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Abstract. Several years ago, it was proposed that

the usual solutions of the Yang-Baxter equation

associated to Lie groups can be deduced in a

systematic way from four-dimensional gauge theory.

In the present paper, we extend this picture, fill

in many details, and present the arguments in a

concrete and down-to-earth way. Many interesting

effects, including the leading nontrivial contributions

to the R-matrix, the operator product expansion

of line operators, the framing anomaly, and the

quantum deformation that leads from g[[z]] to

the Yangian, are computed explicitly via Feynman

diagrams. We explain how rational, trigonometric,

and elliptic solutions of the Yang-Baxter equation

arise in this framework, along with a generalization

that is known as the dynamical Yang-Baxter equation.
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1. Introduction

Integrable systems of 1 + 1-dimensional many-

body physics and two-dimensional statistical me-

chanics first emerged in Bethe’s discovery of the

Bethe Ansatz [1] and Onsager’s solution of the two-

dimensional Isingmodel [2], respectively. Subsequent

study led to remarkable generalizations and new dis-

coveries, continuing to the present day.

Much of the wisdom about integrable models can

be distilled into the Yang-Baxter equation [3, 4, 5, 6]

and its interpretation via quantum groups [7, 8]. Many

of the classic papers on this subject are reprinted in

[9]. See also, for example, [10] for an introduction.

In the present paper, we will aim to explain, sim-

plify, and further develop a new approach to the

Yang-Baxter equation and related integrable systems

of statistical mechanics that was proposed several

years ago by one of us [11, 12]. In this approach, the

solutions of the Yang-Baxter equation and their prop-

erties are deduced from a four-dimensional gauge

theory that can be regarded as a T -dual version of

three-dimensional Chern-Simons gauge theory. An in-

formal introduction to this approach can be found in

[13]. In spirit, this approach is in keeping with a vi-

sion that was proposed long ago by Atiyah [14]: the

Yang-Baxter equation in two dimensions is deduced

by starting with a theory in higher dimensions.

The purpose of the present paper is to further

develop this approach, filling in many details and

hopefully presenting the arguments in a concrete and

down-to-earth way. In section 2, we review the basic

facts about integrability and the Yang-Baxter equa-

tion that will be needed. In section 3, we introduce

the relevant four-dimensional gauge theory. We ex-

plain why it leads automatically to solutions of the

Yang-Baxter equation and more specifically why pos-

sible choices of compactification to two dimensions

lead to rational, trigonometric, and elliptic solutions

of that equation. We explain why in this theory, one

can at the classical level introduce Wilson line op-

erators associated not just to representations of the

gauge group G but to representations of an infinite-

dimensional algebra g[[z]]. This generalization turns

out to be crucial in understanding the theory. Quan-

tum mechanically, as we learn later, g[[z]] will be pro-
moted to the Yangian deformation of g[[z]] (or its

trigonometric or elliptic generalization). In section 3,

we also review some simple examples of solutions of

the Yang-Baxter equation and see how one can de-

duce from these simple examples that there must be

a framing anomaly for Wilson line operators.

In sections 4–8, we study some increasingly sub-

tle quantum effects in this theory. In section 4, we

compute directly the first nontrivial term in the quan-

tum R-matrix. General theorems [7, 8] actually deter-

mine the whole structure in terms of this lowest order

term together with formal properties of the theory.

However, our goal in the present paper is to see ev-

erything as explicitly as possible rather than relying

on abstract arguments.

In section 5, we study the first nontrivial quantum

correction to the operator product expansion (OPE) of

Wilson line operators. We show that to get a closed

OPE, one has to consider line operators associated to

representations of g[[z]], not just representations of

the underlying finite-dimensional gauge group G. We

also explain that this first quantum correction to the

classical OPE implies that in yet higher orders, there
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will have to be further deformations, which will de-

form g[[z]] to the Yangian (or one of its generaliza-

tions).

In section 6, we compute the framing anomaly

for Wilson line operators in this theory, recovering

from a Feynman diagram calculation the result that

was predicted on more abstract grounds in section 3.

The framing anomaly found here is somewhat analo-

gous to the framing anomaly for Wilson operators in

three-dimensional Chern-Simons theory, but its con-

sequences are more far-reaching.

In section 7, we generalize the analysis from Wil-

son line operators to networks of Wilson lines –

graphs that can be drawn in the plane in which the

line segments are Wilson line operators and the “ver-

tices” are invariant couplings that describe (for ex-

ample) the “fusion” of two Wilson line operators to

make a single one. In this context, there is a quantum

anomaly that generalizes and can largely be deduced

from the framing anomaly.

In section 8, we reconsider, following the ele-

mentary considerations in section 5, the deformation

from g[[z]] to the Yangian. At the two-loop level, that

is, in order1 h̄2, there is a potential anomaly in the

coupling of two gauge bosons to a Wilson line op-

erator. To avoid or cancel the anomaly, Wilson lines

must be associated (in the rational case) to represen-

tations of a quantum deformation of g[[z]] known as

the Yangian. A surprising consequence of this is that

an ordinary Wilson operator associated to a finite-

dimensional representation of G may be anomalous

and hence absent in the quantum theory. For exam-

ple, for G = SO(N) (or any simple Lie group other than

SU(N)), there is no Wilson line operator associated to

the adjoint representation.

In sections 9 and 10, we analyze the variants of

the construction that lead to trigonometric and el-

liptic solutions of the Yang-Baxter equation, respec-

tively. In section 11, we explain how a generaliza-

tion of the Yang-Baxter equation known as the “dy-

namical Yang-Baxter equation” [21, 22, 23, 24] fits in

this framework. In brief, one finds an ordinary Yang-

Baxter equation when one expands around a classi-

cal gauge theory solution that has no moduli; moduli

lead to a dynamical Yang-Baxter equation.

All of our explicit computations in the present pa-

per are in the lowest nontrivial order in h̄ in which

some quantum effect occurs. In a companion paper

[25], we will explain how to construct the Yangian al-

gebra, and its trigonometric and elliptic generaliza-

tions, “exactly” in the present framework, not just in

lowest order of perturbation theory. We have put the

1 There does not seem to be a standard terminology for
counting loops in Feynman diagrams that contain Wilson op-
erators. We refer to a contribution that is of order h̄n relative
to a leading order contribution as an n-loop effect.

word “exactly” in quotes because the theory, in the

form in which it has been developed so far, is a per-

turbative theory, so “exactly” really means “to all or-

ders in perturbation theory.” It is anticipated that the

D4-NS5 system of string theory would provide the

framework for a nonperturbative description, along

the lines of the study of the D3-NS5 system in [26],

but this has not yet been developed.

Finally, we recall the existence of another and

superficially quite different relationship between in-

tegrable spin systems and four-dimensional gauge

theory [27, 28]. A connection between the two ap-

proaches is not yet known.

2. Review of Integrability

In this section, we review some standard facts

about integrable models, aiming just to explain what

is needed for the purposes of this paper. The goal

of the rest of the paper will be to explain these facts

from the standpoint of four-dimensional gauge the-

ory.

2.1 The Yang-Baxter Equation

We consider a system of particles whose inter-

nal quantum numbers take values in some vector

space V . It is often convenient to pick a basis {ei}dimV
i=1

of V . A particle is also characterized by a complex

parameter z that in the context of integrable sys-

tems is known as the spectral parameter. It will play

a crucial role in what follows. The particles live in

a two-dimensional spacetime and travel on (possi-

bly curved) one-dimensional worldlines in this space-

time. When twoworldlines cross (Fig. 1), their spectral

parameters are assumed to be unchanged, but their

internal state is transformed by a matrix that in gen-

eral depends on the spectral parameters.

We write this matrix as R(z1,z2) : V ⊗V →V ⊗V , or
in more detail, in the chosen basis, as Rkl

i j(z1,z2). How-

ever, although there are interesting R-matrices that

lack this property,2 we will be concerned in this paper

with the case that the R-matrix depends only on the

difference z = z1 − z2 of the two spectral parameters.

(In some applications of the Yang-Baxter equation,

the spectral parameter is interpreted as a particle mo-

mentum or rapidity, and the fact that the R-matrix de-

pends only on the difference of spectral parameters

is interpreted as a consequence of Galilean invariance

or Lorentz invariance.)

2 The basic example is the chiral Potts model [15, 16],
in which the spectral parameter takes values in a curve
of genus greater than 1. Interestingly this model arises
as a root-of-unity degeneration of the model of [17],
which in turn arises from supersymmetric indices of four-
dimensional N = 1 quiver gauge theories [18, 19, 20].
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Figure 1. Crossing of two worldlines in a

two-dimensional spacetime. The “blob” indicates a

scattering process the amplitude for which will (in the

context of the present paper) ultimately be computed

via gauge theory. When two particles cross, their

spectral parameters z1 and z2 are unchanged but

their “internal” state is transformed.

Figure 2. The Yang-Baxter equation asserts the

equivalence between these two pictures.

The Yang-Baxter equation says that when three

worldlines cross in a pairwise fashion, the arrange-

ment in which they cross does not matter (Fig. 2). We

denote the three particles as a,b,c, and write, for ex-

ample,Va for the vector space of internal states of par-

ticle a, za for its spectral parameter, and Rab(za − zb) :
Va⊗Vb →Va⊗Vb for the corresponding R-matrix.3 Then

the Yang-Baxter equation reads4

R12(z1 − z2)R13(z1 − z3)R23(z2 − z3)

= R23(z2 − z3)R13(z1 − z3)R12(z1 − z2).
(2.1)

3 We also denote Rab ⊗ 1 : Va ⊗Vb ⊗Vc → Va ⊗Vb ⊗Vc simply as
Rab.
4 The general form of this equation without assuming that
the spectral parameter depends only on the difference of
rapidities is simply

R12(z1,z2)R13(z1,z3)R23(z2,z3) = R23(z2,z3)R13(z1,z3)R12(z1,z2).

In terms of the basis {ei} of V , the equation takes the

imposing form

∑
o,p,q

R12(z1 − z2)
nm
qo R13(z1 − z3)

ql
ipR23(z2 − z3)

op
jk

= ∑
r,s,t

R23(z2 − z3)
ml
rt R13(z1 − z3)

nt
skR12(z1 − z2)

sr
i j ,

(2.2)

where the meaning of the indices is more clear in a

picture (Fig. 3).

The Yang-Baxter equation can be naturally sup-

plemented with a condition sometimes called “unitar-

ity,” which asserts that a picture in which two world-

lines cross and then cross back is equivalent to one

in which they do not cross at all (Fig. 4). In formulas,

the relation is

(2.3) R21(z2 − z1)R12(z1 − z2) = 1.

All solutions of the Yang-Baxter equation studied in

this paper satisfy such a unitarity condition. There

is also a crossing relation, which we will come to in

sections 3.5 and 3.6.

The Yang-Baxter equation is highly over-

constrained, especially if the dimension of V is

large: the R-matrix has O((dimV )4) coefficients,

while the Yang-Baxter equation has O((dimV )6)

components. Moreover, the presence of the spectral

parameter further constrains the possible solutions

to the Yang-Baxter equation. Nevertheless, the Yang-

Baxter equations does have solutions and these lead

to a remarkably rich theory.

2.2 Quasi-Classical R-Matrix

While no complete classification is known of the

general solution of the Yang-Baxter equation, there

are more complete results for the case of a so-called

quasi-classical R-matrix,5 a concept that we now ex-

plain.

A quasi-classical R-matrix is a solution Rh̄(z) of the
Yang-Baxter equation that depends on another con-

tinuous parameter h̄ as well as on the spectral pa-

rameter z, and that is holomorphic near h̄ = 0 with

R0(z) = 1. Thus Rh̄(z) has an expansion near h̄ = 0 that

begins

(2.4) Rh̄(z) = I + h̄r(z)+O(h̄2).

Here r(z) is called the classical r-matrix.

By considering the O(h̄2) term of the Yang-Baxter

equation (2.1), one learns that the classical r-matrix

obeys an equation that is known as the classical Yang-

Baxter equation:

5 There are known solutions of Yang-Baxter equations which
are not quasi-classical. The chiral Potts model [15, 16] is
again a basic example.
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Figure 3. A graphical representation of the Yang-Baxter equation. On the left, one sums over labels p,q,o, and on

the right one sums over r,s, t. An appropriate R-matrix element is attached to each vertex.

Figure 4. In the context of the Yang-Baxter equation,

“unitarity” is the equivalence of these two pictures.

[r12(z1 − z2),r13(z1 − z3)+ r23(z2 − z3)](2.5)

+[r13(z1 − z3),r23(z2 − z3)] = 0.

Note that this equation is quadratic in the classical

r-matrix r, whereas the original Yang-Baxter equation
was cubic in the R-matrix R.

Now, Belavin and Drinfeld [29] classified solu-

tions of the classical Yang-Baxter equation (2.5), mod-

ulo trivial equivalences,6 under certain assumptions.

The assumptions were motivated by the examples

which were known at that time. The solution is as-

sumed to be associated to the Lie algebra g of a semi-

simple7 Lie group G. No reality condition will be im-

portant in the present paper, so we consider G to be

6 The classical Yang-Baxter equation is invariant under con-
jugation and under adding to r a multiple of the identity. The
latter possibility reflects the fact that the Yang-Baxter equa-
tion is invariant under multiplying R(z) by a function of z.
7 In gauge theory, it is natural to consider the somewhat
larger class of Lie groups consisting of those whose Lie alge-

a complex semi-simple Lie group with complex Lie al-

gebra g. The classical r-matrix r is assumed to be an

element of g⊗g:

(2.6) r(z) = ∑
a,b

rab(z)(t
a ⊗ tb),

where ta are a basis of g. The classical r-matrix is as-

sumed to be non-degenerate, namely deta,b(rab(z)) 6≡ 0.
Then the result shows that the poles of r(z) in the

complex plane spans a lattice, which is either of rank

0, 1 or 2. Solutions of the classical Yang-Baxter equa-

tion of any of the three types are almost uniquely

determined8 by the choice of g and the rank of the

lattice. The solutions for rank 0, 1, and 2 can be writ-

ten explicitly in terms of rational, trigonometric, and

elliptic functions and are known as rational, trigono-

metric, and elliptic solutions of the Yang-Baxter equa-

tion.

In the language of representation theory, ratio-

nal, trigonometric and elliptic solutions have their al-

gebraic counterparts, namely the Yangian Yh̄(g), the

quantum affine algebra Uq,h̄(g) and the elliptic alge-

bra Eq,τ,h̄(g). Solutions of the full (rather than classical)

bra admits an invariant, non degenerate bilinear form. An
important example is a reductive group, which is locally
the product of a semi-simple group and a torus (an abelian
group). We will find at least two reasons to consider reduc-
tive groups in this paper. One reason is that the simplest
example for some purposes is actually the case G = GLN(C),
which is reductive but not semi-simple. Another reason is
that in the framework we will follow in this paper, trigono-
metric solutions of the Yang-Baxter equation are most easily
understood starting with a gauge group that is reductive but
not semi-simple.
8 In the elliptic case, there is a discrete choice to be made.
For g= slN , one is free to pick a generator of the finite group
Zn. There also are some subtleties in the trigonometric case,
involving the possibility of an “external field.” We explain in
sections 9 and 10 what these issues mean from the point of
view of four-dimensional gauge theory.
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Yang-Baxter equation depend on the choice of a rep-

resentation of one of these algebras and the R-matrix

Rh̄(z) ∈ End(V ⊗V ) is then an intertwiner for the tensor

products of these representations. In the algebraic

approach, the spectral parameter enters as part of the

data needed to specify a representation.

Elliptic solutions of the classical Yang-Baxter

equation exist only for g= slN , whereas trigonometric

and rational solutions exist for any semisimple g. Ra-

tional solutions of the classical Yang-Baxter equation

have G as a group of symmetries, while trigonometric

solutions admit only the maximal torus of G as a sym-

metry group and elliptic solutions for slN have only a

finite group ZN ×ZN of automorphisms.

In this paper, we will see how quasi-classical

R-matrices with these properties can emerge from

four-dimensional gauge theory.

3. Four-Dimensional Gauge Theory

3.1 The Starting Point

The four-dimensional gauge theory that is rele-

vant to our subject [11, 12] may be described as fol-

lows.

The theory in question is only defined on a four-

manifold with some additional structure. We start

with the basic case, which is a product 4-manifold

R2 ×C with real coordinates9 x,y on R2 and a holo-

morphic coordinate z on C.
The fundamental field of our theory is a

3-component partial connection

(3.1) A = Axdx+Aydy+Azdz,

where we did not include the component Azdz that

is of type (1,0) along C. The fields Ax, Ay, and Az all

depend nontrivially on z and z as well as x or y; that
is, they are not constrained to vary holomorphically

or antiholomorphically on C. Since Az is missing, it

would not be possible to place a reasonable reality

condition on this space of fields. Instead we take the

gauge group to be a complex Lie group G with com-

plex Lie algebra g, and view Ax, Ay, and Az as inde-

pendent complex fields. The construction will make

use of an invariant and nondegenerate bilinear form

on g, which we will denote as Tr. The notation is moti-

vated by the fact that if g is semisimple or more gen-

erally if it is reductive (the direct sum of a semi sim-

ple Lie algebra with an abelian one), then an invariant

quadratic form can be defined as the trace in a suit-

able representation. However, our discussion in this

paper applies whether Tr actually has this interpreta-
tion or not. For a simple summand of g, the Killing

form of g gives an invariant nondegenerate quadratic

9 When convenient, we will denote x and y as x1 and x2.

form. We choose an orthonormal basis ta of g with re-

spect to this Killing form and normalize Tr by

(3.2) Tr(tatb) = δab.

The action of our theory is given by

(3.3) S =
1

2π

∫
R2×C

dz∧CS(A),

where CS(A) is the Chern-Simons three-form

CS(A) := Tr

(
A∧dA+

2
3

A∧A∧A

)
(3.4)

= ε
i jkTr

(
Ai∂ jAk +

2
3

AiA jAk

)
.

Here and afterwards the indices i, j, . . . run over x,y
and z (ε is a totally antisymmetric tensor with εxyz = 1).
The VEV (vacuum expectation value) of an observable

O is given by the path-integral

(3.5) 〈O〉=
∫
DAO exp( iS

h̄ )∫
DAexp( iS

h̄ )
.

The action S is obviously not invariant under four-
dimensional diffeomorphisms, because the use of the

1-form dz spoils the four-dimensional symmetry. Nor

does it have the three-dimensional diffeomorphism

symmetry of three-dimensional Chern-Simons the-

ory; this is the symmetry that enables one to de-

fine quantum invariants of knots. But we still have

two-dimensional diffeomorphism symmetry – invari-

ance under orientation-preserving diffeomorphisms

of R2 (or of its generalization Σ that will be intro-

duced later). This will ultimately lead to the Yang-

Baxter equation and the unitarity relation.

We understand the action S as a holomorphic

function of complex variables Ax, Ay, Az̄, and this im-

plies that the construction that we will be describing

is somewhat formal. There is no difficulty in formally

carrying out perturbation theory in such a holomor-

phic theory. That approach was taken in [11, 12] and

it is the approach that we will follow here. (We expect

that a nonperturbative definition of the theory can be

given by considering the D4-NS5 system of string the-

ory, along the lines of the study of the D3-NS5 system

in [26], but we will not pursue this in the present pa-

per.) The parameter h̄ that appears in the action is,

at the quantum level, the loop-counting parameter.

In the semi-classical limit h̄ → 0, this parameter will

be identified with the parameter of the same name

that appears in the quasi-classical R-matrix (2.4). The

parameter h̄ has dimensions of length, in the sense

that for C = C, the theory is invariant under a com-

mon rescaling of z and h̄. The factor of 1/(2π) in the

action is included here to match with the literature

on integrable models.
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A reflection of the fact that the construction is

formal and leads (in the form we present here) only

to a perturbative theory is the following. There is

no quantization condition for h̄ that will ensure that

the action is gauge-invariant mod 2πZ. This contrasts
with three-dimensional Chern-Simons theory, which

is defined with such a condition.

The action is invariant, modulo surface terms that

are irrelevant in perturbation theory, under gauge

transformations acting in the usual way.

Ai 7→ g−1Aig+g−1
∂ig, (i = x,y, z̄).(3.6)

This is true because the Chern-Simons three-form is

gauge-invariant modulo an exact form. Alternatively,

we can integrate by parts to put the action in a man-

ifestly gauge-invariant form, after discarding surface

terms that are irrelevant in perturbation theory:

S =− 1
2π

∫
R2×C

zTrF ∧F.(3.7)

This is the standard topological term of the Yang-

Mills theory, where the θ -angle now depends linearly

on z.
Some readersmight bemore comfortable starting

with a standard 4-component connection

A = Axdx+Aydy+Az̄dz̄+Azdz,(3.8)

with gauge transformations acting in the usual way

on all four components, and again with the action

(3.3). In this case, one finds that due to the presence

of the differential form dz in the action (3.3), the Az

component drops out from the action, and hence we

have an extra gauge symmetry

A 7→ A+χdz.(3.9)

We can then fix this extra gauge symmetry by choos-

ing a gauge Az = 0. The 4-component gauge transfor-

mation for the 4-component gauge field (3.9) is not

consistent with this gauge since it will in general gen-

erate a non-trivial Az component. However, a com-

bination of the 4-component gauge transformation,

with the extra gauge symmetry (3.9) with χ = −Az,

remains as a residual gauge symmetry. This is the

3-component gauge transformation (3.6).

In the following, we will always choose Az = 0, so
that A is the 3-component connection and the only

remaining gauge symmetry is the conventional gauge

transformation (3.6).

A possibly more familiar theory that is defined

in a similar way with a partial connection is holo-

morphic Chern-Simons theory. This theory is defined

on a Calabi-Yau threefold X with holomorphic 3-form

Ω. The dynamical variable is a (0,1) connection A =

∑
3
i=1 Aidz̄i and the action is the integral of the Chern-

Simons (0,3)-form, wedged with Ω:

S =
∫

X
Ω∧CS(A(0,1)).(3.10)

The definition of this action depends only on the com-

plex structure and holomorphic volume form Ω of the

3-fold X .
In this light, the four-dimensional theory of (3.3)

is intermediate between ordinary Chern-Simons the-

ory in three dimensions and holomorphic Chern-

Simons theory on a Calabi-Yau threefold. These theo-

ries arise as effective theories of branes in the topo-

logical A-model and B-model respectively [30] and are

related by mirror symmetry. The four-dimensional

theory that we will be studying here is intermediate

between the two cases and on an appropriate four-

manifold can be related by T -duality – mirror sym-

metry in some but not all dimensions of spacetime –

to either one of them.

The classical equations of motion of the theory

read

Fxy = 0, Fxz̄ = Fyz̄ = 0.(3.11)

This means that the gauge field defines a flat bundle

on R2, which then varies holo-morphically as wemove

along C.
The equations (3.11) imply that all local gauge-

invariant quantities that can be constructed from the

field A actually vanish. This is the reason that the

theory works at the quantum level. Because the loop-

counting parameter h̄ has dimensions of length or in-

verse mass, the theory is unrenormalizable by power-

counting. But this does not cause difficulty because

all conceivable counterterms actually vanish by the

equations of motion. The theory thus can be quan-

tized in perturbation theory [11, 12]. However, it is

affected by framing anomalies somewhat similar to

those of three-dimensional Chern-Simons theory, but

more subtle.

The fact that the theory is unrenormalizable

by power counting actually leads to a very impor-

tant simplification. After gauge-fixing, when one con-

cretely constructs the theory in perturbation theory,

it is infrared-free. The fact that the theory is infrared-

free makes it straightforward, once one introduces

Wilson line operators, to deduce a local procedure to

compute their expectation values. From this local pro-

cedure, one then can immediately recover the Yang-

Baxter equation of an integrable system. (This will be

explained in detail in section 3.4.) By contrast, three-

dimensional Chern-Simons theory is renormalizable

by power counting and does not lead as directly to a

local picture.
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3.2 Generalization

We comment next on replacing R2 ×C by a more

general 4-manifold.

In this paper, we will exclusively study the special

case that the 4-manifold is a product of two Riemann

surfaces,

M = Σ×C,(3.12)

where Σ is a smooth oriented 2-manifold, and C is

a complex manifold endowed with a holomorphic

(or sometimes meromorphic, as discussed shortly)

1-form ω , which plays a role similar to Ω in the holo-

morphic Chern-Simons theory of eqn. (3.10). We will

sometimes refer to Σ as the “topological plane” and C
as the “holomorphic plane,” though in general neither

one of them is really a plane.

We can then define a natural generalization of the

action (3.3) by

I =
1

2π

∫
M

ω ∧CS(A).(3.13)

As long as ω is closed, this action is gauge-invariant

modulo total derivatives that do not affect perturba-

tion theory.

Now we should discuss the possible role of ze-

roes and poles of ω . Naively, since the action in-

volves only the ratio ω/h̄, a zero of ω corresponds to

a point at which h̄ → ∞. Thus, in a theory that one only

knows how to define perturbatively, it should not be

straightforward to make sense of the behavior near a

zero of ω . We expect that essentially new ingredients

are needed to make sense of that behavior. We will

not explore this issue in the present paper.

Conversely, near a pole of ω , h̄ is effectively go-

ing to zero and perturbation theory should be within

reach. However, poles of ω are still subtle for the fol-

lowing reason. If ω has a pole at a point p ∈C, then dω

does not vanish near p but is a distribution supported

at p. Accordingly, gauge-invariance will fail unless we
place some suitable conditions near p on the gauge

field A and the gauge parameter g. If ω has a double

pole at p, one can restore gauge invariance by asking

that A = 0 at p and g = 1 at p. What one has do if ω has

a simple pole at p is more subtle and will be described

in section 9.

Only simple and double poles are relevant, as one

sees if one considers the possibilities for a complex

Riemann surface C with a holomorphic one-form ω

that is allowed to have poles but not zeroes. By the

Riemann-Roch theorem, the number of zeroes of any

meromorphic differential ω minus the number of its

poles is 2g−2, where g is the genus of C. Thus if ω has

no zeroes, C must have genus 0 or 1. Moreover, for

g = 0 we have either (1) a single pole with multiplic-

ity 2, which corresponds to C = C with differential dz

(which has a double pole at ∞) or (2) two simple poles,

in which case we can take C = C× = C/Z with differ-

ential ω = dz
z , which has simple poles at 0 and ∞. For

g = 1, there are no poles at all; C is a complex torus

or elliptic curve C/(Z+ τZ) (with modulus τ) with the

holomorphic differential dz. In each case, the choice

of ω is unique up to a normalization constant that

can be absorbed in rescaling h̄.
Summarizing, we have the following three possi-

bilities for C:

C = C, ω = dz, double pole at {∞}, (rational),

(3.14)

C = C×, ω =
dz
z
, poles at {0,∞}, (trigonometric),

C = E = C/(Z+ τZ), ω = dz, no poles, (elliptic).

As indicated, the three choices of C match the three

broad classes of quasi-classical R-matrices that were

summarized in section 2.2, if we assume that C
parametrizes the spectral parameter of the classical

r-matrix. Developing this relationship is the purpose

of the present paper.

A notable fact is that the three examples are all

abelian groups. This is no coincidence, of course.

Since the holomorphic differential ω on C has no ze-

roes, its inverse is a holomorphic vector field ζ = ω−1

that generates an abelian group symmetry. For the

three cases, in the coordinates used in eqn. (3.14), the

group action is z → z+a in the case that C is the com-

plex plane or an elliptic curve, or z → λ z in the case of

C×. It is because of this group action, which is a sym-

metry of the action (3.3) and the theory constructed

from it, that the R-matrix R(z1,z2) that we eventually

construct is a function only of the difference z1−z2 or

the ratio z1/z2, as the case may be.

Though this will not be developed in the rest

of the paper, we will briefly describe a more gen-

eral possible choice of 4-manifold. Suppose that the

4-manifold M admits a complex-valued closed 1-form

ω . We require that Reω and Imω are everywhere lin-

early independent. This means that locally ω = d f +
idg, where f and g are real-valued functions and d f
and dg are linear independent. M can then locally be

foliated by the smooth two-manifolds that are de-

fined by setting f and g to constants. Thus M has a

two-dimensional integrable foliation. The gauge field

A is a 3-component partial g-valued connection, or al-

ternatively it is an ordinary connection with the extra

gauge symmetry

A 7→ A+χω.(3.15)

The action is still given by (3.13).

The considerations to this point have been purely

classical, but there are important quantum correc-

tions. As we discuss briefly in section 3.6 (see [11, 12]
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for a detailed account), at the quantum level there is

a framing anomaly which means that we can only de-

fine the theory on some, but not all, 4-manifolds M of

the type mentioned above. For the product manifold

of (3.12), the framing anomaly implies that Σ must

be equipped with a framing. In particular, if compact,

Σ must be a two-torus. For integrable lattice models

associated to solutions of the Yang-Baxter equation,

the most important examples are that Σ is R2 or a two-

torus.

3.3 Wilson Lines

Now let us consider the gauge-invariant operators

of the theory. There are no local ones because they

all vanish by the equations of motion. The simplest

gauge-invariant operators – and the only ones that

we will study in the present paper – are Wilson line

operators.

In ordinary gauge theory, a natural gauge-

invariant quantity is the trace, in some representation

ρ of the gauge group, of the holonomy of the connec-

tion around a closed loop K. Quantum field theorists

usually write this quantity as

Wρ(K) = Trρ Pexp

(∮
K

Ai(x
1,x2,z, z̄)dxi

)
,(3.16)

where P denotes path-ordering along the loop K, and
Trρ the trace in the representation ρ . In the present

context, K cannot be an arbitrary loop in the four-

manifold Σ×C. On the contrary, because we only have

a partial connection with no dz term, there is no no-

tion of parallel transport in theC direction.10 Accord-

ingly, we are restricted to the case that K is a loop in

the topological plane Σ, at a specified point11 z = z0

in C. This already makes contact in a preliminary way

with some aspects of the standard Yang-Baxter pic-

ture that we reviewed in section 2.1. A Wilson op-

erator is supported on a 1-manifold K in the two-

manifold Σ (which one can think of as the worldline of

a particle in a two-dimensional spacetime), and it is a

labeled by a spectral parameter, that is, by a point in

C, and by a choice of a representation ρ of G. Here
ρ will play the role of the vector space V of inter-

nal states of a particle, introduced at the beginning

of section 2.1.

We can also introduce more general Wilson oper-

ators, which do not have analogs in standard gauge

theories. The existence of these operators is related

10 Either there is no Az and no way to define parallel trans-
port along a path on which z is not constant, or there is an
Az but also an extended gauge invariance (3.15), and parallel
transport in the z direction is not gauge-invariant.
11 This classical statement will later be subject to some re-
vision because of the framing anomaly.

to the fact that the loop K is highly restricted, as de-

scribed in the last paragraph. At the classical level,

these Wilson loops are labeled by a representation ρ̂

of the infinite-dimensional Lie algebra g[[z]] = ∏n≥0(g⊗
zn) of series in z whose coefficients are in the finited-

imensional Lie algebra g. (The same algebra g[[z]] will
appear regardless of the choice of C because the con-

siderations will be local along C.) To be more exact,

Wilson operators supported at z = 0 will be associ-

ated to representations of g[[z]]. Wilson operators sup-

ported at z = z0 are similarly associated to represen-

tations of g[[z− z0]] (which is obtained from g[[z]] by
z → z− z0).

Since the relevant concepts may be unfamiliar, we

pause for an explanation. Roughly speaking, an ele-

ment of g[[z]] is a g-valued function of z. If g has a basis
ta, a = 1, . . . ,dimg, then a basis, in the relevant sense, of

the space of g-valued functions of z is provided by

ta,n(z) = tazn, n ≥ 0.(3.17)

So to define a representation of g[[z]], we need to give,

for every a and n, a matrix (or operator) ta,n that repre-
sents the action of ta,n(z). Concretely, if g has a basis ta
with [ta, tb] = fab

ctc, then the natural commutation rela-

tion for g-valued functions of z is [tazn, tbzm] = fab
ctczn+m.

Therefore, the corresponding representation matri-

ces should obey

[ta,n, tb,m] = fab
ctc,n+m.(3.18)

It is important that there is no central extension here

and that this algebra has finitedimensional repre-

sentations. We will be primarily interested in finite-

dimensional representations, and more specifically

representations with the property that there is some

n0 such that ta,n = 0 for n ≥ n0. To orient the reader, we

consider the first nontrivial example, which arises for

n0 = 2. The nonzero generators are just ta,0, which gen-

erates the finite-dimensional algebra g, and ta,1, which
commutes with itself and transforms in the adjoint

representation of g. To construct a representation ρ̂

of this algebra, we can take a direct sum ρ ⊕ρ of two

copies of any representation ρ of g. If ta are the repre-
sentation matrices of ρ , then a representation of g[[z]]
is given by

ta,0 =

(
ta 0
0 ta

)
, ta,1 =

(
0 ta
0 0

)
.(3.19)

This representation is indecomposable as a represen-

tation of g[[z]], though it is decomposable as a repre-

sentation of g. There are many elaborations on this

theme with n0 ≥ 2.
Because the line K in (3.16) is supported at a point

in C, its definition depends only on the components

Ai(x1,x2,z, z̄) of the gauge field, with i = 1,2. We will
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preserve this fact in defining (at the classical level)

more general Wilson operators. For fixed x1 and x2,

Ai(x1,x2,z, z̄) is a g-valued function of z and z̄. Formally

setting z̄ = 0, we get (for each point in the topologi-

cal plane and each i) a g-valued function of z, namely

Âi(x1,x2,z) = Ai(x1,x2,z,0). A precise definition of what

we mean by setting z̄ to 0 with z fixed is that we define

Âi(x
1,x2,z) := ∑

k≥0

zk

k!
∂ k

∂ zk Ai(x
1,x2,z, z̄)

∣∣∣∣
z=z̄=0

.(3.20)

We do not need to worry about convergence of this

series, because we consider representations that are

annihilated by a sufficiently high power of z. Thus for
any given representation, we can terminate the series

after finitely many terms and consider Âi to have a

polynomial dependence on z.
Next we consider gauge transformations. The

generator of such a gauge transformation is a

g-valued function u(x1,x2,z, z̄). We can restrict such

a function to z̄ = 0, in the same sense described in

the last paragraph, and extract a g-valued function

û(x1,x2,z) = u(x1,x2,z,0), which we can interpret as a

g[[z]]-valued function of x1, x2. The theory we are study-

ing is invariant under a gauge transformation of Ai

generated by u(x1,x2,z, z̄). When we restrict to z̄ = 0,
the action of u(x1,x2,z, z̄) on Ai becomes an action of

û(x1,x2,z) on Âi(x1,x2,z). Here we can view û(x1,x2,z) as
a g[[z]]-valued function on Σ, and its action of Âi is the

natural action of such a function on Âi, viewed as a

g[[z]]-valued gauge field on Σ.

So finally if ρ̂ is a representation of g[[z]] of the
allowed class, we can define a corresponding Wilson

operator by modifying eqn. (3.16) in an almost trivial

way:

Wρ̂(K) = Trρ̂ Pexp

(∮
K

Ai(x
1,x2,z,0)dxi

)
.(3.21)

Here Ai(x1,x2,z,0) is expanded around z = 0 with fixed

z̄= 0. Wilson lines supported at some other point z= z0

in C are similarly defined by expanding around z = z0

with fixed z̄ = z̄0. (In this case, one considers represen-

tations of g[[z− z0]].)

However, here we should point out a crucial sub-

tlety that is important for applications of the exten-

sion to g[[z]]. It is very undesirable to take a trace in

eqn. (3.21) because this causes much of the interest-

ing structure to disappear. We can see that by go-

ing back to eqn. (3.19). This representation is inde-

composable as a representation of g[[z]], and it does

not just come from a representation of the finite-

dimensional algebra g. The holonomy operator along

a given path in this representation is different from

what it would be if one sets ta,1 = 0, which would give

a decomposable representation of g[[z]]. But if we take
the trace of the holonomy, then ta,1 will play no role

because it is strictly upper triangular, and we cannot

distinguish the given representation from its decom-

posable cousin.

Because the theory is infrared-free, as explained

at the end of section 3.1, the holonomy itself rather

than its trace is a meaningful observable. To see this,

we take Σ = R2 and we consider a 1-manifold K ⊂ Σ

(supported at a point in C) that is not compact but

has its ends at infinity along Σ. Because the theory

is infrared-free, the gauge field can be considered

to vanish at infinity along Σ and then the holonomy

along K is a gauge-invariant observable, with no need

to take its trace. It is really this that gives power to the

fact that the theory has Wilson operators associated

to a large class of representations of g[[z]]. The impor-

tance of the extension to g[[z]] will not be fully clear

until we analyze the operator product expansion of

Wilson operators in section 5.

3.4 The Yang-Baxter Equation and Unitarity

Having defined Wilson operators, we can now re-

turn to Figs. 2 and 4 in which the Yang-Baxter equa-

tion and the associated unitarity relation are illus-

trated. We now interpret these figures as represent-

ing configurations of Wilson lines Ki ∈ Σ (supported

at the indicated points zi ∈ C). It is now not hard to

argue for the equivalence of the left and right hand

sides of these pictures. Two-dimensional diffeomor-

phism symmetry means that we are free to move the

Ki around as long as we do not change the topology of

the situation. However, this alone is not quite enough

to prove the equivalences suggested in the pictures.

For example, in Fig. 2, we are free to move the “mid-

dle” Wilson line to the left or right, as long as we

do not try to pass through a configuration (Fig. 5) in

which the three lines all meet at a point; such a config-

uration is not equivalent by a diffeomorphism of Σ to

a configuration without a triple intersection. In trying

Figure 5. Three lines meeting at a point in Σ, but with

distinct values of the spectral parameters zi.
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to prove the equivalences between the left and right

of Fig. 2 by moving the middle Wilson line from left to

right, we have to ask whether there is a discontinuity

in the path integral at the moment that a triple inter-

section occurs. However, as long as the spectral pa-

rameters z1, z2, z3 are all distinct, none of the lines are

meeting in four dimensions and it is manifest that the

configuration that has a triple intersection when pro-

jected to Σ is not associated to any singularity.12 In

particular there is no discontinuity and the pictures

on the left and right of Fig. 2 are equivalent as long

as the zi are distinct (in fact, it is enough that they are

not all equal). Likewise the pictures on the left and

right of Fig. 4 are equivalent as long as z1 6= z2.

It takes more than this to argue that the theory

has an R-matrix that satisfies the Yang-Baxter equa-

tion and the unitarity relation. The usual R-matrix

formalism, as summarized in section 2.1, involves

a much more specific interpretation of the pictures.

