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1. Introduction

Oscillatory integrals and singular integral oper-

ators have long been of interest in harmonic analy-

sis and mathematical physics. They have emerged as

powerful analytic tools in various problems, ranging

from PDEs to geometry and number theory. Multilin-

ear problems have attracted tremendous interest dur-

ing the last two decades and have led to many impor-

tant break throughs in harmonic analysis and many

other areas. Most notably, the full resolution of the

Vinogradov’s main conjecture by Bourgain, Demeter,

and Guth [1].

In this paper, we will survey on several multilin-

ear analogues of oscillatory integrals and singular in-

tegral operators that have attracted the interest of

many researchers during last two decades. The first

class of problems being considered can be phased as

the following multilinear oscillatory integral form:

Problem A [11]. Let U be some open set in RN and

φ : U → R be some appropriate function (weight). A

pair of inputs [S,Π] consists of a real-valued func-

tion S defined on U and a collection of surjective lin-

ear transforms Π = (π1, . . . ,πJ), where π j : RN →Rn j , for
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j = 1, . . . ,J. Associated to this pair of inputs is the fol-

lowing multilinear oscillatory integral form

M(S,Π) =
∫
RN

eiλS(x)
φ(x)

J

∏
j=1

f j(π j(x))dx,(1.1)

where λ is a real-valued parameter. The three prob-

lems to be investigated are the following.

1. (Existence of decay) for some appropriate input

[S,Π], prove an estimate of the form

|M(S,Π)| ≤C|λ |−δ
J

∏
j=1

‖ f j‖p j ,(1.2)

which holds for some δ > 0, for all λ and for a

class of functions f j : Rn j → C, where C is some

constant independent of the functions f j and λ .

2. (Optimality of decay) Compute the optimal δ

in terms of the input [S,Π] and the multiindex

(p1, . . . , p j).

3. (Uniformity of the bound) Prove the constant C
can be chosen to be uniform over a class of func-

tions S.

The problem is formulated in such a general form

that it contains many important research questions

in analysis. By taking N = 1, J = 0 and φ(x) a smooth

cut-off function, (1.2) corresponds to scalar oscilla-

tory integrals; by letting J = N, π j(x) = x j, f j(x j) = eiξ jx j

and all p j = ∞, (1.2) can be interpreted as an estimate

for the Fourier transform of the surface (x,S(x)). Con-
sequently, sharp and uniform estimates of (1.2) auto-

matically imply sharp and uniform estimates for the

corresponding Fourier transform. The study of this

problem is also of independent interest for it con-

cerns a new kind of stability for oscillatory integrals,

which is referred to as “algebraic stability”. To see

this, let f j(·) = eig j(·)χ j(·), where g j : Rn j →R is any mea-

surable function and χ j is the characteristic function

of Rn j ∩U . Then (1.2) implies
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∣∣∣∣∫RN
ei(λS(x)+∑

J
j=1 g j(π j(x)))φ(x)dx

∣∣∣∣≤C|λ |−δ ,

with the constant C being uniform in all choices of

{g j}1≤ j≤J . The term ∑
J
j=1 g j(π j(x)) in the exponent is

called an algebraic perturbation and the estimates are

stable under such a perturbation. In another word, we

are estimating oscillatory integrals whose phases are

lying in some quotient space.

The second class of problems deals with the

boundedness of a variety of multilinear singular

Radon-like transforms and their maximal function

analogues, whose general form can be formulated as

follows:

Problem B. Let (x, t) ∈ Rn+m and K : Rm → R be some

Caderón-Zygmund kernel and γ j :Rn+m →R be smooth

functions, for j = 1, . . . ,J. Define the following multi-

linear singular Radon-like transform associated to the

collection of surfaces {(x, t,γ j(x, t)}1≤ j≤J

T ( f1, . . . , fJ)(x) = p.v.
∫ J

∏
j=1

f j(γ j(x, t))K(t)dt

and its maximal function analogue

M( f1, . . . , fJ)(x) = sup
ε>0

1
|B(0,ε)|

∫
|t|<ε

∣∣∣∣∣ J

∏
j=1

f j(γ j(x, t))

∣∣∣∣∣dt.

