nontrivial transcendental Brauer group, or more

generally, nontrivial higher unramified cohomology.

Examples are conic bundles over rational surfaces

considered by Artin–Mumford [AM72], quadric bun-

dles [CTO89], or Brauer–Severi bundles. Our motiva-

tion was to understand whether or not these obstruc-

tions to stable rationality can be untwisted via pas-

sage to fibrations as in (1).

Definition 1. A variety X over a field k admits a ra-

tional tower if there exists a sequence of dominant

rational maps

(2) Xn
πn−→ Xn−1 → ··· → X1

π1−→ X0 := X ,

over k, such that

(1) the source of the tower, Xn, is rational over k,
(2) the generic fiber of πi is geometrically rational

and irreducible, over the function field k(Xi−1), for

all i.

We say that X admits a toric rational tower, if in addi-

tion

(2’) the generic fiber of πi is birational to a torsor

under an algebraic torus, over the function field

k(Xi−1), for all i.

Conjecture 2. Let X be a unirational variety over k.
Then X admits a rational tower.

This conjecture is motivated by topology: every

continuous map is homotopy equivalent to a fibra-

tion with constant fiber. In the algebraic-geometric

context, the conjecture implies in particular that un-

ramified cohomology of the source of the tower, Xn,

in Definition 1, is trivial. Of course, one can trivialize

a given unramified cohomology class (with finite co-

efficients) via passage to a tower with geometrically

rational fibers, as in (2). Indeed, let K = k(X) be the
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function field of an algebraic variety over a field k,
which contains all roots of unity. By the Bloch-Kato

conjecture, proved by Voevodsky, the subring

⊕i≥2H i(K)⊂ H∗(K)

of Galois cohomology of K, with finite coefficients,

equals the ideal generated by H2(K). Since elements of

H2 are trivialized on the corresponding Brauer-Severi

variety, we can trivialize an arbitrary finite set of Ga-

lois cohomology classes via passage to a tower as in

(2):

Ym → Ym−1 → ··· → Y1 → Y0 = X ,

where the generic fibers are forms of projective

spaces. However, a direct application of this construc-

tion does not imply Conjecture 2, as we cannot assert

the rationality of Ym. In fact, new unramified classes

may appear in the process, and we cannot even en-

sure that Ym has trivial unramified cohomology.

To motivate Conjecture 2 from the perspective

of algebra, consider the following important class of

unirational varieties: quotients V/G, where G is a fi-

nite group and V a (finite-dimensional) faithful linear

representation of G over k. In [BT17] we showed that,

over k = F̄p, these varieties are universal for unrami-

fied cohomology: every unramified cohomology class

of an algebraic variety over k is induced from V/Gc,

where Gc is a central extension of an abelian group

(see Section 1 for more details). Thus we expect that

such quotients are universal from the birational point

of view as well. For groups of this type, and a wide

class of solvable groups G, we prove:

• V/G admits a toric rational tower.

Its source Xn is a k-rational variety, untwisting all un-

ramified cohomology of V/G.

1. Background

Let X be a smooth projective geometrically ra-

tional variety over a field k. Among obstructions to

k-rationality are the absence of k-rational points or the
nontriviality of the Brauer group

Br(X)/Br(k).

More generally, wemay consider unramified cohomol-

ogy

H i
nr(X ,µ⊗i−1

m ), H i
nr(X ,Q/Z(i−1)), m ∈ N,

(see [Bog87a], [CTO89] for definitions and basic prop-

erties). These groups are birational invariants which

vanish when i > dim(X) or when X is k-rational, when k
is algebraically closed. For X smooth and projective,

we have

Br(X)[m] = H2
nr(X ,µm),

where µm stands for m-th roots of 1. Below, we omit

the coefficients, when they are clear from the context.

Conjecture 3. Let X be a unirational variety over an

algebraically closed field of characteristic zero. Then

its unramified cohomology is finite.

Finiteness of H i
nr(X ,Q/Z(i− 1)), for unirational X ,

is known for:

• i = 2, classically,
• i = 3 [CTK13, Proposition 3.2].

When X(k) 6= /0, the theory of Colliot-Thélène–

Sansuc provides a fibration

π : T T−→ X

as in (1), such that

• the generic fiber of π is a principal homogeneous

space under an algebraic torus T and

• if T (k) 6= /0 then T is, hypothetically, a rational va-

riety [CTS87b, Hypothesis H1, Section 2.8].