Each line in Fig. 1 is supposed have associated to it a

space V of “internal states” accessible to a particle. In

the present framework, the meaning of this is clear: a

line is aWilson line associated to some representation

ρ of g (or more generally of g[[z]]), and ρ corresponds

to V . But the usual R-matrix picture is much simpler

than onewould expect in quantum field theory in gen-

eral. In the usual R-matrix picture, each line segment

between two crossings is labeled by a basis vector

ei of V , and to a crossing one associates a local fac-

tor, the R-matrix element Rkl
i j(z1 − z2), which depends

only on the data at a particular crossing and not on

any other details in which the local picture is embed-

ded. Moreover, this R-matrix element depends only on

the difference z1 − z2. In quantum field theory in gen-

eral, one would not expect a local picture like this.

Finally, though in standard presentations of R-matrix

theory one might take this for granted and skip it

over, it is noteworthy that in R-matrix theory, the

two-dimensional regions bounded by the lines do not

carry any labels. This is a nontrivial point and in fact

there is a generalization of the Yang-Baxter equation

(the dynamical Yang-Baxter equation [21, 22, 23, 24])

in which the bulk regions do carry labels, above and

beyond the labels carried by the line segments.

In trying to explain these facts in the present con-

text, the most basic question is why there is a local

picture of any sort. The reason for this is that the

theory is infrared-free, as was noted at the end of

section 3.1. Concretely, in constructing perturbation

theory, as we will do starting in section 4, one picks a

Riemannian metric on Σ×C. If one scales up the met-

ric on Σ by a large factor, so that different crossings

are very far apart (compared to the distances between

12 An interpretation of the Yang-Baxter equation and the
spectral parameter somewhat along these lines was conjec-
tured by M. F. Atiyah in the 1980’s [14].

the points in C at which a given set of Wilson line op-

erators are supported), then the infrared-free nature

of the theory guarantees that some kind of local pic-

ture will be possible.

To explain more, let us first ask what would hap-

pen in the absence of any line operators. The theory

under study is topological in the Σ direction, so (ig-

noring further subtleties that arise because we are

dealing with a theory whose action is a holomorphic

function of complex variables) in general we would

expect the theory to have a space H of quantum

states. These would roughly correspond to vacua of a

standard quantum field theory. In general, one would

expect to label the regions between the lines – that is,

any region of Σ that is not near one of the Wilson op-

erators – by a basis vector of H. Accordingly, if H has

dimension bigger than 1, we would get something like

the dynamical Yang-Baxter equation [21, 22, 23, 24],

with labels for regions as well as line segments, rather

than the standard Yang-Baxter equation in which re-

gions between the lines are unlabeled. We discuss this

situation in section 11.

To get something as simple as the standard Yang-

Baxter equation, we want H to be one-dimensional,

which will happen if the space of classical solutions

of the theory, modulo gauge transformations, is a

point. This is also the condition that eliminates the

subtleties associated with having a holomorphic ac-

tion; perturbation theory is straightforward in prin-

ciple if there is only one classical solution to expand

around, and it has only a finite group of automor-

phisms.13 The simplest case is that C =C. In quantiz-

ing the theory on Σ×C for any Σ, we require that the

gauge field A and the generator of a gauge transfor-

mation both vanish at infinity. With this choice, the

only (stable14) classical solution, up to a gauge trans-

formation, is A = 0. So we are in the situation in which

the bulk regions do not carry labels and perturbation

theory is straightforward in principle.

It is likewise possible when C is C× or an ellip-

tic curve to ensure that the classical phase space is a

point, leading to straightforward perturbation theory

13 If there is a unique classical solution up to gauge trans-
formation, but it has a nontrivial automorphism group H,
then in developing perturbation theory one wants to divide
by the volume of H. If H f is not a finite group, this volume
might be hard to interpret. However, this issue involves only
an overall constant factor in the path integral, independent
of what collection of Wilson lines one considers.
14 There are many classical solutions on Σ ×C that corre-
spond to bundles on C (trivialized at infinity) that are un-
stable in the sense of algebraic geometry. This likely makes
them unsuitable as a starting point for perturbation theory.
At any rate, the fact that is really important for us is that
the trivial connection on Σ×C is a classical solution that has
no infinitesimal deformations or gauge automorphisms. In
perturbation theory around this solution, we do not meet
unstable bundles.
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Figure 6. The infrared-free nature of the theory

under study means that when we scale up the metric

of Σ after gauge-fixing, gluon exchange between

Wilson lines that are not crossing becomes irrelevant.

and (as we argue shortly) a conventional Yang-Baxter

equation. The details are more involved and we defer

a discussion to sections 9 and 10.

Let us now imagine doing perturbation theory in

an infrared-free theory in the presence of a configura-

tion of Wilson lines. What sort of perturbative correc-

tions are significant? A typical example of an effect

that is not significant is gauge boson exchange be-

tween two Wilson lines that are not crossing (Fig. 6).

By scaling up the metric of Σ, the points a and b in the

figure can be made arbitrarily far apart, regardless of

where they lie on the Wilson lines in question, and the

contribution of gluon exchange between them goes to

zero. So this can be ignored.

A typical contribution that cannot be ignored is

a gauge boson exchange between two lines that are

crossing (Fig. 7). In this case, the points a and b can

be near the crossing point, so they cannot be assumed

to be far away in Σ. We can still scale up the metric in

the picture in order to exploit the infrared-free nature

of the theory. But all that happens when we do this is

that the lines that are crossing turn into straight lines

near the point in Σ where they cross, and they become

very widely separated from any other crossing points.

So the diagram of Fig. 7 may be nontrivial – and it is

nontrivial, as we will calculate in section 4 – but it

will be local: it will not depend on the details of a

larger picture in which the crossing of Fig. 7 might be

embedded.

Now we can put the pieces together and explain

why something along the lines of standard Yang-

Baxter theory will emerge. We assume a situation with

a unique classical solution15 A= 0. Moreover, we know

15 In the trigonometric and elliptic cases, this argument
needs to be stated a little more carefully. There is a unique
classical solution, and although it is not gauge-equivalent
globally to A = 0, this is true locally. Given this, the argument
proceeds as in the text.

Figure 7. The infrared-free nature of the theory

under study means that when we scale up the metric

of Σ after gauge-fixing, gluon exchange between

Wilson lines that are not crossing becomes irrelevant.

that quantum effects are negligible except near cross-

ings. Thus away from crossings, we can assume that

A = 0 everywhere. This means that a line segment be-

tween crossings just describes a free particle in the

relevant representation of g (or of g[[z]]) and can be

labeled by a basis vector in that representation. And

crucially, the amplitude associated to a given crossing

can only depend on the local data at that crossing –

the representations and labels of the lines that are

crossing. Thus the equivalence of the two pictures of

Fig. 2, which follows from rather general arguments

that were given above, turns into the more precise nu-

merical equivalence of Fig. 3, with a local R-matrix at

each crossing. The same reasoning applies to the uni-

tarity relation of Fig. 4. Because of the infrared-free

nature of the theory, it turns into the concrete unitar-

ity relation R21R12 = 1 of Yang-Baxter theory.

For the case that C is C or an elliptic curve, the lo-

cal R-matrix Rkl
i j(z1,z2) is actually a function only of the

difference z1 − z2, because the classical action (3.3) is

invariant under shifting z by a constant. For the case

of C = C× with differential dz/z, the equivalent state-

ment is that the R-matrix (written in these multiplica-

tive coordinates) is a function of the ratio z1/z2.

For the case that C = C, related to the Yangian, a

few further nice things happen which make this case

particularly simple and elegant. First of all, the ac-

tion is invariant under a common rescaling of z and
h̄, so actually the R-matrix is a function only of a sin-

gle variable (z1 − z2)/h̄. Second, in quantizing the the-

ory with C = C, we divide only by gauge transforma-

tions that are 1 at infinity along C. But we are left

with gauge transformations that are constant at infin-

ity along C, and these behave as global symmetries.

Thus the R-matrix for C = C has G as an automor-

phism group. (This is not true for the other choices of

C, as we will see in sections 9 and 10.) The properties

stated in this paragraph make it straightforward to
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understand some simple examples. We present some

of these elementary examples in the next section. We

present them because they are fun – though proba-

bly well-known to many readers – and also because

they enable one to see in a completely direct and el-

ementary way why the theory must have a framing

anomaly.

3.5 Elementary Examples

For some elementary examples, we take G = GLN

(or SLN , which would be equivalent for the purposes

of this analysis), and we will consider the case that

ρ is the fundamental representation of G or its dual.

We denote these representations as V and V ∗, respec-

tively. In all cases, we will take C = C, so that the

R-matrix has G symmetry.

First we consider the R-matrix for crossing of two

copies of V . It will be a G-invariant linear map R(z1 −
z2) : V ⊗V →V ⊗V . Such an operator is a linear combi-

nation of the identity and the operator P :V ⊗V →V ⊗V
that exchanges the two factors: R(z)=A(z)+PB(z), with
z = z1 − z2. In this particular case, R(z) can also be writ-

ten fairly conveniently as a matrix with all its indices:

Ri′ j′

i j (z) = δ
i′
i δ

j′

j A(z)+δ
j′

j δ
i′
i B(z).(3.22)

Here i and j refer to “incoming” lines and i′ and j′

to outgoing ones. The A(z) term describes two lines

crossing without “charge exchange,” while B(z) de-

scribes crossing with charge exchange. The non-zero

matrix elements of R are depicted in Fig. 8.

The Yang-Baxter equation is in general invariant

under multiplying the R-matrix by a scalar function –

a z-dependent multiple of the identity. So it is only

sensitive to the ratio U(z) = B(z)/A(z). It is not diffi-

Figure 8. The R-matrix for crossing of two Wilson

lines in the fundamental representation V . The
non-zero matrix elements of R correspond to

processes in which the final states equal the initial

states, possibly modulo a permutation.

cult to work out the Yang-Baxter equation in this case

(Fig. 9) and to learn that it is equivalent to

U(z1 − z3)U(z2 − z3)+U(z1 − z2)U(z1 − z3)(3.23)

=U(z1 − z2)U(z2 − z3).

After dividing by the product U(z1 − z2)U(z1 − z3)U(z2 −
z3), we learn that 1/U(z) is a multiple of z, so (remem-

bering that the R-matrix for C =C is a function of h̄/z)
U must be a constant multiple of h̄/z. Determining the

constant from the O(h̄) contribution to the R-matrix

(see section 4), we find

U(z) =
h̄
z
.(3.24)

Now we consider the R-matrix for crossing of a

copy of V with a copy of the dual representation

V ∗. The R-matrix is now a linear map R(z) : V ⊗V ∗ →
V ⊗V ∗. Again R(z) is determined by the G symmetry

in terms of two functions: R(z) = C(z) + QD(z). Here
Q is the G-invariant projection operator from V ⊗V ∗

to its G-invariant subspace. A picture is rather clear

(Fig. 10), but now a formula analogous to eqn. (3.22)

is less transparent:

R ji′

i j′(z) = δ
i′
i δ

j′

j C(z)+δ
j

i δ
i
j′D(z).(3.25)

(As before, lower indices refer to incoming lines and

upper indices to outgoing ones.) The Yang-Baxter

equation will involve only the ratio W (z) = D(z)/C(z).
It is again not difficult to write down the Yang-

Baxter equation. We learn (Fig. 11) that

U(z1 − z2)W (z2 − z3)+W (z1 − z3)W (z2 − z3)(3.26)

=U(z1 − z2)W (z1 − z3).

This is equivalent to 1/W (z2 − z3) − 1/W (z1 − z3) =

1/U(z1 − z2), with the general solution

W (z) =− h̄
z− h̄b

,(3.27)

with a constant b. This constant b can actually be de-

termined by the unitarity relation R21(−z)R12(z) = 1.
A specific matrix element of this relation, for the case

of crossing of V and V ∗ (see Fig. 12) gives

NW (z)W (−z)+W (z)+W (−z) = 0,(3.28)

leading to

W (z) =− h̄

z+ h̄N
2

.(3.29)

We need not separately consider the R-matrix for

crossing of two copies of V ∗, because it simply equals

the R-matrix for crossing of two copies of V . The rea-
son is that the outer automorphism of GLN or SLN that

exchanges V and V ∗ is a symmetry of the action (3.3),

and of the theory derived from it.
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Figure 9. The Yang-Baxter equation for crossing of three Wilson lines in the fundamental representation V .

Figure 10. The R-matrix for crossing of two Wilson

lines in the dual representations V and V ∗.

Not determined by these arguments are overall

scalar functions in the R-matrices for V ⊗V → V ⊗V
and V ⊗V ∗ → V ⊗V ∗. These can be partly but not en-

tirely determined by the unitarity relation; to some

extent these overall scalar functions depend on arbi-

trary choices in quantizing the theory.

In the theory as we have developed it so far, the

angles at which two Wilson lines cross are of no con-

sequence. We can use the above formulas to test this

expectation in an interesting way. We consider (see

the left of Fig. 13) two Wilson lines in the represen-

tation V , with spectral parameters z1 and z2, and dif-

fering from the vertical by small angles ±α . Rotating

one line clockwise by a small angle 2α and the other

one clockwise by a larger angle π−2α , we arrive at the

right hand side of the figure, which depicts the cross-

ing of a pair of nearly vertical Wilson lines in the rep-

resentations V and V ∗. The rotation converts a charge

exchange forVV crossing to an “annihilation” process

for VV ∗. Naively, the two parts of Fig. 13 should be

equivalent. This would imply

U(z)
?
=W (−z).(3.30)

A look back at our previous formulas shows, however,

that this is false. What is true instead is that

U

(
z− h̄N

2

)
=W (−z).(3.31)

3.6 First Look at the Framing Anomaly

What accounts for this discrepancy? The answer

is that the theory has a framing anomaly for Wilson

operators, which will be explored from another point

of view in section 6. The framing anomaly is anal-

ogous to the perhaps familiar framing anomaly for

Wilson operators in Chern-Simons theory, but more

subtle. It can be formulated in different but topolog-

ically equivalent ways. However, in an approach nat-

ural in perturbation theory, the framing anomaly can

be formulated as follows. To begin with we take the

topological plane to really be a plane Σ = R2, and we

quantize with a gauge choice that uses a flat metric

on R2. (See section 4.) We consider a Wilson opera-

tor supported on a general curve K ⊂ Σ, and we let

ϕ(p) be the angle between the tangent vector to K at

a given point p ∈ K and some chosen direction in R2

(e.g. the vertical). (We define this angle to increase if

K bends in a clockwise direction.) Thus ϕ is not quite

well-defined as a function on K, but it is well-defined
up to an additive constant, and its differential dϕ is

well-defined.

The framing anomalymeans that what is constant

along K is not the spectral parameter z, as one would
expect from a classical analysis, but z − h̄h∨ϕ/(2π),

where h∨ is the dual Coxeter number of the gauge

group. As a perhaps surprising example of the im-

plications of this statement, a Wilson operator whose

support is a simple closed curve in Σ is anomalous

and does not exist in the quantum theory, because in

going around a simple closed loop, ϕ increases by 2π .

Now in our problem, we can formulate the com-

parison between the two parts of Fig. 13 in a slightly

different way. To go from the left to the right of the

figure, wemake the z1 Wilson line bend in the plane by

an angle ∆ϕ = π before crossing the z2 Wilson line, as

in Fig. 14. But because of the framing anomaly, when

we do this z1 is shifted to z1 − h̄h∨∆ϕ/(2π) = z1 − h̄N/2,
where N is the dual Coxeter number of SLN (or GLN ).

Thus what should coincide with W (−z) is not U(z) but
U(z − h̄N/2), and this is precisely what we found in

eqn. (3.31).

In light of the framing anomaly, onemight ask the

following question. In the usual formulation of the
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Figure 11. The Yang-Baxter equation for three lines labeled by representations V , V , and V ∗.

Figure 12. The “unitarity” relation for lines labeled by V and V ∗ implies that the given sum vanishes for i 6= j.

Yang-Baxter equation for crossing of three lines, what

are the angles at which the lines cross? The answer

is clear if one considers the case that the three repre-

sentations involved are all the same. It is usually then

assumed that the three R-matrices R12, R23, and R13 are

given by the samematrix-valued function of z. For this
to be true, the relative angles must be the same at all

three crossings. Since the actual relation is that the

13 crossing angle is the sum of the 12 and 23 cross-

ing angles, the three angles are equal only in the limit

that they all go to zero. So the usual formulation of

the Yang-Baxter equation refers to the case of nearly

parallel lines in the limit that the crossing angles van-

ish. That is actually why Fig. 13 has been drawn with

lines at small angles ±α to the vertical, and it was im-

plicitly assumed in our discussion of Fig. 14.

The reader might be slightly perplexed that we

began our explanation of the framing anomaly by re-

stricting to the special case Σ = R2. To understand

this point properly, one has to analyze the framing

anomaly for four-manifolds as well as the framing

anomaly for Wilson operators. This is somewhat be-

yond the scope of the present paper. However, the

upshot is that to avoid an anomaly, the two-manifold

Σ must be “framed,” meaning that its tangent bundle

must be trivialized. (This is actually analogous to the

framing anomaly of three-dimensional Chern-Simons

theory, which is defined on a framed three-manifold.)

On a framed two-manifold Σ, one can define along

any embedded oriented one-manifold K ⊂ Σ a func-

tion with the properties of the ϕ used above. For this,

recall that a “framing” is a pair of everywhere lin-

early independent vector fields v1 and v2 on Σ. Given

a framing, one can pick a metric such that v1 and v2

are everywhere orthonormal, and then one can de-

fine ϕ as the angle between the tangent vector to K
and the v1 direction. Note that the condition that Σ

should be framed is very restrictive; for example, a

compact framed two-manifold must have zero Euler

characteristic and hencemust have genus 1. Thus – as

we also saw from the anomaly for a closed loop in the

plane – the framing anomaly in the fourdimensional

theory discussed here is much more restrictive than

its three-dimensional cousin.

If we think of the vertical direction in the above

figures as the Euclidean “time,” then the reader will
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Figure 13. On the left are two Wilson lines in the

fundamental representation of GLN or SLN ; they

differ from the vertical by small angles ±α . The one

on the left has spectral parameter z1 and the one on

the right has spectral parameter z2. To get the picture

on the right, the z2 Wilson line has been rotated

clockwise by the small angle 2α , and the z1 Wilson

line has been rotated clockwise by the much larger

angle π −2α . Naively the two pictures should be

equivalent, implying that U(z1 − z2) =W (z2 − z1), a

claim that turns out to be false.

note that we have interpreted a V ∗-valued particle

moving forward in time as a V -valued particle mov-

ing backward in time. This is reminiscent of the re-

lation between particles and antiparticles in relativis-

tic quantum field theory, and indeed in the applica-

tion of R-matrix theory to integrable models of rela-

tivistic quantum field theory, this operation becomes

crossing symmetry whereby an S-matrix element with

a particle in the initial state, after analytic continua-

tion to negative energy, is interpreted as an S-matrix

element with an antiparticle in the final state. That is

why in R-matrix theory, the relation between R-matrix

elements associated to a pair of dual representations

ρ and ρ∗ is often called “crossing.”

4. R-Matrix from Crossing Wilson
Lines

Here and in the next two sections, we will per-

form concrete Feynman diagram calculations to com-

pute (1) the O(h̄) term in the R-matrix; (2) the O(h̄)
quantum correction to the operator product expan-

sion (OPE) for Wilson line operators; (3) the framing

anomaly. In fact, in the case of the framing anomaly,

the O(h̄) term that we compute gives the complete an-

swer; in the other cases, there are higher order con-

tributions to the effects that we calculate, although

they can be determined by general principles (such

as the Yang-Baxter equation and associativity of the

Figure 14. An improved view of the unitarity relation

that was explored in Fig. 13, formulated to take the

framing anomaly into account. Two lines both

labeled by V enter at the bottom and emerge at the

top at nearly vertical angles. If they cross at nearly

vertical angles, we get an R-matrix element for a VV
crossing, while if one of them turns by an angle very

close to π before the crossing, then we get a VV ∗

crossing, but with z1 replaced by z1 −Nh̄/2 because of

the framing anomaly. Thus the naive relation

U(z) =W (−z) suggested by Fig. 13 is corrected to

U(z−Nh̄/2) =W (−z).

operator product expansion) once the lowest order

terms are known. We will perform independent Feyn-

man diagram calculations of the three effects, but

actually the three effects can be deduced from each

other to a large extent. We already deduced the fram-

ing anomaly from the O(h̄) term in the R-matrix in

section 3.6, and we will explain in section 5 why the

quantum correction to the OPE is inevitable given the

quantum correction to the R-matrix.

In all cases, we take C = C, corresponding to a

rational solution of the Yang-Baxter equation. In the

case of the framing anomaly, the considerations are

manifestly local, so the choice of C does not matter.

For the R-matrix and the OPE, once the result is known

for C, it can be deduced from global considerations

for the other choices of C. We leave this for sections 9

and 10.

We will compute in a way that involves a choice

of metric on Σ×C. As explained in section 3.4, for the

output of Feynman diagrams to have a straightfor-

ward interpretation in the usual language of R-matrix

theory, we have to scale up the metric on Σ by a large

factor. In the limit, Σ becomes R2 near the crossing

and the supports of the two Wilson lines that are

crossing become straight lines in R2. InO(h̄), the angle
at which the lines cross does not matter (the reader
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Figure 15. (a) The leading order Feynman diagram for gluon exchange between crossing Wilson lines. (b) A

higher order diagram, with further complications hidden in the “blob.”

can verify this by a slight generalization of the calcu-

lation that we will describe), so we can take the two

lines to be the x-axis and the y-axis in the xy plane.

In higher orders, the crossing angle would matter via

the framing anomaly.

The O(h̄) contribution to the R-matrix involves

one gluon exchange between the two lines, as

sketched in Fig. 15. We evaluate the contribution of

this diagram for the case that the Wilson lines are as-

sociated to representations ρ and ρ ′ of g supported

respectively at z = z1 and z = z2.

The metric that we will use on R2 ×C is ds2 = dx2 +

dy2 +dzdz̄ = gµν dxµ dxν , or in another language

gxx = gyy = 1, gzz̄ = gz̄z =
1
2
, other components zero.

(4.1)

The corresponding inverse metric is

gxx = gyy = 1, gzz̄ = gz̄z = 2, other components zero.
(4.2)

For a gauge-fixing condition, we pick

0 =
∂

∂x
Ax +

∂

∂y
Ay +4

∂

∂ z
Az̄.(4.3)

This is the closest analog of the usual Lorentz gauge

for this theory with a partial gauge connection. The

factor of four is explained by noting that if the gauge

field A satisfies this equation and also the linearized

equations of motion dz∧dA = 0, then each component

of A is harmonic for the metric we have chosen.

In this gauge, the four-dimensional propagator

for the gauge field is then given by

〈Aa
x(x,y,z, z̄)A

b
y(x

′,y′,z′, z̄′)〉

=−δ
ab 4

4π

∂

∂ z
1

(x− x′)2 +(y− y′)2 + |z− z′|2

= δ
ab 1

2π

2(z̄− z̄′)
((x− x′)2 +(y− y′)2 + |z− z′|2)2 ,

〈Aa
z̄ (x,y,z, z̄)A

b
x(x

′,y′,z′, z̄′)〉

=−δ
ab 1

4π

∂

∂y
1

(x− x′)2 +(y− y′)2 + |z− z′|2

= δ
ab 1

2π

y− y′

((x− x′)2 +(y− y′)2 + |z− z′|2)
,

〈Aa
y(x,y,z, z̄)A

b
z̄ (x

′,y′,z′, z̄′)〉

=−δ
ab 1

4π

∂

∂x
1

(x− x′)2 +(y− y′)2 + |z− z′|2

= δ
ab 1

2π

x− x′

((x− x′)2 +(y− y′)2 + |z− z′|2)2 .

(4.4)

For later purposes, we can reinterpret the propa-

gator as a two-form on two copies of R2 ×C. Setting
x = x′− x′′, y = y′− y′′, z = z′− z′′, z̄ = z̄′− z̄′′, we define

Pab(x,y,z, z̄)(4.5)

:=
1
2 ∑

i, j=z,y,z̄
〈Aa

i (x
′,y′,z′, z̄′)Ab

j(x
′′,y′′,z′′, z̄′′)〉dxi ∧dx j

=−δ ab

4π

(
dy∧dz̄

∂

∂x
+dz̄∧dx

∂

∂y
+4dx∧dy

∂

∂ z

)
× 1

(x2 + y2 + zz̄)

=
δ ab

2π
(xdy∧dz̄+ydz̄∧dx+2z̄dx∧dy)

1
(x2+y2+zz̄)2 .

In the following, we often use the propagator two-

form with adjoint indices stripped off:

Pab(x,y,z, z̄) = δ
abP(x,y,z, z̄).(4.6)

The defining equations of the 2-form P(x,y,z, z̄) are

i

2π
dz∧dP(x,y,z, z̄) = δx,y,z,z̄=0,(4.7)
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(∂xι∂x +∂yι∂y +4∂zι∂z̄)P(x,y,z, z̄) = 0,(4.8)

where δx,y,z,z̄=0 is a delta-function distribution local-

ized at x = y = z = z̄ = 0, and ιV indicates contraction

with a vector field V .
To verify the normalizations, we can check these

equations explicitly. It is easy to verify that dz∧ dP =

0 away from the origin x = y = z = z̄ = 0, and that

eqn. (4.8) is satisfied.

Note that, when restricted to the unit three-

sphere,

P(x,y,z, z̄) =
1

2π
(xdy∧dz̄− ydx∧dz̄+2z̄dx∧dy).(4.9)

Since the forms on the two sides of this equation are

the same on the unit three-sphere, Stokes’ theorem

tell us that applying the operator dz∧d to both sides

and integrating over the ball of radius 1 will give the

same answer. Therefore we have the identity (using

the coordinates u, v with z = u+ iv)

i

2π

∫
x2+y2+zz̄≤1

dz∧dP(x,y,z, z̄)

=
i

2π

1
2π

∫
x2+y2+zz̄≤1

4dxdydzdz̄

=
i

2π

1
2π

∫
x2+y2+zz̄≤1

(−8i)dxdydudv

=
i

2π

1
2π

(−8i)
π2

2
= 1.

(4.10)

The four-dimensional bulk gauge field Aa couples to

a Wilson line in the representation ρ by a factor ta,ρ ,
which is the matrix by which the Lie algebra element

ta acts in the representation ρ . For the case of a single

gluon coupling to a Wilson line, this factor does not

depend on where on the line the gluon is inserted.

For gluon exchange between two Wilson lines, as in

Fig. 15, we simply get such a factor on each line. The

propagator between a Wilson line supported on the x
axis at z = z1 and one supported on the y axis at z = z2

then evaluates to

I1 = h̄((ta,ρ ⊗ tb,ρ ′)
∫

dxdy′Pab(x− x′,y− y′,z1 − z2, z̄1 − z̄2)

= h̄cρ,ρ ′

∫
dxdy′P(x− x′,y− y′,z1 − z2, z̄1 − z̄2),

(4.11)

where the color factor reads

cρ,ρ ′ ∑
a

ta,ρ ⊗ ta,ρ ′ .(4.12)

Here cρ,ρ ′ can be viewed as the image of an element

c = ∑a ta⊗ ta of g⊗g in the representation ρ ⊗ρ ′ of g⊗g.

The factor of h̄ is the loop counting parameter.

It is straightforward to evaluate the integral in

(4.11), with the result

I1 = h̄cρ,ρ ′
1

2π

∫
dxdy

2(z̄1 − z̄2)

(x2 + y2 + |z1 − z2|2)2 =
h̄cρ,ρ ′

z1 − z2
.

(4.13)

This reproduces the standard semi-classical expan-

sion of the rational R-matrix

R = I + h̄r+O(h̄2) = I +
h̄cρ,ρ ′

z1 − z2
+O(h̄2).(4.14)

General theorems (see [7, p. 814] or [8, p. 418])

imply that the full rational R-matrix is determined up

to a prefactor by the general conditions that it obeys

together with the leading order term that we have

just computed. Some interesting special cases of this

statement are rather easy, as we have reviewed in sec-

tion 3.5.

5. OPE of Parallel Wilson Lines

5.1 Overview

The next topic that we will consider is the

operator product expansion (OPE) of Wilson lines.

We begin with generalities about line operators in

diffeomorphism-invariant theories.

Consider parallel line operators K and K′ in a the-

ory with diffeomorphism invariance in any dimension

≥ 2 (Fig. 16(a)). Diffeomorphism invariance means

that there is no natural notion of whether K and K′

are “near” or “far” and therefore that we can think

of them as being arbitrarily near. This implies that

it must be possible in any diffeomorphism invariant

theory to interpret a product KK′ of two parallel line

operators as a single line operator K′′. This is the op-

erator product expansion for line operators.

Although there is in a diffeomorphism invariant

theory no natural notion of K and K′ being “near” or

“far,” something special happens in two dimensions:

there can be a natural notion of whether K is to the

left or right of K′. The product KK′ with K to the left

of K′ may be different from the product K′K with K
to the right. Thus, in two dimensions, the OPE of line

operators is not necessarily commutative.16

Although not necessarily commutative in two di-

mensions, the OPE of line operators is always associa-

tive. That is because (Fig. 16(b)) given three parallel

line operators K, K′, and K′′, there is no natural no-

tion of K and K′ being closer or farther than K′ and

K′′. There is just one product of line operators that

depends only on how they are arranged from left to

right.

16 In three dimensions, there is a more subtle analog of this:
KK′ and K′K are always isomorphic, but there can be differ-
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Figure 16. (a) In a diffeomorphism-invariant theory,

two parallel line operators can be considered to be

arbitrarily close, so they behave as a single line

operator. This is the operator product expansion for

line operators. (b) In two dimensions, this operator

product expansion is not necessarily commutative,

but it is always associative, because given three

parallel line operators, there is no natural sense of

one pair being “closer” than the other. The triple

product KK′K′′ can be identified as either (KK′)K′′ or

K(K′K′′) by moving together one pair of adjacent line

operators or the other.

Our problem has a few special features. The line

operators that we will be studying are indeed sup-

ported on a line K in the smooth two-manifold Σ

which has diffeomorphism symmetry,17 but they are

also supported at a point in the complex Riemann

surface C. The OPE for line operators supported at

distinct points in C is trivial – and in particular com-

mutative – as they can pass through each other in Σ

without any singularity. They interesting case is the

OPE for line operators that are supported at the same

point in C. We may as well take this point to be z = 0.
Although abstractly the product KK′ of line oper-

ators K and K′ will always be another line operator,

if we try to consider too small a class of line oper-

ators, we might find that the product KK′ is not in

the class that we started with. That is actually what

happens in the theory described in the present pa-

per if we consider only the most obvious class of line

operators: Wilson line operators associated to repre-

sentations of the finite-dimensional Lie algebra g. We

will see in section 5.2 that this class of line opera-

tors is not closed under operator products. To get an

ent isomorphisms between them, depending on the direction
in which K and K′ are moved around each other, leading to
a notion of braiding of line operators.
17 This diffeomorphism symmetry is mildly broken by a
framing anomaly, but not in a way that affects the present
discussion.

OPE for Wilson line operators, we have to consider the

more general class of Wilson operators associated to

representations of g[[z]].
Given two parallel Wilson line operators, on gen-

eral grounds their product in a diffeomorphism-

invariant theory is another line operator. But it is non-

trivial to exhibit this new line operator as another Wil-

son operator for some representation of g[[z]]. To ex-

hibit this, we have to do a calculation, starting with

two parallel line operators, taking the limit, in a con-

crete quantization scheme, as they approach each

other, and searching for a single Wilson operator that

will reproduce the effects of the twoWilson operators

that we started with.

At the classical level, the OPE for Wilson opera-

tors is trivial. Given Wilson operators associated to

representations ρ and ρ ′ of g[[z]], their product is the
Wilson line associated to the tensor product repre-

sentation ρ ⊗ρ ′. There is a quantum correction to this

and we will compute it to lowest order in h̄.
We will perform the computation assuming that

ρ and ρ ′ are representations of the finite-dimensional

algebra g, or equivalently that they are representa-

tions of g[[z]] in which the generators ta,n vanish for

n > 0. What we will show is that in order h̄, the tensor
product representation acquires a nonzero ta,1 (there
is no correction to ta,n for any n 6= 1). It is fundamen-

tally because of this fact that it is important to con-

sider Wilson operators associated to representations

of g[[z]] that do not come from representations of g.

5.2 Lowest Order Computation

We start with a Wilson line in the representation

ρ ′ of g at y= 0, and one in the representation ρ ′′ at y= ε.
As just explained, we assume that these are “ordi-

nary” Wilson lines, associated to representations of g.

The leading order Feynman diagram is given in

Fig. 17. This diagram represents the coupling of an

external gauge field to the two Wilson lines. We will

calculate what happens, to leading order in h̄, when
we put these lines beside each other and send ε → 0
from above. Modulo h̄, the result will simply be the

Wilson line associated to the tensor product repre-

sentation ρ = ρ ′⊗ρ ′′ of g. There is an order h̄ correc-

tion, in which the z-derivative of the gauge field A is

coupled to the Wilson line in a non-trivial way.

For the evaluation of this diagram we need an ex-

tra Feynman rule not needed so far, namely the bulk

interaction vertex, away from any Wilson lines. This

can be read off from the action (3.3), and is

i

2π
f abcdz.(5.1)

Note that this vertex contains a 1-form dz, since this

is present in the action. To evaluate the diagram of
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Figure 17. The Feynman diagram representing the

O(h̄) correction to the OPE of Wilson lines. The two

lines are at y = 0 and y = ε, respectively. We consider

the limit ε→ 0.

Fig. 17, we have to integrate one interaction vertex

over the line y= 0, one over the line y= ε, and one over

R4 = R2 ×C. Connecting the vertices by propagators,

we have to integrate

I2 =
i

2π
h̄(ta ⊗ tb fabc)

∫
∞

x1,x2=−∞

∫
x,y,z,z̄

(5.2)

×P(x1 − x,y,z)∧dz∧Ac(x,y,z)∧P(x2 − x,y− ε,z),

where P is the four-dimensional propagator two-form

introduced previously in (4.5). Since we have two

propagators and one bulk vertex, we have a factor of

h̄2−1 = h̄ in front, as in the discussion of the R-matrix.

(The meaning of this is that the diagram is of order h̄
compared to a contribution in which the gauge boson

couples directly to one of the Wilson operators, with

the bulk interaction playing no role.)

Integrating first over x1 and x2, we obtain

I2 =
i

2π
h̄(ta ⊗ tb fabc)

(5.3)

×
∫

x,y,z,z̄
dz∧Ac(x,y,z, z̄)∧P′(y,z, z̄)∧P′(y− ε,z, z̄),

where we defined a three-dimensional one-form

propagator with color indices stripped off on the

plane R3 parametrized by (y,z, z̄):

P′(y,z, z̄) :=
∫

dxP(x,y,z, z̄)(5.4)

=−1
4

(
−dz̄

∂

∂y
+4dy

∂

∂ z

)
1

(y2 + zz̄)
1
2

.

Note that we obtained a numerical factor of π from

the x integral.
The most fundamental thing to explain about

eqn. (5.3) is why, for ε→ 0, it produces a local coupling
of A to a line operator at y = z = 0. The reason for this

is simply that for ε → 0, the integrand in eqn. (5.3)

vanishes as long as y and z are not both 0. That is

true simply because the integrand for ε = 0 is propor-

tional to P′(y,z, z̄)∧P′(y,z, z̄), and this trivially vanishes

because P′ is a 1-form.

Accordingly, the small ε limit of dz ∧ P′(y,z, z̄) ∧
P′(y − ε,z, z̄) is a distribution supported at y = z = 0.

By dimensional analysis and rotation symmetry in

the z plane, this distribution must be a multiple of

∂zδ
3(y,z, z̄), where δ 3(y,z, z̄) is a three-form delta func-

tion satisfying
∫
R×C δ 3(y,z, z̄) = 1. We will now show

that

lim
ε→0

dz∧P′(y,z, z̄)∧P′(y− ε,z, z̄) = π

i

∂

∂ z
δ

3(y,z, z̄).(5.5)

This will imply that

I2 =
i

2π
h̄(ta ⊗ tb fabc)

∫
x,y,z̄

Ac(x,y,z, z̄)

(
π

i

∂

∂ z
δ

3(y,z, z̄)

)
=−h̄

1
2
(ta ⊗ tb fabc)

∫
dx

∂

∂ z
Ac(x,y,z, z̄).(5.6)

The coupling to ∂zA shows that the composite Wilson

line operator obtained by bringing two such opera-

tors together has ta,1 6= 0, that is it is associated to a

representation of g[[z]] but not to a representation of

g. Moreover, it is easy to see from this formula that

although we will take ε > 0 in our calculation, the re-

sult is actually proportional to the sign of ε. Changing

the sign of ε would lead, after replacing y with y+ ε,
to the same calculation but with the roles of the two

line operators exchanged, replacing ta⊗tb in eqn. (5.6)

with tb ⊗ ta. Since this changes the sign of fabcta ⊗ tb,

eqn. (5.6) implies that the quantum OPE for Wilson

operators is noncommutative: it gives a result that

depends on which of the two Wilson operators is on

the “left” of the other.

To show (5.5), let us express the three-

dimensional one-form propagator (5.4) as

P′(y,z, z̄) =−dz̄∂yQ(y,z, z̄)+4dy∂zQ(y,z, z̄)(5.7)

with

Q(y,z, z̄) :=−1
4

1

(y2 + zz̄)
1
2

.(5.8)

Then the left hand side of (5.5) reads (we here drop z, z̄
from the arguments of Q, to simplify the expressions)

−4dy∧dz∧dz̄(∂yQ(y)∂zQ(y− ε)−∂zQ(y)∂yQ(y− ε))(5.9)

= dy∧dz∧dz̄

[
∂

∂ z
(a)+

∂

∂y
(b)

]
,

with

(a) :=−2∂yQ(y)Q(y− ε)+2Q(y)∂yQ(y− ε)

=
2
42

ε(y(ε− y)+ |z|2)
(y2 + |z|2) 3

2 ((y− ε)2 + |z|2) 3
2

,

(b) :=−2Q(y)∂zQ(y− ε)+2∂zQ(y)Q(y− ε)

=
1
42

−ε z̄(ε−2y)

(y2 + |z|2) 3
2 ((y− ε)2 + |z|2) 3

2

.

(5.10)

These are all explicitly proportional to ε, and thus,

as claimed earlier, everything vanishes for ε → 0 as
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long as y, z are not both zero. We expect to extract

from (5.9) in the limit ε → 0 a multiple of ∂zδ
3(y,z).