Prove estimates of the form

‖T ( f1, . . . , fJ)‖r ≤C
J

∏
j=1

‖ f j‖p j , and

‖M( f1, . . . , fJ)‖r ≤C
J

∏
j=1

‖ f j‖p j ,

(1.3)

for some appropriate tuples (p1, . . . , pJ ,r). In addition,

characterize the maximal convex hull of these tuples

in terms of the geometry or algebra or analysis of the

surfaces {(x, t,γ j(x, t))}1≤ j≤J . Finally, prove uniform es-

timates of (1.3) in the sense the constant C is uniform

in a class of surfaces {(x, t,γ j(x, t)}1≤ j≤J .

These two classes of multilinear problems are

closely related to each other just like in the linear

case: the theory of (multilinear) oscillatory integrals

provides a framework for the study of (multilinear)

singular Radom transforms. It is extremely challeng-

ing, if possible, to give an complete answer to either

problem above even in the bilinear (i.e. setting J = 2).
What lies in the heart of them is the role of geometry

(in particular, curvature) in the theory of multilinear

operators.

The rest of this paper is organized as follows. In

Section 2, we will present some classical results for

oscillatory integrals and singular integral operators.

After that, we will take the opportunity to describe

some recent joint work of the author with Philip T.

Gressman, Jingwei Guo and Xiaochun Li. The last sec-

tion consists of some interesting open problems in

this area. We hope that progress on these problems

can eventually advances the understanding of curva-

ture in the theory of multilinear operators.

2. Classical Results

2.1 Linear and Multilinear Oscillatory Integrals

The theory for oscillatory integrals in one dimen-

sion is well-established. The very well-known van der

Corput lemma provides a completely satisfying an-

swer. The lemma states that there is an absolute con-

stant Ck ∈ R such that for any real-valued function

S ∈ Ck(I) on some interval I ⊂ R, if S(k)(x) ≥ 1 on I (as-
suming S′ is monotone when k = 1), then∣∣∣∣∫

I
eiλS(x)dx

∣∣∣∣≤Ck|λ |−
1
k .

This estimate shares two important features: sharp-

ness (the decay is optimal) and uniformity (the con-

stant Ck is independent of I and other information of

the phase S). However, the theory for higher dimen-

sions is a lot less complete and the progress has been

slow, because, among many other reasons, the singu-

larities and the geometry of the phases involved may

themselves be substantially more complicated. In di-

mension higher than two, estimates for oscillatory in-

tegrals may fail to simultaneously possess the fea-

tures of sharpness and of stability. In his fundamen-

tal work [71], Varchenko indeed constructed a poly-

nomial phase whose optimal decay rate for the corre-

sponding oscillatory integral is unstable under small

perturbations. Due to the additional “algebraic per-

turbations” from the multilinear form, the situation

for the multilinear theory can be substantially more

complicated. One fundamental question in this direc-

tion is to identify the class of all inputs [S,Π] such that

decay estimates of the form (1.2) can occur. Only very

few cases are known and novel ideas and techniques

are needed to advance the understanding.

However, much progress has been made in some

particular cases of (1.2) with emphasis on only one

of the above features. A very effective approach

to prove sharp estimates is based on resolution of

singularities, dating back to Varchenko [71]. For

scalar oscillatory integrals, he obtained sharp decay

rate estimates for arbitrary real analytic phases in

dimension two and higher dimensions under a cer-

tain non-degenerate condition (often referred to as

Varchenko’s condition). Significant progress in this

direction has been made by Collins, Greenleaf and

Pramanik [14], Greenblatt [26, 28, 29], Ikromov and

Muller [33, 34], Karpushkin [35] and many others. In

the direction of oscillatory integral operators, Phong
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and Stein [54–57] developed a systematic method

that can efficiently handle the low dimension cases,

as well as some higher dimensions cases (joint

with Sturm [58]). In particular, they established the

operator analogue of Varchenko’s results, namely,

the sharp L2 estimates for the one-dimensional os-

cillatory integral operator with arbitrary real analytic

phases:

Theorem 1 (Phong and Stein [56]). Let S(x,y) be a real

analytic function defined on some neighborhood of 0∈
R2 and χ(x,y) be a smooth cut-off function supported

in a small neighborhood of 0. Then∥∥∥∥∫ ∞

−∞

eiλS(x,y)
χ(x,y) f (y)dy

∥∥∥∥
L2(R)

≤C|λ |−
1

2δ ‖ f‖L2(R),

where δ is the Newton distance of the reduced Newton

polyhedron of S.