Special cases of this are known, e.g., when X ad-

mits a conic bundle over k, with 4 degenerate fibers

[CTS87a]. As further evidence for the rationality hy-

pothesis, one has the proof that, over k of character-

istic zero, H2
nr(T ) is trivial [CTS87b, Theorem 2.1.2].

A more recent consistency check is [Cao16a] and

[Cao16b], where it is shown that

• when X is a geometrically rational surface, the

nontrivial part of H3
nr(T ) is finite and 2-primary.

An example of a geometrically rational variety of

dimension 3 where Hypothesis H1 fails is given in

[CTS87b, Remarque 2.8.18].

We now turn to unirational varieties which are not

necessarily geometrically rational, which may have

nontrivial transcendental Brauer group. Examples ap-

peared in the context of Noether’s problem:

Problem 4 (Noether). Let V be a faithful representa-

tion of a finite group G over k. Is V/G (stably) rational?

Noether’s problem has a negative solution: coun-

terexamples are based on explicit computations of

unramified cohomology, which is essentially a com-

binatorial problem, in terms of the structure of Sylow

subgroups of G. Groups G with nontrivial H2
nr(V/G)

were constructed in [Sal84], [Bog87b], and [Mor12];

with trivial H2
nr(V/G) but nontrivial H3

nr(V/G) in [Pey08]

and [HKY16].

On the other hand, unramified cohomology is

trivial for actions of many classical finite groups. In

some, but not all, of these cases, we have proofs of

(stable) rationality (see, e.g., [BK85], [BBGVB11]).

Our goal in the following sections will be to un-

twist unramified cohomology of V/G by constructing
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rational towers as in Definition 1. Of particular im-

portance are solvable groups G. Indeed, in [BT17] we

proved a universality result:

Theorem 5. Let X be an algebraic variety of dimen-

sion ≥ 2 over k = F̄p, ` 6= p a prime, and

α ∈ H i
nr(X ,Z/`n)

an unramified class. Then there exist finite-dimen-

sional k-vector spaces Vj, j ∈ J, depending on α , such

that α is induced, via a rational map, from an unram-

ified class in the cohomology of the quotient of

P := ∏
j∈J

P(Vj)

by a finite abelian `-group Ga, acting projectively on

each factor.

In other words, central extensions of abelian

groups capture all unramified cohomology invari-

ants.

2. First Properties

Throughout, G is a linear algebraic group over a

field k and V a finite-dimensional linear faithful rep-

resentation of G over k.
Let Bir(k) be the set algebraic varieties over k,

modulo k-birational equivalence, which we denote

by ∼k. Let

Rat(k)⊂ LQ(k)⊂ GQ(k)⊂ Unirat(k),

be the classes of algebraic varieties over k which are

• k-rational,
• k-birational to V/G (Linear Quotients),

• k-birational to X/G, where X is a k-rational alge-
braic variety and G is a subgroup of the group

BirAut(X) of k-birational automorphisms of X
(General Quotients),

• k-unirational,

respectively. Our goal is to connect these classes,

via passage to fibrations with geometrically rational

generic fibers as in Definition 1. We start with simple

examples:

Example 6. Let G be a finite abelian group, or an ex-

tension of a finite cyclic group by a finite abelian

group. If k is of characteristic coprime to n := |G|
and contains n-th roots of 1 then V/G is rational (see

[Swa83, Theorem 6.1]).

This can fail, in general, even when G is cyclic.

Over Q, there are counterexamples, e.g., for G = Z/8Z
[Sal82, Theorem 5.11], or for G = Z/47Z [Swa69],

[Len74], [Pla17].

Example 7. Let V be a faithful linear representation

of a finite group G over k, i.e., G ↪→ GL(V ). Then

V/G ∼k P(V )/G×P1.

Example 8. Let G be a connected linear algebraic

group and V a faithful linear representation of G
over k. Then Y :=V/G admits a rational tower. Indeed,

the total space of the corresponding (rational) fibra-

tion

V →V/G = Y

is clearly k-rational, and the generic fiber is geometri-

cally rational.

Example 9. Toric varieties: a universal torsor of a

toric variety XΣ over k is given by

TΣ = An \ZΣ,

where ZΣ is a locally closed subvariety; we have

XΣ = TΣ//TNS,

where TNS is the Néron-Severi torus of X . Thus XΣ ad-

mits a toric rational tower.