Since the (a) term appears in eqn. (5.9) in the form

∂z(a), we expect that (a) by itself without this deriva-

tive would simply produce a multiple of δ 3(y,z).
This means that the contribution of the (a) term

to the coefficient of ∂zδ
3(y,z) can be obtained by eval-

uating the integral of (a):

C :=
∫

dydzdz̄(a).(5.11)

To demonstrate eqn. (5.5), it suffices to show that

C = π

i . This integral is absolutely convergent. A sim-

ple scaling argument shows that it is independent of

ε, so we may as well set ε = 1.
In polar coordinates (dzdz̄ = −2irdrdθ), after inte-

gration over θ , we get

C =−−8iπ
42

∫
∞

−∞

dy
∫

∞

0
dr

r(y(1− y)+ r2)

(y2 + r2)
3
2 ((y−1)2 + r2)

3
2

.(5.12)

We can evaluate this integral with a formula familiar

from the evaluation of Feynman diagrams:

1

Aα Bβ
=

Γ(α +β )

Γ(α)Γ(β )

∫ 1

0
dt

tα−1(1− t)β−1

(tA+(1− t)B)α+β
.(5.13)

Choosing α = β = 3/2 and remembering Γ(3)/Γ(3/2)2 =

8/π , we have

C =
−64i

42

∫ 1

0
dt
√

t(1− t)(5.14)

×
∫

∞

−∞

dy
∫

∞

0
dr

r(y(1− y)+ r2)

((1− t)y2 + t(y−1)2 + r2)3 .

Using

∫
∞

0
dr

r(a+ r2)

(b+ r2)3 =
a+b
4b2 ,(5.15)

we obtain

C =
−16i

42

∫ 1

0
dt
√

t(1− t)
∫

dy
y(1− y)+(1− t)y2 + t(y−1)2

((1− t)y2 + t(y−1)2)2

=
−16i

42

∫ 1

0
dt
√

t(1− t)
π√

t(1− t)
=

π

i
.

(5.16)

We can do a similar analysis for (b), but (b) takes
the form

z̄F(y, |z|)(5.17)

and hence vanishes when integrated over the angle θ .

This means that there is no singular contribution

from (b). This concludes the verification of (5.5).

5.3 Relation to the R-Matrix

Though we have performed an independent com-

putation, the result can actually be deduced from a

knowledge of the O(h̄) contribution to the R-matrix,

computed in section 4. Consider (Fig. 18) two parallel

Wilson lines K and K′ both supported at z = 0 and a

third Wilson line K′′ at some other point z = z0 that is

crossing them. Assuming that K and K′ are far apart

(compared to |z0|) there is a unique lowest order Feyn-
man diagram in which K′′ interacts nontrivially with

both K and K′. This is the diagram sketched in the fig-

ure with a gluon exchanged from K′′ to K and another

from K′′ to K′. The group theory factors associated to

the two gluon exchanges are respectively ta⊗1⊗ta and
1⊗ tb ⊗ tb (where the three factors refer respectively

to K, K′, and K′′). The product of these is ta ⊗ tb ⊗ tbta,
where the factors acting on K′′ are ordered as tbta be-
cause K′ is to the right of K (so that path ordering

along K′′ puts tb to the left of ta).
Now suppose that K and K′ are brought closer to-

gether. Two-dimensional diffeomorphism invariance

means that we have to get the same result after sum-

ming over all diagrams, but the contributions of in-

dividual diagrams can depend on the distance from

K to K′. In particular, the diagram that we considered

before still contributes when K and K′ are close com-

pared to |z0|, but their contribution is not the same as

before. That is because (Fig. 19(a)) even though K′ is to

the right of K, the gluon emitted from K′ might be ab-

sorbed on K′′ to the left of the gluon emitted from K.
So the contribution of the diagram that we considered

previously is now modified by a term proportional to

ta ⊗ tb ⊗ [ta, tb] = fabcta ⊗ tb ⊗ tc. So there must be another

diagram that is significant when K and K′ are nearby

and that gives a group theory factor of this form. That

diagram is shown in Fig. 19(b).

But this last diagram is just the one (Fig. 17) that

we studied to find the quantum correction to the OPE,

except that now instead of considering an arbitrary

external A field, as in the previous discussion, we have

provided a third Wilson operator that is the source

of this A field. The analysis of Fig. 19(b) for K → K′

is essentially the same as the analysis that we have

already performed of Fig. 17.

The upshot is that the quantum correction to the

OPE is an inevitable consequence of the quantum cor-

rection to the R-matrix, and vice-versa.

5.4 Interpretation of the Result

In the analysis of Fig. 17, we started with two rep-

resentations ρ ′ and ρ ′′ of g, that is representations of

g[[z]] with generators t ′a,n = t ′′a,n = 0 for n > 0. Let us write
just t ′a and t ′′a for t ′a,0 and t ′′a,0. The above computation

showed that the Wilson operator obtained by fusing
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Figure 18. A Wilson operator K′′ crossing two parallel Wilson operators K and K′. K and K′ are supported at z = 0
and K′′ at some other point z = z0. Drawn is a Feynman diagram with a gluon exchanged between K and K′′ as

well as one between K′ and K′′.

Figure 19. When K and K′ are brought nearby, the contribution of the diagram in (a) is modified relative to

Fig. 18. To maintain two-dimensional topological invariance, this is balanced by a new contribution in (b), which

is related to the existence of a quantum correction to the OPE.

the two we started with couples to ∂zA and therefore

has a nonzero ta,1. In fact ta,1 of the fused Wilson line

can be read off from eqn. (5.6):

ta,1 =− h̄
2 ∑

b,c

fabct
′
b ⊗ t ′′c .(5.18)

On the other hand, the computation gave no contri-

butions to generators ta,n of the composite Wilson op-

erator for n 6= 1. So to this order, ta,0 is given by the

classical formula

ta,0 = t ′a ⊗1+1⊗ t ′′a ,(5.19)

and the higher generators vanish, ta,n = 0, n > 1. Here
ta,0 are the generators of g in the classical tensor prod-

uct ρ = ρ ′⊗ρ ′′.

This result certainly shows that to get a closed

OPE, wemust considerWilson operators derived from

representations of g[[z]], not just g. But its conse-

quences go far beyond that. The formula (5.18) ac-

tually implies that quantum corrections to the theory

actually deform g[[z]] itself – or to bemore precise that

at the quantum level, Wilson operators of the theory

correspond to representations not of g[[z]] itself but

of a quantum deformation of this algebra (or more

accurately, of its universal enveloping algebra, as we

will see).

The basic reason for this is that the formula (5.18)

is not consistent with the commutation relations of

g[[z]], so it implies further deformations. In g[[z]], one

has the commutation relation

[ta,1, tb,1] = fabctc,2.(5.20)
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Recalling the Jacobi identity

fuva fabc + fvba fauc + fbua favc = 0,(5.21)

we deduce from this that

fuva[ta,1, tb,1]+ (. . .) = 0,(5.22)

where the omitted terms are obtained by cyclic per-

mutations of the indices uvb.
This is an identity in g[[z]], but a short calculation

will show that ta,1 as defined in eqn. (5.18) does not

obey this identity. Instead it satisfies a deformed ver-

sion of this identity that we will describe presently.

Because g[[z]] is being deformed, what did we

mean in claiming that to get a closed OPE for line op-

erators, we should start with representations of g[[z]]?
The precise statement is not that line operators in

the quantum theory correspond to representations of

g[[z]], but that had we started at the classical level with

arbitrary representations of the g[[z]], then consider-

ation of products of line operators would not have

forced us to consider new objects. By contrast, if we

start at the classical level with representations of g

only, then getting a closed OPE does require intro-

ducing many more line operators.

Now let us go back to the question of how to

interpret the failure of the quantum-induced ta,1 to

obey the commutation relations of g[[z]]. Since ta,1 in

eqn. (5.18) is bilinear in the generators t ′a and t ′′a , the
left hand side of eqn. (5.21), after evaluating the com-

mutator, is cubic in these generators; more specifi-

cally it is a sum of terms of bidegree (2,1) and (1,2) in
t ′a and t ′′a .

The upshot is that to account for the failure of

eqn. (5.22), we have to deform this commutation re-

lation by adding, in order h̄2, a certain cubic polyno-

mial in ta,0. The generators ta,0 and ta,1 of the deformed

algebra satisfy

fuva[ta,1, tb,1]+ (. . .) = h̄2Quvb(ta,0),(5.23)

where Quvb(ta,0), which is completely antisymmetric in

its indices uvb, is for each uvb a homogeneous sym-

metric cubic polynomial in the ta,0.
What polynomial is needed can be deduced by try-

ing to make sure that eqn. (5.23) is consistent with

eqns. (5.18) and (5.19). However, when one tries to do

this, one runs into a snag. No matter what Quvb may

be, if ta,0 = t ′a⊗1+1⊗t ′′a , then Quvb(ta,0) is a sum of terms

of bidegree (3,0), (2,1), (1,2), and (0,3) in t ′a and t ′′a . We

can pick Quvb so that the terms in eqn. (5.23) of bide-

gree (2,1) and (1,2) work out correctly. But there is

nothing we can do about the terms of bidegree (3,0)
and (0,3), unless they vanish by themselves.

The interpretation of this is as follows. The quan-

tum deformed algebra satisfies (5.23) (with analogous

deformations of the commutation relations involving

other generators). In contrast to g[[z]], a representa-

tion of g does not automatically lift or extend to a

representation of the deformed algebra. If we start

with matrices ta that represent g, we can always get

a representation of g[[z]] by setting ta,0 = ta and ta,n = 0
for n > 0. But this only works in the deformed alge-

bra if Quvb(ta) = 0. Otherwise, the deformed commu-

tation relations force ta,1 to be nonzero. So quantum

mechanically, theWilson operators whose product we

are trying to determine are anomalous, and need to be

modified18 with a contribution to ta,1 of O(h̄), unless
Quvb(t ′a) = Quvb(t ′′a ) = 0. Once we impose this restriction,

we do not need to worry about the terms in eqn. (5.23)

of bidegree (3,0) or (0,3). We need consider only the

(2,1) and (1,2) terms in that equation.

The explicit polynomial Quvb(ta,0), though not very

illuminating, can be worked out by analyzing those

terms.19 A notable fact is that because this polyno-

mial is of degree greater than 1, the deformation from

g[[z]] by including h̄2Quvb on the right hand side of

eqn. (5.23) cannot be understood as a deformation

of the Lie algebra g[[z]]. It can instead be understood

as part of an associative algebra deformation of the

universal enveloping algebra of g[[z]], denotedU(g[[z]]).
This makes sense because a polynomial in elements

of U(g[[z]]) is itself an element of U(g[[z]]), so Quvb(ta,0)
is an element of U(g[[z]]). Eqn. (5.23) (and its analogs

for other components that we have not calculated)

can be understood as giving an associative algebra

deformation (which in particular entails a Lie algebra

deformation) of U(g[[z]]).

5.5 The Yangian

The deformation of U(g[[z]]) that was uncovered

in section 5.4 is known as the Yangian. In fact,

eqn. (5.18) is a standard formula describing the dif-

ference in lowest order between the tensor product of

representations of the Yangian and the tensor prod-

uct of representations of g[[z]].
How can we know that the relevant deformation

of U(g[[z]]) is the Yangian, given that we have only

performed some simple computations in lowest non-

trivial order? The answer to this question is that ac-

cording to general theorems, the Yangian is the only

deformation of the OPE that agrees with the lowest

order deformation that we have found in eqn. (5.18)

and possesses certain general properties. Thus (as al-

ready stated in [11, 12]), the associativity of the OPE,

together with the fact that the OPE in O(h̄) receives

18 If they cannot be so modified, they are simply anomalous
and do not have counterparts in the quantum theory.
19 Wewill also derive it by a direct Feynman diagram analysis
in section 8. Section 8.6.1 contains a fairly thorough analysis
of this polynomial. See also [8], p. 376.
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a non-trivial correction, determines the OPE uniquely

to all orders in perturbation theory, up to changes of

variables. This is guaranteed by a theorem of Drin-

feld, which also says that the resulting 1-parameter

deformation of the U(g[[z]]) is the Yangian Yh̄(g), the

algebra underlying the rational solution of the Yang-

Baxter equation associated to g.

To make these statements more precise and

closer in spirit to those in [11, 12], we can use the

language of category theory to say that the “category

of Wilson lines” Ch̄ is given by the category of repre-

sentations of Yh̄(g).

This category Ch̄ has the following four proper-

ties.

First, Ch̄ is a non-trivial one-parameter deforma-

tion of the category of representations20 of U(g[[z]]).
Second, the OPE of the Wilson lines defines a

functor, by fusing two objects to produce a third ob-

ject

Ch̄ ×Ch̄ → Ch̄.(5.24)

Moreover, the OPE is associative, though not commu-

tative. These two conditions define a monoidal cate-

gory, and hence Ch̄ is monoidal.21

Third, the category Ch̄ allows for a kind of braid-

ing,22 because it has certain additional structure.

Here we again consider two Wilson lines parallel in

the topological plane, but now at different points z
and z + λ of the complex plane. Since z 6= z + λ , the

Wilson lines never coincide with each other, even

when they coincide in the topological plane. More-

over, since we have two directions at our disposal in

the holomorphic plane C, we can move the two Wil-

son lines around in C, to replace z with z+ λ , with-

out encountering any singularities. In the language of

[11, 12], the translation z 7→ z+λ of the Wilson line by

a parameter λ defines a functor Tλ : Ch̄ → Ch̄. If W , V
are two Wilson lines supported at 0, then the expla-

nations above means that we have a natural isomor-

phism

RV,W : TλW ⊗V ∼=V ⊗TλW,(5.25)

where ⊗ indicates the monoidal structure on Ch̄ com-

ing from the OPE of parallel Wilson lines.

20 At the classical level, representations of g[[z]] are the same
as representations of U(g[[z]]), so Wilson operators can be
identified with representations of either of these algebras.
But the statement in the text must be formulated forU(g[[z]]),
because the Yangian is a deformation of U(g[[z]]), not of g[[z]].
21 By the same argument, the category of line operators in a
two-dimensional topological quantum field theory (TQFT) is
always a monoidal category, as is the category of boundary
line operators in a 3-dimensional TQFT with a topological
boundary condition.
22 This is different from the braiding familiar from line op-
erators in three-dimensional topological field theories.

A theorem of Drinfeld [7] now implies that Ch̄ is

uniquely fixed by these properties to be the category

of representations of the Yangian Yh̄(g). The monoidal

structure on Ch̄ comes from the coproduct on the Yan-

gian, and themap RV,W comes from the R-matrix of the

Yangian Yh̄(g).

These arguments are admittedly somewhat ab-

stract. In a companion paper [25], we will explain, in a

concrete and down to earth way, how to extract a rep-

resentation of the Yangian – exactly, not just to order

h̄ – from any Wilson line operator of this theory. The

ability to do this is somewhat analogous to the abil-

ity in section 3.5 to determine in an elementary way

some solutions of the Yang-Baxter equation for GLN .

Hopefully this will help convince the reader that the

conclusions from the abstract arguments really apply

to the quantum field theory.

6. The Framing Anomaly and Curved
Wilson Lines

In section 3.6, we deduced from some explicit

elementary examples that there must be a framing

anomaly for Wilson lines. The framing anomaly says

that what is constant along a Wilson line is not z but
z− h̄h∨ϕ/π , where h∨ is the dual Coxeter number of the

gauge group, and ϕ is the angle between the tangent

vector to the Wilson line and some chosen direction

in the topological plane. The purpose of the present

section is to perform a direct Feynman diagram com-

putation exhibiting this effect.

In contrast to the calculations that we performed

for the R-matrix and for the OPE of Wilson operators,

for the framing anomaly, a lowest order computation

gives the exact result. For the case of the Yangian –

that is for C = C – this is clear from the fact that this

theory is invariant under adding a constant to z and
under a common rescaling of z and h̄. The assertion

that z − h̄h∨ϕ/π is constant along a Wilson operator

is consistent with those symmetries, but a modified

statement with additional terms of higher order in h̄
would not be. The fact that the lowest order framing

anomaly gives the full answer is also evident in the

examples considered in section 3.6.

For other choices of C related to trigonometric or

elliptic solutions of the Yang-Baxter equation, there is

no scaling symmetry. However, because the analysis

of the framing anomaly is local along C, the form of

the anomaly is the same for the other cases as long as

one picks variables so that locally along C the action

takes the same form as for C = C. (In the coordinates

of eqn. (3.14), this is automatically true if C is an el-

liptic curve, and it is true for C = C× after replacing z
with log z.)

The relevant diagram that will give the anomaly

is shown in Fig. 20. This diagram makes a convergent
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Figure 20. The one-loop diagram that leads to a

framing anomaly for Wilson operators.

and well-defined contribution to the effective action

of the theory. However, this contribution is not gauge-

invariant. A failure of gauge-invariance will arise from

the behavior when all three interaction vertices coin-

cide at a common point, which will inevitably be along

the support K of the Wilson operator.

Before describing what form the anomaly will

take, we first do a small exercise in group theory. We

write the gauge field A explicitly as A = ∑a Aata, and re-

call that the trilinear vertex involving a coupling of

three gauge fields is proportional to fabc. A gauge bo-

son of type b or c couples to the Wilson line via a fac-

tor of tb or tc (understood here as a matrix acting in

the appropriate representation). So as far as group

theory is concerned, the indicated diagram generates

a coupling of an external gauge field Aa to the Wilson

operator via a matrix

∑
a,b,c

Aa fabctbtc.(6.1)

Here because of antisymmetry of fabc, we can replace

tbtc by 1
2 [tb, tc] =

1
2 fbcdtd . Then as ∑b,c fabc fbcd = 2h∨δad ,

where h∨ is known as the dual Coxeter number23 of g.

Thus just from the point of view of group theory, we

get a coupling h∨ ∑a Aata of the external gauge field to

the Wilson line. Thus the dependence on g is only an

overall factor of h∨.

To calculate the anomaly, it suffices to consider

the case of a Wilson line supported on a curve K ⊂R2

that is nearly a straight line, and at a point z = z0 in

C. In fact, since a simple description in terms of Yan-

gians and integrable systems only arises in a limit in

which the metric of R2 is scaled up, we are really sup-

posed to consider only the case that K has a very large

radius of curvature and therefore can everywhere be

23 Recall our normalization of the Killing form in eqn. (3.2).
The factor of 2 here is inserted to match with the standard
definition of h∨ in the literature.

locally well-approximated as a straight line. We can

pick coordinates so that K, in the region of interest,

is very close to the x-axis in R2, and is described by

a curve y = y(x), with y everywhere small. We will find

that the amplitude I1 that comes from the diagram of

Fig. 20 is not gauge-invariant. Under a gauge trans-

formation A → A + Dε , with ε = ∑a taεa(x,y,z) a gauge

parameter, the variation of I1 will be

δ I1 =− h̄h∨

2π

∫
K

dx

(
d2y
dx2 ∂zε(x,y(x),z0)

)
.(6.2)

Here as above h∨ is the dual Coxeter number. (A fac-

tor of h̄ is present because this is the anomaly in a

diagram with two propagators, each giving a factor

of h̄, and one bulk vertex, proportional to 1/h̄.) This
formula for δ I1 as an integral over K is written in a

way that is only valid in a portion of K that is close to

the x-axis. Since we will assume y(x) small, we can re-

place ε(x,y(x),z0) by ε(x,0,z0), which we will write sim-

ply as ε(x,z0). Now let us discuss how to cancel this

anomaly by a correction to the classical definition of

the Wilson operator. We recall that, in linear order, an

external gauge field A couples to the Wilson operator

via

Icl =
∫

K
dxAx(x,z0).(6.3)

This is gauge-invariant, as long as z0 is constant. To

cancel the anomaly δ I1, we must modify the classical

coupling Icl so that it is no longer gauge-invariant. We

do this by replacing z0 by z0 − h̄h∨ 1
2π

dy/dx. Thus we re-
place Icl with

I′cl =
∫

K
dxAx

(
x,z0 −

h̄h∨

2π

dy
dx

)
.(6.4)

Under a gauge transformation δAx(x,y,z) = ∂xε(x,y,z),
the variation of I′cl is

24

δ I′cl =− h̄h∨

2π

∫
K

dx

(
d2y
dx2 ∂zε(x,z0)

)
.(6.5)

This cancels the anomaly δ I1.

We learn, then, that including the anomaly, we

must set not z = z0 but z = z0 − 1
2π

h̄h∨dy/dx. The for-

mulas as written, however, are only valid under the

assumption that dy/dx is small. To get a more general

formula, we should re-express dy/dx in terms of the

angle ϕ between the tangent vector to K and some

chosen direction in the xy plane, for instance the di-

rection of increasing x. If we define the sign of ϕ to

increase when K rotates in a clockwise direction, then

dy/dx can be identified (when it is small) with −ϕ . So

a more general form of the relation between z and

24 We use dε/dx = ∂xε +(∂xz)∂zε . We work to first order in y
and replace ∂zε(x,z0 − h̄h∨dy/dx) with ∂zε(x,z0).
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Figure 21. The one-loop diagram with K taken to be

a straight line – the x axis.

the slope of K is z = z0 + h̄h∨ϕ/(2π). A different way

to express this result is to say that along K, what is
constant is not z but z− h̄h∨ϕ/(2π). This is the way the

anomaly was stated in section 3.6.

Before trying to explain how this anomaly comes

from the diagram of Fig. 20, let us first explain how

the amplitude coming from that diagram is defined.

The only possible problem in defining the integral as-

sociated to this diagram comes from the region of in-

tegration in which all three interaction vertices – one

in bulk and two along the curve K – coincide in R4.

In this region, K can be approximated as a straight

line. Let us take the line to be the x-axis, that is the

curve y = 0, and discuss the integral in this case. For

simplicity, we choose z0 = 0. As in the figure, we take

the vertices along K to be at x = u, v with v ≤ u, and we

place the bulk vertex at a generic point (x,y,z). Making

use of the explicit form of the propagators, the neces-

sary integral turns out to be (up to a constant factor,

about which we will be more precise later)∫
−∞<v≤u<∞

dudv
∫
R4

dxdydzdz̄Ax(x,y,z)(6.6)

× 2yz̄
((x− v)2 + y2 + |z|2)2((x−u)2 + y2 + |z|2)2 .

Here A = Axdx+Aydy+Az̄dz̄ is a background field. How-

ever, for the case of a straight line in a flat R2 (and

only for this case), only the Ax component contributes,

as is indicated in eqn. (6.6). This depends on the de-

tailed form of the propagator.

Any possible divergence in the integral will be a

local effective action along K that will be represented

as an integral along K. Thus in assessing the con-

vergence of the integral, we should leave one vari-

able unintegrated, say x. (Alternatively, we could en-

sure that there is no divergence in the integral over

x by taking A to have compact support in the x direc-
tion.) So we set, for example, x = 0. If Ax(0,y,z) is inde-
pendent of y and z, then the integral (6.6) is linearly

divergent by power counting. (We have to integrate

over five variables u,v,y,z, z̄, and the integrand scales

as (length)−4.) However, the integrand is odd under

y →−y and separately under z →−z. Accordingly, the
integral is well-defined by a sort of principal value

prescription. We take R4
η to be the subspace of R4 de-

fined by (y2 + |z|2)1/2 ≥ η , and we replace the integral

by

lim
η→0

∫
−∞<v≤u<∞

dudv
∫
R4

η

dxdydzdz̄Ax(x,y,z)(6.7)

× 2yz̄
((x− v)2 + y2 + |z|2)2((x−u)2 + y2 + |z|2)2 .

This integral is well-defined. Concretely, if we expand

Ax(0,y,z) in powers of y, z and z̄ near y = z = 0, the first
term that can contribute is proportional to yz and

leads to a convergent integral. (Other nonvanishing

contributions come from terms with additional fac-

tors of y2 or zz̄.)
We have described this for the case that K is a

straight line, but since any curve can be approximated

locally as a straight line, the general case is simi-

lar. The one-loop integral can always be defined by a

principal value procedure in which one constrains the

bulk vertex to be a distance at least η from K and then

takes the limit η → 0. The only change from the dis-

cussion in the last paragraph is that instead of break-

ing the symmetry under y →−y by picking out a term

in A(0,y,z) that is linear in y, we could make use of

the curvature of K to break the symmetry. This again

leads to a convergent integral.

Now that we have defined the 1-loop amplitude

that we want to study, we can assess its gauge-

invariance. For this, it is convenient to perform the

u and v integrals in (6.7), leading to an expression of

the general form ∫
R4

A∧Θ0,(6.8)

where Θ0 is 3-form on R4. To be more precise, Θ0 is

a distributional 3-form on R4, that is, it is a distri-

bution on smooth 1-forms A. We note that although

we have described a specific procedure to define Θ0,

there was nothing really distinguished about this pro-

cedure and we could have used a different one. The

effect of using a different procedure would be to add

to Θ0 a distribution Θ′
0 supported on K. But∫

R4
A∧Θ

′
0 =

∫
K

Aβ ,(6.9)

where β is some 0-form on K, which depends on Θ′
0.

A shift of this type in the effective action can be inter-

preted as a change in the classical line operator whose

quantum properties we are trying to study. We are

only interested in anomalies modulo those that can

be removed by such a redefinition of the underlying

classical line operator.

We want to assess gauge-invariance of eqn. (6.7)

under A → A+Dε , where D = dx∂x + dy∂y + dz̄∂ z̄. It suf-
fices to consider the case ε = zε ′ where ε ′ is regular

JULY 2018 NOTICES OF THE ICCM 71



at z = 0. In fact, any ε can be written ε = zε ′(x,y,z, z̄)+
ε ′′(x,y, z̄), where ε ′′ is holomorphic in z̄. In the following

computation, any contribution from ε ′′ will disappear

after integration over the phase or argument of z. (It
will also become clear that we can assume ε ′ to be

independent of z and z̄ since terms proportional to z
or z̄ are not singular enough to be relevant, and that

likewise only the restriction of ε ′ to K matters.) Since

D commutes with z, it is equivalent to replace Θ0 with

Θ = zΘ0 and to assess the invariance of

(6.10)

∫
R4

A∧Θ

under A → A + Dε ′. After integration by parts, this

means that we need to study the distributional four-

form DΘ. This form vanishes away from K because

of the classical gauge-invariance of the theory. So we

expect DΘ to be a distribution with support on K. Fi-
nally, as Θ is proportional to an explicit factor of dz
which comes from the bulk interaction vertex, we can

replace DΘ by dΘ, where d is the ordinary exterior

derivative d = D+dz∂z.

Thus, we are reduced to studying dΘ, which

should equal a distribution supported along K. In
fact, we claim

dΘ = αδK ,(6.11)

where δK is a three-form delta function that is

Poincaré dual to K, and α is a one-form supported

on K. The anomaly is then given by α . (A priori, in-

stead of δK , we might have gotten an expression in-

volving normal derivatives of δK . Indeed, this would

have happened had we not included an explicit factor

of z in the definition of Θ. With that term extracted, we

will see that the most singular contribution is a delta

function rather than a derivative of one.) We will use

the following simple procedure to study dΘ. We as-

sume that K is close to the x-axis, so that it can be

parametrized by x. Then we expand the three-form Θ

as the sum of two terms, one proportional to dx and

one not:

Θ = dxΛ+Λ
′.(6.12)

Here Λ′ cannot contribute to the anomaly. The reason

is that as Λ′, by definition, is a 3-form that vanishes

if contracted with ∂x, and is smooth away from K, dΛ′

cannot generate a delta function supported on K un-

less Λ′ already has a delta function supported on K.
But such a term is irrelevant; it could be eliminated

by redefining Θ along the lines of eqn. (6.9).

So in studying dΘ, we can replace Θ with dxΛ, in

other words with the part of Θ that is proportional to

dx. We restrict Λ to, say, x= 0, and look for a delta func-
tion contribution in dΛ at y= z= 0. We can assume that

K is tangent to the x-axis at x = 0 and is described near

Figure 22. Here we take K to be tangent to the x-axis
(the horizontal line in the figure) at, say, x = 0.

x = 0 by y = 1
2 f x2, where f = d2y/dx2. Note that Λ = 0 for

the case that K is the x-axis. (This is equivalent to the

statement that the only component of A that appears

in eqn. (6.6) above is Ax.) So we expand Λ in powers of

f near f = 0. We will see momentarily that the term in

Λ linear in f does indeed lead to a delta function in

dΛ. Higher order terms in f are not singular enough

to make such a contribution.

Explicit calculation (see Appendix D) shows that

the contribution to Λ that is linear in f is at x = 0,

Λ =− 3 f i
32π2 h̄h∨

−yzz̄(dz∧dz̄)+2zz̄2(dy∧dz)

(y2 + |z|2) 5
2

.(6.13)

By Stokes’s theorem, the coefficient of the delta func-

tion can be extracted as

(6.14)

∫
Sη

Λ,

where Sη is the two-sphere (y2 + |z|2)1/2 = η (the inte-

gral is independent of η , so we can choose η = 1). We

then need to evaluate∫
Sη=1

(−yzz̄(dz∧dz̄)+2zz̄2(dy∧dz)).(6.15)

By choosing y = cosθ , z = sinθeiφ , this becomes25

2π

∫
π

0
dθ(−2isin3

θ cos2
θ −2isin5

θ)(6.16)

= (2π)(−2i)

(
4
15

+
16
15

)
=−16π i

3
.

Therefore the coefficient in front of the delta function

is − f h̄h∨/(2π):

dΛ
′ =− 1

2π
f h̄h∨δ

3(y,z),(6.17)

where δ 3(y,z) is the Poincaré dual to the point x = y =
z = 0 in the hypersurface x = 0.

25 We use dz∧dz̄ =−2isinθ cosθdθ ∧dφ , dy∧dz =−isin2
θeiφ dθ ∧

dφ .

72 NOTICES OF THE ICCM VOLUME 6, NUMBER 1



Since f = d2y/dx2, this result when inserted back

in (6.10) corresponds to an anomaly

− h̄h∨

2π

∫
K

dx
d2y
dx2 ε

′.(6.18)

But ε ′ was defined by removing a factor of z from ε . So

an equivalent and more illuminating way to describe

the result is that the anomaly in the 1-loop amplitude

under a gauge transformation generated by ε is

(6.19) − 1
2π

h̄h∨
∫

K
dx

d2y
dx2 ∂zε.

This is the form of the anomaly that was promised in

eqn. (6.2).

7. Networks of Wilson Lines

7.1 Overview

By a “network” of Wilson lines, we mean simply

a graph (Fig. 23) made of Wilson lines. Each line seg-

ment in the graph is labeled by a representation of the

gauge group G (in general a different representation

for each segment), and a vertex in the graph repre-

sents, in physics language, a gauge-invariant coupling

among the representations that meet at that vertex.

At the classical level – modulo the framing anomaly

and its generalization for networks – the whole net-

work will be at a fixed value26 of the spectral param-

eter z.
Since we are already familiar with Wilson lines,

the new ingredient in building such a network is the

vertex. So let us discuss this in more detail. In gen-

eral, if we are given a collection of representations

V1, . . . ,Vn, with a G-invariant element

v ∈V1 ⊗·· ·⊗Vn,(7.1)

then we can at the classical level form a Wilson line

vertex in which n Wilson lines labeled by these n rep-

resentations meet, as depicted in Fig. 24.

This construction is possible, at least classically,

in any gauge theory. Classically, the vertex is defined

as follows. For each Wilson line, we define the holon-

omy operator as usual, starting at the vertex where

all the Wilson lines meet. The G-invariant tensor v ∈
V1 ⊗ ·· · ⊗Vn provides an initial state to which we ap-

ply the holonomy operator on each Wilson line. The

resulting operator is invariant under gauge transfor-

mations which vanish at the other end of the Wilson

line. If each Wilson line has its second end either at

26 The analog of this in purely three-dimensional Chern-
Simons theory is to consider a not necessarily planar graph
made fromWilson lines and embedded in spacetime in an ar-
bitrary fashion. For example, the quantum 6j symbol is the
expectation value of a tetrahedral graph [32].

Figure 23. A “network” of Wilson lines is a graph in

which the line segments are Wilson lines, labeled by

representations of G, and a vertex represents a

gauge-invariant coupling among the representations

that label the lines that meet at that vertex.

Figure 24. A vertex labeled by an invariant tensor

v ∈V1 ⊗ . . .V6. Here and later, lines are labeled by the

corresponding representations.

another gauge-invariant vertex or at infinity (where

we assume fields and gauge parameters to be trivial),

then we get a gauge-invariant network of Wilson lines,

as in Fig. 23.

In the theory under discussion in the present pa-

per, not every classical Wilson line corresponds to

a line operator of the quantum theory. There is an

obstruction that we first encountered in section 5.4.

Likewise, it turns out that not every classical vertex

corresponds to a vertex in the quantum theory.

As we will see, the condition that a classical ver-

tex should correspond to a vertex in the quantum

theory is that a certain O(h̄) anomaly should vanish.

This anomaly comes from a lowest order Feynman di-

agram with one gluon exchange.
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In this section, we will establish the result just

stated; moreover, we will compute the O(h̄) obstruc-
tion to “quantizing” a vertex and find useful condi-

tions under which it vanishes.

Finally, we will give concrete, interesting, and (as

we will see in a companion paper) useful examples of

quantum vertices.

Of course, to give examples of vertices, we first

need examples of Wilson lines that we are allowed to

work with. We will use the following sufficient condi-

tion that a Wilson line associated to a representation

of G (as opposed to a more general Wilson line asso-

ciated to a representation of g[[z]]) can be quantized.

Suppose the representation V satisfies the following

algebraic condition:27

(†) Every G-invariant map from ∧2g to End(V ) factors

through a copy of the adjoint representation.

Then a Wilson line associated to the representa-

tionV can be “quantized,” that is, it exists in the quan-

tum theory. Unfortunately, the proof of this state-

ment is rather technical, and we have relegated it to

Appendix C. We should point out that the condition

(†) is only a sufficient criterion for a representation

to be quantizable in this sense, but is far from be-

ing necessary. For example, for G = SLn, it is known

from other arguments that all representations of G
are quantizable, but in general the condition (†) is not
satisfied.

We should perhaps remark that what we call ver-

tices correspond, in the theory of integrable relativis-

tic scattering, to couplings of external particles to

bound states or poles of the S-matrix. However, we

will not try to make contact with the insight that

comes from that point of view.

7.2 Vanishing of Higher Order Anomalies

Our first task is to show that an anomaly ob-

structing quantization of a vertex can arise only in

lowest nontrivial order, from one-gluon exchange.

The anomaly that describes the failure of the con-

figuration in Fig. 24 to be gauge-invariant at the quan-

tum level will be a local operator of ghost number 1,

made from the gauge field and the ghost field c, sup-

ported at the vertex. It will be valued in the vector

space V̂ =⊗Vi which lives at the vertex. As in our dis-

cussion of the framing anomaly, the anomaly is de-

termined by local considerations, so the choice of the

complex Riemann surface C will not matter. We may

as well takeC =C and take the vertex to be supported

at z = 0. Likewise we can take the topological two-

manifold Σ to be the xy plane with the vertex at the

origin.

27 An equivalent statement is that the only irreducible repre-
sentation of G that appears both in ∧2g and in End(V ) =V ⊗V ∗

is the adjoint representation.

A key constraint is that the anomaly will be in-

variant under any symmetry of the theory that is also

a symmetry of the classical vertex. A special case of

diffeomorphism invariance in the Σ directions is in-

variance under scaling of the xy plane. The configu-

ration in Fig. 24 with n Wilson lines emerging radially

from a common vertex is invariant under this scaling,

which therefore must be a symmetry of the anomaly.

This tells us that the anomaly cannot depend on the x
and y components of the gauge field A, and it cannot

involve any x and y derivatives.
The classical theory is also invariant under the

symmetry that simultaneously scales z, z̄ and h̄ by a

real number, and under the symmetry in which z is

rotated through θ , z̄ through −θ , and h̄ through θ . It

follows that the anomaly is also preserved by these

symmetries. From this it follows that the anomaly

cannot have any z̄ derivatives, nor can it depend on

Az̄. Thus the anomaly must be constructed from the

ghost field c only, and it is linear in c since it has ghost

number 1. Moreover, in order h̄k, the anomaly must

have k z-derivatives, that is, it must be proportional

to ∂ k
z c(0).
Finally, the anomaly must be invariant under con-

stant gauge transformations. Since ∂ k
z c transforms in

the adjoint representation, it must be combined with

a copy of the adjoint representation in V̂ =⊗iVi. Thus,

an order h̄k contribution to the anomaly must be an

operator of the form

∑
a

∂
k
z c

a(0)αa(7.2)

for some collection of elements αa ∈ V̂ that transform

in the adjoint representation of g. Here ca are the

components of the ghost field c relative to a basis ta,
a = 1, . . . ,dimg of g.

It remains to impose the condition that the

anomaly must be BRST closed. We will see that this

condition is satisfied if and only if k = 1. In imple-

menting the condition of BRST invariance, we have

to remember that the local operator that represents

the anomaly lives at the endpoint of n Wilson lines. In

general, the BRST transformation of a Wilson opera-

tor W (p,q) with ends at p and q is

{Q,W (p,q)}= c(p)W −Wc(q).(7.3)

Here c(p) and c(q) are operators acting in the repre-

sentation carried by the Wilson line. We are interested

in the case that q is the location x = y = z = 0 of the ver-
tex under study, and we are only interested in the c(q)
term in (7.3) (the other term will participate in a sim-

ilar cancellation at the other end of the Wilson line

in question). For the ith Wilson line that ends at the

vertex, we can write c(q) in more detail as

c(q) = ∑
a
ca(0)ta;i,(7.4)
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where ta;i is the operator by which the Lie algebra gen-

erator ta acts in the representation Vi.

The quantity that must vanish for BRST invari-

ance of the anomaly (7.2) is therefore

−
n

∑
i=1

ca(0)ta;i∂
k
z c

b(0)αb +{Q,∂ k
z c

b(0)}αb.(7.5)

The statement that the αb transform in the adjoint

representation means that

n

∑
i=1

ta;iαb = f c
abαc.(7.6)

Using the standard commutator relation

{Q,ca(0)}= 1
2

f a
bcc

b(0)cc(0),(7.7)

from which it follows that

{Q,∂ k
z c

a(0)}= 1
2

k

∑
r=0

f a
bc∂

r
z c

b(0)∂ k−r
z cc(0),(7.8)

we see that eqn. (7.5) is satisfied if and only if k = 1.
We conclude that anomalies can occur only in or-

der h̄, that is in the lowest nontrivial order, due to

one-gluon exchange.