For general smooth phases, nearly sharp esti-

mates was obtained my Seeger, and the sharp esti-

mates were eventually established by Rychkov [61]

and Greenblatt [25]. In dimension higher than two,

Phong, Stein and Sturm [58] and Carbery and Wright

[4] obtain nearly sharp estimates (up to a logarith-

mic factor) for the corresponding multilinear opera-

tors for polynomial-type phases. Other related works

in the two-dimensional cases include Greenleaf and

Seeger [30], Yang [74, 75], Pramantik and Yang [59],

Shi and Yan [63], and the author [73].

In the direction of uniformity/stability, a result

from Karpushkin [35] guarantees the optimal decay

rates for the scalar oscillatory integral is stable un-

der arbitrary perturbations in dimension two (note

that Varchenko’s example shows that no such sta-

bility results can hold for general phase in dimen-

sion higher than two). The work from Carbery, Christ

and Wright [3] is worth mentioning. They establish

uniform estimates (a la the one-dimensional van der

Corput lemma) for scalar oscillatory integrals and the

sublet set analogue in all dimensions:

Theorem 2 (Carbery, Christ and Wright [3]). Let α =

(α1, . . . ,αn) 6= 0 be a multi-index, and suppose that at

least one of its entries α j is greater than or equal to

two. Then there exist ε > 0 and C < ∞, depending only

on α and on n, such that for any smooth function S :
Q = [−1,1]n → R satisfying ∂ α

x S(x)≥ 1, for all λ ∈ R, the
following holds

|
∫

Q
eiλS(x)dx| ≤C|λ |−ε and

{x ∈ Q : |S(x)|< |λ |−1} ≤C|λ |−ε .

What is equally significant to this result is their

approach, which reveals certain combinatoric essence

of the problem. In general, it is extremely challeng-

ing to obtain sharp and uniform estimates simulta-

neously. However, under certain finite-type assump-

tions (the phases are polynomial type), Phong, Stein

and Sturm [58] and Carbery and Wright [4] obtain the

uniformity and sharpness (up to a logarithmic factor)

simultaneously. We quote Phong, Stein and Sturm’s

result:

Theorem 3 (Phong, Stein and Sturm [58]). Let S :
[0,1]d →R be a polynomial of degree n, α =(α1, · · · ,αd)∈
Nd be a multiindex, D be the subset of [0,1]d defined by

|S(α)| ≥ 1 and 1
p j

= 1− α j
|α| . Then there is a constant C

depends on n and α such that∣∣∣∣∣
∫

D
eiλS(x1,··· ,xd)

d

∏
j=1

f j(x j)dx1 · · ·dxd

∣∣∣∣∣(2.4)

≤C| log(2+ |λ |)|d−
1
2 |λ |−

1
|α|

d

∏
j=1

‖ f j‖p j .

Motivated by the study of multilinear oscillatory

Calderon-Zygumd theory, Christ, Li, Tao and Thiele

[11] studied the decay rate estimates for (1.1) in its

most general form. To move further into this general

setting, we introduce two concepts. The input [S,Π] is

said to be degenerate if S(x) = ∑
J
j=1 S j(π j(x)) for some

measurable functions S j : Rn j → R. Otherwise, the in-

put [S,Π] is non-degenerate. We say the input [S,Π] has

the decay property if (1.2) is true for some choice of

tuple (p1, . . . , pJ). It is obvious that the decay property

can not hold if the input is degenerate. Christ et al.

raise the following conjecture:

Conjecture 1 (Christ, Li, Tao and Thiele [11]). Decay

property is equivalent to non-degeneracy.

Christ et al. are able to identify certain classes

of inputs [S,Π] for this conjecture. In the first ma-

jor class, each input is of co-rank 1 and the number

of projections is arbitrary. The second major class is

when all of the input maps are of rank 1 and the num-

ber of projections is no more than (2N−1). Some new

class of inputs has been recently identified by Christ

[9,10] and Christ and Oliveira e Silva [13]. Some other

progress related to this conjecture includes Green-

blatt [27], Gressman and the author [31, 72]. In par-

ticular, the work of Christ [9] suggests an interesting

connection between the multilinear theory for oscil-

latory integrals and additive number theory.