Lemma 10. Let G be a finite group and Y = V/G ∈
LQ(k). Assume that there exists an X ∈ Rat(k) with a

generically free G-action, such that X/G ∈ Rat(k). Then
there exists a fibration Y1 →Y with geometrically ratio-

nal generic fiber and k-rational Y1.

Proof. We have a fibration

(X ×V )/G →V/G = Y,

with generic fiber geometrically isomorphic to X . On
the other hand, we have a vector bundle

(X ×V )/G → X/G

with fiber V , since the G-action on V is linear. Thus

(X ×V )/G is k-rational.

Corollary 11. Let X be a rational surface over an alge-

braically closed field k and G a linear algebraic group

contained in BirAut(X). Then Y =V/G admits a rational

tower.

Remark 12. Let C → P1 be a Galois cover with Galois

group G. Then there exists a fibration

π : (C×V )/G →V/G

with rational total space. However, the generic fiber

of π is not necessarily geometrically rational; it is ra-

tional iff the genus g(C) = 0.

3. Central Extensions and Wreath
Products

In this section, we investigate the existence of

rational towers for LQ(k), over algebraically closed
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fields k of characteristic zero. We prove Conjecture 2

for V/G, for special groups G.
It is well-known that for finite abelian groups A

and their faithful linear representations V , the quo-

tient V/A is rational, provided the ground field k con-
tains n-th roots of 1, where n = |A|. We turn to central

extensions of abelian groups: among these, we have

the free central extension

1 → Z → Fc(A)→ A → 1,

with

Z := ∧2(A),

generated by commutators of lifts of elements of A,
without nontrivial relations. The extension Fc(A)
unique, modulo isoclinism.

Lemma 13. Consider a central extension of an abelian

group

1 → Z → Gc → A → 1.

Then there exists an exact sequence

(3) 1 → Z̃ → F̃c → Gc → 1,

where F̃c is isoclinic to Fc(A), and Z̃ is abelian.

Proof. It suffices to add to Gc additional elements

which kill the image of stable cohomology H2
st(A,Z/`)

in H2(F̃c,Z/`) (see [BPT10, Section 4] and [BT17, Sec-

tion 2] for definitions and properties).

Corollary 14. There exist a faithful representation W
of Fc = Fc(A) and a fibration

W/Fc →V/Gc

whose generic fiber is birational to an algebraic torus

over the function field of the base.

Proof. Let W ′ be a faithful representation of F̃c and

put W := W ′ ⊕V . We have a natural surjective homo-

morphism W →V giving rise to a fibration

W/F̃c →V/Gc.

Its generic fiber is geometrically isomorphic to W ′/Z̃,
with Z̃ defined in (3). It suffices to recall that linear

quotients of abelian groups are rational, when k con-

tains roots of unity.

Conjecture 15. Let A be a finite abelian group, Fc(A)
its free central extension, and V a faithful linear rep-

resentation of Fc, over an algebraically closed field k.
Then V/Fc is stably rational.

Note that stable rationality does not change

within a fixed isoclinism class, over fields containing

roots of unity.

Example 16. Conjecture 15 holds when A is cyclic.

When A'Z/`⊕Z/`, Fc(A) is the Heisenberg group. The
problem reduces to a monomial action, and Conjec-

ture 15 holds as well. Next, consider:

A := Z/`⊕Z/`⊕Z/`, for `= 2.

Modulo isoclinism, we can represent

Fc = Fc(A)⊂ Q8,1 ×Q8,2 ×Q8,3,

where each Q8,i is the group of quaternions over Z/2:
Choose a Z/2-basis {e1,e2,e3} of A and a basis π1,π2,π3

of surjective homomorphisms

πi : A → Z/2⊕Z/2,

each trivial on one of the generators e1,e2, or e3. This

induces diagrams

1 // (Z/2)3 //

��

Fc //

��

(Z/2)3 //

��

1

1 // (Z/2) // Q8,i // (Z/2)2 // 1

Let Vi be the standard 2-dimensional representation

of Q8,i. Then

W :=V1 ⊕V2 ⊕V3

is a faithful representation of Fc. We have a k×-action
on each component that commutes with the action

of Fc. It follows that

W/Fc ∼k
(
(P1 ×P1 ×P1)/G

)
× (k×)3,

where G=(Z/2)3 actsmonomially on k(x1,x2,x3), as fol-

lows:

(4) σ(xi) = ci,σ x
ai,σ
i , ci,σ , ai,σ ∈ {±1}, ∀σ ∈ G.