7.3 Calculating the Anomaly

Let us now turn to calculating the anomaly. Any

O(h̄) anomalymust come from the Feynman diagrams

depicted in Fig. 25.

This diagram involves only two of theWilson lines

in the network, and the anomaly will receive a contri-

bution from each pair of Wilson lines.

Figure 25. One-loop anomaly to the Wilson network

in Fig. 24. Gluons are attached to two of the outgoing

Wilson lines, in this case the ones labeled by V4 and V6.

The full anomaly comes from a sum of such

diagrams, with gluons attached to any two distinct

Wilson lines.

For a fixed pair of Wilson lines, we have already

done essentially this computation in section 6: it is

the same as the calculation leading to the framing

anomaly. There are a few small differences. First, in

the calculation we are now considering, both Wilson

lines are labelled with arrows pointing away from the

vertex. At the classical level, this configuration is the

same as one where one arrow is incoming, and the

other is outgoing, but we use the representations Vi

and V ∗
j instead of Vi and Vj.

Also, in our calculation of the framing anomaly,

we labelled both segments of the line by a single rep-

resentation of the group, but now the two represen-

tations may be different. This affects only the group

theory factor, and even that factor can still be written

similarly to what we had before.

Finally, in our previous analysis, the Wilson line

was allowed to bend in an arbitrary fashion, but now

the tangent direction is changing only by a delta func-

tion jump at the origin.

Taking these details into account, we can readily

write down the anomaly associated to Fig. 25, where

the two gluons attach to Wilson lines i and j. To get

the full anomaly, we will have to sum over pairs i, j.
Let

v ∈V1 ⊗·· ·⊗Vn(7.9)

denote the invariant tensor that we place at the vertex

classically. The group theory factor associated to the

diagram in which the gluons are attached to lines i
and j is

∑ fa
bctb;itc; jv.(7.10)

(This reduces to eqn. (6.1) if v is an invariant bilinear

form that establishes an isomorphism between Vi and

V ∗
j .)

Let θi denote the angle between the ith Wilson line

and the vertical, measured in the clockwise direction.

Let us assume that θi < θ j for i < j. This means that

V1 is the first line segment we encounter if we start at

the vertical and move clockwise. Then, the anomaly

associated to the i and j line segments with i < j is
proportional to θ j −θi −π . This follows from our cal-

culation of the framing anomaly, which was the spe-

cial case of this calculation when the representations

Vj was V ∗
i . In that case, a straight line does not have an

anomaly, and the anomaly is proportional to the de-

viation of the line from being straight. This deviation

for the geometry we are considering now is θ j −θi−π .

Thus, the total anomaly to the existence of the

vertex at the quantum level, summing all pairs of Wil-

son lines and otherwise borrowing our previous re-

sult, is

h̄
2π

∂zc
a

(
∑

1≤i< j≤n

(θ j −θi −π) fa
bctb;itc; j

)
v.(7.11)
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This can be viewed as a G-invariant linear map from

g to V1 ⊗·· ·⊗Vn.

A possibly counter-intuitive feature of the

anomaly is that it is discontinuous in the angles θi.

If θi increases so that it crosses θi+1, there is a dis-

continuity in the anomaly of the form −h̄ fa
bctb;itc;i+1v

(an exchange of i and i+ 1. This can be explained as

follows. When θi = θi+1, what we are computing is the

anomaly for a system with n− 1 Wilson lines, where

the lines Vi and Vi+1 have been fused to a single Wil-

son line. In section 5, we have calculated the O(h̄) cor-
rection to the action g[[z]] on the fusion of two Wilson

lines. The level 1 generator acting on the fusedWilson

line turned out to be

∓1
2

h̄ fa
bctb;itc;i+1,(7.12)

where the sign depends on whether Vi is brought to

Vi+1 from the left or the right. Thus the configurations

with Vi approaching Vi+1 from left or right are differ-

ent, and therefore they can have different anomalies.

The above formula for the fusion of Vi with

Vi+1 shows that the anomaly for n Wilson lines with

θi tending to θi+1 from below coincides with the

anomaly for n−1 Wilson lines where Vi and Vi+1 have

been fused, with Vi merging with Vi+1 from the right.

(The fused Wilson line has a level one Yangian gen-

erator. A vertex in which it couples to ordinary Wil-

son lines that lack such a generator is not gauge-

invariant at the classical level, and this contributes

to the anomaly for such a vertex.)

Similarly, the anomaly for n Wilson lines where θi

tends to θi+1 from above coincides with the anomaly

for n−1 Wilson lines where Vi has been fused with Vi+1

from the left.

Thus the fact that the anomaly has a discontinu-

ity when θi crosses θi+1 reflects the fact that the alge-

bra of Wilson line operators is non-commutative: the

result of fusing two parallel Wilson lines depends on

whether they are brought together form the left or

the right.

7.4 Cancelling the Anomaly

There are two ways to try to cancel this anomaly.

We can shift the relative positions of the Wilson lines

in the z-plane by an amount of order h̄. Suppose we

shift the ith Wilson line from zi = 0 to zi = bih̄, for
some constants bi. This introduces a new anomaly

(∑bih̄ta;i)v, and one can hope that with a judicious

choice of bi this will cancel the anomaly.

The other thing we can try to do is to change

the angles of the Wilson lines. However, it turns out

that moving the angle of the ith Wilson line has the

same effect as shifting it in the z plane. This is clear
from the framing anomaly, but we can derive it from

eqn. (7.11). Suppose that we change θi to θi +wi for

some fixed value of i, with wi a constant, leaving

the other Wilson lines unchanged. Then, the anomaly

shifts by

h̄
2π

(
+∑

j<i
wi fa

bctb; jtc;i −∑
i< j

wi fa
bctb;itc; j

)
v.(7.13)

Using the fact that ∑ j t j;av = 0, we can rewrite this as

h̄
2π

(
wi fa

bctb;itc;i

)
v =

h̄h∨

π
wita;iv.(7.14)

This is the same shift we find if we move the ith Wil-

son line by wi in the z plane, up to a factor of the

dual Coxeter number h∨ which arises from the fram-

ing anomaly.28

Comparing the two formulas makes it clear that if

it is possible to cancel the anomaly by adjusting the

angles, then it is also possible to do so by shifting

the relative positions in the z-plane. The converse is

not quite true. In our computation of the anomaly, we

have made an assumption about the cyclic order of

the Wilson lines in the xy plane. This assumption only

allows us to vary the angles while preserving certain

inequalities. In some cases, the anomaly can be can-

celed by shifting the zi but not by varying the angles,

because the relevant inequalities would be violated.

7.5 Indecomposable Vertices

Before discussing specific examples, let us dis-

cuss a useful condition that can be satisfied by a clas-

sical vertex.

For each i, the states ta;iv transform in the adjoint

representation of G, since v is G-invariant. This gives n
copies of the adjoint representation, but G-invariance
of v is equivalent to one relation between them:

n

∑
i=1

ta;iv = 0.(7.15)

Thus, these states form at most n− 1 linearly inde-

pendent copies of the adjoint representation. We will

call a vertex indecomposable if there are no further

relations between the states ta;iv, so that the number

of linearly independent copies of the adjoint repre-

sentation made in this way is precisely n−1. The mo-

tivation for the terminology is that if there is an ad-

ditional relation, one can show by general considera-

tions of group theory that we can decompose the set

of representations into disjoint subsets R and S with

the feature that the operators ∑r∈R ta;r and ∑s∈S ta;s each

28 If h∨ = 0, then shifting the angles has no effect and we
have to try to cancel the anomaly by shifting the values of
z. For simple Lie groups, h∨ is always positive, but there ac-
tually are interesting solutions of the Yang-Baxter equation
for supergroups with h∨ = 0 [33].
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annihilate the element v. This means that v is the ten-
sor product (or a sum of tensor products) of invariant

elements in ⊗r∈RVr and in ⊗s∈SVs. Thus, our vertex de-

composes as a tensor product of two vertices, which

can be shifted to different values of z and analyzed

independently.

Accordingly, it is reasonable to restrict our atten-

tion to indecomposable vertices. An indecomposable

vertex has at least n−1 possible anomalies (since the

ta;iv provide n−1 copies of the adjoint representation

in V̂ = V1 ⊗V2 ⊗ ·· · ⊗Vn). If there are only these n − 1
linearly independent copies of the adjoint in V̂ , then
by shifting the n−1 relative positions of the n Wilson

lines in the z-plane, there is a unique way to cancel

the anomaly. Indeed, anomalies of the form ta;iV are

precisely the ones that can be eliminated by shifting

the values of z. If certain inequalities are obeyed, the

anomalies can also be cancelled by shifting the rela-

tive angles rather than the values of z.
If the number of copies of the adjoint representa-

tion in V̂ is actually greater than n−1, one would ex-

pect that generically anomaly cancellation is not pos-

sible.

7.6 Vertices Constrained by Symmetries

We will describe various concrete examples of

anomaly-free quantum vertices.29 The simplest exam-

ples, which do not require any computations, arise

when there are enough symmetry constraints to de-

termine the angles between the Wilson lines and en-

sure that the anomaly vanishes.

For a simple and also useful case, suppose that

V1, . . . ,Vn are all the same representation V , and con-

sider a vertex associated to a G-invariant vector v ∈
V⊗n that is either cyclically invariant or cyclically anti-

invariant (in other words, assume that it either is in-

variant or changes sign under a cyclic permutation

of the n copies of V ). Such a vertex is anomaly-free,

assuming that the angles between successive Wilson

lines are equal, so as to respect the symmetry. (Fig. 24

has been drawn with equal angles, so it is invariant

under a 2π/n rotation and potentially represents a

vertex with cyclic symmetry or antisymmetry.) The

proof is simple. Since the anomaly depends linearly

on v, it is cyclically invariant or anti-invariant if v is. By
assumption, there are no cyclically invariant or anti-

invariant copies of the adjoint representation in V̂ , so
the anomaly is zero.

In most cases, a vertex with cyclic symmetry

or antisymmetry has a further symmetry. This hap-

pens because a cyclically symmetric configuration of

n lines meeting at equal angles in the plane, as in

29 These detailed examples will not be needed in the rest of
the present paper, though some of them play an important
role in the companion paper [25].

Fig. 24, is actually invariant under suitable reflections

of the plane. In the gauge theory under study in the

present paper, a reflection of the xy plane is a sym-

metry if accompanied by z → −z. The latter is also

a symmetry of ordinary Wilson lines (associated to

representations of g, not g[[z]]) that are supported at

z = 0. So as long as the vector v ∈ V⊗n used in con-

structing the vertex is either even or odd under the

reflection symmetry (all examples we will consider

will have this property), the corresponding cyclically

symmetric classical vertex actually has dihedral sym-

metry, generated by 2π/n rotations and also certain

reflections. If the vertex is anomaly-free because of

the conditions stated in the last paragraph, it will au-

tomatically possess the dihedral symmetry.

We will now describe explicit examples of

anomaly-free vertices that are cyclically invariant or

anti-invariant (and thus also dihedrally invariant). In

each case, we have to first make sure that the repre-

sentation V that we want to use is itself anomaly-free,

in other words that there is a quantum Wilson line

in this representation. For this, we will use the crite-

rion (†) that was stated at the end of section 7.1: any

G-invariant map from ∧2g to End(V ) = V ⊗V ∗ factors

through the adjoint representation, or equivalently

the only irreducible representation of g that appears

both in ∧2g and in V ⊗V ∗ is the adjoint representation.

Here are some examples:

1. V is the fundamental representation of SLn, which

satisfies condition (†), and v ∈ V⊗n is the essen-

tially unique30 invariant tensor. There are n − 1
copies of the adjoint in V⊗n, so this vertex can

be quantized. Since v is cyclically invariant or

anti-invariant (depending on whether n is odd or

even), the vertex can be quantized so the Wilson

lines all have the same value of z and the angle

between them is 2π/n.
2. Take V to be the 7 of G2, which satisfies condition

(†), and take

v ∈ ∧37 ⊂ 7⊗3

to be the essentially unique invariant tensor. Us-

ing the tables on p. 298 of [34], one finds that

every map from ∧214 to 7⊗7 factors through 14.

This implies that the Wilson line associated to 7
can be quantized. Further, the adjoint appears

precisely twice in 7⊗3. Therefore, the vertex as-

sociated to the tensor v can be quantized with

angles 2π/3 between the Wilson lines.

3. Consider the three 8 dimensional representa-

tions 8v, 8c, 8s of Spin(8), which are permuted

by triality. For each representation, criterion (†)

30 In such a statement, we always mean unique up to a con-
stant multiple.
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holds, so that there are no anomalies to quantiz-

ing the corresponding Wilson lines. Let

v ∈ 8v ⊗8c ⊗8s

be the essentially unique invariant tensor. Note

that v is also invariant under triality, together

with a cyclic permutation of the representations.

There are only two copies of the adjoint in 8v ⊗
8c ⊗8s, so this vertex can be quantized. If the Wil-

son lines have relative angles 2π/3, then a rota-

tion through 2π/3 together with an application of

the triality symmetry of Spin(8) is a symmetry of

the configuration. This tells us that the only con-

sistent quantization is the one where the Wilson

lines have relative angles 2π/3.
4. TakeV to be the 26 of F4. Using table 45 of [35], we

find that this representation satisfies condition

(†) and so the corresponding Wilson line can be

quantized. We consider the vertex associated to

the essentially unique invariant tensor v∈ Sym326.
Again using table 45 of [35], one can check that

there are only two copies of the adjoint in 26⊗3.

Therefore this vertex quantizes, with angles 2π/3
between adjacent lines.

5. Take V to be the 27 of E6. Table 48 of [35] im-

plies that this representation satisfies condition

(†). (See section 7.10.) We take v∈ Sym327 to be the
unique invariant element. Again using table 48 of

[35], we find that there are only two copies of the

adjoint in 27⊗3. Therefore this vertex quantizes,

with angles 2π/3 between adjacent lines.

7.7 A General Formula for the Angles at a

Trivalent Vertex

Now we turn our attention to general trivalent

vertices. Assuming that only two copies of the adjoint

occur in V̂ =V1⊗V2⊗V3, a classical trivalent vertex can

be quantized. Moreover, it is possible to find a sim-

ple general formula for the relative angles that are re-

quired. (We will express our results in terms of angles

rather than in terms of shifts in z because that corre-
sponds to a simpler classical picture, but when some

relative angles come out to be negative and thus in-

consistent with an assumed cyclic ordering of the ver-

tices, one can use the alternative approach in terms

of shifting the relative values of the zi.)

Suppose that Vρ1 , Vρ2 , Vρ3 are three irreducible

highest weight representations of a group G of high-

est weights ρ1, ρ2, ρ3, and suppose that the corre-

sponding Wilson lines can be quantized. Consider a

classical vertex associated to an invariant tensor v ∈
Vρ1 ⊗Vρ2 ⊗Vρ3 . As we have seen, if there are exactly two

copies of the adjoint representation in Vρ1 ⊗Vρ2 ⊗Vρ3 ,

then this vertex can be quantized.

Suppose the Wilson lines are arranged in the

plane with cyclic order Vρ1 , Vρ2 , Vρ3 . Let θ12, θ23, θ31 be

the angles between the Wilson lines. We will derive a

formula for the angles θi j.

Let c(ρi) denote the action of the quadratic

Casimir of g on Vρi . We define

β1 = c(ρ1)− c(ρ2)− c(ρ3),

β2 = c(ρ2)− c(ρ3)− c(ρ1),

β3 = c(ρ3)− c(ρ1)− c(ρ2).

(7.16)

We will show that the angles between the threeWilson

lines are given by the formula

θ12 = π −π
β1β2

β1β2 +β1β3 +β2β3
,

θ23 = π −π
β2β3

β1β2 +β1β3 +β2β3
,

θ31 = π −π
β1β3

β1β2 +β1β3 +β2β3
.

(7.17)

The derivation of this formula is as follows. The

anomaly to quantizing the vertex vanishes if

((θ12 −π) fa
bctb;1tc;2 +(π −θ31) fa

bctb;1tc;3(7.18)

+(θ23 −π) fa
bctb;2tc;3)v = 0.

This equation should hold for every value of a.
Let us choose our basis ta to be orthonormal with

respect to the chosen invariant pairing on the Lie al-

gebra g. Applying the operator ta;1 to eqn. (7.18) and

summing over a we find

((θ12 −π) f a
bcta;1tb;1tc;2 +(π −θ31) f a

bcta;1tb;1tc;3(7.19)

+(θ23 −π) f a
bcta;1tb;2tc;3)v = 0.

Since

∑
a

f a
bcta;1tb;1 = 2h∨tc;1,(7.20)

we can rewrite this equation as

((θ12 −π)h∨tc;1tc;2 +(π −θ31)h
∨tc;1tc;3(7.21)

+(θ23 −π) f a
bcta;1tb;2tc;3)v = 0.

Next, since

tc;3v =−tc;1v− tc;2v,(7.22)

we have

fabcta;1tb;2tc;3v =− fabcta;1tb;2(tc;1 + tc;2)

= facbta;1tc;1tb;2 − fbcata;1tb;2tc;2

= tb;1tb;2h
∨− ta;1ta;2h

∨ = 0.

(7.23)

Thus, our equation becomes

((θ12 −π)h∨tc;1tc;2 +(π −θ31)h
∨tc;1tc;3)v = 0.(7.24)
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Now,

∑
c

tc;1tc;2 = ∑
c

1
2
(tc;1 + tc;2)

2 − 1
2

t2
c;1 −

1
2

t2
c;2.(7.25)

Let c(ρi) denote the eigenvalue of the quadratic

Casimir ∑ t2
a on the representation Vρi . The operator

∑a t2
a;i acts on Vρ1 ⊗Vρ2 ⊗Vρ3 by c(ρi).

Acting on an element v, we have

∑
c

tc;1tc;2v = ∑
c

1
2
(tc;1 + tc;2)

2v− 1
2

t2
c;1v− 1

2
t2
c;2v

=
1
2

t2
c;3v− 1

2
t2
c;1v− 1

2
t2
c;2v

=
1
2

c(ρ3)v−
1
2

c(ρ1)v−
1
2

c(ρ2)v.

(7.26)

Thus (after dividing by h∨/2), our equation becomes

(θ12 −π)(c(ρ3)− c(ρ1)− c(ρ2))(7.27)

= (θ31 −π)(c(ρ2)− c(ρ1)− c(ρ3)).

Similar arguments give us two additional equations,

which are the cyclic permutations of the equation we

have just derived:

(θ12 −π)(c(ρ3)− c(ρ1)− c(ρ2))

= (θ23 −π)(c(ρ1)− c(ρ2)− c(ρ3)),

(θ12 −π)(c(ρ3)− c(ρ1)− c(ρ2))

= (θ31 −π)(c(ρ2)− c(ρ1)− c(ρ3)).

(7.28)

Evidently, one of these equations is redundant.

In terms of βi defined in eqn. (7.16), our equations

become

(θ12 −π)β3 = (θ23 −π)β1(7.29)

plus its cyclic permutations. Their unique solution is

given by (7.17).

As a consistency check, note that

θ12 +θ23 +θ31 = 2π.

Note also that if the three representations are the

same, then the angle between any two Wilson lines

is 2π/3, as expected for symmetry reasons.

Let us specialize the formula to the case that the

two representations Vρ1 , Vρ2 are the same (or at least

have the same eigenvalue of the quadratic Casimir).

In that case, letting c(ρ) = c(ρ1) = c(ρ2), we have

β1 = β2 =−c(ρ3),

β3 = c(ρ3)−2c(ρ).
(7.30)

The angles between the Wilson lines become

θ12 = π −π
c(ρ3)

4c(ρ)− c(ρ3)
,

θ31 = π
2c(ρ)

4c(ρ)− c(ρ3)
,(7.31)

θ23 = π
2c(ρ)

4c(ρ)− c(ρ3)
.

As an example, let analyze the vertex connecting

two copies of the fundamental representation of sln
with the dual of the exterior square of the fundamen-

tal representation. Let us normalize the quadratic

Casimir so that its value on the fundamental repre-

sentation V is 1 (the normalization plays no role in

our formula). Then, its value on ∧2V ∗ is
2(n−2)

n−1 . If we

take Vρ1 , Vρ2 to be the two copies of the fundamental

representation in the above calculation, then we have

θ12 = π −π

2(n−2)
n−1

4− 2(n−2)
n−1

= π
2
n
,

θ31 = π
2

4− 2(n−2)
n−1

= π
n−1

n
,

θ23 = π
n−1

n
.

(7.32)

This is a special case of a more general formula

that we compute next.

7.8 Trivalent Vertices Linking Fundamental

Representations of sln

We will describe trivalent vertices involving three

of the fundamental representations of sln, which are

the kth rank antisymmetric tensors ∧kV , where V is the

fundamental representation and 1 ≤ k ≤ n− 1. These
representations are all quantizable (since in fact all

representations of sln are quantizable), though crite-

rion (†) generally does not hold.

In what follows, it is useful to recall that, in an

appropriate normalization, the eigenvalue c(V ) of the

quadratic Casimir on a representation V =Vρ satisfies

c(V ) =
l(v)

dim(V )
,(7.33)

where l(v) is the Dynkin index of the representa-

tion. Dynkin indices of various representations can

be found in tables such as those in [35].

Let V be the vector representation of sln so that

∧kV , k = 1, . . . ,n − 1 are the fundamental representa-

tions. The Dynkin index of ∧kV is
(n−2

k−1

)
, so that

c(∧kV ) =

(n−2
k−1

)(n
k

) =
k(n− k)
n(n−1)

.(7.34)

Consider three fundamental representations ∧kiV
where k1 +k2 +k3 = n. There is an invariant element of

the tensor product of these representations coming

from the map

∧k1V ⊗∧k2V ⊗∧k3V →∧nV = C.(7.35)
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The adjoint representation only appears twice in the

tensor product of the three representations ∧kiV . It
follows that the vertex corresponding to the invari-

ant tensor can be quantized. From formulae (7.17),

we can determine the angles.

We set

β1 = c(∧k1V )− c(∧k2V )− c(∧k2V )(7.36)

plus cyclic permutation. Then

β1 =
1

n(n−1)
(k1(n− k1)− k2(n− k2)− k3(n− k3)) =

−2k2k3

n(n−1)

plus cyclic permutations. Bearing in mind that the a

scaling of all the βi will not affect the angles, we find

θ12 = π
k1 + k2

n
,

θ23 = π
k2 + k3

n
,

θ31 = π
k1 + k3

n
.

(7.37)

7.9 Vertices Related to Γ-Matrices

Consider the group Spin(n) where n is even. Let V
denote the vector representation, and S+, S− the two

irreducible (complex) spin representations of oppo-

site chirality. These are both of dimension 2
n
2−1. We

will use criterion (†) to show that these representa-

tions can be quantized.

If n = 2 mod 4, then the vector representation ap-

pears in S+⊗S+ and in S−⊗S−. If n = 0 mod 4, then the

vector representation appears in S+⊗S−. In each case,

we can try to quantize the vertex linking the vector

representation to two spin representations.

In the calculation that follows, we will assume n ≥
8 to avoid any low-dimensional coincidences.

Note that the endomorphisms of the direct sum

S+⊕S− make up the Clifford algebra Cln built from the

vector representation V . As a representation of so(n),
the Clifford algebra is isomorphic to direct sum of the

exterior powers of V .
To use condition (†) to show that the spinor rep-

resentations can be quantized, we need to classify

maps

∧2so(n)→∧kV(7.38)

for all values of k. An exercise in classical invariant

theory tells us that the only such maps that can pos-

sibly exist are when k = 2,4, n− 4, n− 2. If k = 2, n− 2
then ∧kV is the adjoint representation, so such maps

will not contribute anomalies. If k = 4, n− 4 then the

only map so(n)⊗2 →∧kV comes from the wedge prod-

uct map

so(n)⊗ so(n) = ∧2V ⊗∧2V →∧4V(7.39)

(noting that ∧4V = ∧n−4V ). This map is symmetric, not

antisymmetric, and so is not relevant to condition

(†). We conclude that in all cases, the Wilson lines at-

tached to the spin representations exist in the quan-

tum theory.

Next, let us analyze whether the vertex linking the

vector representation V with two copies of a spin rep-

resentation can be quantized. We will start with the

case when n = 2 mod 4, in which case the vector rep-

resentation appears in S+⊗S+. We need to show that

there are exactly two copies of the adjoint represen-

tation in V ⊗S+⊗S+.
To do this, we need to recall how to describe

S+⊗S+ in terms of exterior powers of V (this compu-

tation is familiar from the study of central extensions

of supersymmetry algebras). Since n= 2 mod 4, S+ and

S− are dual representations. The endomorphisms of

S+ ⊕ S− which reverse the parity of a spinor are the

odd elements of the Clifford algebra built from V .
This space of endomorphisms is S+ ⊗ S+ ⊕ S− ⊗ S−.
Thus,

S+⊗S+⊕S−⊗S− =⊕k odd ∧k V.(7.40)

We can further decompose the right hand side of this

equation to find

S+⊗S+ =V ⊕∧3V ⊕·· ·⊕∧n/2
+ V,(7.41)

where ∧n/2
+ V indicates those elements which are self-

dual under the Hodge star operator.

In V ⊗S+⊗S+ =V ⊗ (V ⊕∧3V ⊕·· ·⊕∧n/2
+ V ), the only

copies of the adjoint representation are those in V ⊗V
and inV ⊗∧3V , each of which contains one copy of the

adjoint. So overall there are precisely two copies, and

the vertex connecting V , S+ and S+ can be quantized.

Next let us check whether the vertex can be quan-

tized in the case that n = 0 mod 4. In this case V ap-

pears in S+ ⊗ S− and the representations S+, S− are

self-dual. We again find that S+ ⊗ S− ⊕ S− ⊗ S+ is the

space of odd elements in the Clifford algebra, so that

S+⊗S− =V ⊕∧3V ⊕·· ·⊕∧n/2−1V.(7.42)

The only copies of the adjoint that appear in V ⊗S+⊗
S− are those in V ⊗V and V ⊗∧3V , so again the vertex

can be quantized.

Nowwe know that the spinor representations and

the vertices connecting spinor and vector representa-

tions can be quantized. The final step is to calculate

the angles between the lines at the vertex. To do this,

we need to know the Dynkin indices of the represen-

tations V , S±. The Dynkin index of V is 2. We can cal-

culate the Dynkin indices of S± as follows.

Recall that the Dynkin index is additive under di-

rect sums of representations, and under tensor prod-

uct there is the following formula:

l(R1 ⊗R2) = l(R1)dim(R2)+dim(R1)l(R2),(7.43)
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where R1, R2 are representations, l(Ri) is the Dynkin

index and dim(Ri) is the dimension. Further, if R is any

representation, then

l(∧kR) =

(
dim(R)−2

k−1

)
l(R)(7.44)

The representations S+ and S− are related by a dia-

gram automorphism of the Dynkin diagram Dn/2 of

the Lie algebra so(n). Therefore they have the same

Dynkin index. Using the fact that (S+ ⊕ S−)⊗2 is the

sum of all the exterior powers of V , we find

2n/2+2l(S±) = 2
n−1

∑
k=1

(
n−2
k−1

)
= 2n−1.(7.45)

Thus,

(7.46) l(S±) = 2
n
2−3.

Now let us compute the angles between the three

Wilson lines. We label the lines where V1 = S+, V2 = S−
and V3 =V is the vector representation. The quadratic

Casimirs in each representation are the ratios of the

Dynkin index to the dimension. They are

c(V ) =
2
n
,

c(S±) =
2

n
2−3

2
n
2−1

= 2−2.

(7.47)

According to formula (7.31), we have

θ12 = π
n−4
n−2

,

θ31 = π
n

2n−4
,

θ23 = π
n

2n−4
.

(7.48)

Note that when n = 8, the angle between any two lines

is 2π/3, which is consistent with what we determined

earlier using the triality symmetry of the vertex in

this case. When n = 6, the vertex we are considering

is that relating two copies of the vector representa-

tion of sl(4)with the exterior square of the fundamen-

tal. The formula for the angle for a vertex connect-

ing three fundamental representations of sln agrees,

in this case, with the formula given here.

7.10 A Vertex Connecting Representations of E6

Just for fun, let us use our formula to calculate

the angles in a vertex associated to representations

of the exceptional group E6. The fundamental repre-

sentation of E6 will be denoted by 27, and its dual by

27. There are four representations of dimension 351,

which come in dual pairs. We will use the conventions

of [35] and denote them by 351, 351, 351′, 351
′
. The 273

vertex was already considered in section 7.6, so here

we primarily consider a more elaborate example. (We

also will complete the discussion of the 273 by show-

ing that the 27 can be quantized.)

According to table 48 of [35], 351
′
appears once in

27⊗ 27. Thus there is an invariant tensor in 27⊗ 27⊗
351′.

We would like to quantize this to a vertex con-

necting three Wilson lines. To do this, we first need

to show that the Wilson lines themselves quantize. It

is sufficient, according to condition (†), to show that

any map from the exterior square of the adjoint rep-

resentation to the endomorphisms of the 27 or 351′

factors through the adjoint representation.

According to table 48 of [35], the exterior square

of the adjoint representation decomposes as

∧278 = 78⊕2925.(7.49)

To show that the 27 and 351′ quantize, we need to

show that 2925 does not appear in 27⊗27 or in 351
′⊗

351′. Table 48 of [35] shows that it does not, so these

representations quantize.

Next, to show that the vertex in 27⊗27⊗351′ quan-
tizes, we need to show that the adjoint representation

appears precisely twice in this tensor product. Table

48 of [35] tells us that

27⊗27 = 27⊕351⊕35l
′
.(7.50)

If we tensor this with 351′, table 48 of [35] tells us that
the adjoint appears once in 351

′ ⊗ 351′, once in 351⊗
351′, and not at all in 27⊗ 351. Therefore the vertex

quantizes.

Next, let us compute the angles. Let us label the

representations asV1 = 27,V2 = 27,V3 = 351. Table 47 of
[35] tells us that the Dynkin index of 27 is 6 and that of

351′ is 6×28. The values of the quadratic Casimirs are

6/27 and 6×28/351. We can change the normalization

so that the values of the quadratic Casimirs are 1 and

28/13. The angles are

θ12 = π −π

28
13

4− 28
13

=−π
1
6
,

θ23 = θ31 = π
2

4− 28
13

= π
13
12

.

(7.51)

Since, in this example, θ12 < 0, we have to shift the Wil-

son lines in the z-plane instead of just placing them

at angles in the topological plane.

Many more examples can be analyzed in a similar

way.

7.11 A 4-Valent Vertex for the 56 of E7

The smallest representation of E7 is the 56. It is
a pseudoreal or symplectic representation, so there

JULY 2018 NOTICES OF THE ICCM 81



is an invariant antisymmetric form ω ∈ ∧256. In addi-

tion, there is a completely symmetric quartic invari-

ant ψ ∈ Sym456. It is natural to ask whether this vertex

can be quantized, like the 273 of E6, which was one of

our examples in section 7.6. The answer is that it can,

though the proof is not as simple as for the 273 vertex.

Both of these examples will be useful in [25].

A configuration of four Wilson lines cannot have

full S4 permutation symmetry. The maximum possi-

ble symmetry is a dihedral subgroup D4. This is sim-

ply the symmetry group of four Wilson lines with

equal relative angles π/2, say running along the ±x
and±y axes. Dihedral symmetry was discussed in sec-

tion 7.6. In this case, the group D4 is generated by

rotations of the xy plane by an angle π/2, along with

a reflection that preserves the given configuration of

Wilson lines. Thus in all D4 has eight elements.

We would like to understand the possible ver-

tices that are D4 invariant, and the possible anomalies

that are compatible with the D4 symmetry. Let us first

enumerate the E7-invariant elements in 56⊗4 that are

also D4-invariant. Note that we can identify 56 with

its dual, using the E7-invariant symplectic form ω . We

can therefore identify E7-invariant elements of 56⊗4

with maps of E7 representations

56⊗2 → 56⊗2.(7.52)

According to the tables of [35] or [36], 56⊗2 decom-

poses as a sum of 4 distinct irreducible representa-

tions. Therefore, there are 4 E7 invariant linear opera-

tors on 56⊗2, given by the projectors onto these 4 irre-

ducible subrepresentations. Correspondingly, there

are 4 invariant tensors in 56⊗4.

We can enumerate these tensors as follows. One

of them is the completely symmetric invariant ψ with

whichwe began. The other three aremore elementary.

Let ei be a basis of 56; in this basis, the antisymmetric

form ω corresponds to a matrix ω i j. The other three

E7 invariants in 56⊗4 are given by the formulas

ω
i j

ω
klei ⊗ e j ⊗ ek ⊗ el ,

ω
ik

ω
l jei ⊗ e j ⊗ ek ⊗ el ,

ω
il

ω
jkei ⊗ e j ⊗ ek ⊗ el .

(7.53)

Among these three tensors, there is a single linear

combination which is invariant under D4, namely

(ω i j
ω

kl +ω
jk

ω
li)ei ⊗ e j ⊗ ek ⊗ el .(7.54)

We conclude that there are a total of two dihedrally

invariant tensors in 56⊗4.

Given the explicit form of the invariant (7.54),

an elementary computation using the general for-

mula (7.11) for the anomaly shows that a vertex

constructed using this invariant has an anomaly.

This means that it will be possible to use this in-

variant as a counterterm to help in canceling an

anomaly.

We will prove that there is a unique linear com-

bination of these two dihedrally invariant tensors

which quantizes to a vertex linking the Wilson lines.

To show this, we have to show that there is precisely

one possible anomaly.

7.11.1 Anomalies

Anomalies are proportional to ∂zc. Since an ele-

ment of D4 that acts as a reflection of the xy plane

also acts as z →−z, changing the sign of ∂zc, the group

theory invariant that multiplies ∂zc in an anomaly is

not D4-invariant. Rather, it is D4 anti-invariant, that is,

invariant under rotations in D4 but odd under reflec-

tions. We will show that the adjoint representation of

E7 (which is the 133) occurs precisely once in the D4

anti-invariant part of 56⊗4. Since the invariant (7.54)

does have a nonzero anomaly, this implies that by

adding a multiple of (7.54) to the invariant ψ , one can

construct an anomaly-free 56⊗4 vertex.

As a first step, let us compute the part of 56⊗4 that

is anti-invariant under a dihedral subgroup D2 ⊂ D4.

There actually are two possible embeddings of D2 in

D4. We make the following choice. If the four Wilson

lines run along the ±x and ±y axes, we consider a

subgroup D2 ∼= Z2 ×Z2 that is generated by a reflec-

tion that acts by (x,y) → (x,−y) and one that acts as

(x,y) → (−x,y). Thus if we label the four Wilson lines

in cyclic order as 1, 2, 3, and 4, one reflection acts

by exchanging 1 and 3, keeping fixed 2 and 4, and

the other exchanges 2 and 4, keeping fixed 1 and 3.

Thus, the part of 56⊗4 that is odd under each reflec-

tion is ∧256⊗∧256. The two factors are associated to

the pairs 13 and 24.

From the tables in [35] or [36], one has ∧256 ∼= 1⊕
1539. So the D2 anti-invariant part of 56⊗4 is (1⊕1539)⊗
(1⊕1539).

Now we want to identify the part of this that is

anti-invariant under D4, not just under D2. So we have

to consider the action of a π/2 rotation. The D4 anti-

invariants are simply the D2 anti-invariants that are

invariant under a π/2 rotation. However, there is a

small surprise when we try to impose invariance un-

der a π/2 rotation on the above description of the D2

anti-invariants.

A π/2 rotation exchanges the two factors of ∧256
that we used in the above analysis, but with an im-

portant minus sign. This happens as follows. We re-

call that the two factors of ∧256 are associated respec-

tively to the pair of Wilson lines 13 and 24. A π/2 ro-

tation maps 13 to 24, but it maps 24 to 31; replacing

31 with 13 acts as−1 on one of the two copies of ∧256.
Thus the D4 anti-invariant part of 56⊗4 is the antisym-
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metric part of (1⊕1539)⊗ (1⊕1539), or more explicitly

it is31 1539⊗∧21539.
From the tables of [36], one learns that the ad-

joint or 133 of E7 occurs precisely once in 1539⊗2. This

one occurrence actually is in ∧21539, not in Sym21539,
because, as 1539 is a real representation of E7, the ad-

joint must occur at least once in ∧21539. So as claimed

above, there is precisely one possible anomaly.

8. Two-Loop Correction to Gauge
Invariance

8.1 Preliminaries

Consider a Wilson line in our four-dimensional

theory in a general representation V . If we choose a

basis ta of the Lie algebra g, the Wilson line is charac-

terized classically by matrices

ta,k : V →V,(8.1)

where, as before, the matrices ta,k tell us how ∂ k
z A is

coupled to the Wilson line. If V is a representation of

G and not of g[[z]], then ta,k = 0 for k > 0.
At the classical level, gauge-invariance requires

that these matrices must satisfy the commutation re-

lations

[ta,k, tb,l ] = fab
ctc,k+l .(8.2)

These relations receive quantum corrections; the con-

dition for a Wilson operator to be anomaly-free at the

quantum level is different from eqn. (8.2). We have

seen in section 5.4 that a correction must occur at

order h̄2. We gave one derivation of this statement,

which relied on an analysis of the fusion of parallel

Wilson lines. In a companion paper [25], we will give

another derivation based on the RTT presentation of

the Yangian algebra.

Both derivations are a little indirect, and one

might wish for a more direct one. In this section

we will provide a direct derivation via Feynman di-

agrams.

Some elementary remarks may help one antici-

pate what sort of diagrams will be relevant. In an

ordinary gauge theory with a finite dimensional Lie

algebra g, how does one usually see in perturbation

theory that the matrices ta by which gauge fields Aa

couple to a charged particle or a Wilson line must

satisfy the expected commutation relations? At tree

level, there are three diagrams (Fig. 26). They are pro-

portional respectively to tatb, tbta, and f c
abtc, where fabc

31 As a check on this, the dimension of 1539 ⊕ ∧21539 is
1185030. This is the right dimension for the D4 anti-invariant
part of 56⊗4. For example, an exercise using the character
table of D4 (or based on elementary considerations) tells
us that the D4 anti-invariants in (Cd)⊗4 are of dimension
1
8 (d

4 −2d3 −d2 +2d).