2.2 Multilinear Singular Radon-Type Transforms

By letting J = 1, n = m and γ1(x, t) = (x− t), the two

operators defined in Problem B become the classi-

cal Hilbert transform and the Hardy-Littlewood max-

imal function, which are paradigms of general sin-

gular integrals and maximal functions. The study of
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these two types operators and their variants are cen-

tral themes in modern harmonic analysis.

Since the initial breakthroughs for singular in-

tegrals along curves and surfaces by Christ, Geller,

Nagel, Müller, Phong, Ricci, Riviere, Seeger, Stein,

Wainger, and many others [6–8, 15, 20, 42, 43, 45–54,

60, 62], extensive research in this area of harmonic

analysis has been done and a great many fascinat-

ing and important results have been established,

which culminate in a general theory of singular Radon

transforms (see for instance Christ, Nagel, Stein, and

Wainger [12]). Recently, this theory is extended to the

multi-parameters setting by Stein and Street [65–69].

Important tools for proving these classical results

include the Plancherel formula, the method of T T ∗

and the principle of almost orthogonality (like Cotlar-

Stein).

Another interesting direction is the bilinear ex-

tension of the classical Hilbert transform (and maxi-

mal functions), which can be typically written as

H( f ,g)(x) = p.v.
∫

∞

−∞

f (x− t)g(x+ t)
dt
t
.(2.5)

The Hölder-type bounds of this bilinear operator were

conjectured by Caldéron [2], motivated by the study

of the Cauchy integral on Lipschitz curves. In the

1990s, this conjecture was verified by Lacey and

Thiele [36,37], in a breakthrough pair of papers.

Theorem 4 (Lacey and Thiele [36, 37]). The bilinear

Hilbert transformmaps from Lp×Lq to Lr given p,q> 1,
r > 2/3 and 1

p +
1
q = 1

r .

In addition to the scaling and translation

symmetries that the Hilbert transform obeys,

the bilinear Hilbert transform H has modulation

symmetry (another famous operator that enjoys

this symmetry is Carleson’s operator), namely

H( f ,g) = e−2iξ H(eiξ f ,eiξ g). Consequently, any treat-

ment (namely, a “suitable” decomposition of the

operator) can efficiently handle this operator should

also be invariant under modulations. Inspired by

the fundamental works of Carleson [5] and Feffer-

man [21] for the pointwise convergence of Fourier

transforms, a systematic and delicate method was

developed by Lacey and Thiele [36, 37] to handle

this situation, which is often referred to as the

method of time-frequency analysis. Over the last

two decades, this method has merged as a powerful

analytic tool to handle several linear and multilinear

operators with modulation symmetry. Important

progress in this line includes the bilinear maximal

function by Lacey [38], the multi-parameter singular

integrals by Mascalu, Pipher, Tao and Thiele [44], the

uniform estimates of the bilinear Hilbert transform

by Thiele [70], and Grafakos and Li [24, 40] and etc.

A recent theory of outer Lp spaces developed by Do

and Thiele [19] has also stimulated new progress

[16–18]. However, some of the most interesting open

questions in this field are beyond the scope of this

method and have a strong connection to some kind

of non-abelian analysis. For instance, the trilinear

Hilbert transform

Λ( f1, f2, f3)(x) = p.v.
∫
R

3

∏
j=1

f j(x+ jt)
dt
t

has a hidden quadratic modulation symmetry,

namely,

Λ( f1, f2, f3) = qξ Λ(q−3ξ f1,q3ξ f2,q−ξ f3),

where qξ (x) = e2πiξ x2
. This quadratic (nonlinear) nature

must be accounted for in any proposed method of

analysis.