By [Yam12, Theorem 10], Type (3,3,3,1) in the nota-

tion therein, the field of invariants k(x1,x2,x3)
G is ra-

tional over k, when k is algebraically closed. It follows
that W/Fc is stably rational.

Lemma 17. [BP11, Lemma 2.4] Let G,H be finite

groups, acting faithfully on X and Y , respectively. As-
sume that X/G,Y/H ∈Rat(k). Let K :=H oG be the wreath

product, with its natural action on W := X |H|×Y . Then
W/K is rational.

Proof. Observe that the quotient X |H|/H |G| is a prod-

uct of rational varieties (X/G)|H|. The group H acts

on (X/G)|H| by permutations, and this action is equiv-

alent to the linear (free permutation) action of H
on V⊕|H|, where V ∼k X/G. Thus the quotient W/K is

k-birational to a vector bundle over Y/H, and hence

rational.
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Definition 18. A finite solvable group G is called spe-

cial, if there exists a filtration

G = G0 ) G1 ) · · ·) Gr = 1

such that, for all i = 0, . . . ,r−1, one has

• Gi is a normal subgroup in G,
• the kernel of the projection

pi : G/Gi+1 → G/Gi

is abelian and

• there exists a section si : G/Gi → G/Gi+1

Proposition 19. Let G be a special solvable group and

V a faithful linear representation of G. Then there ex-

ists a toric rational tower

Xn → ··· → X0 :=V/G.

Proof. By induction. We assume that the claim holds

for G(i) := G/Gi. The group G(i+1) is uniquely defined

by the action of G(i) on the abelian group Ai := Gi/Gi+1.

Then there exists a surjection

(5) βi : Bi := Z/mi[Gi]
ri → Ai,

for some ri and mi. Its kernel Ker(βi) is abelian.

This induces a surjection from the wreath prod-

uct G(i) o (Z/mi)
ri onto G(i+1). Let Wi be a faithful repre-

sentation of Bi. Then there is a G-equivariant projec-
tion

W |Gi|
i →W,

onto some linear representation W of Ai, correspond-

ing to the surjection of modules (5). LetVi be a faithful

representation of G(i) and consider the surjection

Vi ⊕W
|G(i)|
i →Vi ⊕W.

Its kernel Keri is a linear space with a faithful action

of the abelian group Ker(βi). The quotient Ker/Ker(βi)

is toric, it is the fiber of the projection

(6) (Vi ⊕W
|G(i)|
i )/Wi → (Vi ⊕W )/G(i+1).

By induction hypothesis and Lemma 17, the left side

of (6) admits a tower of toric fibrations with rational

source. This implies the claim for i+1.

Remark 20. Our argument is similar to [Sal82, Theo-

rem 3.3] that was focused on the Inverse Galois Prob-

lem.

Corollary 21. Assume that G is a special solvable

group. Then there exists a rational G-variety X with

X/G ∈ Rat(k).

Proof. By induction, as in the proof of Proposition 19.

It suffices to observe that Xi+1 is a quotient of a vec-

tor bundle over Xi by an abelian linear action on the

generic fiber. The corresponding quotient is rational,

when Xi is rational.

Thus we obtain many groups with nontriv-

ial (equivalent to linear) embedding into Cremona

groups, with rational quotients.

Corollary 22. Let V be a faithful representation of

an `-group Gc, a finite central extension of an abelian

`-group A. Then V/Gc admits a tower of toric fibrations

with rational source.

Proof. We apply induction on the `-rank of A. The
claim is trivial when rank equals 1. Let A′ := A⊕Z/`m.

Let Fc := Fc(A′) be the free central extension of A′. We

have a surjection

Fc(A′)� Fa(A),

with a canonical section and abelian kernel. Now we

apply Proposition 19.

As mentioned in Section 1, Noether’s problem,

i.e., the rationality of V/G, has a negative solution.

However, one can consider more general, nonlinear,

generically free G-actions on rational varieties. A ver-

sion of Conjecture 2, and of Noether’s problem, is the

following

Conjecture 23. Let G be a finite group. Then there

exists a k-rational G-variety X with generically free

G-action such that X/G is k-rational.