Figure 26. The three tree-level diagrams describing

coupling of a pair of gauge bosons to a charged

particle or a Wilson line operator.

are the structure constants that appear in the bulk A3

vertex. One tests these diagrams for gauge-invariance

or BRST invariance bymaking a gauge transformation

Aa → Aa + dca for one of the external gauge bosons,

with ca the ghost field. A standard calculation shows

that the sum of the three diagrams is gauge-invariant

and BRST-invariant if and only if [ta, tb] = f c
abtc. The vio-

lation of BRST-invariance if this condition is not satis-

fied is bilinear in A and c, because the diagrams have

two external bosons, one of which is replaced by dca

when one tests for BRST-invariance. Likewise, in the

analysis that follows, the anomalies come from dia-

grams with two external gauge bosons, and are bilin-

ear in A and c.

After verifying gauge invariance at tree level, one

should go on to determine whether quantum cor-

rections to the coupling of two gauge bosons to a

charged particle or to a Wilson line preserve gauge in-

variance. In conventional four-dimensional quantum

field theory, the answer in general is that there is a

problem: in certain theories, one-loop triangle dia-

grams have an anomaly that irreparably spoils gauge

invariance. In the model that we will study, there is

no problem in order h̄, but we will find an anomaly

in order h̄2 – roughly speaking, in two-loop order.

This anomaly, however, will not represent a complete

breakdown of gauge invariance. Rather, it will repre-

sent a deformation of the gauge symmetry algebra –

a quantum correction to the classical commutation

relations (8.2).

Such a quantum deformation as the outcome of

an analysis of anomalies is perhaps unfamiliar, for

the following reason. It does not occur in the case

of a semi-simple gauge group, because the classifi-

cation of semi-simple groups is discrete. The infinite-

dimensional gauge algebra g[[z]] is, however, suscepti-
ble to continuous deformation. (Actually, because the

anomalous diagrams have more than one gauge bo-

son attached to the Wilson line, what we will get is

a deformation of the universal enveloping algebra of

g[[z]], not a deformation of g[[z]] as a Lie algebra.)
In our theory, because g[[z]] will be deformed, the

gauge invariance of a Wilson line depends on modify-

ing the matrices ta,n to provide a representation of the
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deformed algebra rather than of g[[z]]. If this is possi-
ble for a given Wilson line, we say that this Wilson line

(or the associated representation of g[[z]]) “quantizes.”
A general Wilson line does not quantize in this sense.

In section 8.7, we describe an explicit counterexam-

ple.

8.2 Anomalies on Wilson Lines

We will first provide a general analysis of what

anomalies can occur in the coupling of gauge fields

to a given Wilson line operator. We will derive a coho-

mological interpretation of the anomaly. Combined

with a cohomology calculation given in appendix C,

this allows us to prove the following results.

Theorem 8.1. Let V be a representation of a simple

Lie algebra g which has no Abelian factors and which

is not sl2.

1. The first possible anomaly to quantizing the Wil-

son line arises at 2 loops, that is in order h̄2.

2. Let ∧2
0g be the kernel of the bracket map ∧2g→ g.

If there are no non-trivial G-invariant maps ∧2
0g→

End(V ), then there are no anomalies.

3. At two loops, the number of possible anomalies is

exactly the dimension of the space of G-invariant
maps ∧2

0g→ End(V ).

These results imply, for instance, that the vector

representations of the classical groups SLn, SOn and

Sp2n all quantize.

Let us analyze the possible forms of the anoma-

lies to quantizing a Wilson line. By the anomaly of a

Wilson line, we mean its BRST variation. This will al-

ways be the integral over the Wilson line of a local

operator of ghost number 1. Thus, this operator will

be linear in the ghost field c (and its derivatives) with

a priori an arbitrary polynomial dependence on the

gauge field A (and its derivatives).

As usual, we work on R2 ×C, with the usual real

coordinates x, y and complex coordinate z. We take a

Wilson line to be parametrized by x, at y = z = 0. Such
a Wilson line is invariant under the classical symme-

tries that independently rescale x and y. The anomaly

will have the same invariances. This implies that the

anomaly must be linear in Ax and independent of Ay,

and cannot have any x or y derivatives.
Because the classical symmetry which scales the x

and y directions is unbroken by the coupling of a Wil-

son line, any anomaly32 must respect this symmetry.

32 In general, given a quantum system defined up to order
k in h̄, the anomaly to quantizing the system to order k +
1 in h̄ must respect any symmetries present in the system
at order k. To see this, we note that if we change the order
k + 1 counter-terms, the anomaly changes by a BRST-exact
term. Therefore the cohomology class of the anomaly only
depends on the theory up to order k, and is preserved by any
symmetries present in the system up to order k.

Since the anomaly must be an integral over the Wil-

son line, it must involve only the x-component Ax of

the connection, and can not involve the y-component

or any x and y derivatives. Otherwise, it would not re-

spect the scaling symmetries in the xy plane. For the

same reason, the anomaly must be at most a linear

function of Ax.

This argument does not exclude the possibility

that the anomaly can include some polynomial in Az̄,

or its z̄ derivatives. Let us now see why these can

not occur (in section 7.2 we have performed a similar

analysis for the anomaly to the existence of a vertex).

The classical action functional of the theory is invari-

ant under the symmetry which scales z z̄, and h̄ by a

real parameter c. It is also invariant under the sym-

metry by which z and h̄ are rotated through an angle

e2πiθ , and where z̄ is therefore rotated by e−2πiθ . Any

anomaly must be invariant under these symmetries

(where we include the factor of h̄k naturally present

in a k-loop anomaly).

The most general anomaly at k loops will involve

n1 copies of Az̄, n2 z̄ derivatives, and n3 z-derivatives.
A copy of Az̄ in the anomaly behaves the same with

respect to these symmetries as a z̄-derivative, as it in-
volves contracting the connection A with the vector

field ∂z̄. The symmetries under scaling and rotation

in the z-plane tell us that

n1 +n2 +n3 − k = 0,

−n1 −n2 +n3 − k = 0.
(8.3)

From this we see that n1 = n2 = 0 and n3 = k. Therefore,
the anomaly can not involve the z̄-component of the

connection or any z̄ derivatives, and the number of z
derivatives in a k-loop anomaly must be precisely k.

As a further constraint, note that if the anomaly

does not depend at all on Ax, and so depends only

on the ghost field c, then it must be given by an in-

tegral of ∂xc (in view of the scaling symmetry in the x
direction). We can write ∂xc= Dxc− [Ax,c], where Dxc is

the covariant derivative of c. Since insertion of Dxc in

a Wilson operator gives a total derivative that would

not contribute, we can replace ∂xc with −[Ax,c], and

thus it is not necessary to consider terms that are in-

dependent of Ax.

The constraints we have considered so far tell us

that the most general k-loop anomaly is of the form

∑
k1+k2=k

Θa,k1,b,k2

∫
y=z=0

∂
k1
z Aa

x∂
k2
z cbdx,(8.4)

where for each value of k1, k2, Θa,k1,b,k2 is a G-invariant
linear map

g⊗g→ End(V ),

where V is the representation of G from which we

build the Wilson line.
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There is one more constraint. Since the anomaly

is the BRST variation of the Wilson line, it is itself

BRST-invariant. Applying this constraint leads us to

the equation

∑
k1+k2=k

Θa,k1,b,k2

∫
y=z=0

∂
k1
z (dca + f a

cdc
cAd

x )(∂
k2
z cb)dx

+ ∑
k1+k2=k

Θd,k1,a,k2

∫
y=z=0

∂
k1
z Ad

x ∂
k2
z

(
1
2

f a
cbc

ccb
)

dx

+ ∑
k1+k2=k

[ρc,Θd,k1,b,k2 ]
∫

y=z=0
cc(∂ k1

z Ad
x )(∂

k2
z cb)dx = 0

(8.5)

In the third term in this equation, the operator ρa :
V →V indicates the classical action of the operator ta
on V . The appearance of this term was be explained

in detail in a similar context in section 7.2.

This equation can be separated into a term which

is linear in A and one which has no A-dependence.
Both of these terms must vanish. Let us first analyze

the term which is independent of A. If we integrate by
parts, and use the fact that the ghost field is an anti-

commuting variable (i.e. a fermionic field of spin 0),

we find that this equation tells us

Θa,k1,b,k2 +Θb,k2,a,k1 = 0.(8.6)

Next, let us analyze the term in eqn. (8.5) which

is linear in A. We obtain equations by setting the co-

efficients of
∫
(∂

k0
z cc)(∂ k1

z Ad)(∂ k2
z cb) to zero. These equa-

tions are

Θa,k0+k1,b,k2 f a
cd

(
k0 + k1

k0

)
−Θa,k2+k1,c,k0 f a

bd

(
k1 + k2

k1

)(8.7)

+Θd,k1,a,k0+k2 f a
cb

(
k0 + k2

k0

)
+δk0=0[ρc,Θd,k1,b,k2 ]

−δk2=0[ρb,Θd,k1,c,k0 ] = 0.

Note that this quantity is totally antisymmetric under

permutation of (k0,c), (k1,d) and (k2,b), as follows from
eqn. (8.6).

We can summarize this result as follows. Let us

view the collection Θa,k1,b,k2 as a linear map

Θ : ∧2g[[z]]→ End(V ),

∈ ∈

(tazk1)∧ (tbzk2) 7→ k1!k2!Θa,k1,b,k2 .

(8.8)

Let C∗(g[[z]],End(V )) denote the Chevalley-Eilenberg

cochain complex, which in degree n consists of linear

maps ∧ng[[z]]→ End(V ).

Then, eqn. (8.7) is precisely the condition that Θ is

a closed element of this Chevalley-Eilenberg cochain

complex.

8.2.1 Cancellation by Counter-Terms

Let us now turn to analyzing when such an

anomaly can be cancelled by a counterterm. Suppose

that the first anomaly arises at k loops and is given

by the expression in eqn. (8.4) involving some Θa,k1,b,k2

satisfying 8.6.

To try to cancel the anomaly, we change the cou-

pling of the gauge field A so that ∂ k
z Aa is coupled

by some operator ρa,k ∈ End(V ). We will assume that

ρa,k transforms under the adjoint representation of G
on End(V ). Simple Lie algebras and their representa-

tions have a discrete classification and cannot be de-

formed, so we will assume that ρa,k vanishes for k = 0.
The term ρa,k

∫
∂ k

z Aa that we add to the action may

not be gauge invariant at the classical level. The fail-

ure to be gauge invariant is given by the expression

ρa,k

∫
∂

k
z dca +ρa,k fabc

∫
∂

k
z (c

bAc)+ [ρb,ρa,k]
∫

cb
∂

k
z Aa.

(8.9)

In order to cancel the anomaly at k loops, we need

∑
k1+k2=k

Θa,k1,b,k2

∫
y=z=0

∂
k1
z Aa

x∂
k2
z cbdx

= ρa,k fabc

∫
∂

k
z (c

bAc)+ [ρb,ρa,k]
∫

cb
∂

k
z Aa.(8.10)

This can happen if and only if

Θa,k1,b,k2 = ρc,k f c
ab

(
k
k1

)
+[ρa,ρb,k].(8.11)

This is precisely the condition that the cocycle in

C∗(g[[z]],End(V )) associated to the anomaly (as in

eqn. (8.8)) is exact.

In sum, we have found that possible anomalies

to coupling to a Wilson line, modulo counter-terms

which can cancel these anomalies, are given by the

Chevalley-Eilenberg cohomology group

H2(C∗(g[[z]],End(V )).(8.12)

We will repeatedly use the fact that for G a simple Lie

group, the Chevalley-Eilenberg cohomology (of any

degree) with values in any representation can always

be represented by a G-invariant cocycle, roughly by

averaging over a maximal compact subgroup of G.
(Of course, the expressions that we generate from

Feynman diagrams in expanding around the trivial

flat connection will always be G-invariant.) Note that

Chevalley-Eilenberg cohomology is also called Lie al-

gebra cohomology, and under that name often ap-

pears in analysis of BRST cohomology in quantum

field theory.

One nice consequence of the description of

anomalies by Chevalley-Eilenberg cohomology is that
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we can understand what anomalies can exist by ap-

plying standard arguments from homological alge-

bra. When translated into field-theory language, the

arguments would be quite complicated.

For instance, the following is a relatively easy re-

sult:

Lemma 8.2. For a Wilson line in a representation V of

a simple group G (as opposed to a representation of

g[[z]]), there are no one-loop anomalies which cannot

be cancelled by the introduction of a counter-term.

Further, all two-loop anomalies are equivalent to

ones given by expressions of the form

∑Θa,1,b,1

∫
y=z=0

∂zA
a
x∂zc

bdx,(8.13)

where, as before, Θa,1,b,1 is a linear operator on the vec-

tor space V and is antisymmetric under the exchange

of the a, b indices. Viewed as a linearmap ∧2g→End(V ),

Θ can be assumed to be G-invariant.
Two-loop anomalies which factor through a map

∧2g→ g can be cancelled by a counter-term.

Proof. The proof of the lemma uses the notion of

relative Lie algebra cochains of g[[z]] with respect

to the subalgebra g. Relative Lie algebra cochains

are G-invariant elements of C∗(zg[[z]],End(V )), that

is, G-invariant cochains which do not involve g.

The relative cochains are equipped with the same

Chevalley-Eilenberg differential as before. We let

H∗((g[[z]]|g),End(V )) denote the relative cohomology.

General results on the cohomology of simple Lie al-

gebras imply that there is an isomorphism

⊕i+ j=kH i(g)⊗H j((g[[z]]|g),End(V ))∼= Hk(g[[z]],End(V )).

(8.14)

Since g is simple, H∗(g) is zero in degrees 1 and 2, and

H0(g) =C. Therefore relative and absolute Lie algebra

cohomology coincide in degrees 1 and 2.

At weight 1 under the C× action that scales z, the
relative cohomology is zero in degrees 2 and higher.

This is simply because we cannot built a bilinear of

weight 1 from zg[[z]]. Therefore there are no anomalies

of weight 1.

The cohomology of weight 2 under this C× action

is the part that contributes to the two-loop anomaly.

Relative 2-cocycles of weight 2 must be given by a

G-invariant bilinear and antisymmetric map zg⊗ zg→
End(V ). Because each tensor factor involves one z, the
corresponding two-loop anomaly is of the form given

in eqn. (8.13) (with one z derivative of A and one of c).

So every two-loop anomaly is of this form.

Concerning the last statement in the lemma, we

observe first that for simple G, any G-invariant map

∧2g→ g is actually a multiple of the commutator map.

We do not know a unified proof of this statement,

but for classical groups it follows from invariant the-

ory,33 and for exceptional groups, it can be verified

by consulting tables (such as those in [36]). Given this,

we need to show that if a two-cocycle

∧2(zg)→ End(V )(8.15)

factors through the commutator map ∧2g→ g, then it

is the coboundary of a G-invariant map z2g→ End(V ).

But the coboundary of a G-invariant map z2g→ End(V )

is given by the composition

∧2(zg)→ z2g→ End(V ),(8.16)

where the first map is the commutator. Therefore any

two-cocycle that factors through the commutator is a

coboundary.

This lemma tells us that find that the first possi-

ble anomalies can arise at two loops, from diagrams

with two external gauge fields.

In appendix C, we prove the following result (re-

lying heavily on the results of [31]). This result gen-

eralizes the previous lemma to all loops. The proof is

much more difficult.

Proposition 8.3. Let g be a simple Lie algebra which is

not34 sl2. Let ∧2
0g be the kernel of the Lie bracket map

from ∧2g to g. (Note that there are no copies of the

adjoint in the representation ∧2
0g). Then the inclusion

map

H2(g[[z]],∧2
0g)→ H2(g[[z],g⊗g)(8.17)

is an isomorphism.

In other words, if we decompose g⊗g as Sym2g⊕
g⊕∧2

0g, then all of the cohomology we are interested

in comes from ∧2
0g.

We are interested in H2(g[[z]],End(V )) for a repre-

sentationV . In general, End(V ) is a complicated, highly

reducible representation of G. Chevalley-Eilenberg co-
homology is defined for every representation, and if

End(V ) is a direct sum of irreducibles, then the de-

sired cohomology is the direct sum of cohomology

with values in these irreducibles.

However, the desired cohomology can be rep-

resented by G-invariant cocycles and such a cocy-

cle, ignoring the z-dependence, is a G-invariant map

from g⊗ g to End(V ). Hence, any two-cocycle valued

in End(V ) must come from a two-cocycle valued in

33 That is, one explicitly considers an element of g as a two-
index tensor, and one considers the possible contractions of
indices to make a G-invariant map from ∧2g to g.
34 The case of sl2 is slightly different. There we find that
H2(g[[z]],g⊗g) is isomorphic to H2(g[[z]],Sym2g), which is one-
dimensional and in weight 3 under the C× action scaling z.
Since it is known by other methods that every representation
of sl2 quantizes, we will avoid the special case of sl2 in what
follows.
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g⊗g under some map of G-representations from g⊗g

to End(V ). The same is true for the corresponding

second cohomology classes. The proposition gives

an important refinement of this statement: any non-

trivial second cohomology class must come from a

map ∧2
0g → End(V ). This means that when we study

Feynman diagrams, we can ignore terms in which two

gauge bosons Aa and Ab are coupled symmetrically in

a and b, and we can also ignore terms in which they

are coupled via f c
ab.

As a corollary, we find that if there are no maps

of representations ∧2
0g→ End(V ), then the Wilson line

living in V can not have an anomaly. This is the crite-

rion (†) that was introduced in section 7.1 and used

in various applications.

8.3 Enumerating Feynman Diagrams

So far, we have performed a cohomological anal-

ysis of possible anomalies that can appear when one

tries to quantize a Wilson line. We have seen that the

first such anomalies can appear at two loops. Next,

we will enumerate all possible two-loop diagrams that

may contribute an anomaly. We will find that, for var-

ious reasons, all but one of the diagrams we enumer-

ate can not produce an anomaly.

Throughout our analysis, we will assume our Wil-

son line is placed at z = 0 and is invariant under the

symmetry which rescales z and h̄. This means that ta,k
is accompanied by h̄k, and in particular at the classical

level ta,k = 0 for k > 0.
Let us now analyze possible two-loop diagrams

which can contribute anomalies of this form. The only

diagrams that are relevant are two-loop diagrams

which may be attached to the Wilson line at an arbi-

trary number of points, but which have precisely two

external lines to which the gauge field is coupled.

We must also bear in mind an additional sub-

tlety. In principle one can introduce one-loop counter-

terms whereby ∂zA is coupled to the Wilson line in

some way. It could happen that these are forced on us

to cancel any one-loop anomalies, but even if this is

not the case, such one-loop counter-terms do not vio-

late any symmetries and so one is always free to intro-

duce them. Therefore there are two possible vertices

at which a gluon can meet a Wilson line. There is the

usual classical interaction, but also the interaction

coming from a one-loop counter-term. We will depict

these interactions as an ordinary vertex, and a circle

labelled 1, respectively. Counting of the loop param-

eter tells us that one-loop diagrams, one of whose

vertices on the Wilson line is the one-loop vertex, are

counted as two-loop diagrams.

One can cut down the number of diagrams we

need to consider by observing that every diagram

must have at least two vertices on the Wilson line.

Diagrams with one vertex on the Wilson line can not

contribute, because the corresponding anomaly will

be given by a two-cocycle valued in some copy of

g ⊂ End(V ). Our cohomological analysis in proposi-

tion 8.3 tells us that any anomaly of this form can

be cancelled by a counter-term.

In evaluating whether a diagram can contribute

to the anomaly, note that the anomaly must have one

z-derivative at each external line, and no other deriva-

tives. We can thus calculate whether or not a diagram

contributes to the anomaly by taking the two external

fields to be the gauge field A = zδx=0ta, and the ghost

field c = ztb. This tells us, in particular, that it is not

possible to have an anomaly from a diagram in which

the external lines are connected directly to the Wilson

line by a tree-level vertex. This is because the Wilson

line is at z = 0, and there are no z-derivatives in how

the Wilson line is coupled classically.

A further constraint on the diagrams that can ap-

pear is provided by the observation that if we evalu-

ate the propagator with both ends on a straight Wil-

son line we find zero. Therefore in any diagram which

can contribute to the anomaly this configuration can

not occur.

These observations cut down substantially the di-

agrams that can appear. We will further exclude a few

simple diagrams which are topologically trees, but

whose coupling to the Wilson line involves one and

two-loop counter-terms. These diagrams are similar

to those in Fig. 26. In section 8.6 we will analyze the

effect of these diagrams, and see that they contribute

to the two-loop correction to the algebra g[[z]].
All remaining diagrams are depicted in Fig. 27.

Each figure admits a number of variants where the

order of the vertices on the Wilson line is permuted.

These variants are not depicted.

We will find that the only diagram that can con-

tribute is diagram (A1). All other diagrams will be ex-

cluded by a variety of arguments.

8.3.1 Excluding Diagrams (A2), (C1), (C2) and (D2)

Consider any two-loop diagram with the feature

that the two vertices attached to the external lines

are connected by a propagator. The only non-trivial

anomalies are antisymmetric in the external lines. Af-

ter antisymmetrizing and using the Jacobi identity,

the anomaly from such a diagram is of the form∫
f cab

∂zca∂zAbµc(8.18)

for some matrices µc : V → V . Any anomaly of this

form can be cancelled, because it comes from a map

∧2g → End(V ) which factors through the adjoint rep-

resentation.

This tells us that diagrams (A2), (C1), (C2) and

(D2) can not contribute a nontrivial anomaly.
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Figure 27. Two-loop Feynman diagrams with two external lines which can potentially contribute to the anomaly.

The dashed vertical line represents a Wilson line, and the vertices on the Wilson line labelled 1 indicate a coupling

of the gauge field and Wilson line by a one-loop counter-term. Each diagram admits a number of variants, not

shown, in which the positions of the vertices on the Wilson line are permuted.

8.3.2 Excluding Diagrams of Type (C3)

Diagram of type (C3) can be excluded for Lie al-

gebraic reasons. Any anomaly that can appear from a

diagram of type (C3) is of the form:

Trg(tatctbtd)
∫

∂zca∂zAbρ(tc)ρ(td).(8.19)

(Here the trace is taken in the adjoint representation,

and the external lines have indices a, b.)
This anomaly can be cancelled by a two-loop

counter-term if the tensor Trg(tatctbtd) is symmetric in

a and b, or if it can be written in terms of the commu-

tator f e
abte of ta and tb. Since the adjoint representation

is equippedwith a symmetric non-degenerate pairing,

we have the identity

(8.20) Trg(tatctbtd) = Trg(tdtbtcta).

Together with cyclic symmetry of the trace, this tells

us that Tr(tatctbtd) is symmetric in a and b. This implies

that any anomaly associated to the tensor Trg(tatctbtd)

can be cancelled by a counter-term.
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8.3.3 Excluding Diagrams (C4) and (C5)

Diagrams (C4) and (C5) contain an internal gauge

particle loop. In (C4), this loop has two external lines,

both of which are internal lines in the full diagram,

while (C5) has an internal loop with three external

lines, of which in the full diagram two are internal

and one is external.

The group theory factor that comes from the in-

ternal loop in (C4) is an invariant in g⊗ g. Any such

invariant is a multiple of δcd , that is, the Killing form,

and accordingly, the overall group theory factor of

the diagram in (C4) is a multiple of what it would be

if the internal loop were collapsed to a point. Then in

(C4) the two external gauge fields would be connected

by a propagator. So this diagram can be excluded by

the same argument as in section 8.3.1.

In (C5), since the internal loop has three external

lines, it produces an invariant in g⊗g⊗g. For any sim-

ple Lie algebra other than SLN , N > 2, such an invariant

actually lies in35 ∧3g and is a multiple of the invari-

ant associated to the structure constants fabc. When

this is the case, the group theory factor of (C5) is the

same as if the internal loop were collapsed to a point.

When this is done, the two external gauge fields are

connected by a propagator and this diagram can be

excluded as before.

For SLN , N > 2, there actually is another invariant

in g⊗ g⊗ g; in fact, it lies in Sym3g. However, this in-

variant is odd under the outer automorphism of SLN ,

which is a symmetry of the theory under discussion,

and therefore cannot appear.

8.3.4 Excluding Diagrams (B) and (D1)

Diagrams (B) and (D1) cannot be excluded by

Lie algebraic arguments. Instead we will show by

an explicit calculation that the amplitudes for such

diagrams are zero, so they can not contribute an

anomaly. The computation involves only the part of

the diagram on the right in the figures; this is the part

that (B) and (D1) have in common.

To evaluate the amplitudes for these diagrams,

we will employ a point-splitting regularization in

which any pair of vertices on the Wilson lines must be

separated by a distance of at least ε. Once we employ

such a point-splitting regularization, we can compute

the regularized amplitude for each connected compo-

nent of the diagrams (B) and (D1) separately. The two

35 Invariants in g⊗ g⊗ g correspond to G-invariant maps
g⊗ g → g. That there is only one such invariant for most G
and two for SLN , N > 2, can be shown by invariant theory for
classical G and by consulting tables such as those in [36] for
exceptional G. In SLN , N > 2, the two invariants are TrA[B,C]
and TrA{B,C} and are respectively even and odd under the
outer automorphism. The fact that an invariant in Sym3g ex-
ists only for SLN , N > 2 is important in particle physics in
classifying possible anomalies in gauge theory.

connected components only interact with each other

by how they affect the domain of integration of the

vertices on the Wilson lines. We will get a vanishing

that does not depend on this domain.

We therefore need to compute the amplitude of

the diagram

The coordinates for the vertex vi will be (xi,yi,zi).

For vertices v1, v2 we have yi = zi = 0.
Recall (see eqn. (4.5)) that the propagator two-

form is

P =
1

2π

xdy∧dz̄− ydx∧dz̄+2z̄dx∧dy
(x2 + y2 + |z|2)2 .(8.21)

The amplitude for the diagram is then

c
∫

x1,x2,x3,y3,z3

Adz3

(8.22)

∧ (x3 − x1)dy3dz̄3 − y3d(x3 − x1)dz̄3 +2z̄3d(x3 − x1)dy3

d(v3,v2)4

∧ (x3 − x2)dy3dz̄3 − y3d(x3 − x2)dz̄3 +2z̄3d(x3 − x2)dy3

d(v3,v2)4 ,

where d(vi,v j) indicates the distance between the ver-

tices vi and v j, and A is the gauge field on the external

line.

Since we are integrating over x1, x2, we need only

keep terms which involve dx1 and dx2. If we retain only

those terms, we find that the integrand is dx1 ∧ dx2

times the square of the one-form

y3dz̄3 −2z̄3dy3(8.23)

and is therefore zero.

8.4 The Anomaly Associated to Diagram (A1)

Let us now come to the only remaining diagram,

namely (A1) in Fig. 27. We need to note that we first

need to include two other diagrams, as depicted in

Fig. 28, where we permute the three vertices along

the Wilson lines.

8.4.1 Color Factor

It turns out that all these possibilities have the

same color factor, up to those contributions which

can be canceled by counterterms.

To see this, let us assign color indices a, b to exter-
nal lines (ghost field and the gauge field) and c, d, e to
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Figure 28. Permutations of diagram (A1).

Figure 29. The differences of the color factors

between first and second, and first and third

diagrams in Fig. 28 have the color structures as

shown in this figure.

points on Wilson lines. In the first diagram in Fig. 28

we have c, d, e along the Wilson line from top to bot-

tom, but in the second we have c, e, d and third d, c, e.
Let us consider the difference of color factors be-

tween first and the second diagram. Since this in-

volves the change in the relative position of d and e,
the difference gives the commutator [ρ(td),ρ(te)] =

f de
f ρ(t f ). Hence the difference in color factors can be

represented graphically as the diagram on the left of

Fig. 29. Similarly, the difference of the color factor be-

tween the second the third diagram gives the second

diagram of Fig. 29.

We verified above (section 8.3.3) that the color

factor for diagrams of this type is such that any

anomaly can always be cancelled by a counter-term.

This tells us that for each of the three diagrams

in Fig. 28, the anomaly is symmetric under permu-

tation of the order of the vertices connected to the

Wilson line, up to anomalies which can be cancelled

by a counter-term. Since the three diagrams in Fig. 28

are exchanged by such a permutation, we conclude

that they all have the same color factor (again, mod-

ulo terms which can be cancelled by a counter-term).

The non-trivial part of the color factor is (recall

the normalization of the Killing form in eqn. (3.2))

f ac f f f gd f geb{ρ(tc),ρ(td),ρ(te)}(8.24)

Figure 30. The Feynman diagram with vertices

labelled. The Ai on the external lines indicate gauge

fields.

= ([[ta, tc], td ], [tb, te]){ρ(tc),ρ(td),ρ(te)},

where a, b are indices for the external lines and

{ρ(ta1),ρ(ta2),ρ(ta3)}= 1
3! ∑

σ∈S3

ρ(taσ(1))ρ(taσ(2))ρ(taσ(3)),

(8.25)

where the sum is over the permutations of the indices

1, 2, 3.

8.5 Numerical Factor

Let us next initiate the evaluation of the numer-

ical factor. We choose the Wilson line to be placed

along a straight line at y = z = 0.
We let p1, p2, p3 denote the position of the ver-

tices on the Wilson line, and v1, v2, v3 ∈ R×C be the

positions of the internal vertices. The coordinates for

vertex vi are denoted xi, yi, zi for i = 1,2,3. The labeling
on the vertices for the first diagram in Fig. 28 is given

in Fig. 30.

Let us write down the numerical factor of the am-

plitude, where we include all possible orderings of the

vertices on the Wilson lines. We let P be the propaga-

tor viewed as a two-form on R2 ×C (with singularities

at the origin). The space over which we integrate con-

sists of a copy of R2×C for each internal vertex, and R
for each vertex on the Wilson line. Every vertex gives
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a map from this space to R2 ×C, where we project on
the relevant factor for an internal vertex and project

to R and then include on the x-axis for the vertices on
the Wilson lines. For a pair of vertices (vi,v j) or (vi, p j)

we define two-forms by

P(vi,v j) = (vi − v j)
∗P, P(vi, p j) = (vi − p j)

∗P,(8.26)

where we pull-back the two-form P on R2 ×C via the

map vi − v j or vi − p j.

The complete amplitude, including all the rele-

vant diagrams and the color factor, is then

1
2

(
i

2π

)3 ∫
p1,p2,p3∈R

∫
v1,v2,v3

(8.27)

× (P(0,v1))dz1Aa
1P(v1,v2)dz2P(v2, p2)P(v2,v3)dz3Ab

3P(v3, p3)

× f a f c f f gd f gbe{p(tc), p(td), p(te)},

where A2, A3 indicate the external gauge fields. The

prefactor of 1
2 comes from the diagram automor-

phism.

8.5.1 A Comment on Signs

In the numerical factor, we have implicitly ori-

ented each edge of the graph. If we reverse the ori-

entation of the graph, the propagator changes sign,

because P(vi,v j) = −P(v j,vi). Similarly, in defining the

integral, we have implicitly ordered the set of 6 ver-

tices (three on the Wilson line and three integrated

over the four-dimensional space-time). If we permute

the order of these vertices we change the integral by

a sign. For the vertices on the Wilson line, the sign

arises because a permutation can reverse the orienta-

tion. For the bulk vertices, since each is accompanied

by the one-form dz, permuting them will change the

order in which we take the wedge product of these

forms, and therefore introduce a sign.

These signs are also implicit in the definition of

the color factor, so there is no overall sign ambigu-

ity. One way to see this is to treat the elements of

the Lie algebra as being anti-commuting variables.

This is a natural thing to do, because the form degree

of the forms we are integrating differs by one from

the ghost number of the corresponding fields of the

physical theory. For example, a one-form is of odd de-

gree but is a field of ghost number zero. We can force

Lie algebra valued forms to have the correct parity if

we declare that the Lie algebra factor is fermionic.

If we treat the Lie algebra elements as fermionic,

then the color factor δabta
vi
⊗ tb

v j
associated to the prop-

agator P(vi,v j) changes sign if we reverse the order of

an edge, just like the P(vi,v j) does. The color factor

associated to a vertex is a graded symmetric func-

tion of the three Lie algebra elements. Because it

is a fermionic function – since it depends on three

fermionic Lie algebra elements – the overall color fac-

tor depends via a sign on the ordering of the set

of vertices. Similarly, the color factor associated to

a vertex on the Wilson line depends on a single Lie

algebra element, together with an endomorphism of

the bosonic vector space of states on the Wilson line.

Therefore the color factor depends on the ordering

of the set of vertices on the Wilson line, just as the

numerical factor does.

To get the correct signs in the total amplitude, the

rule is to choose an orientation of each edge on the

graph and an ordering on the set of vertices. Then,

compute both the color factor and the numerical fac-

tor using this choice. Their product is the amplitude.

Because the color factor and the numerical factor

change signs in the same way if we change the order-

ing of the vertices and the orientation of the edges,

there is no ambiguity. The color factor in eqn. (8.27)

was computed in this way.

8.5.2 Regularizing the Integral

We will use a point-splitting regulator in which

we restrict the domain of integration to the region

where p3 − p1 ≥ ε, if we assume that the three points

are ordered so that p1 < p2 < p3. To verify that this

is a good regulator, we need to show that the inte-

gral converges absolutely in this domain. We are only

concerned with UV divergences, so we will further re-

strict the domain of integration to a region where all

vertices are in some ball around the origin.

To verify convergence, we will use the following

bound in absolute value of the propagator:

|P| ≤ (x2 + y2 + zz̄)−3/2.(8.28)

This bound arises because the denominator in P is

(x2 + y2 + |z|2)−2, while the numerator is a linear func-

tion of the variables x,y, z̄. Any linear function on R4

is bounded in absolute value by some multiple of

(x2 + y2 + |z|2)1/2. It suffices to verify that the integral

converges when each propagator P(vi,v j) or P(pi,v j) is

replaced by d(vi,v j)
−3 or d(pi,v j)

−3, where d is the Eu-

clidean distance.

We can bound the external gauge fields by a con-

stant, so we can drop them from the integral. We are

thus left with the integral

∫
p2,p3>ε,v1,v2,v3

(8.29)

× 1
d(p3,v3)3d(v2,v3)3d(v2, p2)3d(v2,v1)3d(v1, p1 = 0)3 ,

where by overall translation invariance we set p1 =

0. In our domain of integration, the most divergent

region is when v1, v2, v3, p2 are all near 0 (or all near

p3). Focusing on this region is equivalent to taking p3
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to be far away from the other points, which allows us

to drop the d(p3,v3)
−3 term since it is non-singular. We

are then considering the integral

∫
p2,v1,v2,v3

(8.30)

× 1
d(0,v1)3d(v1,v2)3d(v2, p1)3d(v2,v3)3 d4v1d4v2d4v3dp2.

There are 13 integration variables, and the integrand

has weight −12 under scaling all the variables. There-

fore the integral converges absolutely on a domain

where the integration variables vi, p2 are bounded

from above.

8.5.3 The Failure of the Amplitude to be Gauge Invariant

If we include all three diagrams that contribute to

the anomaly, we find that the regularized amplitude

is

1
2

(
i

2π

)3 ∫
pi ,v j

pmin<pmax−ε

(8.31)

×P(0,v1)dz1Aa
1P(v1,v2)dz2P(v2, p2)P(v2,v3)dz3Ab

3P(v3, p3)

× f a f c f f gd f gbe{ρ(tc),ρ(td),ρ(te)},

where pmin, pmax are the coordinates on the Wilson line

with the minimum and maximum value. The factor of
1
2 appears because there are 6 ways of ordering three

points on the line, but only 3 diagrams we need to

consider.

Let us now investigate the failure of the integral

to be gauge invariant. Let us perform a linearized

gauge transformation A 7→ A+dc to the external gauge

field A. By integration by parts, the result can be writ-

ten as a sum of terms where we apply the exterior

derivative d to one of the propagators, or else we inte-

grate over one of the boundary components of the do-

main of integration. We will show that all such terms

vanish except the term where we integrate over the

boundary component in which pmax = pmin + ε.

We use the identity (4.7). Applying the exterior

derivative to a propagator has the effect of yield-

ing a contribution where we integrate over the region

where the vertices vi, v j (or pi, v j) at either end of the

propagator are identified.

If we contract the propagator connecting p3 and

v3, the result must vanish. This is because we can as-

sume that the external gauge field A and the ghost c

are both divisible by z. This assumption is justified

because the anomaly always involves a z-derivative
on each external field. If we integrate over the region

where v3 = p3, then since z3 = 0 on this domain, the

integrand vanishes.

If we contract the propagator connecting p2 and

v2, the result vanishes by the argument presented in

section 8.3.4.

If we contract the propagator connecting v1 and

v2, or v3 or v1, the results cancel by the Jacobi identity.

Next, let us consider the boundary components

where two adjacent points on the Wilson line can

meet. They can meet from above or below, with dif-

ferent signs. After using the Jacobi identity, the color

factor associated to a boundary component like this

is that given by the diagram

We have seen in section 8.3.3 that anomalies with

a color factor of this form can be cancelled by a

counter-term, and so are not relevant.

The remaining boundary component is the one

with pmax = pmin+ε. This is the one that will contribute

to the anomaly.

The integral describing the anomaly is then

(
i

2π

)3 ∫
pi ,v j

pmin=pmax−ε

(8.32)

×P(p1,v1)dz1c
a
1P(v1,v2)dz2P(v2, p2)P(v2,v3)dz3Ab

3P(v3, p3)

× f a f c f f gd f gbe{ρ(tc),ρ(td),ρ(te)},

where on vertex v1 the external gauge field has been

replaced by the ghost c. The prefactor of 1
2 has been

cancelled by the factor of 2 coming from the two pos-

sible external lines to the ghost field. The diagram

automorphism interchanges these two, so we are left

with the single integral above but without the prefac-

tor of 1
2 .

This integral can be written as a sum of six terms,

according to the six possible orderings of the points

on the Wilson line. A reflection in a plane orthogo-

nal to the Wilson line shows that there are only three

independent integrals, which we can take to be the

three where the points p1, p2, p3 are cyclically ordered.

We find that we need to compute

2

(
i

2π

)3 ∫
p1<p2<p3=p1+ε

∫
v1,v2

(8.33)

×P(p1,v1)dz1c
a
1P(v1,v2)dz2P(v2, p2)P(v2,v3)dz3Ab

3P(v3, p3)

92 NOTICES OF THE ICCM VOLUME 6, NUMBER 1



Figure 31. Four Feynman diagrams contributing to the anomaly.

+2

(
i

2π

)3 ∫
p2<p3<p1=p2+ε

∫
v1,v2

×P(p1,v1)dz1c
a
1P(v1,v2)dz2P(v2, p2)P(v2,v3)dz3Ab

3P(v3, p3)

+2

(
i

2π

)3 ∫
p3<p1<p2=p3+ε

∫
v1,v2

×P(p1,v1)dz1c
a
1P(v1,v2)dz2P(v2, p2)P(v2,v3)dz3Ab

3P(v3, p3).