Motivated by the singular Radon transforms and

the bilinear Hilbert transforms, Li [39] initialized the

study of the bilinear Hilbert transform along curves

(BHTaCs). Let Γ(t) = (t,γ(t)), where γ(t) is a real-valued
function, define

HΓ f (x) = p.v.
∫
R

f (x− t)g(x− γ(t))
dt
t
.(2.6)

The new challenge in the investigation of this opera-

tor lies in the lack of a “natural” way to explore curva-

ture of Γ(t) in the bilinear setting. In the linear setting,

there is a relatively “simple” bound, namely, the L2 →
L2 boundedness, and the curvature Γ(t) can be utilized
by coupling the Plancherel theoremwith various tools

in estimating scalar oscillatory integrals. Moreover,

the lack of modulation symmetry of this operator in-

dicates the method of time-frequency analysis may

not be suitable. Li is able to overcome this difficulty

by using a new method called the σ -uniformity, in-

spired by a seminar work of Gowers [23], establishing

the L2 ×L2 → L1 boundedness when Γ is a monomial

curve:

Theorem 5 (Li [39]). Let γ(t) = tα , α > 0 and α 6= 1. Then
HΓ f maps from L2 ×L2 → L1.

The boundedness of the bilinear Hilbert trans-

forms (along curves) is quite well-understood when

the curves are completely flat (namely the Lacey-

Thiele) and when the curves’ curvature essentially

vanishes in a finite order. The situation is still unclear

in other cases, including ones in which the curves

are asymptotically flat. A model case is when γ(t) is
a polynomial containing both linear and non-linear

terms. Part of the difficulty in this case is that Lacey

and Thiele’s method is stable under any linear per-

turbations but not under any non-linear perturbation

and vice versa for Li’s method. This situation is some-

what similar to the one of Stein’s polynomial Carleson

conjecture: the cases were well-understood when the
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polynomial contains only the linear term or only the

non-linear terms, but were not well-understood for

some time when both linear and non-linear terms ap-

peared.

3. Some Recent Work

In this section, we will describe some recent joint

work of the author with Philip T. Gressman, Jingwei

Guo and Xiaochun Li.

3.1 Sharp Trilinear Oscillatory Integrals [72]

The goal is to understand the following basic tri-

linear oscillatory integral form

ΛS( f1, f2, f3) =
∫∫

R2
eiλS(x,y)

φ(x,y) f1(x) f2(y) f3(x+ y)dxdy.

(3.7)

Here φ(x,y) is a smooth cut-off function supported in

a small neighborhood of 0 and the phase S(x,y) is an
arbitrary real analytic function on the support of φ .

This trilinear form is a particular case of the multi-

linear oscillatory integral studied by Christ et al., in

which they proved (non-sharp) decay rate estimates

for polynomial phases in a more general setting. An

important step in their approach is a reduction of the

multilinear setting to a trilinear setting, which moti-

vates the study of (3.7). Another motivation comes

from the fundamental work of Phong and Stein [56]

concerning sharp estimates degenerate oscillatory in-

tegral operators, of which (3.7) can be considered as

a trilinear extension. As observed in [11], one expects

no decay at all when S(x,y) may be written as a sum

S1(x)+ S2(y)+ S3(x+ y) for measurable functions S1,S2,

and S3. When S is smooth, the (non-)degeneracy of S
is captured by the action of the differential operator

D = ∂x∂y(∂x − ∂y), which annihilates sums of the form

S1(x)+S2(y)+S3(x+y). Let DS(x,y) = ∑ j≥ j0 Pj(x,y), where
Pj is homogeneous polynomial of degree j and Pj0 is

the first non-zero term. Define the relative multiplic-

ity of S by mult(S) = ( j0 + 3). Then the sharp decay

estimates can be characterized by mult(S).

Theorem 6 ([72]). Let S and φ be as above. Then

|ΛS( f1, f2, f3)| ≤C|λ |−
1

2mult(S)
3

∏
j=1

‖ f j‖2.(3.8)

The result (3.8) is sharp in the sense that if φ(0,0) 6= 0,
then

|ΛS( f1, f2, f3)| ≥C′|λ |−
1

2mult(S)
3

∏
j=1

‖ f j‖2,(3.9)

as |λ | → ∞, for some C′ > 0 and some { f j}1≤ j≤3.

One interesting feature of the theorem is that the

characterization of the exponent is quite different

from the exponent for the bilinear form [56], which

is in terms of the Newton polyhedron of the phase.

This is due to the extra convolution structure of the

trilinear form. The proof of this theorem builds upon

the framework of Phong and Stein, relying on two im-

portant new ingredients. The first is a trilinear exten-

sion of Phong-Stein’s operator van der Corput lemma.