4. Group Theory

In this section we consider finite simple groups G.
Our main observation is that the Sylow subgroups

Syl`(G) of most simple groups G satisfy the assump-

tions of Proposition 19; the corresponding V/Syl`(G)

admit a rational tower. Below we sketch a proof in a

special case.

Let G = PGLn(Fq), with q = pm, for m ∈ N.

(1) Consider Sylp(G). It is conjugate to a subgroup

of upper-triangular matrices Un ⊂ G. There is a

natural projection

Ur →Ur−1, ∀r,

with a section sr−1 and abelian kernel, as in the as-

sumptions of Proposition 19, which induces the

corresponding structure on Sylp(G).

(2) Consider Syl`(G), with ` 6= p. Every such subgroup

is a subgroup of the normalizer N(T ) of a (pos-

sibly nonsplit) maximal torus T ⊂ G. We have an

extension

1 → T → N(T )→WT (G)→ 1.

Note that Syl`(G) admits a projection onto the

corresponding Syl`(WT (G)) and the induced ex-
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tension, by an abelian `-group, splits (for ` 6= 2).
Since Proposition 19 holds for

Syl`(WT (G)) = Syl`(Sn−1)

(it is an iterated wreath product extension by

cyclic `-groups), it also holds for Syl`(G).

Similar arguments apply to other finite groups of Lie

type. Additional considerations are needed for some

sporadic simple groups, and small primes.

5. Actions in Small Dimensions

In this section, we survey related results on ratio-

nality of quotients X/G, for low-dimensional rational

varieties X over (possibly nonclosed) fields k of char-

acteristic zero.

Let V be a faithful linear representation of a finite

group G over k. When G is abelian, V/G is rational;

however, P(V )/G need not be k-rational, even when

dim(V ) = 4 [AHK00, Example 2.3].

When dim(V )≤ 3,V/G is rational over algebraically

closed fields k: indeed, by Example 7, it suffices to

consider the unirational surface P(V )/G which is ra-

tional. However, the situation is different over non-

closed fields.

Dimension 2. There is a large literature on rational

G-surfaces X over nonclosed fields, i.e., actions of fi-

nite groups G ⊂ Aut(X) (see [Man67]). We have X/G ∼k

S/G, where S is a G-minimal del Pezzo surface or a

conic bundle. If S is a conic bundle then G ⊂ PGL2(k̄)
(see [Tre16a, Theorem 1.3]). We start with several ra-

tionality results: let X be a smooth del Pezzo surface

with X(k) 6= /0 and G ⊂ Aut(X).

• If deg(X) = K2
X ≥ 5 then X/G ∈ Rat(k) [Tre14, Corol-

lary 1.4], [Tre16b, Theorem 1.1].

• If deg(X) = 3 and |G| 6= 3 then X/G ∈ Rat(k) [Tre16b,
Theorem 1.3].

Example 24. [Tre16b, Section 5] Let X ⊂ P3 be a

smooth cubic surface given by

f3(x,y)+ zt(ux+ vy)+ z3 +wt3 = 0,

where f3 is a form of degree 3, (x : y : z : t) are coor-

dinates in P3, and u,v,w are parameters. Assume that

the Galois group of f3 is Z/2. Then X admits an action

of G = Z/3, and X/G is k-birational to a nonrational

over k, minimal degree 4 del Pezzo surface S, admit-

ting a conic bundle S → P1 over k. By [CTS87a], X/G
admits a rational tower: a universal torsor is k-ratio-
nal.

On the other hand, over nonclosed k, the set of

k-birational types of quotients of conic bundles over

P1 may be infinite [Tre16a, Theorem 1.8]. E.g., this

holds when G = A5 and

• not every element of k is a square,

•
√
−1,

√
5 ∈ k.

Problem 25. Establish the existence of rational towers

for Del Pezzo surfaces over nonclosed fields.

Dimension 3. Over algebraically closed k, stable ratio-
nality of quotients P3/G is unknown for

• central Z/2-extensions of the following groups:

S̃5, Ã6,S̃6, Ã7,SL2(F7),

• extensions of A5, respectively, A6 by a group N of

order 64.

For all other subgroups G ⊂ GL4(k), P3/G is stably ra-

tional [Pro10]. Rationality over nonclosed fields has

not been addressed.
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