The factor of 2 here is because each integral repre-

sents the contribution from one of two possible or-

derings on the points pi.

8.5.4 Calculating the Anomaly Integral

Because we know that the anomaly must involve a

z-derivative for each external line and no other deriva-

tives, we can detect the anomaly by assuming that the

external ghost field c is z, and the external gauge field

A is zδx=0.

The choice of external gauge field fixes the lo-

cation of the vertex v3; by translation invariance we

choose instead to fix the location of the vertex p1 to

be p1 = 0.
We will first evaluate the integral of the diagram

in Fig. 30, where p1 < p2 < p3, and we integrate over the

region where p3 = p1 + ε, and we set p1 = 0. We denote

p2 by p.
The integral for the first diagram of Fig. 28 is

2

(
i

2π

)3 ∫ ε
p=0

∫
v1,v2,v3

P(0,v1)∧ z1dz1 ∧P(v1,v2)∧dz2

(8.34)

∧P(v2, p)∧P(v2,v3)∧ z3dz3 ∧P(v3,ε).

Now that the integrand has 5 propagator 2-forms, and

1 vertex 1-forms, making a 13-form, which is consis-

tent since we wish to integrate over 1+4×3 = 13 vari-

ables.

We evaluate this integral in Appendix E. Reintro-

ducing the color factor and the factor of two present

in eqn. (8.33), we find that the anomaly is given by

h̄2

12
f a f c f f gd f gbe{ρ(tc),ρ(td),ρ(te)}.(8.35)

8.6 The Anomaly as a Correction to the Algebra

In this section we will show that for a Wilson

line to be defined at the quantum level, there must

be quantum corrections to the coupling of the gauge

field which satisfy a certain algebraic relation. This

relation forces the Wilson line to be built from a rep-

resentation of the Yangian, not of the Lie algebra g[[z]].
Suppose we have a Wilson line in a representa-

tion V of our gauge group. Suppose that the level-one

generators ta,1 of the Yangian act by some operators

ρ(ta,1). Consider the four two-loop diagrams in Fig. 31.

As before, a vertex on the Wilson line labelled

with the number 1 or 2 indicates a coupling of the

first or second z-derivative of the gauge field. (We tac-

itly include the variations on these diagrams where

the ordering of the vertices on the Wilson lines has

been permuted.)

The amplitude of each of these diagrams can fail

to be gauge invariant. For the first diagram (A), this

involves the two-loop computation that we have been

describing. For the other diagrams, the failure to be

gauge invariant is much more straightforward, as we

will now see.

Suppose that at the quantum level, the first and

second derivative of the gauge field are coupled to the

Wilson line by operators ρa,1 : V →V and 1
2 ρa,2 : V →V ,

where a is an adjoint index.

Then, the amplitude for diagram (B) is given by∫
p1<p2∈R

∂zA
a(p1)∂zA

b(p2)ρa,1 ◦ρb,1.(8.36)

If we change the gauge field by a gauge transforma-

tion Aa 7→ Aa +dca we find (by integration by parts and

Stokes’ theorem) that the integral becomes∫
p∈R

∂zc
a(p)∂zA

b(p)[ρa,1,ρb,1].(8.37)

Similarly, for diagram (C1), the amplitude is

1
2

∫
p1<p2∈R

(∂ 2
z Aa(p1))A

b(p2)ρa,2 ◦ρb,0(8.38)
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+
1
2

∫
p1<p2∈R

(Aa(p1))∂
2
z Ab(p2)ρa,0 ◦ρb,2.

The failure of this to be gauge invariant is given by

1
2

∫
p∈R

(∂ 2
z c

a(p))Ab(p)[ρa,2,ρb,0](8.39)

+
1
2

∫
p∈R

ca(p)∂ 2
z Ab(p)[ρa,0,ρb,2].

Next, diagram (C2) has amplitude

1
4

∫
p∈R,v=(x,y,z)

dz∂
2
zp

P(p,v)Aa(v)Ab(v) fab
c
ρc,2.(8.40)

Here v indicates the position of the interior ver-

tex, and ∂zp indicates we apply a z-derivative to the

p-coordinate of the propagator. The failure of this to
be gauge invariant is, using the fact that dzvdP(p,v) =
−δp=v and imposing the equations of motion for A,

−1
2

∫
p∈R

∂
2
z (c

a(p)Ab(b)) fab
c
ρc,2.(8.41)

Finally, the anomaly for diagram (A) is, as we have

seen,

h̄2

12

∫
p∈R

∂zc
a(p)∂zA

b(p) f a f c f f gd f gbe{ρ(tc),ρ(td),ρ(te)}.

(8.42)

The sum of the anomalies for the diagrams (A), (B)

and (C) must vanish. This gives rise to the equations

[ρa,2,ρb,0] = fab
c
ρc,2,(8.43)

[ρa,1,ρb,1] = fab
c
ρc,2 −

h̄2

12
Qab(ρ•,0),(8.44)

where the first equation is from the cancellation of

the coefficients of (∂ 2
z c

a(p))Ab(p) and ca(p)∂ 2
z Ab(p), and

the second from those of (∂zc
a(p))∂zAb(p). In the equa-

tions above we used the short-hand notation ρa,n =

ρ(ta,n) and we defined

Qab(ρ•,0) = f a f c f f gd f gbe{ρ(tc),ρ(td),ρ(te)}.(8.45)

The first equation is the commutation relation we

found classically. The second equation tells us that

the operators ρa,1 do not commute to give ρc,2, as we

would find classically, but a linear combination of ρc,2

and a certain cubic polynomial in the level 0 genera-

tors ρd,0.

We can decompose the exterior square ∧2g into

g⊕∧2
0g, where ∧2

0g is the kernel of the Lie bracket map

from ∧2g → g. By using this decomposition, we can

write the second relation as a sum of two independent

relations:

f ab
c[ρa,1,ρb,1] = h∨ρc,2 −

h̄2

12
f ab

cQab(ρ•,0),(8.46)

Λ
ab[ρa,1,ρb,1] =− h̄2

12
Λ

abQab(ρ•,0),(8.47)

where Λab ∈ ∧2g. The first relation can always be sat-

isfied by redefining the operator ρc,2 to

ρ
′
c,2 = ρc,2 −

h̄2

12h∨
f ab

cQab(ρ•,0).(8.48)

The second relation, however, can not satisfied in

such a trivial way.

What we have found from this analysis is that,

in order for a classical Wilson line to quantize mod-

ulo h̄3, we must be able to define the operators ρa,1

so that they satisfy the relation (8.47). This relation

is one of the relations in the Yangian algebra which

makes it into a non-trivial deformation of the univer-

sal enveloping algebra of g[[z]].
The reader will note that the diagrams in

Fig. 31 are simply the classical diagrams of Fig. 26,

with quantum corrections to the vertices, plus the

anomaly diagram (A). Note that we did not add to

diagrams (C2) in the figure additional contributions

involving a quantum correction to the bulk vertex.

Such contributions can be omitted, using Proposi-

tion 8.3, as they involve a cohomology class that fac-

tors through a map to g.

8.6.1 Matching with Standard Relations in the Yangian

Let us explain how to match the relation we have

found with one of the known descriptions of the Yan-

gian.

For any simple Lie algebra g, the sequence

∧3g→∧2g→ g(8.49)

is exact in the middle, where each map in the se-

quence is obtained by applying the Lie bracket to two

entries in the exterior power. This sequence is part of

the Chevalley-Eilenberg homology complex of g. For

any simple Lie algebra, H2(g,C) = 0, which is why this

sequence is exact in the middle.

Therefore, the kernel of the map from ∧2g→ g is

the image of the map from ∧3g → ∧2g. The antisym-

metric tensor Λab ∈ ∧2g appearing in eqn. (8.47) is in

the kernel of this map. Therefore, we lose no informa-

tion by considering the relation in eqn. (8.47) when

Λab is taken to be in the image of the map from ∧3g,

that is, when Λab is of the form

Λ
ab = Γ

ade fde
b(8.50)

for some antisymmetric tensor Γade ∈ ∧3g.

Relation (8.47) takes the form, in this notation,

Γ
ade fde

b[ρa,1,ρb,1] =− h̄2

12
Γ

ade fde
bQab(ρ•,0).(8.51)
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For an element t ∈ g, we let ρ(t) denote the action of

t on our representation, and ρ(J(t)) denote the action
of the corresponding level one generator on our rep-

resentation. Then our relation is

Γ
abc[ρ(J(ta)),ρ(J([tb, tc]))]

(8.52)

=− h̄2

12
Γ

abc([te, [ta, td ]], [t f , [tb, tc]]){ρ(td),ρ(te),ρ(t f )},

where as before {ρ(td), p(te), p(t f )} is 1/6 times the sum

of the products of these operators in each of the six

possible orders (see eqn. (8.25)). The Jacobi identity

and the g-invariance of the Killing form allows us to

rewrite

([te, [ta, td ]], [t f , [tb, tc]])

= ([te, [ta, td ]], [[t f , tb], tc])+([te, [ta, td ]], [tb, [t f , tc]])

= ([tc, [te, [ta, td ]]], [t f , tb])− ([tb, [te, [ta, td ]]], [t f , tc]).

Thus anti-symmetrizing in a, b, c and again using the

Jacobi identity, we obtain

Γ
abc([te, [ta, td ]], [t f , [tb, tc]])

= 2Γ
abc([tc, [te, [ta, td ]]], [t f , tb])

= 2Γ
abc([[tc, te], [ta, td ]], [t f , tb])+2Γ

abc([te, [tc, [ta, td ]], [t f , tb])

=−2Γ
abc([[tc, te], [ta, td ]], [tb, t f ])

+Γ
abc([te, [[tc, ta], td ]], [t f , tb]),

where on the last line we have again used anti-

symmetry of Γabc to conclude that we can replace

[tc, [ta, td ]] by
1
2 [[tc, ta], td ]. The second factor in the final

line, after combining with the factor {ρ(td),ρ(te),ρ(t f )},
gives back the expression we started with, with an

overall minus sign:

Γ
abc([te, [[tc, ta], td ]], [t f , tb]){ρ(td),ρ(te),ρ(t f )}

=−Γ
abc([te, [t f , tb]], [[tc, ta], td ]]){ρ(td),ρ(te),ρ(t f )}

=−Γ
abc([te, [ta, td ]], [t f , [tb, tc]]){ρ(td),ρ(te),ρ(t f )},

where we used g-invariance of the Killing form, anti-

symmetry in a, b, c and symmetry in d, e, f . This allows
us to conclude that

Γ
abc([te, [ta, td ]], [t f , [tb, tc]]){ρ(td),ρ(te),ρ(t f )},

(8.53)

=−Γ
abc([[tc, te], [ta, td ]], [tb, t f ]){ρ(td),ρ(te),ρ(t f )}.

Thus the quantum-corrected commutation relation

(8.52) becomes

Γ
abc[ρ(J(ta)),ρ(J([tb, tc]))]

(8.54)

=
h̄2

12
Γ

abc([[tc, te], [ta, td ]], [tb, t f ]){ρ(td),ρ(te),ρ(t f )}.

Note that by anti-symmetry of Γabc and symmetry of

{ρ(td),ρ(te),ρ(t f )} we have

Γ
abc[ρ(J(ta)),ρ(J[tb, tc])]

(8.55)

=
1
3

Γ
abc([ρ(J(ta)),ρ(J([tb, tc]))]+ [ρ(J(tb)),ρ(J([tc, ta]))]

+ [ρ(J(tc)),ρ(J([ta, tb]))]).

Also, ([[tc, te], [ta, td ]], [t f , tb]){ρ(td),ρ(te),ρ(t f )} is antisym-

metric in a, b, c. Therefore our relation is equivalent

to

[ρ(J(ta)),ρ(J([tb, tc]))]

(8.56)

+[ρ(J(tb)),ρ(J([tc, ta]))]+ [ρ(J(tc)),ρ(J([ta, tb]))]

=
h̄2

4
([[tc, te], [ta, td ]], [tb, t f ]){ρ(td),ρ(te),ρ(t f )}

=
h̄2

4
([ta, td ], [[tb, te]], [tc, t f ]]){ρ(td),ρ(te),ρ(t f )}.

This is the same as the known relation for the Yan-

gian, see e.g. eqn. (4) in [8, Theorem 12.1.1].

8.7 An Example of an Anomalous Wilson Line

It is known that the adjoint representation of any

simple Lie algebra not of type A does not lift to a

representation of the Yangian. This indicates that a

Wilson line in the adjoint representation should be

anomalous. In this section we will see explicitly that

our two-loop anomaly cannot be cancelled for the ad-

joint representation of SON .

Let us start with some group-theory background.

If M1, . . . ,Mk ∈ soN (for N sufficiently large), the ring of

invariant function of these k elements of soN is gener-

ated by the invariant functions given by traces, that is,

the functions Tr(Mi1 . . .Mir ) where i1, . . . , ir are in the set

{1, . . . ,k}. Repeated indices are allowed and the trace

is taken in the fundamental representation.

For finite N, there are trace relations among these

functions. For N large compared to the degree of the

polynomial in the variables Mi, the only relation that

survives is the relation that says

Tr(Mi1 . . .Mir ) = (−1)r Tr(Mir . . .Mi1).(8.57)

We will need to understand the decomposition of

soN ⊗ soN into irreducible representations. The num-

ber of irreducible representations is the same as the

number of invariant tensors in so⊗4
N . Let M1, M2, N1,

N2 denote elements of soN . The analysis above allows

us to enumerate the invariant functions of these ma-

trices which are linear in each variable. We find that

there are 6 invariant tensors, three with a single trace

and three with two traces. Of these, 4 of them are
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symmetric when we exchange M1 and M2, or when we

exchange N1 and N2. These correspond to projectors

onto irreducible representations inside Sym2soN . Two

of them are antisymmetric under the same permuta-

tions, and correspond to projectors onto irreducible

representations in ∧2soN . The two antisymmetric ten-

sors are

Tr([M1,M2][N1,N2]),

Tr(M1N1)Tr(M2N2)−Tr(M1N2)Tr(M2N1).
(8.58)

The first antisymmetric tensor gives rise to the pro-

jection from ∧2soN onto the adjoint representation,

and the second to the projection onto the irreducible

representation ∧2
0soN .

Note also that there is only one copy of the ad-

joint representation in soN ⊗ soN . Any copy of the ad-

joint representation is associated to an invariant el-

ement in so⊗3
N , and so an invariant function of M1,

M2, M3 which is linear in each Mi. The discussion

above tells us that the only such invariant function

is Tr(M1M2M3).

If we have a Wilson line in the adjoint represen-

tation of SON , it follows from this that the level one

generators must be coupled by a multiple of the level

0 generators. Therefore, the commutator of the level

1 generators must be proportional to the level 0 gen-

erators. Relation (8.44) can never hold unless

Qab(ρ•,0) = f a f c f f gd f gbe{ρ(tc),ρ(td),ρ(te)}(8.59)

is a multiple of some ρ(tc). We will show the projec-

tion of the tensor Qab onto ∧2
0(soN) is non-zero, so the

anomaly is non-zero.

Let us introduce incoming and outgoing states

tin, tout on the adjoint Wilson line. The three diagrams

which give us an anomaly all, as we have seen, have

the same color factor. Since ρ is in the adjoint repre-

sentation, we can compute the color factor using a di-

agram in which the Wilson line is placed on the same

footing as the other lines in the Feynman diagram. If

we do this, the diagram looks like

where the segment connecting tin, tout is what was the

Wilson line. Here we are implicitly anti-symmetrizing

in a and b, since the anomaly is always antisymmetric

in the external lines.

This makes it clear that the color factor of the

anomaly in the adjoint representation is

(tout,Qab(ρ•,0)tin) = Tr(tintat f tbtoutt f )−Tr(tintbt f tatoutt f ),

(8.60)

where the trace is taken in the adjoint representation,

and we sum over f .

Let us view the anomaly (8.60) as a linear oper-

ator from so⊗2
N → so⊗2

N , where the first two copies of

soN are given by ta, tb and the second two by tin, tout.

Since this is an SO(N) invariant operator, it is a linear

combination of the projection onto the 6 irreducible

representations in so⊗2
N . The anomaly is non-zero as

long as the coefficient of the projection onto ∧2
0soN is

non-zero.

Equivalently, we can expand the expression (8.60)

as a linear combination of the 6 invariant tensors in

so⊗4
N . To show that the anomaly is non-zero it suffices

to show that, in this expansion, the coefficient of

Tr(tinta)Tr(touttb)−Tr(tintb)Tr(toutta)(8.61)

is non-zero. This is because this invariant tensor cor-

responds to projection onto ∧2
0soN . Since the anomaly

is antisymmetric in a and b we need to verify that the

coefficient of Tr(tinta)Tr(touttb) is non-zero.

We can evaluate the expression in equation (8.60)

for soN using the double-line notation familiar from

evaluation of the color factors for glN gauge theo-

ries. Since we are using soN instead of glN , the double-

line technique works a little differently. There are two

types of double-line edges, which we can think of as

a flat ribbon and a ribbon with a half-twist. This is

because the Casimir for soN is represented as

∑Ei j ⊗E ji −∑Ei j ⊗Ei j,(8.62)

where Ei j is the elementary matrix. Only the first term

appears in the Casimir of glN , which is why only the

first type of double-line edge appears when we study

glN color factors.

Using the double line notation, we find that the

color factor we are computing is given by a sum over

connected unoriented surfaces of Euler characteris-

tic −1, with 4 marked points on the boundary. Since

we are interested in the double-trace terms in the

anomaly, we need to consider surfaces where two

of the marked points (labelled by tin, ta) are on one

boundary component, and the other two or on a dif-

ferent component.

The order N two-trace term in the anomaly is

given by the planar diagram
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which contributes

N Tr(tinta)Tr(tbtout).(8.63)

(We have not drawn the similar diagram which con-

tributes the same expression with a and b exchanged

and a different sign.)

There is also an order 1 term, given by a double-

line diagramwhich has the topology of a Möbius band

with a circle removed. For N sufficiently large (N = 10
certainly suffices) the coefficient of this term is much

smaller than that of the order N term, so the anomaly

is non-zero.

9. Trigonometric Solutions of the
Yang-Baxter Equations

9.1 Preliminaries

Our goal in this section will be to understand

from the present perspective the trigonometric solu-

tions of the Yang-Baxter equation. For this we have to

consider the case that C =C×, or equivalently C =CP1

with a differential ω = dz/z that has two simple poles

at 0 and ∞.

The basic consequence of a pole in ω is the fol-

lowing. One has

∂̄
dz
z
= 2πiδ 2(z),(9.1)

where δ 2(z) is a delta function normalized by∫
|d2z|δ 2(z) = 1. Accordingly, when we vary the action

(3.3) to derive the equations of motion, we pick up a

“boundary term” supported at z = 0:

δS = · · ·=− i
h̄

∫
Σ×{0}

TrA∧δA,(9.2)

where bulk terms have been omitted. The equations

of motion of the classical theory tell us to set to

zero the bulk terms and also the boundary term

TrA∧δA|Σ×{0}. We will abbreviate the latter as TrA∧δA|
(and we use a similar notation in general for restric-

tion to a singularity or boundary).

Actually, the boundary terms in the equations of

motion play a distinguished role. Quantum field the-

ory is constructed by integrating over fields that do

not necessarily satisfy the equations of motion in

bulk. The bulk equations of motion are only satis-

fied in the classical limit. But boundary terms in the

equations of motion have to vanish exactly. This is

needed in order to get in bulk a symmetric propaga-

tor, as expected for bosons (or an antisymmetric one

in an analogous problem with fermions). In general,

in quantum field theory in the presence of boundaries

or defects, one typically runs into “boundary terms”

analogous to TrA∧ δA. As a starting point in quanti-

zation, one always needs to impose a minimal condi-

tion that sets the boundary terms to 0. For example,

if one quantizes on a manifold X an ordinary scalar

field with the usual Lagrangian 1
2 |dφ |2, the boundary

term is
∫

∂X δφ∂nφ (where ∂n is the normal derivative).

The simplest way to dispose of this boundary term is

to set either φ |= 0 (Dirichlet boundary conditions) or

∂nφ |= 0 (Neumann boundary conditions). With either

of these conditions, the theory can be quantized. By

contrast, a stronger condition such as φ = ∂nφ = 0 is

too strong and does not lead to a quantum theory of

a scalar field.

What condition on A will we use to set TrA∧δA|=
0? The most obvious condition might seem to be A|=
0. However, this condition is too strong, analogous

to φ | = ∂nφ | = 0 for the scalar field. If we impose it, a

suitable propagator will not exist and we will not be

able to do perturbation theory.36

We can gain some intuition by considering the

case of a double pole. Of course, we have already

studied double poles in the context of rational solu-

tions of the Yang-Baxter equation. In that analysis, we

considered the case that ω = dz with a double pole at

infinity. For our present purposes, it is more conve-

nient to place the pole at a finite point, so we take

ω = dz/z2, with a double pole at the origin. Since

∂̄
dz
z2 =−2πi∂zδ

2(z),(9.3)

the vanishing of the surface term now requires

0 = (∂z TrA∧δA)|.(9.4)

A completely natural way to satisfy this condition is

to set A| = 0. Varying A with the constraint A| = 0, we
have also δA|= 0, so that TrA∧δA has a double zero at

z = 0 and eqn. (9.4) is obeyed. The condition A| = 0 is

gauge-invariant if we likewise constrain the generator

ε of a gauge transformation to obey ε|= 0.
Not only is A| = 0 a natural way to satisfy

eqn. (9.4), it is what we have actually done in studying

rational solutions of the Yang-Baxter equation. Start-

ing in section 4, we used a propagator which van-

ishes at infinity, which amounts to taking A to van-

ish at infinity (where we placed the double pole). As

36 Later, we will impose a weaker condition and find a unique
solution for the r-matrix. A similar analysis assuming that
A|= 0 will show that no possible r-matrix exists. This is actu-
ally clear from the fact that the unique r-matrix we get with
a weaker condition does not obey A|= 0.
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explained in section 3.4, this choice has the advan-

tage of ensuring that up to gauge transformation, the

only classical solution is the trivial one A = 0, a condi-
tion that is needed if we want to obtain something as

simple as the usual Yang-Baxter equation. As we will

explain below, there are other reasonable ways to sat-

isfy (∂z TrA∧δA)|= 0, but they lead to something more

complicated.

If A|= 0 is a satisfactory condition in the presence

of a double pole, it can hardly be the right condition

for a simple pole. If we start with a differential ω =

dz/z2 with a double pole, and perturb it to, say, ω ′ =

dz/(z− z1)(z− z2), with small z1, z2, the condition A|= 0
at a double pole must somehow be split between the

two simple poles at z1 and z2.

As remarked above, when one studies field the-

ory in the presence of a boundary or defect, the right

procedure is always to impose a minimally restric-

tive condition that sets this term to zero. But the

condition A| = 0 is not a minimal condition to en-

sure that TrA∧ δA| = 0. For this, it suffices to pick a

middle-dimensional complex subspace l0 ⊂ g that is

“isotropic” (or “Lagrangian”) for the quadratic form

Tr, in the sense that for a,b ∈ l0, Trab = 0. (We take l0 to

be middle-dimensional because this is the maximum

possible dimension for an isotropic subspace, leading

to the weakest possible condition on A.) Then we re-

quire that A| is l0-valued, that is, that it is an l0-valued

1-form along Σ. Having imposed this condition on A,
we impose it also on δA, and then we see that with A|
and δA| being l0-valued 1-forms, TrA∧δA|= 0.

One may object that the condition for A| to be

l0-valued is not gauge-invariant. However, what we ac-

tually need is not to maintain the full gauge symme-

try along the locus of the pole, but only to maintain

enough gauge symmetry so that the usual “longitudi-

nal” part of A| can be gauged away. For this, we simply

ask that l0 should be a subalgebra of g (and not just a

subspace) and we ask that the generator ε of a gauge

transformation should satisfy the condition that ε| is
l0-valued. These conditions on A and ε are compati-

ble in the sense that, with both A| and ε| constrained
to be l0-valued, the usual gauge transformation law

δA = Dε makes sense, and moreover the action (3.3)

is gauge-invariant. In effect, what has happened is the

following. Along the locus of the pole, we have set to

zero some components of A, and the other compo-

nents have their usual gauge-invariance.

We are really interested in a situation in which ω

has two simple poles, say ω = dz/z with poles at 0 and

at ∞. Treating each simple pole as above, we pick two

middledimensional isotropic subalgebras of g, say l0
and l∞, in general with no relation between them. We

require A and ε to be l0-valued when restricted to Σ×
{0}, and l∞-valued when restricted to Σ×{∞}.

To get from this construction a solution of the

usual Yang-Baxter equation (as opposed to the “dy-

namical Yang-Baxter equation,” which we study in

section 11), we need a further condition that is famil-

iar from section 3.4: the trivial solution A = 0 should

have no deformations and no continuous unbroken

gauge symmetries. The two conditions are equiva-

lent for the following reason. Let g0,∞ be the sheaf

of holomorphic g-valued functions on CP1 that are

l0-valued at 0 and l∞-valued at ∞. The Lie algebra of

the group of gauge symmetries of the trivial solution

A = 0 is H0(CP1,g0,∞), and the tangent space to A = 0
in the moduli space of classical solutions of the the-

ory is H1(CP1,g0,∞). Thus the condition that A = 0 has

no deformations is H1(CP1,g0,∞) = 0, and the condi-

tion that it has no continuous gauge symmetries is

H0(CP1,g0,∞) = 0. These two conditions are equivalent

because of the Riemann-Roch theorem, which in the

present situation implies that

dimH0(CP1,g0,∞)−dimH1(CP1,g0,∞) = 0.(9.5)

Concretely, H0(CP1,g0,∞) is simply37 l0 ∩ l∞. Thus,

our two conditions are equivalent to

l0 ∩ l∞ = 0.(9.6)

On dimensional grounds, this is equivalent to

l0 + l∞ = g.(9.7)

We can understand directly the role of this last con-

dition. If g′ = l0 + l∞ and g= g′⊕g′′, then the g′′-valued

part of A cannot be gauged away38 and therefore the

trivial solution A = 0 has deformations. So absence of

deformations means that g′′ = 0 and g = l0 + l∞ (since

l0 ∩ l∞ = 0, this is equivalent to g= l0 ⊕ l∞).

Accordingly, to get a trigonometric solution of

the Yang-Baxter equation, rather than its “dynamical”

generalization, we need l0 + l∞ = g. We have arrived

precisely at the notion of a “Manin triple” (see for

example [8, p. 26]). A Manin triple is a complex Lie

algebra g with an invariant, nondegenerate quadratic

form Tr, and a decomposition g= l0 + l∞, where l0 and

l∞ are middle-dimensional isotropic subalgebras. So

trigonometric solutions of the Yang-Baxter equation,

or at least the ones that we will study, are associated

to Manin triples.39

37 A global holomorphic section of g0,∞ is a g-valued constant
(or it would have singularities somewhere) that must be val-
ued in l0 ∩ l∞ because of the conditions at 0 and at ∞.
38 In trying to do so, one runs into the fact that
H1(CP1,O(−p−q)) 6= 0, where O(−p−q) is the sheaf of holo-
morphic functions that vanish at two points p and q (here
those two points are z = 0 and ∞).
39 The construction as we have described it involves a Manin
triple of g, but one could actually in a somewhat similar way
use a Manin triple of g[z,z−1] (endowed with the nondegener-
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At this stage, it is perhaps also clear that in con-

trast to the rational solutions of Yang-Baxter, the

trigonometric ones do not have G as a group of global

symmetries. In the rational case, given the differen-

tial ω = dz/z2, the condition on the generator of a

gauge transformation at z = 0 was ε| = 0. This condi-

tion leaves constant gauge transformations at z = 0 as
global symmetries. In the trigonometric case, a con-

stant unbroken gauge symmetry, to be compatible

with the conditions at 0 and at ∞, has to be an ele-

ment of G that conjugates l0 to itself, and also con-

jugates l∞ to itself. In practice, in the main example

that will be introduced in section 9.2, this means that

the group of global symmetries is the maximal torus

of G. (This symmetry accounts for the block diagonal

form of eqn. (9.14).)

Before leaving this subject, let us note that we

stated the condition l0 + l∞ = g in a somewhat naive

way. In gauge theory, any comparison between l0 and

l∞ involves parallel transport from 0 to ∞. What the

condition l0 + l∞ = g really means is that, after conju-

gating l0 and l∞ into general position, l0 + l∞ = g. The

case that would lead to a solution of the dynamical

Yang-Baxter equation rather than the ordinary one

is that l0 and l∞ are such that even after conjugating

them into general position, l0 + l∞ 6= g.

9.2 Example

Given g, can we pick l0 and l∞ to make a Manin

triple? In general, the answer is certainly “no,” since

if g is of odd dimension – for example sl2 – it has

no middledimensional isotropic subspaces. However,

the following is a useful construction of examples

that are related to the usual trigonometric solutions

of the Yang-Baxter equation.

For any simple Lie algebra g, add to g another copy

h̃ of the Cartan subalgebra h of g to make a Lie alge-

bra g̃ = g⊕ h̃. Equip h̃ with a quadratic form given by

the restriction of the Killing form on g. In this way g̃

acquires an invariant nondegenerate pairing. We will

construct a Manin triple for g̃.

Choose a decomposition g= n−⊕h⊕n+ into nilpo-

tent and Cartan subalgebras. Set

h+ = {(X , iX)|X ∈ h} ⊂ h⊕ h̃,

h− = {(X ,−iX)|X ∈ h} ⊂ h⊕ h̃.
(9.8)

Then we can choose a pair of complementary La-

grangian subalgebras of g̃ by

ate quadratic form (a,b) =
∮ dz

z Tra(z)b(z)). This would involve
a construction somewhat like that above, with a more com-
plicated set of conditions on A and ε . The relation between
Manin triples of g and of g[z,z−1] is that a Manin triple of g

determines a Manin triple of g[z,z−1], namely g[z,z−1] = l̂0 ⊕ l̂∞,

with l̂0 = zg[z]⊕ l0, l̂∞ = z−1g[z−1]⊕ l∞.

l0 = n+⊕h+,

l∞ = n−⊕h−.
(9.9)

This gives a Manin triple for g̃.

9.3 The r-Matrix

Now we consider our four-dimensional theory on

R2 ×P1, where we use the 1-form dz/z on P1 and the

Manin triple just described. Let us place Wilson lines

at z1,z2 ∈ C×, and have them cross in the topological

plane as in Fig. 15. Suppose the Wilson lines are in

representations V ,W of g. We will show that the result

of this crossing will be the trigonometric R-matrix.

Let us first calculate explicitly what happens to

leading order in h̄. To leading order in h̄, the result

of the crossing Wilson lines is described by R = 1+ h̄r,
where r is a g̃⊗ g̃-valued meromorphic function. To

obtain r(z1,z2), we can pick a gauge and then repeat

the Feynman diagram computations of the previous

section. Instead let us here note that r(z1,z2)must sat-

isfy the following properties:

1. r(z1,z2) has a first-order pole at z1 = z2, and is regu-

lar elsewhere. The residue of this pole is h̄c where
c ∈ g̃⊗ g̃ is the Casimir element, dual to the cho-

sen invariant pairing. This is the same singular

behavior as in the rational case, since OPE singu-

larities are local and are not affected by global

topology.

2. At z1 = 0, r(z1,z2) is in l0 ⊗ l∞, and at z1 = ∞ it is in

l∞ ⊗ l0. This just reflects the corresponding con-

ditions on A.
3. r(z1,z2) is sent to −r(z1,z2) if we simultaneously

swap z1 and z2 and exchange the tensor factors

in g̃⊗ g̃. (This reflects the fact that the action of

the theory – and likewise the propagator and the

Feynman diagram used to compute r(z1,z2) – are

all odd under an orientation-reversing symme-

try of the topological plane that exchanges the

two oriented Wilson lines that are crossing. Note

that the rational r-matrix r = ta⊗ta/(z1−z2) has the

same property.)

4. Finally, r(z1,z2) is a function only of the ratio z1/z2,

since the differential ω = dz/z the conditions we

placed at 0 and ∞ are all invariant under the C×

action on C = C×.

There is a unique function satisfying these prop-

erties. To write it down, we observe that the Casimir

c = ∑a ta ⊗ ta ∈ g̃⊗ g̃ can be written in a unique way as a

sum

c = c(l0, l∞)+ c(l∞, l0),(9.10)

where c(l0, l∞) ∈ l0 ⊗ l∞, and similarly c(l∞, l0) ∈ l∞ ⊗ l0.
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Then the unique function r(z1,z2) satisfying the

desired conditions is

2πir(z1,z2) =
c(l0, l∞)
1− z1

z2

− c(l∞, l0)
1− z2

z1

.(9.11)

Let us write this out more explicitly. Let us choose a

basis X±
α , Hi of g, so that X±

α ∈ n± and Hi form a basis

of h. We assume that in this basis the chosen pairing

on g is such that 〈Xα+ ,Xβ−〉= δαβ , and 〈Hi,H j〉= δi j. Let

H̃i be the corresponding basis of the other copy h̃ of

the Cartan. Then, in this basis, we have

2πir(z1,z2)

=
1

1− z1
z2

∑
α

X+
α ⊗X−

α +
1

1− z1
z2

1
2 ∑(H j + iH̃ j)⊗ (H j − iH̃ j)

− 1
1− z2

z1

∑
α

X−
α ⊗X+

α − 1
1− z2

z1

1
2 ∑(H j + iH̃ j)⊗ (H j − iH̃ j)

=
1

1− z1
z2

∑
α

X+
α ⊗X−

α − 1
1− z2

z1

∑
α

X−
α ⊗X+

α

+
1
2

z2 + z1

z2 − z1

(
∑H j ⊗H j +∑ H̃ j ⊗ H̃ j

)
+

i
2 ∑(H̃ j ⊗H j −H j ⊗ H̃ j).

To evaluate what happens when Wilson lines in par-

ticular representations V , W of g̃ cross, one applies

the homomorphism

ρV ⊗ρW : g⊗g→ End(V )⊗End(W )(9.12)

to the function r(z1,z2) (where ρV , ρW indicate themaps

coming from the g-action on V and W ).

9.4 Specializing to sl2

As an example, let us consider the case that g =

sl2. Let us use the standard basis e, f , h of sl2 where

〈e, f 〉= 1 and 〈h,h〉= 2. In this basis,

2πir(z1,z2) =
1

1− z1
z2

e⊗ f − 1
1− z2

z1

f ⊗ e(9.13)

+
1
4

z2 + z1

z2 − z1

(
∑h⊗h+∑ h̃⊗ h̃

)
+

i
4 ∑(h̃⊗h−h⊗ h̃).

Let us see what this looks like if our representations

V , W are both the spin 1/2 representation of sl2, and

the basis element H̃ of the second copy of the Car-

tan of sl2 acts with constants s1, s2 in the two repre-

sentations. Let us choose a basis e+, e− of the spin

1/2 representation of sl2, and a corresponding basis

e+⊗e+, etc., of the tensor product V ⊗W . In this basis,

the matrix r(z1,z2) looks like

1
2πi


r++
++

r+−
+− r−+

+−
r+−
−+ r−+

−+

r−−
−−

 ,(9.14)

r++
++ = (1+ s1s2)

z2 + z1

z2 − z1
+ i(s1 − s2),

r+−
+− = (−1+ s1s2)

z2 + z1

z2 − z1
+ i(−s1 − s2),

r−+
+− =

4
1− z1

z2

,

r+−
−+ =

−4
1− z2

z1

,

r−+
−+ = (−1+ s1s2)

z2 + z1

z2 − z1
+ i(s1 + s2),

r−−
−− = (1+ s1s2)

z2 + z1

z2 − z1
+ i(s2 − s1).

(9.15)

If we set s1 = s2 = 0, we get the usual trigonometric

r-matrix for sl2, associated to the six-vertex model of

statistical mechanics. For comparison with the litera-

ture, one might want to symmetrize our r-matrix by

conjugation, replacing the off-diagonal components

by

r−+
+− =

4( z1
z2
)

1
2

1− z1
z2

= r+−
−+.(9.16)

without changing the diagonal entries.

In the above basis, the s-dependent terms only

contribute to the diagonal matrix elements of r. They
come in two groups. First, we have s1s2

z2+z1
z2−z1

times the

identity operator. This we can absorb into the def-

inition of the overall constant normalization factor

of the R-matrix. The remaining terms are nontrivial.

They reproduce the known generalization of the six-

vertex model to include horizontal and vertical fields

given by is1 and −is2 (see eqn. (B.5) in Appendix).

10. Elliptic Solutions of the
Yang-Baxter Equation

10.1 Preliminaries

In this section we discuss the elliptic case, where

the holomorphic curve C is an elliptic curve E. Since
the differential dz does not have any poles we do not

need to consider boundary terms like those encoun-

tered in section 9. However, there is an important

topological subtlety to consider.

In formulating the theory with gauge group G,
we begin by considering a topological G-bundle over

Σ×E. Our considerations leading to a solution of the

Yang-Baxter equation are local along Σ, so we can

take Σ = R2, in which case the choice of a topologi-

cal G-bundle V → Σ×E amounts to the choice of topo-

logical G-bundle V → E. However, in general there is

a choice to be made, because, for a connected group

G, a G-bundle over E is classified topologically by an

invariant40 ζ ∈ π1(G).

40 For example, for G = SO(3), this invariant is the second
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Therefore, in setting up the theory, we have the

freedom to make an arbitrary choice of the element

ζ . Once we make this choice, a classical solution will

be defined by a ∂̄ operator ∂z̄ + [Az̄, . . .] on V, modulo

gauge transformations. Such an operator gives a holo-

morphic structure to the bundle V and the gauge-

invariant data is precisely the holomorphic equiva-

lence class of this bundle.

The moduli space of classical solutions is there-

fore the moduli space of holomorphic G-bundles over
E with topological class ζ . The tangent space to the

moduli space is H1(E,ad(V)) (where ad(V) is the adjoint
bundle associated to V). Thus the condition of the the-
ory having a unique classical solution – and therefore

leading to straightforward perturbation theory and

a solution of the classical Yang-Baxter equation – is

equivalent to H1(E,ad(V)) = 0.
By Serre duality, H1(E,ad(V)) is dual to H0(E,ad(V))

for an elliptic curve E. Here H0(E,ad(V)) is the Lie alge-
bra of the automorphism group of a holomorphic GC
bundle V. Thus if and only if V has no infinitesimal

deformations, the Lie algebra of its automorphism

group will be trivial and V has only a finite group of

automorphisms. (Instead of Serre duality, we could

have invoked here the Riemann-Roch theorem, as we

did at a similar point in section 9.1.)

To find, therefore, an elliptic solution of the

Yang-Baxter equation (as opposed to its “dynami-

cal” generalization), we need to find a complex Lie

group G and a holomorphic G-bundle V → E such that

H0(E,ad(V)) = H1(E,ad(V)) = 0. However, the options

for such a G and V are very limited. The only cases

are G = PGLN = GLN/GL1 with N ≥ 2, with V chosen so

that ζ is a generator of the finite group π1(G) ∼= ZN .

For such G and ζ , there is a unique stable holomor-

phic vector bundle V, and it does obey H0(E,ad(V)) =
H1(E,ad(V)) = 0.

Thus elliptic solutions of the Yang-Baxter equa-

tion (or at least those that we can construct) are clas-

sified by a choice of N ≥ 2 – determining the group

PGLN – and a generator ζ of ZN , or equivalently a prim-

itive Nth root of 1. The automorphism group of such

a solution is the automorphism group of V, which in

all cases is ZN ×ZN .

10.2 Rigid Holomorphic Bundles

We will now describe concretely the rigid holo-

morphic bundles V →E associated a choice of N and ζ .

Stiefel-Whitney class w2(V). To define it in general, we ob-
serve that for G connected and p a point in E, the restriction
of V to E\p is trivial, so V can be constructed by gluing a
trivial bundle over E\p to a trivial bundle over a small disc
D containing p. Since D\p is homotopic to a circle, the gluing
function that is used here is classified up to homotopy by a
class ζ ∈ π1(G).

It is well-known that there exist pairs of N×N ma-

trices A, B obeying

AB = BAe2πi/N .(10.1)

Moreover, A and B are unique up to conjugation

and multiplication by scalars. For example, we can

pick A = diag(1,e2πi/N ,e4πi/N , . . . ,e2πi(N−1)/N), and B a ma-

trix that cyclically permutes the eigenspaces of A. In
the opposite direction, the equation shows that (after

possibly multiplying A by a scalar) the eigenvalues of

A are the Nth roots of 1, each with multiplicity 1. So A
can be put in the claimed form, and then it is not hard

to see that (up to conjugation and multiplication by a

scalar) B must be as claimed.

Now given ζ ∈ ZN , the matrices Aζ and B do not

commute, but obey Aζ B = BAζ exp(2πiζ/N). But this

means that Aζ and B commute if projected to PGLN . So

we can define a flat PGLN bundle V → E whose mon-

odromies around a pair of generators of π1(E) = Z⊕Z
are Aζ and B. Being flat, this bundle is automatically

stable and holomorphic.

The automorphism group of this bundle always

includes a subgroup ZN × ZN generated by A and B.
This is the full automorphism group if ζ is a generator

of ZN . (One may prove this starting with the fact that

if ζ is a generator of ZN , then the eigenvalues of the

monodromy Aζ are nondegenerate.) Accordingly, if ζ

is a generator, then H0(E,V) = H1(E,V) = 0, and we are

in the favorable situation that will lead to a solution

of the Yang-Baxter equation.

If ζ is not a generator, then this automorphism

group has a strictly positive dimension and likewise

the bundle V can be deformed (as a holomorphic bun-

dle and even as a flat one).

To conclude this section, we will describe ad(V) as
a holomorphic bundle over E. We consider Aζ and B
as matrices acting by conjugation on g, the Lie algebra

of PGLN . The eigenvalues are pairs µ , µ ′ of Nth roots

of 1, with each pair occurring exactly once except the

trivial pair µ = µ ′ = 1. Each joint eigenspace of Aζ and

B corresponds to a holomorphic line bundle over E,
and these lines bundles are all of order N because the

eigenvalues of Aζ and B are of order N. There are N2

equivalence classes of holomorphic line bundle over

E of order N. The trivial line bundle is of order N,
but there are N2 − 1 nontrivial ones, and ad(V)→ E is

the direct sum of all N2 −1 nontrivial line bundles of

order N. (Thus as a holomorphic bundle, ad(V) does
not depend on the generator ζ of ZN , though its Lie

algebra structure does depend on ζ .)

10.3 Specializing to N = 2

To achieve some minor simplifications, we will

specialize to N = 2. There is now only one choice of
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ζ . Accordingly, V is unique up to isomorphism. As

a holomorphic vector bundle over E, ad(V) is the di-

rect sum of the three non-trivial line bundles over E.
However, we would like to describe the Lie algebra

structure on ad(V ).

We identify E with the complex z-plane modulo

z ∼= z+ 1 and z ∼= z+ τ , where the complex number τ

is constrained to have Im τ > 0 and is the modulus

of E. A flat line bundle can be described by its mon-

odromies α and β under z → z+1 and z → z+ τ . A flat

line bundle is of order 2 if α2 = β 2 = 1. To describe the
3 non-trivial line bundles of order 2, we take

(αi,βi) =


(1,−1) for L1,

(−1,1) for L2,

(−1,−1) for L3,

(10.2)

Since (α1α2,β1β2) = (α3,β3), there is a natural isomor-

phism φ12 :L1⊗L2 ∼=L3. The same holds with any cyclic

permutations of the labels 123. The Lie algebra struc-

ture on V can be defined as follows. If s1 and s2 are

local sections of L1 and L2, then [s1,s2] is the local sec-

tion of L3 defined by

[s1,s2] = φ12(s1 ⊗ s2).(10.3)

This statement and its cyclic permutations define the

Lie algebra structure.

However, it may be useful to describe this struc-

ture in a slightly more explicit way. The matrices A
and B of section 10.2 commute as matrices acting on

the Lie algebra sl2. Their joint eigenfunctions, up to a

choice of basis, are the standard generators t1, t2, t3 of
sl2, obeying [t1, t2] = t3 and cyclic permutations. Thus

one might prefer to think of a section of ad(V) more

explicitly as ∑
3
i=1 siti, where si is a section of Li and ti is

an element of a standard basis of sl(2). In this descrip-

tion, the commutator of s = ∑
3
i=1 siti with s′ = ∑

3
i=1 s′iti is

s′′ = ∑
3
i=1 s′′i ti where

s′′3 = φ12(s1 ⊗ s′2 − s2 ⊗ s′1),(10.4)

and cyclic permutations. Thus, one can think of

eqn. (10.3) as a formula for the commutator of s1t1
with s2t2.

Now let us determine the lowest order nontrivial

contribution to the r-matrix. It will be a (meromor-

phic) section of41 ad(V)�ad(V) over Σ×Σ. This section

can be determined by reasoning similar to what we

used in section 9.3, though the details are simpler.

A priori, a general form of r would be r(z1,z2) =

∑
3
i, j=1 wi, j(z1,z2)ti ⊗ t j, where wi, j(z1,z2) is a section of

41 Here ad(V)�ad(V) is simply the tensor product of the ad(V)
bundle over the first copy of Σ with the ad(V) bundle over the
second copy; if πi : Σ×Σ → Σ, i = 1,2 are the two projections,
then ad(V)� ad(V) = π∗

1 (ad(V))⊗π∗
2 (ad(V)).

Li�L j. However, the Z2×Z2 automorphism group en-

sures that wi, j = 0 for i 6= j. Thus we reduce to r(z1,z2) =

∑
3
i=1 wi(z1,z2)ti ⊗ ti. Here the functions wi(z1,z2) are de-

termined by the following (somewhat redundant) set

of conditions:

1. r(z1,z2) has a first-order pole at z1 = z2, with

residue h̄c= h̄∑k tk⊗tk as in the rational case, since

OPE singularities are local.

2. r(z1,z2) =−r(z2,z1) (we need not combine this with

an exchange of the two tensor factors of sl2 ⊗ sl2,

since r = ∑i witi ⊗ ti is invariant under this switch).
3. Finally, r(z1,z2) is a function only of z1 − z2, be-

cause of the translation symmetry of the elliptic

curve E and the differential ω = dz.

The functions wk(z1,z2) that satisfy these condi-

tions actually have a simple interpretation. Since the

canonical bundle K of E is trivial, its possible square

roots K1/2 are line bundles of order 2, and thus we

can think of Lk, for k = 1,2 or 3, as one of the three

even spin bundles of Σ, that is, as representing a pos-

sible K1/2. Let ψk be a (holomorphic) fermion field on

Σ valued in this spin bundle, with action

I =
1

2π

∫
E

ψk∂̄ψk.(10.5)

Then the two-point function 〈ψk(z1)ψk(z2)〉 satisfies

precisely the conditions of the functions wk(z1,z2).

With or without this interpretation, it is straight-

forward to write a formula for wk:

wk(z1,z2) = ∑
n,m∈Z\{(0,0)}

αn
k β m

k

z1 − z2 −n−mτ
.(10.6)

The factors of αn
k β m

k ensure that wk(z1,z2) is a section

of Lk �Lk, and the desired properties are all obvious.

We have defined wk so that for z1 → z2 it behaves as

1/(z1 − z2). Thus, taking the normalization from the

rational case, the r-matrix is

r = h̄
3

∑
k=1

wk(z1 − z2)tk.(10.7)

This coincides with the known expression in the lit-

erature, see e.g. [37, p. 539].

11. The Dynamical Yang-Baxter
Equation

11.1 Reduction to an Abelian Subgroup

Our goal in this section is to take a first look at

the case that G and C and the other relevant choices

are such as to lead to a moduli space of classical solu-

tions, not just a single isolated classical solution. This

makes matters fundamentally more difficult and our

analysis here will be preliminary.
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A basic case to bear in mind is that C is an ellip-

tic curve E, G is simple, and the topological invari-

ant ζ introduced in section 10.1 vanishes, so that the

G-bundle V →E is topologically trivial. Under this con-

dition, the structure group of a stable holomorphic

G-bundle V → E reduces always to the (complex) max-

imal torus T ⊂ G. The moduli space M of stable holo-

morphic G-bundles over E is then simply the corre-

sponding moduli space M′ for T , divided by the Weyl

group W : M = M′/W. The automorphism group of

a generic stable holomorphic G-bundle is simply T ,
though the symmetry is enhanced at points in M′

at which the Weyl action is not free. For our pur-

poses, we can just identify the moduli space of clas-

sical solutions with M′ and ignore the Weyl group

action and possible symmetry enhancement. (That is

because we will eventually impose a constraint that

keeps us away from special points.)

For C an elliptic curve, the story is similar42 for

any ζ , with T replaced by another torus Tζ ⊂ T , M′ re-

placed with the moduli space M′
ζ
of Tζ -bundles over

E, and the Weyl group replaced by a subgroup. Rather

than explain these details, we will simply continue

with the case that ζ = 0.
A complex line bundle over E can be represented

by a very simple gauge field Az̄ = b, with b a complex

constant. Here b is subject to some equivalences, but

they will not be important in what follows. Similarly,

for gauge group G, a classical solution whose struc-

ture group reduces to T can be represented by Az̄ = b,
where now b is a t-valued constant. For example, if

G = SLN , this means that Az̄ = diag(b1,b2, . . . ,bN), with

∑
N
i=1 bi = 0. In particular, this classical solution is in-

variant under the translation symmetries of E.
In general in nonabelian gauge theory with gauge

group G, when we expand around a classical solu-

tion whose structure group reduces to a proper sub-

group H of G, we should look for a low energy descrip-

tion in the form of an H gauge theory. In the present

case, we have the further fact that to study the Yang-

Baxter equation or its analog, we can take the topo-

logical plane Σ to be simply a plane R2, and thus we

work on R2 ×E where E is compact and R2 is not. In

this situation, in quantum field theory in general, we

can look for a low energy effective field theory on

R2. Our present problem is actually diffeomorphism-

invariant in the R2 direction, so the low energy de-

scription is really a topological field theory.

Combining these facts, we can aim to find an ef-

fective description in the form of a two-dimensional

topological gauge theory with structure group T . To
find this description at least at a formal level, we

make use of the translation symmetry of the clas-

sical solutions and throw away “massive modes”

42 More exotic examples with moduli, such as the case l0 +
l∞ 6= gmentioned in section 10.1, might be more complicated.

that lack this symmetry. Likewise, we keep only the

t-valued part of the four-dimensional gauge field A.
This means that Az̄ is reduced to the t-valued field b,
which now depends on coordinates x and y of R2 but

not on z and z̄, and likewise the rest of the gauge field,

namely Axdx+Aydy, becomes a purely two-dimensional

gauge field that we will denote simply as A.
Specializing the underlying action (3.3) to this sit-

uation, we get an effective twodimensional abelian ac-

tion

S =−κ

∫
Σ

TrbF,(11.1)

where Tr is the restriction to t of the quadratic form

of the same name on g, F = dA is the two-dimensional

gauge curvature, and κ = iImτ/π h̄. This is the action

that we will use somewhat formally in analyzing the

present problem.

The reader may object that in quantum field the-

ory in general, it is not correct to simply set the mas-

sive modes to zero, as we have done. Instead, one

has to integrate them out, producing in general cor-

rections to the effective action of the fields that are

retained in the effective description. Moreover, if we

wish to include Wilson loops and their crossings, we

have to integrate out the massive fields in the pres-

ence of those operators. All this is true, but the im-

plications for our problem are limited because two-

dimensional diffeomorphism symmetry severely con-

strains what couplings can be generated by integrat-

ing out massive modes. If Σ is not R2 but is a curved

two-manifold with scalar curvature R, then it is pos-

sible to generate a coupling
∫

Σ
d2x

√
gR f (b), for some

function f (b). One should expect such a term, but it

will not be important for our purposes because in

analyzing the crossing of line operators, one can as-

sume that Σ is flat. In the presence of line operators,

integrating out the massive modes will generate the

framing anomaly of g. That is an important effect,

but we are already familiar with it and will not dis-

cuss it further in the present section. Finally, inte-

grating out the massive modes certainly affects the

R-matrix that governs crossing of two line operators.

But here we will just discuss the formal properties of

this R-matrix, and will not try to calculate it. So we

will not have to explicitly discuss the contribution of

the massive modes to the R-matrix.

If A is regarded as a two-dimensional gauge field

with structure group a compact torus T , and similarly

b is real-valued, taking values in the corresponding

Lie algebra tc, then eqn. (11.1) becomes the action of

a simple but much-studied two-dimensional topolog-

ical field theory, often called BF theory.43 We are not

43 In that context, κ is real, assuming we want a unitary the-
ory. In the context of reduction from the four-dimensional
theory, κ is a complex number, since h̄ is complex.
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quite in that situation, since in eqn. (11.1), b, Ax, and Ay

are all complex-valued fields and the action is a holo-

morphic function of those fields. Moreover, we are in

a situation in which there is a nontrivial moduli space

of classical solutions (parameterized locally by b ∈ t),

so if we want to define correlation functions, we can-

not just do perturbation theory in a formal way; we

need some recipe for what to do with the moduli. One

point of view that may seem somewhat formal but

that seems to provide a satisfactory framework for

our considerations below (for instance, the derivation

of the dynamical Yang-Baxter equation makes sense

in this framework) is to view the theory as a machine

that generates a differential form on themoduli space

of classical solutions, without worrying about how to

integrate it. Alternatively, it might be possible to de-

fine an operator that fixes the values of the moduli.

This idea is explained at the end of section 11.3. Fi-

nally, in principle one may use the D4-NS5 system to

define a nonperturbative integration cycle for the un-

derlying four-dimensional theory (3.3). Specializing

this to the present situation, one would then learn in

principle what to do with the moduli in the effective

theory (11.1).

In practice, we will simply draw inspiration from

conventional two-dimensional BF theory.44 Based on

this, we will suggest a simple procedure to make con-

tact with the dynamical Yang-Baxter equation [21, 22,

23, 24]. Given that we assume ζ = 0, the solution of the
dynamical Baxter equation that arises in this way will

have T as a group of automorphisms, since a generic

classical solution with ζ = 0 has automorphism group

T , and we will be avoiding the exceptional cases.

11.2 BF Theory and the Dynamical Yang-Baxter

Equation

The classical equation of motion of the gauge

field A in BF theory, in the absence of line operators,

simply says that db = 0. Thus b is simply constant.

What happens in the presence of a Wilson line op-

erator? To start with, we take the gauge group to be

G =U(1). An irreducible representation of U(1) is de-
termined by the choice of an integer n, the “charge.”

The Wilson operator supported on a curve K for the

representation of charge n is exp(in
∫

K A). Including this
factor, the argument of the path integral becomes

exp(iS)exp(in
∫

K A) = exp(iS′), with

S′ =−κ

∫
Σ

TrbF +n
∫

K
A.(11.2)

In other words, the Wilson operator for U(1) effec-

tively contributes an additional term to the classical

action. The classical equation ofmotion now becomes

44 The purely two-dimensional analysis that follows is simi-
lar to section 2.5 of [38].

κdb+nδK = 0,(11.3)

where δK is a one-form delta function Poincaré dual

to K. The import of this is that b′ = κb jumps by n in

crossing K from right to left (Fig. 32(a)).

Now we can consider the case of two Wilson oper-

ators crossing. But in doing so, we may as well gener-

alize45 beyond a simple crossing of two line operators

of charges n1 and n2. Since we are discussing a purely

two-dimensional theory, any crossing really does in-

volve a physical intersection of the two line operators,

and charge exchange is possible. In general, we can

consider a case with charges n1 and n2 coming in and

charges n3 and n4 going out, the only constraint being

that n1 +n2 = n3 +n4. The behavior of b′ = κb is then as

sketched in Fig. 32(b).

Now we consider the case of two-dimensional BF
theory with a nonabelian gauge group. First let us take

the gauge group to be SU(2). As long as the field b is

nonzero, the gauge symmetry is spontaneously bro-

ken from SU(2) to U(1). As a result, apart from possi-

ble subtleties when b vanishes, we can aim for a de-

scription of BF theory of SU(2) in terms of BF the-

ory of U(1). It is actually possible (see section 2.3 of

[39]) to compute rather precisely the effective U(1)
action that arises from integrating out the charged

modes.46 We omit this, as the results are not very es-

sential for us, as explained in section 11.1. (However,

we describe some aspects of a precise quantum treat-

ment in section 11.3.) What is important for us is that

a line operator of the SU(2) theory can be written as a

sum of line operators of the effective U(1) theory. For
Wilson line operators, this decomposition is fairly ev-

ident. A Wilson operator associated to an irreducible

representation ρ of SU(2) decomposes in the U(1) de-
scription as a sum of line operators corresponding to

the weight spaces of ρ . Let us denote a Wilson oper-

ator for the representation ρ of SU(2) as Wρ and one

for the charge n representation of U(1) as W ′
n. Then,

for example, if ρ is the two-dimensional representa-

tion of SU(2), it decomposes under U(1) as the sum of

one-dimensional weight spaces of charges 1 and −1,
so the corresponding formula for Wilson operators is

Wρ =W ′
1 +W ′

−1.

Now we can reconsider Fig. 32(b), with a slightly

different interpretation. We consider the crossing of

45 The purpose of discussing this generalization here is
to give the simplest possible motivation for the picture of
Fig. 32(b). A similar generalization is not possible in the con-
text of the four-dimensional theory, assuming that the lines
that are crossing have different values of the spectral param-
eter. Such a generalization is possible in two-dimensional BF
theory with a nonabelian gauge group, though we will not
need that case.
46 The relevant procedure also has an analog in three-
dimensional Chern-Simons theory on a Seifert manifold [40].
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Figure 32. (a) The field b′ = κb is constant away from Wilson operators and jumps by n in crossing a charge n
Wilson operator from right to left. In the example shown, b′ jumps from µ −n to µ . (b) Two Wilson operators of

charges n1 and n2 come in to this intersection and two of charges n3 and n4 go out (here n1 +n2 = n3 +n4). The field

b′ jumps as shown.

two Wilson operators of SU(2) in some representa-

tions ρ and ρ ′. On either of the two Wilson opera-

tors, on either side of the crossing, we can replace

Wρ or W ′
ρ by a sum of U(1) Wilson operators, labeled

by the weight spaces in ρ or ρ ′. Thus the integers

n1, . . . ,n4 in Fig. 32(b) are now not arbitrary but de-

note weights of ρ or ρ ′. In passing through the point

at which the two Wilson operators cross, the charges

obey n1 + n2 = n3 + n4 as before, because the effective

description has U(1) symmetry.

The case of a compact nonabelian gauge group

G of any rank r is similar. Away from special values

of b, the G gauge symmetry is broken to the maximal

torus T . The charges of an irreducible representation

of T are now an r-plet of integers ~n. Likewise b′ = κb
becomes an r-plet ~b′. Its jumping in crossing a Wil-

son operator is ~b′ → ~b′ +~n, just as before. One detail

is slightly different. For r > 1, the weight spaces of

an irreducible representation may have multiplicity

greater than 1. (For example, the adjoint representa-

tion of SU(3) has six weight spaces each of multiplic-

ity 1 and one of multiplicity 2.) Accordingly, when we

write Wρ as a sum of Wilson operators of an effective

T gauge theory, some charges may appear more than

once. So in general away from crossings, an effective

Wilson operator of the low energy theory carries some

additional labels in addition to its “charges” ~n.
Finally we come to the main point. In actually cal-

culating a path integral appropriate to the situation

of Fig. 32(b), we would run into a factor associated to

the crossing. This factor would depend on the charges

that label the incoming and outgoing lines in the ef-

fective abelian theory and on the parameter µ that de-

termines the labels of the bulk regions in the figure.

We can denote this factor as a generalized R-matrix el-

ement Rn3n4
n1n2(µ). (For simplicity, in writing the R-matrix

in detail as a matrix, we take G = SU(2) so that each

line is simply labeled by an integer.)

Having defined the generalized R-matrix of two-

dimensional BF theory, one can ask if it obeys a gen-

eralized Yang-Baxter equation, now with bulk labels

as well as labels for line segments between crossings

(Fig. 33). However, there is no reason to expect this.

In a purely two-dimensional theory, one has to pass

through a singularity to interpolate between the left

and right hand sides of the figure. As far as we know,

the generalized Yang-Baxter equation is not satisfied

in this situation.

Hopefully the reader can anticipate what comes

next. We consider not a purely two-dimensional

BF theory, but an effective abelian BF theory in

two dimensions that arises as in the discussion of

eqn. (11.2) from a four-dimensional theory on R2 ×E
with complex gauge group G and with ζ = 0. A Wilson

operator is now labeled by a representation ρ of G
(or more generally by a representation of a quantum

deformation of g[[z]]) and also by a spectral parame-

ter z ∈ E. Between crossings, a Wilson operator is fur-

ther labeled by a basis vector of ρ . The bulk parame-

ter b′ = κb jumps in crossing a Wilson operator of the

low energy theory. Now, we associate to a crossing a

generalized R-matrix element Rn3n4
n1n2(z1 − z2; µ). The dif-

ference from before as that as long as z1 6= z2, there is

no singularity associated to a crossing. Therefore the

two sides of Fig. 33 (with spectral parameters now in-

cluded) are equivalent. The equivalence is known as

the dynamical Yang-Baxter equation.

11.3 Quantum Treatment

We have treated the parameter b′ classically, start-
ing with purely two-dimensional BF theory. Actually,

the locally constant value of b′ has a natural meaning

in the quantum theory.

Let us ask what are the quantum states when BF
theory – to begin with for G =U(1) – is quantized on a
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Figure 33. The dynamical Yang-Baxter equation. Both line segments and bulk regions are labeled. A line segment

is labeled by a basis vector in a representation of G attached to that line, and a bulk region is labeled by a weight

of G. The picture is drawn here for G = SU(2), so that a basis vector is determined by its integer weight.

Two-dimensional BF theory has all the ingredients to draw such a picture (without spectral parameters) but there

is no reason to expect this equivalence to hold. When we go to four dimensions, the lines are labeled by spectral

parameters in the familiar way (as shown here) and the usual arguments show an equivalence between the two

pictures.

circle S. A physical state is a gauge-invariant function

of the connection A restricted to S. Such a function is

Ψn = exp(in
∮

S A) for some integer n. On the other hand,

b′ is the momentum conjugate to A, so (for p a point

in S), b′(p) can be identified with −iδ/δA(p). Explicitly
acting with this on Ψn, we find that b′(p)Ψn = nΨn, for

any p, independent of p.
Quantum mechanically, the constant value of

b′(p) should be interpreted as an eigenvalue of this

operator, and (for U(1)) the eigenvalues are integers,

as we have just seen. We can also understand in this

language why crossing a Wilson line operator has the

effect of shifting b′ by an integer. For example, we

can regard the Wilson line operator Wm = exp(im
∮

S A)
as an operator that acts on physical states on S. Since
WmΨn =Ψn+m, acting withWm shifts the value of b′ by m.

Now let us repeat this analysis for a compact but

possibly nonabelian gauge group G. Of course, the

analog of Ψn is what we might call Ψρ , the trace of

the holonomy around S in the representation ρ :

Ψρ = Trρ U, U = Pexp

(∮
S

A

)
.(11.4)

However, we would prefer to express this in a lan-

guage that is better suited for the reduction to an ef-

fective abelian description. For this, we observe that

a gauge-invariant function of A is precisely a function

of the holonomy U that is invariant under conjuga-

tion. In other words, gauge-invariant functions of A

are functions on G/G, where G acts on itself by con-

jugation.

The quotient G/G is the same as T/W, the quo-

tient of the maximal torus T by the Weyl group W.

This might lead one to expect that gauge-invariants

functions of A would correspond to Weyl-invariant

functions on T , but actually they correspond in a nat-

ural way to Weyl anti-invariant functions. We say that

a function on T is Weyl anti-invariant if it is odd un-

der each of the elementary reflections that generate

W. The association of a representation ρ of G with

a Weyl anti-invariant function on T is given by the

Weyl character formula; the Weyl anti-invariant func-

tion corresponding to ρ is the numerator of the usual

Weyl character formula for ρ . Let us just explain what

this means for SU(2). A maximal torus of SU(2) is

the U(1) subgroup diag(eiθ ,e−iθ ). The character of the

n-dimensional representation ρn of SU(2) is

ei(n−1)θ + ei(n−3)θ + · · ·+ e−i(n−1)θ =
sin(nθ)

sinθ
.(11.5)

The Weyl anti-invariant function corresponding to ρn

is the numerator, or

sin(nθ) =
1
2i
(einθ − e−inθ ).(11.6)

The functions sin(nθ), n = 1,2,3, . . . are a basis for

the Hilbert space of Weyl anti-invariant functions on

T . This is the Hilbert space of BF theory of SU(2),
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quantized on a circle. In this description, we can

conveniently see the effective U(1) description of

SU(2) BF theory. In this effective U(1) description, the
holonomy is eiθ and b′ is the canonical momentum

b′ = −i∂/∂θ . We see that sin(nθ) is not an eigenstate

of b′ but rather is a linear combination of eigenstates

einθ and e−inθ with eigenvalues ±n. These values are

Weyl conjugate, since the Weyl group of SU(2) is Z2,

acting as −1 on the Lie algebra t of T . The implication

is that b′ should not really be regarded as an integer

(or a real number, as in the classical description) but

as a Weyl orbit of nonzero integers. It is fairly natural

to pick from each Weyl orbit n, −n the positive repre-

sentative, and if we do this then the values of b′ in the

effective abelian description are positive integers. For

any compact simple G, the analog is that the values

of b′ are dominant weights in the interior of a positive

Weyl chamber.

Now let us see what happens to the value of b′ in
crossing a Wilson operator, say the operator Wm as-

sociated to the m-dimensional representation ρm. The

character of ρm is Fm(θ) = ei(m−1)θ + · · ·+e−i(m−1)θ . Cross-

ingWm has the effect ofmultiplying the quantum state

by Fm(θ). We have

Fm(θ)sin(nθ) = ∑
j=−m+1,−m+3,...,m−1

sin((n+ j)θ),(11.7)

and if m ≤ n, then n+ j is always positive. This means

that in crossing Wm, b′ can jump by j for any j =
−m+1,−m+3, . . . ,m−1, that is, any weight of the rep-

resentation ρm. This is the result that was claimed in

section 11.2. For m> n, it is possible for n+ j to be non-
positive, and some terms on the right hand side of

eqn. (11.7) vanish or cancel. This leads to some mod-

ification of the formalism when b′ is not large.
These subtleties do not really affect the discus-

sion in section 11.2 very much. In that discussion, b′

was treated as a generic real number, but it would not

have been much different to regard b′ as a generic

positive integer, where here “generic” is equivalent

to “sufficiently large.” Thus, in studying any concrete

collection of Wilson operators, associated with repre-

sentations of dimensions m1, . . . ,ms, the reasoning in

section 11.2 is valid if b′ is sufficiently large compared

to those dimensions.

This quantum treatment of purely two-

dimensional BF theory, however, highlights what is

missing in our understanding of the four-dimensional

theory. We certainly do not have available a quantum

treatment that would identify definite allowed values

of b′ in the theory obtained by compactification from

four dimensions. In fact, since the four-dimensional

theory is a somewhat formal construction with a

holomorphic action, it is not clear to what extent one

should expect to have such a quantum treatment.

Neither – at least at first sight – do we wish to

integrate over the possible values of b′, as a natural

cycle for such an integral does not present itself. In

section 11.1, we already mentioned several possible

ways to deal with this issue. Here we just elaborate

on one possibility. In purely two-dimensional BF the-

ory on a two-manifold Σ, it is fairly natural to pick a

point p ∈ Σ, not in the support of any Wilson opera-

tor, and specify the value of b′ there. The values of

b′ elsewhere would then be determined by the cross-

ing rules of section 11.2. It is tempting to believe that

a similar constraint should be imposed in the four-

dimensional theory, to spare ourselves from having

to sum or integrate over b′. Moreover, a constraint set-

ting b′ to a generic value at some particular point p,
when supplemented with the crossing rules, will en-

sure that b′ never takes a value at which the automor-

phism group is enhanced and the effective abelian

description breaks down. However, we have not seri-

ously tried to study a quantum field theory operator

that would impose this constraint.
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Appendix A. Rational R-Matrix for SON

In this Appendix we discuss the rational R-matrix

for the fundamental representation of G = SON , ex-

tending the similar discussion for fundamental and

anti-fundamental representations for G=GLN (or SLN )

in section 3.5. While the result in itself is known since

the old work of [6], in the framework of this paper it

is an illuminating exercise to check the consistency

between unitarity, crossing and the framing anomaly.

Let us consider the R-matrix R(z1−z2) : V ⊗V →V ⊗
V for the fundamental representation V of G = SON .

Since this representation is equivalent to its own con-

jugate, a Wilson line in this representation carries no

orientation.
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Figure 34. Graphical representation for the Yang-Baxter equation for the SON R-matrix given in eqn. (A.1). Here

we used the shorthand notation Xi j = X(zi − z j) and Yi j = Y (zi − z j), with zi associated with the i-th line. The two

equations here give eqns. (A.3).

As we discussed in the main text, the rational R-

matrix has G as a symmetry. Consequently, the R-

matrix is constrained to be of the form

Ri′ j′

i j (z) = δ
i′
i δ

j′

j E(z)+δ
j′

i δ
i′
j F(z)+δi jδ

i′ j′G(z),(A.1)

with three unknown functions E(z), F(z) and G(z). In

this literature this is also written as

Ri′ j′

i j (z) = E(z)I +F(z)P+G(z)Q,(A.2)

where P is a permutation, and Q =t P its transposi-

tion. Compared to the case of GLN in eqn. (3.22), we

here have one extra structure δi jδ
i′ j′ consistent with

G-symmetry.

The Yang-Baxter equation constrains only the ra-

tios of the three functions: X(z) = F(z)/E(z), Y (z) =

G(z)/E(z). As we can see from Fig. 34, the resulting

constraints takes precisely the same form as in (3.23)

and (3.26), where the role of U(z) and W (z) are played

by X(z) and Y (z) respectively:

X(z1 − z3)X(z2 − z3)+X(z1 − z2)X(z1 − z3)

= X(z1 − z2)X(z2 − z3),

Y (z1 − z3)X(z2 − z3)

= Y (z1 − z2)Y (z1 − z3)+Y (z1 − z2)X(z2 − z3).

(A.3)

By the similar reasoning as before we obtain

X(z) =
h̄
z
, Y (z) =− h̄

z− ch̄
,(A.4)

where c is some undetermined constant.

The undetermined constant c is constrained by

unitarity (recall eqn. (2.3)), which gives the relation

(see Fig. 34; note the difference from eqn. (3.28)):

NY (z)Y (−z)+Y (z)+Y (−z)+X(z)Y (−z)+X(−z)Y (z) = 0.
(A.5)

This leads to

X(z) =
h̄
z
, Y (z) =− h̄

z+ N−2
2 h̄

.(A.6)
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Figure 35. Graphical representation for the unitarity relation for the SON R-matrix given in eqn. (A.1), with

z = z1 − z2. The factor of N comes from the color factor for the bubble in the first term of the equation.

These two functions satisfy

X

(
z− h̄

N −2
2

)
= Y (−z),(A.7)

which is consistent with the crossing and framing

anomaly, since N − 2 is the dual Coxeter number of

SON .

We can also try to determine the overall factor

E(z). The diagonal component of the unitarity relation

gives

E(z)E(−z)+F(z)F(−z) = E(z)E(−z)(1+X(z)X(−z)) = 1,
(A.8)

or equivalently

E(z)E(−z) =
z2

z2 − h̄2 .(A.9)

This solution can easily be solved, for example, by

E(z) =
z

z± h̄
.(A.10)

However, this is actually not the solution we want,

since we also want to impose the condition that this

factor does not spoil the unitarity relation:

E

(
z− h̄

N −2
2

)
= E(−z), or E

(
−h̄

N −2
2

− z

)
= E(z).

(A.11)

The minimal solutions for (A.9) and (A.11) are

E(z) =
Q±h̄,−h̄(N−2)/2(z)

Q0,−h̄(N−2)/2(z)
,(A.12)

where the function Qα,β (z), satisfying the functional

identities

Qα,β (z)Qα,β (−z) =
1

(z+α)
2β

(−z+α)
2β

, Qα,β (z) = Qα,β (β − z),

(A.13)

is written as

Qα,β (z) =
Γ( z+α

2β
)Γ(−z+α+β

2β
)

Γ( z+α+β

2β
)Γ(−z+α+2β

2β
)
.(A.14)

Note that both expressions in (A.12), with either plus

or minus sign, are minimal. In the literature, one is as-

sociated with the S-matrix for the O(N) sigma model,

while another to that for the Gross-Neveu model [6].

To study the behavior at h̄ ∼ 0, let us first note

that

Qγδ h̄,δ h̄(z) =
Γ( z

2h̄δ
+ 1

2 )Γ(−
z

2h̄δ
+ 1+γ

2 )

Γ( z
2h̄δ

+ 1+γ

2 )Γ(− z
2h̄δ

+ 2+γ

2 )
.(A.15)

From the Stirling’s formula

logΓ(z+ c)∼ z logz− z+ c logz− 1
2

logz(A.16)

+
1
2

log2π +
c2 − c

z
+O

(
1
z2

)
(c being constant), we obtain

Qγδ h̄,δ h̄(z)∼ e− log z
2h̄δ

−h̄ (γ2−2γ−1)δ
2z +O(( h̄

z )
2),(A.17)

and hence we learn that the overall factor has a per-

turbative expansion in powers of h̄/z, starting with

identity:

E(z) =
Q±h̄,−h̄(N−2)/2(z)

Q0,−h̄(N−2)/2(z)
(A.18)

=

{
1− N2−8

4(N−2)
h̄
z +O(( h̄

z )
2) (plus sign),

1− N2−8N+8
4(N−2)

h̄
z +O(( h̄

z )
2) (minus sign).

In perturbation theory, these formulas appear satis-

factory, but nonperturbatively, one would like to un-

derstand the meaning of the poles of the function

E(z). As remarked in the introduction, the D4-NS5 sys-

tem is likely to provide a nonperturbative framework
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in which such questions could be addressed, but we

will not pursue that in the present paper.

We can repeat a similar exercise for the gauge

group G= Sp2N . We again find that the constraint from

the Yang-Baxter equation and unitarity are consistent

with crossing symmetry and the framing anomaly,

with the dual Coxeter number given by N +1.

Appendix B. Examples of
Trigonometric and
Elliptic R-Matrix

In section (3.5) and appendix A, we discussed sev-

eral examples of rational R-matrices. In this appendix,

we present examples of trigonometric and elliptic

R-matrices known in the literature, for the simplest

case of the fundamental representation of G= SL2. We

verify that their classical limit reproduces the classi-

cal r-matrices discussed in the sections 9.4 and 10.3.

The R-matrices below are quasi-classical, and are nor-

malized to be Rh̄=0 = I, which is the canonical normal-

ization in gauge theory. If expanded in perturbation

theory, they lead to r-matrices that we computed in

sections 9 and 10.

As discussed in appendix A the complete under-

standing of the overall factor of the R-matrix goes be-

yond the perturbative analysis of this paper. Expres-

sions below should be understood modulo an overall

scalar factor ambiguities for the R-matrix, and hence

modulo the shift by identity matrices for the classical

r-matrix.

B.1 Rational

As discussed in the main text, there are three

types of quasi-classical R-matrix known in the liter-

ature: rational, trigonometric and elliptic. Let us be-

gin with the rational R-matrix, which we already dis-

cussed in section 3.5:

Rrational
h̄ (z) =

(
z+

h̄
2

)
I + h̄c = zI + h̄P,(B.1)

where z∈C, c= (~σ ·~σ)/2 is the quadratic Casimir (4.12)

for g= sl2, and P = c+ I/2 is the permutation operator

of the two spins.

This R-matrix has manifest SL2 symmetry. Choos-

ing a basis, the R-matrix reads

Rrational
h̄ (z) =



| ↑↑〉 | ↑↓〉 | ↓↑〉 | ↓↓〉

| ↑↑〉 z+ h̄

| ↑↓〉 z h̄

| ↓↑〉 h̄ z

| ↓↓〉 z+ h̄

.(B.2)

Note that up to normalization only the ratio of z and h̄
enters into this solution, as expected on dimensional

grounds.

B.2 Trigonometric Solution

The trigonometric solution is

Rtrig
h̄ (z) =


a(z, h̄)

b(z, h̄) c(z, h̄)
c(z, h̄) b(z, h̄)

a(z, h̄)

 ,(B.3)

where

a(z, h̄) = sinh(w+ h̄),

b(z, h̄) = sinh(w),

c(z, h̄) = sinh(h̄),

(B.4)

with z = ew ∈ C× and q := eh̄.

In terms of the quasi-classical parameter h̄ and

the cylindrical coordinate w, this R-matrix is written

in terms of sine functions, as the name “trigonomet-

ric” suggests. Whenwe impose unitarity, this R-matrix

should be multiplied by a suitable overall normaliza-

tion factor.

The six-vertex model allows for an integrable

deformation, corresponding to an inclusion of the

“electric field” h, v, in vertical and horizontal direc-

tions:

Rtrig
h̄,θ (z)

(B.5)

=


a(z, h̄)eh+v

b(z, h̄)e−h+v c(z, h̄)
c(z, h̄) b(z, h̄)eh−v

a(z, h̄)e−h−v

 .

The parameters h, v correspond to s1, s2 in section 9.4:

h1 = is1, v =−is2.

When this R-matrix is used to construct a model

in lattice statistical mechanics in the usual way,

its six non-zero matrix elements become the Boltz-

mann weights for six allowed configurations at a ver-

tex. The model accordingly is generally called the

six-vertex model. Among the six matrix elements

of the R-matrix, two combinations are inessential;

one parameter is the overall normalization of the

R-matrix and one can be removed by conjugation.

This leaves four parameters, which we have here de-

noted z, h̄ and h, v. The one-dimensional quantum

spin chain associated with this model is the XXZ spin

chain.
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B.3 Elliptic Solution

The elliptic R-matrix has a new parameter, namely

the modulus of the torus τ :

Relliptic
h̄,τ (z) = eiπ h̄F(z,τ)

(B.6)

×


a(z,τ, h̄) d(z,τ, h̄)

b(z,τ, h̄) c(z,τ, h̄)
c(z,τ, h̄) b(z,τ, h̄)

d(z,τ, h̄) a(z,τ, h̄)

 ,

where we defined

a(z,τ, h̄) =
ϑ0(π h̄|2τ)

ϑ0(0|2π)

ϑ1(π(z+ h̄)|2τ)

ϑ1(πz|2τ)
,

b(z,τ, h̄) =
ϑ0(π h̄|2τ)

ϑ0(0|2π)

ϑ0(π(z+ h̄)|2τ)

ϑ0(πz|2τ)
,

c(z,τ, h̄) =
ϑ1(π h̄|2τ)

ϑ0(0|2π)

ϑ0(π(z+ h̄)|2τ)

ϑ1(πz|2τ)
,

d(z,τ, h̄) =
ϑ1(π h̄|2τ)

ϑ0(0|2π)

ϑ1(π(z+ h̄)|2τ)

ϑ0(πz|2τ)
.

(B.7)

Here ϑ0(z|τ) and ϑ1(z|τ) are Jacobi theta functions

ϑ0(z|τ) =
∞

∏
n=1

(1−2e(2n−1)πiτ cos2z+ e(4n−2)πiτ)(1− e2nπiτ),

ϑ1(z|τ) = 2eπiτ/2 sinu
∞

∏
n=1

(1−2e2nπiτ cos2z+ e4nπiτ)

× (1− e2nπiτ),

(B.8)

and F(z,τ) is a normalization factor on which we will

comment later. Note also that, for a better match with

the main text, we have used the Jacobi theta function

with elliptic modulus 2τ (not τ); care is need for com-

parison with the literature.

This R-matrix has eight non-zero matrix elements

and represents the eight-vertex model solved by Bax-

ter [5]. The associated one-dimensional quantum spin

chain is the XYZ spin chain.

The periodicity of the Jacobi theta functions are

given by

ϑ1(π(z+1)|2τ) =−ϑ1(πz|2τ),

ϑ1(π(z+ τ)|2τ) = ie−
iπτ
2 e−iπz

ϑ0(πz|2τ),

ϑ0(π(z+1)|2τ) = ϑ0(πz|2τ),

ϑ0(π(z+ τ)|2τ) = ie−
iπτ
2 e−iπz

ϑ1(πz|2τ).

(B.9)

This means if we choose the normalization factor

F(z, h̄) to be a function on the two-torus satisfying

F(z+1,τ) = F(z,τ), F(z+ τ,τ) = F(z,τ)+1,(B.10)

then all the entries of the R-matrix are periodic under

the shift z → z+ 1, z → z+ τ , up to a possible overall

sign factor; for such F we can for example choose

F(z,τ) =
i
π

logϑ0

(
π

(
z− τ −1

2

)
|2τ

)
.(B.11)

Note also that the normalization of the R-matrix here

is chosen so that a(z,τ) = b(z,τ) = 1 when h̄ = 0.
The classical r-matrix is then (note ϑ1(0) = 0)

relliptic
τ (z,τ) =

3

∑
k=1

wk(z)σk ⊗σk(B.12)

with

w1(z,τ) = π
ϑ ′

1(0|2τ)

ϑ0(0|2τ)

[
ϑ0(πz|2τ)

ϑ1(πz|2τ)
+

ϑ1(πz|2τ)

ϑ0(πz|2τ)

]
,

w2(z,τ) = π
ϑ ′

1(0|2τ)

ϑ0(0|2τ)

[
ϑ0(πz|2τ)

ϑ1(πz|2τ)
− ϑ1(πz|2τ)

ϑ0(πz|2τ)

]
,

w3(z,τ) = ∂z log
ϑ1(πz|2τ)

ϑ0(πz|2τ)
.

(B.13)

From (B.9) we find that47

w1(z+1) =−w1(z), w1(z+ τ) = w1(z),

w2(z+1) =−w2(z), w2(z+ τ) =−w2(z),

w3(z+1) = w3(z), w3(z+ τ) =−w3(z).

(B.15)

This is consistent with eqn. (10.7).

B.4 Relations

Among the three solutions for G = SL2, the elliptic

solution is the most general, and the other two can

be obtained by limits (together with suitable overall

rescaling):

Relliptic
h̄,τ (z)

τ→i∞−−−→ Rtrig
h̄ (z)

h̄→0−−→ Rrational(z/h̄).(B.16)

However, the trigonometric R-matrix has a general-

ization with a non-zero “field” turned on; this gener-

alization cannot be obtained from a reduction of the

eight-vertex model. In section 10.3, we explained this

fact from an analysis of the four-dimensional gauge

theory on R2 ×C∨.

Appendix C. Anomalies to Quantizing
Wilson Lines

In this section we will perform the cohomology

calculation referenced in section 8.

The main result we will show is the following.

47 In particular, we have from (B.9)

ϑ1(π(z+1)|2τ)

ϑ0(π(z+1)|2τ)
=−ϑ1(πz|2τ)

ϑ0(πz|2τ)
,

ϑ1(π(z+ τ|2τ))

ϑ0(π(z+ τ|2τ))
=

ϑ0(π(z|2τ))

ϑ1(π(z|2τ))
.

(B.14)
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Theorem C.1. Let g be a simple Lie algebra with no

Abelian factors which is not sl2. Let ∧2
0g denote the ker-

nel of the Lie bracket map from ∧2g → g. Let V be a

representation of g. Then

1. If there are no G-invariant maps from ∧2
0g →

End(V ) then

H2(g[[z]],End(V )) = 0.(C.1)

2. Let H2
(k)(g[[z]],End(V )) denote the part of the coho-

mology of weight k under the scaling of z (this

group appears in the study of k-loop anomalies).

Then, there is an isomorphism

H2
(2)(g[[z]],End(V ))∼= HomG(∧2

0g,End(V )),(C.2)

where on the right hand side we have the space of

G-invariant linear operators from ∧2
0g to End(V ).

If g = sl2, then H2
(k)(g[[z]],End(V )) = 0 unless k = 3,

and the dimension of H2
(3)(g[[z]],End(V )) is the number

of copies of the 5-dimensional irreducible representa-

tion of sl2 in End(V ).

The proof will take a number of steps, which we

will write as separate propositions. The first step is

the following.

Proposition C.2. Let g be a simple Lie algebra with

no Abelian factors. Let V be a representation of g with

the feature that the image of any G-invariant linear
map g⊗2 → End(V ) consists of copies of the trivial and

adjoint representations of g. Then,

H2(g[[z]],End(V )) = 0.(C.3)

The vanishing of this cohomology group implies

that there are no anomalies to quantizing the Wilson

line in the representation V .

Proof. In this calculation, we will use the Lie algebra

g[z] of polynomials with coefficients in g, instead of

the Lie algebra g[[z]] of series with coefficients in g.

As long as we focus on cohomology classes of a fixed

weight under the C× action which scales z, the coho-

mology groups are the same in each case. This is be-

cause a cochain of weight k under this C× action in-

volves zm for m ≤ k.
Let R ⊂ End(V ) be the largest sub-representation

which contains all the representations occurring in

the decomposition of g⊗ g into irreducible compo-

nents. There is a natural injective map

C∗(g[z],R)→C∗(g[z],End(V )).(C.4)

It is a standard fact of Lie algebra cohomology that

we find the same cohomology groups if we use

G-invariant cocycles. It follows from the definition of

R that, on G-invariant cocycles, this map is an isomor-

phism in degrees ≤ 2. From this we see that this map

must be an isomorphism on degree 2.

This reduces the problem to showing that

H2(g[z],R) = 0. The assumptions we state in the propo-

sition are that R is a direct sum of copies of the ad-

joint and trivial representations. We therefore need

to show that H2(g[z],C) = 0 and that H2(g[z],g) = 0.
Since we are working in low cohomological de-

grees, both of these statements can be proved by

hand with a direct computation. However, it is more

convenient to invoke a general result of Fishel, Gro-

jnowski, and Teleman [31], who calculate the Lie al-

gebra cohomology of g[z] with various coefficients.

Their results (Theorem B, p. 6 of [31]) tell us that

H2(g[z],C) = 0. We need to show that H2(g[z],g) = 0 as

well. This follows a little indirectly from their analy-

sis, as we will now explain.

We write g[z−1] for the space of g-valued functions

of z of the form

αa0ta0 + z−1
αa1ta1 + . . . .

These are meromorphic functions on C, which have a

finite order pole at 0 and no other poles, and which

are regular at infinity. There is a natural residue pair-

ing

〈ta f (z), tbg(z−1)〉= 2δab
1

2πi

∮
f (z)g(z−1)z−1dz(C.5)

between g[z−1] and g[z].
The space g[z−1] has the structure of module for

g[z] whereby

(tazk) · (tbz−l) = f c
abtczk−l

δk−l≤0.(C.6)

This identifies g[z−1] with the dual representation

to the adjoint representation of g[z], that is, with

the coadjoint representation. (Because these are infi-

nite dimensional modules, one has to take care with

the meaning of “dual”: we mean the restricted dual,

where we take the direct sum over the weight spaces

of the C× action which scales z. This use of restricted
duals and the corresponding restricted cohomology

elides the difference between g[z] and g[[z]], so we will

use the algebra g[z] in the course of the proof.)

Fishel, Grojnowski and Teleman show (Theo-

rem B, p. 6 of [31]) that the cohomology of g[z] with
coefficients in the coadjoint representation g[z−1] is a

graded tensor product of the cohomology of the com-

pact group G with a graded vector space consists of

C[z−1] in degree 0 and z−1C[z−1] in degree 1. We have

written these cohomology groups in a way compati-

ble with the C× which scales z. In particular, since the

cohomology of the group G lives in degree 0 and de-

grees ≥ 3, we find that there is no second cohomology

of g[z] with coefficients in g[z−1].
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To describe the cocycles for these cohomology

classes, it is more convenient to use cohomology rel-

ative to the subalgebra g⊂ g[z]. A relative k-cocycle is
given by a G-invariant linear map

∧k(zg[z])→ g[z−1].(C.7)

The absolute cohomology groups are the tensor prod-

uct of the relative cohomology groups with the co-

homology of the group G. Therefore they coincide in

degrees less than 3.

The relative 1-cocycle associated to an element

z−k ∈ z−1C[z−1] is a linear map

zg[z]→ g[z−1]

∈ ∈

ta f (z) 7→ taπ−(z
−k f (z)),

(C.8)

where π− indicates the operation of projection of an

element of g[z,z−1] onto the nonpositive powers of z.
There is a short exact sequence of

g[z]-representations

0 → g→ g[z−1]
z−→ g[z−1]→ 0,(C.9)

where the secondmap is given bymultiplying by z, us-
ing the convention that we only retain negative pow-

ers of z.
This short exact sequence leads to a long exact

sequence on cohomology

· · · → H1(g[z],g)→ H1(g[z],g[z−1])(C.10)

→ H1(g[z],g[z−1])→ H2(g[z],g)→ 0,

where we use the fact that H2(g[z],g[z−1]) = 0.
This leads to an exact sequence

· · · → H1(g[z],g)→ z−1C[z−1]
z−→ z−1C[z−1](C.11)

→ H2(g[z],g)→ 0.

From this we conclude that H2(g[z],g) = 0, as desired.

For any representation R of g, let H i
(k)(g[z],R) de-

note the cohomology group of weight−k under theC×

action which scales z. This is the cohomology group

that will play a role in quantization at k loops.
Next, we will prove a more difficult cohomology

vanishing result, also based on the results of [31].

Proposition C.3. For any simple Lie algebra with no

Abelian factors which is not sln with n > 2, we have

H2
(k)(g[z],Sym2g) = 0 unless k = 3.(C.12)

Further, there is an exact sequence

0 → H2
(3)(g[z],Sym2g)→ C→ H2

(2)(g[z],∧
2g)(C.13)

→ H3
(3)(g[z],Sym2g)→ 0.

Note that this proposition applies to sl2.

Proof. The proof again uses the results of Fishel,

Grojnowski and Teleman [31]. Let us consider the

g[z]-module Sym2g[z−1]. The results of [31] show that

H2(g[z],Sym2g[z−1]) = ∧2z−1C[z−1],

H1(g[z],Sym2g[z−1]) = (Sym3g)G ⊗ z−1C[z−1],

H0(g[z],Sym2g[z−1] = C[z−1].

(C.14)

We have written this isomorphism in a way compat-

ible with the C×-action which scales z. Note that, un-

less g is sln for n > 2, (Sym3g)G = 0. Since we restrict

to Lie algebras which are not of this form, we have

H1(g[z],Sym2g[z−1]) = 0.
Define operators

zn : Sym2g[z−1] 7→ Sym2g[z−1]

zn((z−kta)(z
−ltb)) = (zn−kta)(z

−ltb)δk−n≥0

+(z−kta)(z
n−ltb)δl−n≥0.

(C.15)

for n ≥ 1. Note that the operator z is surjective. We let

M denote the kernel of z. The space M is spanned by

the elements

Aab(ta)(tbz−2k)−Aab(taz−1)(tbz1−2k)± . . .

(C.16)

+(−1)k+1Aab(taz1−k)(tbz−k−1)+
1
2
(−1)kAab(taz−k)(tbz−k),

where Aab is a symmetric tensor, and the elements

Bab(ta)(tbz−2k−1)−Bab(taz−1)(tbz−2k)± . . .

(C.17)

+(−1)k+1Bab(taz1−k)(tbz−k−2)+(−1)kBab(taz−k)(tbz−k−1),

where Bab is antisymmetric.

Thus, as a representation of g, the module M de-

composes as

M = Sym2g⊕ z−1 ∧2 g⊕ z−2Sym2g . . . ,(C.18)

where the powers of z indicate the C×-weights.

As a g[z]-module, the structure is more compli-

cated: elements in zg moves us between summands

of different weight.

Now, let us identify the cohomology of g[z] with
coefficients in M. Because we have a short exact se-

quence

0 → M → Sym2(g[z−1])
z−→ Sym2(g[z−1])→ 0,(C.19)

we get a long exact sequence in cohomology

0 → H0(g[z],M)→ C[z−1]
z−→ C[z−1]

→ H1(g[z],M)→ 0 → 0

→ H2(g[z],M)→∧2(z−1C[z−1])
z−→∧2(z−1C[z−1])

→ H3(g[z],M)→ 0.

(C.20)
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The endomorphism z of ∧2(z−1C[z−1]) is defined by

z(z−k ∧ z−l) = z1−k ∧ z−l
δk−1≥1 + z−k ∧ z1−l

δl−1≥1.(C.21)

The kernel of the operator z is spanned by the ele-

ments

z−1 ∧ z−2k − z−2 ∧ z1−2k ±·· ·+(−1)kz−k ∧ z−1−k(C.22)

for k ≥ 1. Thus, H2(g[z],M) is spanned by these ele-

ments, in weights 3, 5, …. To sum up, we find

H0(g[z],M) = C,
H1(g[z],M) = 0,

H2(g[z],M) = C · z−3 ⊕C · z−5 ⊕ . . . ,

H3(g[z],M) = 0,

(C.23)

where the powers of z indicate the weights under the
C×-action.

Let M0 ⊂ M be the kernel of the operator z2. This

operator is surjective on H2(M), with kernel C in

weight −3, and surjective on M, but acts by zero on

H0(M) and H1(M). We have a long exact sequence

0 → H0(g[z],M0)→ C 0−→ C
→ H1(g[z],M0)→ 0 → 0

→ H2(g[z],M0)→ z−3C[z−2]
z2
−→ z−3C[z−2]

→ H3(g[z],M0)→ 0.

(C.24)

This sequence allows us to calculate the cohomology

groups of H∗(g[z],M0). Before we state the answer, we

should note that the boundarymaps in this long exact

sequence shift the weight under the C×-action by −2.
This is because of the appearance of the operator z2,

of weight 2, in the short exact sequence of modules

leading to this long exact sequence of cohomology

groups.

From this exact sequence we see that

H0(g[z],M0) = C,
H1(g[z],M0) = C · z−2,

H2(g[z],M0) = C · z−3.

(C.25)

Since M0 is the intersection of the kernel of z and the

kernel of z2 in Sym2g[z−1], one can show that there is

an exact sequence

0 → Sym2g→ M0 → z−1 ∧2 g→ 0,(C.26)

from which we derive a long exact sequence

0 → H0(g[z],Sym2g)→ H0(g[z],M0)→ H0(g[z],z−1 ∧2 g)

→ H1(g[z],Sym2g)→ H1(g[z],M0)→ H1(g[z],z−1 ∧2 g)

→ H2(g[z],Sym2g)→ H2(g[z],M0)→ H2(g[z],z−1 ∧2 g)

→ H3(g[z],Sym2g)→ 0.
(C.27)

Now, H0(g[z],∧2g) = 0 because the are no G-invariant
elements in ∧2g for any simple Lie algebra g. Further

H1(g[z],Sym2g) is zero because there are no copies of

the adjoint representation in Sym2g (recall that we are

assuming that g is not sln for n > 2).
We also have H1(g[z],z−1∧2 g) = z−2C, because there

is one copy of the adjoint in ∧2g.

From this, we find that we have an exact sequence

0 → C · z−2 → C · z−2 δ−→ H2(g[z],Sym2g)

→ H2(g[z],M0)→ H2(g[z],z−1 ∧2 g)→ H3(g[z],Sym2g)→ 0.
(C.28)

The boundary map

δ : C · z−2 → H2(g[z],Sym2g)(C.29)

must be zero.

We conclude that H2(g[z],Sym2g) is a subspace of

H2(g[z],M0) = C · z−3.(C.30)

In particular, H2(g[z],Sym2g) is only non-zero in

weight 3.

Next, let us perform the same analysis in the case

that g is sln.

Proposition C.4. Suppose that g= sln for n > 2. Then,

H2
(k)(sln[z],Sym2sln) = 0 unless k = 3.(C.31)

As before, there is an exact sequence

0 → H2
(3)(sln[z],Sym2sln)→ C→ H2

(2)(sln[z],∧
2sln)

→ H3
(3)(sln[z],Sym2sln)→ 0.(C.32)

Proof. The cohomology groups H∗
(k)(sln[z],Sym2sln) are

acted on by the outer automorphism group Z/2 of sln
(which is the automorphism group of the Dynkin dia-

gram). We let H∗
(k),even and H∗

(k),odd refer to the cohomol-

ogy groups which are even and odd under this action.

We will first prove that the cohomology groups which

are even under the outer automorphism satisfy the

statement of the proposition, and then show that the

groups which are odd under the outer automorphism

are zero.

Note that in the proof of proposition C.3 we used

the fact that g is not sln with n> 2 in two places. Firstly,
we used the fact that Lie algebras which are not of this

type do not have an invariant element in Sym3g. An

invariant element in Sym3g contributes, according to

the results of [31], an element of H1(g[z],Sym2(g[z−1]).

However, because the invariant element in Sym3sln is

odd under the outer automorphism, the correspond-

ing element of H1(sln[z],Sym2(sln[z−1])) is also odd, and

so does not contribute when we analyze the cohomol-

ogy which is even under the outer automorphism.
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The other place where we used the assumption

that g is not sln with n > 2 was when we asserted

that H1(g[z],Sym2g) must be zero. This is essentially

the same point, as any element of H1(g[z],Sym2g)must

come from an invariant element in g⊗Sym2g, and the

only invariant element (when g = sln, n > 2) is totally

symmetric. Because this element is odd under the

outer automorphism of sln, we find again that it can

not contribute to the cohomology which is even un-

der this automorphism.

Therefore, when we restrict to the cohomology

which is even under the outer auto-morphims, propo-

sition C.3 holds with the same proof.

We need to calculate the cohomology which is

odd under the outer automorphism. We are inter-

ested in H2
odd(sln[z],Sym2sln). Any odd two-cocycle can

be represented as a sum of sln-invariant linear opera-

tors

(zksln)⊗ (zlsln)→ Sym2sln,(C.33)

Any such linear operator can be thought of as an in-

variant tensor in sl⊗4
n , which is invariant under the

permutation of the first two factors. If A1, A2, B, C de-

note elements of sln then there are three such tensors,

invariant under permutation of A1 and A2:

Tr(A1A2BC)+Tr(A2A1BC),

Tr(A1A2CB)+Tr(A2A1CB),

Tr(A1BA2C)+Tr(A2BA1C).

The only linear combination of these three tensors

which is odd under the outer automorphism is

Tr(A1A2[B,C])+Tr(A2A1[B,C])(C.34)

(recall that the outer automorphism sends A ∈ sln to

−AT ).

This invariant tensor can be viewed as a linear

operator

(zksln)⊗ (zlsln)→ sln ⊂ Sym2sln.(C.35)

We have just shown that the natural map

H2(sln[z],sln)→ H2
odd(sln[z],Sym2sln)(C.36)

is surjective. However, we already know

that H2(sln[z],sln) = 0, so we conclude that

H2
odd(sln[z],Sym2sln) = 0 also.

The next result we need is the following.

Proposition C.5. Let ∧2
0g⊂∧2g denote the kernel of the

Lie bracket map ∧2g→ g. Then,

H2
(2)(g[z],∧

2g) = HomG(∧2
0g,∧2

0g),(C.37)

where on the right hand side we have the space of

G-invariant maps from ∧2
0g to itself.

Further, the map

C= H2
(3)(g[z],M0)→ H2

(2)(g[z],∧
2g)(C.38)

is surjective for g 6= sl2 (where we are using the notation

M0 from the proof of proposition C.3).

Proof. We can calculate H2
(2)(g[z],∧

2g) using Lie alge-

bra cohomology relative to g. A basis for the relative

2-cochains is the space of G-invariant maps ∧2(zg)→
∧2g. Every such relative two-cochain is closed, be-

cause there are no relative three-cochains of weight 2.

Elements of the form

f a
bc(zta ∧ ztb)⊗Ra

e f (te ∧ t f )(C.39)

are exact, where Ra
e f defines some G-invariant map

from g to ∧2g.

For all simple Lie algebras, there are no copies

of the adjoint representation in ∧2
0(g). This argu-

ment tells us that the space of closed, but not exact,

2-cochains of weight −2 is the space of G-invariant
maps ∧2g→∧2

0g.

For G 6= SL2, this space is non-trivial. The final

thing we need to check is that for G 6= SL2, the map

C= H2
(3)(g[z],M0)→ H2

(2)(g[z],∧
2g)(C.40)

is non-zero. This follows from the explicit description

of the cocycles of g[z] with values in Sym∗g[z−1] given

in [31].

The following corollary sums up what we have

learned about the cohomology groups controlling the

obstructions to quantizing a Wilson line.

Corollary C.6. For a representation V of a simple

Lie algebra g 6= sl2, consider the group H2
(k)(g[z],End(V ))

which contains possible anomalies to quantizing

the Wilson line associated to V at k loops. Then,

H2
(k)(g[z],End(V )) = 0 unless there exists a non-trivial

G-invariant map from ∧2
0g to End(V ).

Proof. Two-cocycles representing classes in

H2(g[z],End(V )) are given by G-invariant linear

maps ∧2zg[z] → End(V ). Any such G-invariant map

must factor through some copies of Sym2g, g, or ∧2
0g.

We have seen that the cohomology with coefficients

in Sym2g and g is zero. So, assuming there are no

non-trivial maps from ∧2
0g→ End(V ), the cohomology

groups are all zero.

In fact, one can strengthen this result with

some further work. For instance, one can show that

H2
(k)(g[z],∧

2
0g) = 0 unless k = 2,4,6. We have already de-

scribed the rank of the cohomology group when k = 2.
Computing explicitly the rank when k = 4,6 is a bit in-

volved, and since we do not ultimately need to know

the answer, we have not included these calculations.
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Appendix D. Derivation of Eqn. (6.13)

In the Feynman diagram of Fig. 22, we have three

vertices, two vertices u, v on the Wilson line K(
u,

f u2

2
,0,0

)
,

(
v,

f v2

2
,0,0

)
,(D.1)

and one vertex w in the bulk, which we parametrize

as (x,y,z, z̄). At the vertex u of the Wilson line, we have

the line element∫
K

Ads = (Ax(u)+Ay(u) f u)du.(D.2)

In the following, to save space we sometimes write

Ax(u) := Ax(x(u),y(u),0,0). The similar expression ap-

plies to the vertex v.
The diagram has a symmetry factor of 1/2, which

we can incorporate by restricting the integration re-

gion to be u < v.
Now we connect the vertices by a propagator, to

the vertex w. We are interested in linear order in f .
One possibility is to take Ax from both, and then

obtain a factor of f from the expansion of the propa-

gator. However, this contributes an expression of the

form

±〈Ax(u)Ay(w)〉〈Ax(v)Az̄(w)〉Ax(w)(D.3)

(or with u and v exchanged), and since we have Ax(w)
this does not contribute to Λ.

Another possibility is to take one Ax and Ay one

from u and v:

( f v)Ax(u)Ay(v) or ( f u)Ay(u)Ax(v).(D.4)

When we consider the propagator, there are three

different possibilities for (D.4):

( f (v−u))〈Ax(u)Ay(w)〉〈Ay(v)Az̄(w)〉Ax(w),

( f (v−u))〈Ax(u)Az̄(w)〉〈Ay(v)Ax(w)〉Ay(w),

( f (v−u))〈Ax(u)Ay(w)〉〈Ay(v)Ax(w)〉Az̄(w).

(D.5)

Using the expression for the propagator (4.5), the

expressions (D.5) can be simplified, and when com-

bined with differential forms we have

1
(2π)2 ( f (v−u))

(2z̄)(x−u)
d(u,w)4d(v,w)4 Ax(w) ·dz(dudy)(dvdz̄)dx,

1
(2π)2 ( f (v−u))

(y− f u2

2 )(2z̄)

d(u,w)4d(v,w)4 Ay(w) ·dz(dudz̄)(dvdx)dy,

1
(2π)2 ( f (v−u))

(−1)(2z̄)(2z̄)
d(u,w)4d(v,w)4 Az̄(w) ·dz(dudy)(dvdx)dz̄,

(D.6)

with distance d(u,w) defined by

d(u,w)2 = (x−u)2 +

(
y− f u2

2

)2

+ |z|2.(D.7)

We also need to supplement these expressions by a

factor h̄h∨, where h∨ is the color factor explained in

the text and h̄ is the loop counting parameter. In the

leading order in f , we have d(u,w)2 ' (x−u)2 + y2 + |z|2,
and hence we obtain

− 1
(2π)2

i

2π
h̄h∨

∫
u<v

dudv
∫
R4

dxdydzdz̄( f (v−u))(D.8)

×
2z̄(x−u)Ax(w)+2yz̄Ay(w)+4z̄2Az̄(w)

((x−u)2 + y2 + |z|2)2((x− v)2 + y2 + |z|2)2 .

The equation above can be expressed in the form (6.8)

if we define

Θ0 =− 1
(2π)2

i

2π
h̄h∨

∫
u<v

dudv f (v−u)×

(D.9)

2(z̄)(x−u)(dy∧dz∧dz̄)−2yz̄(dx∧dz∧dz̄)+4z̄2(dx∧dy∧dz)
((x−u)2 + y2 + |z|2)2((x− v)2 + y2 + |z|2)2 .

In the notation of the main text, we have Θ = zΘ0 and

Θ = dx∧Λ+Λ′ to obtain

Λ =− 1
(2π)2

2 f i
2π

h̄h∨

(D.10)

×
∫

u<v
dudv(v−u)

−yzz̄(dz∧dz̄)+2zz̄2(dy∧dz)
((x−u)2 + y2 + |z|2)2((x− v)2 + y2 + |z|2)2 .

We obtain (6.13) after doing the u and v integrals:

∫
−∞≤u<v≤∞

dudv(v−u)
1

(u2 +a2)2(v2 +a2)2 =
1
a5

3π

8
.

(D.11)

Appendix E. Evaluation of Eqn. (8.34)

In this appendix we present details on the evalu-

ation of the integral (8.34).

Let us first evaluate the part relevant for the v1

integral inside the expression (8.34):∫
v1

P(v0,v1)∧dz1(z1)∧P(v1,v2),(E.1)

where we have introduced, temporarily, a vertex la-

belled v0 with coordinates v0 = (x0,y0,z0, z̄0). Later we

will set these coordinates to zero.

From the explicit expression for the propagator

in eqn. (4.5) we have

P(vi,v j) =
1

2π

xi jdyi j ∧dz̄i j − yi jdxi j ∧dz̄i j +2z̄i jdxi j ∧dyi j

d(vi,v j)4 ,

(E.2)

where the distance d(vi,v j) between two points vi, v j

is given by d(vi,v j)
2 = x2

i j + y2
i j + |zi j|2, and xi j = xi − x j,

zi j = zi − z j, etc.
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We can calculate that

P(v0,v1)∧P(v1,v2) =
1

(2π)2 dx1dy1dz̄1

(E.3)

× 1
d(v0,v1)4d(v1,v2)4 [(x01y12dz̄2 −2x01z̄12dy2 +2y01z̄12dx2

− y01x12dz̄2 +2z̄01x12dy2 −2z̄01y12dx2)],

where we have dropped all terms involving dx0, dy0,

dz̄0 because we will not be integrating over the vertex

v0. From this we see that

P(v0,v1)∧ z1dz1P(v1,v2)

(E.4)

=
1

(2π)2 dx1dy1dz1dz̄1

[
∂z̄0

1
d(v0,v1)2d(v1,v2)4

]
× (x01y12dz̄2 −2x01z̄12dy2 +2y01z̄12dx2 − y01x12dz̄2

+2z̄01x12dy2 −2z̄01y12dx2).

after we set the v0 coordinates to zero.

Moving the position of the derivative in z̄0, we ob-

tain

P(v0,v1)∧ z1dz1P(v1,v2)

(E.5)

=
1

(2π)2 dx1dy1dz1dz̄1

×∂z̄0

[
1

d(v0,v1)2d(v1,v2)4 [(x01y12dz̄2 −2x01z̄12dy2

+2y01z̄12dx2 − y01x12dz̄2 +2z̄01x12dy2 −2z̄01y12dx2)]

]
1

(2π2)2 dx1dy1dz1dz̄1
(2x12dy2 −2y12dx2)

d(v0,v1)2d(v1,v2)4 .

By integration by parts, the integral over x1, y1, z1, z̄1

of all the terms on the first two lines vanishes. For

example,∫
v1

(x01y12 − y01x12)
1

d(v0,v1)2

1
d(v1,v2)4

=
1
2

∫
v1

(x01)
1

d(v0,v1)2

(
∂y1

1
d(v1,v2)2

)
+

1
2

∫
v1

y01
1

d(v0,v1)2

(
∂x1

1
d(v1,v2)2

)
=

1
2

∫
v1

x01

(
∂y1

1
d(v0,v1)2

)
1

d(v1,v2)2

− 1
2

∫
v1

y01

(
∂x1

1
d(v0,v1)2

)
1

d(v1,v2)2

=
∫

v1

(x01y01 − x01y01)
1

d(v0,v1)4

1
d(v1,v2)2 = 0.

We are left with the integral

− 1
(2π2)2

∫
x1,y1,z1

dx1dy1dz1dz̄1
(2x12dy2 −2y12dx2)

d(v0,v1)2d(v1,v2)4 .(E.6)

We can evaluate this integral with the help

of eqn. (5.13). Choosing α = 2, β = 1 and using

Γ(3)/(Γ(2)Γ(1)) = 2, we obtain

− 2
(2π)2

∫ 1

0
dtt
∫

dx1dy1dz1dz̄1
(2x12dy2 −2y12dx2)

(?)3 ,(E.7)

where

(?) = (1− t)[x2
1 + y2

1 + |z1|2]+ t[x2
12 + y2

12 + |z12|2](E.8)

= (x1 − tx2)
2 +(y1 − ty2)

2 + |z1 − tz2|2

+ t(1− t)[x2
2 + y2

2 + |z2|2].

After shifting integration variables we obtain

− 2
(2π)2

∫ 1

0
dtt
∫

dx1dy1dz1dz̄1(E.9)

× (2(x1 − (1− t)x2)dy2 −2(y1 − (1− t)y2)dx2)

(x2
1 + y2

1 + |z1|2 + t(1− t)[x2
2 + y2

2 + |z2|2])3

=
4

(2π)2

∫ 1

0
dtt(1− t)

∫
dx1dy1dz1dz̄1

× (x2dy2 − y2dx2)

(x2
1 + y2

1 + |z1|2 + t(1− t)[x2
2 + y2

2 + |z2|2])3
,

where we dropped the pieces odd in x1 or y1, and

hence do not contribute to the integral. After eval-

uating the integral over x1, y1 and then over z1, z̄1, the

integral of t becomes trivial, and we obtain (note that

dzdz̄ =−2irdrdθ for the polar coordinate z = reiθ )

4
(2π)2

π

2
(x2dy2 − y2dx2)

∫ 1

0
dtt(1− t)

∫
dz1dz̄1

(E.10)

× 1

(|z1|2 + t(1− t)[x2
2 + y2

2 + |z2|2])2

=
4

(2π)2

π

2
(−2i)π(x2dy2 − y2dx2)

1

(x2
2 + y2

2 + |z2|2)
.

We therefore find∫
v1

P(v0,v1)∧ z1dz1 ∧P(v1,v2) =
1
i

(x2dy2 − y2dx2)

d(v0,v2)2 .(E.11)

Similarly, the part of (8.34) relevant for the v3 integral

is

∫
v3

P(v2,v3)∧ z3dz3 ∧P(v3, p3) =−1
i

((x2 − ε)dy2 − y2dx2)

d(v0,v2)2 .

(E.12)

We can now come back to the evaluation of (8.34).

Using the results (E.11) and (E.12), we obtain

2

(
i

2π

)3 1
2π(i)(−i)

(E.13)

×
∫ ε

p=0

∫
x,y,z,z̄

(xdy− ydx)(dz)(ydz̄dp)((x− ε)dy− ydx)
d(0,v)2d(p,v)4d(ε,v)2 ,
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where we dropped the index 2 from v2 = (x2,y2,z2, z̄2)

to simplify the expressions. This gives

2
i

(2π)4

∫ ε
p=0

∫
x,y,z,z̄

(E.14)

× εy2dxdydzdz̄dp
(x2 + y2 + |z|2)((x− p)2 + y2 + |z|2)2((x− ε)2 + y2 + |z|2)

.

We need to take into account two more diagrams

in Fig. 28. It turns out that the evaluation is rather

similar, with the only different exchange of the role

of the points 0, p and ε on the Wilson line. This means

in addition to (E.14) we have two extra contributions

2
i

(2π)4

∫ ε
p=0

∫
x,y,z,z̄

(E.15)

× εy2dxdydzdz̄dp
(x2 + y2 + |z|2)2((x− p)2 + y2 + |z|2)((x− ε)2 + y2 + |z|2)

,

2
i

(2π)4

∫ ε
p=0

∫
x,y,z,z̄

× εy2dxdydzdz̄dp
(x2 + y2 + |z|2)((x− p)2 + y2 + |z|2)((x− ε)2 + y2 + |z|2)2 .

Summing all the three contributions, we obtain

− i

(2π)4

∫ ε
p=0

∫
x,y,z,z̄

(εy)
∂

∂y

(E.16)

× dxdydzdz̄dp
(x2 + y2 + |z|2)((x− p)2 + y2 + |z|2)((x− ε)2 + y2 + |z|2)

,

which after integrating by parts gives

i

(2π)4

∫ ε
p=0

∫
x,y,z,z̄
ε

(E.17)

× dxdydzdz̄dp
(x2 + y2 + |z|2)((x− p)2 + y2 + |z|2)((x− ε)2 + y2 + |z|2)

.

After scaling the integration variables by ε (assuming

ε > 0) ε depends drops out, as expected:

i

(2π)4

∫ 1

p=0

∫
x,y,z,z̄

(E.18)

× dxdydzdz̄dp
(x2 + y2 + |z|2)((x− p)2 + y2 + |z|2)((x−1)2 + y2 + |z|2)

.

In angular coordinates in (y,z, z̄)-plane, the volume

form dydzdz̄ is −8π ir2drdΩS2 where dΩS2 is the volume

form on the two-sphere of volume l. Integrating over

the two-sphere we get

8π

(2π)4

∫ 1

p=0
dp
∫

x
dx(E.19) ∫

drr2 1
(x2 + r2)((x− p)2 + r2)((x−1)2 + r2)

.

After the r integral we obtain

8π

(2π)4

π

2

∫ 1

p=0
dp

(E.20)

×
∫

x
dx

1
(|x|+ |x− p|)(|x|+ |x−1|)(|x− p|+ |x−1|)

.

We can evaluate this integral by dividing into four

cases x< 0, 0< x< p, p< x< 1, 1< x. These integrals are
interchanged by the change of coordinates x 7→ 1− x,
p 7→ 1− p, so that the only two independent integrals

are the cases when p < x < 1 and 1 < x. We have

∫
0<p<x<1

1
(2x− p)(1− p)

=
π2

8
,(E.21) ∫

0<p<1<x

1
(2x− p)(2x−1)(2x−1− p)

=
π2

24
.(E.22)

Therefore we obtain

8π

(2π)4

π

2
2

(
π2

8
+

π2

24

)
=

1
12

.(E.23)

Including the factors of h̄2 need for the two-loop dia-

gram, we reproduce the numerical factor of (8.35).
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