The second is an algorithm of two-dimensional reso-

lution of singularities (influenced by many previous

works). The algorithm is of independent interest for

it can be employed to decompose a neighborhood of

an isolated singular point into finitely many subre-

gions, on which derivatives of the phase behaves like

monomials.

3.2 Maximal Decay and Algebraic Stability [31]

P.T. Gressman and the author have obtained sev-

eral new and unexpected findings for the trilinear

form (3.7). The basic observation upon which Theo-

rem 6 is based is an estimate of the form

|ΛS( f1, f2, f3)| ≤C|λ |−
1
6 ‖ f1‖2‖ f‖2‖ f3‖2

for phases S with |DS| ≥ c > 0 on the support of φ , with

D defined above. Scaling arguments show that the ex-

ponent of λ cannot be improved, but a comparison

to the sublevel set estimate (namely, the decay rate

of the size of the set

{(x,y) ∈ [0,1]2 : |S(x,y)|< ε}

as ε → 0+ indicates that the decay rate |λ |− 1
6 is likely

not the best possible if one considers Lp spaces on

the right-hand side other than L2. We were able to

improve the decay rate from |λ |− 1
6 to |λ |− 1

4 by utiliz-

ing both oscillation structure (via the method of T T ∗)

and convolution structure (via the Hardy-Littlewood-

Sobolev inequality) of the trilinear form, while the

previous |λ |− 1
6 -result employs only the oscillation

structure. Note that the |λ |− 1
4 decay rate still falls

short of the |λ |− 1
3 decay rate suggested by the opti-

mal sublevel set estimate. Any improvement beyond

|λ |− 1
4 , if possible, is likely extremely challenging. How-

ever, when S is sufficiently degenerate, we were able

to closing the gap between the sublevel set decay rate

and the oscillatory integral decay rate.

Theorem 7 ([31]). Let S(x,y) be as above and

n =mult(S) ≥ 9. If the order of “vanishing” of S is less

than ( n
2 −2), then

|Λ( f1, f2, f3)| ≤C|λ |−
2
n ‖ f1‖∞‖ f2‖∞‖ f3‖∞.(3.10)

DECEMBER 2017 NOTICES OF THE ICCM 97



While this matching of decay rates is satisfying

and natural, it should perhaps be regarded as some-

what surprising that this is possible since, among

other things, the highest possible decay rate can only

be achieved when f1, f2 and f3 all belong to L∞, which

is not traditionally a regime in which one expects to

find strong cancellation effects. This theorem also

has some new and interesting consequences, for in-

stance, the following sharp and stable estimates,

Theorem 8 ([31]). Under the same assumptions of the

above theorem, there is a constant C such that∣∣∣∣∫∫R2
ei(λS(x,y)+P1(x)+P2(y)+P3(x+y))

φ(x,y)dxdy

∣∣∣∣≤C|λ |−
2
n

and

|{(x,y)∈ [0,1]2 : |S(x,y)−P1(x)−P2(y)−P3(x+y)|< ε}|≤Cε
2
n

for all real-valued measurable functions P1,P2 and P3.

Note that any quadratic function of two variables

can be written as a sum of P1(x),P2(y) and P3(x + y),
and this theorem includes, in particular, the results

for sharp and stable estimates for the oscillatory in-

tegrals (and the sublevel sets) under any quadratic

perturbation, which can also be used to deduce esti-

mates for the Fourier transform of the 2 dimensional

manifold in R6 given by (x,y,x2,y2,xy,S(x,y)).

3.3 Oscillatory Integral Operators and a Weak van

der Corput Lemma in 2D

Let S(x,y) = ∑k,l∈N ck,lxkyk be a real analytic function

defined on a small neighborhood of the origin. The

one-dimensional oscillatory integral operator associ-

ated to S is defined by

Tλ f (x) =
∫

∞

−∞

eiλS(x,y)
φ(x,y) f (y)dy.(3.11)

The important geometric concept to characterize the

mapping properties of this operator is the reduced

Newton polyhedron N ∗(S) of S, which is given by the

convex hull of the union of all [k,∞)× [l,∞) with ck,l 6= 0
and k, l ≥ 1. The reduced Newton diagram D∗(S) is the
boundary of N ∗(S), and the Newton distance is the

number δ such that (δ ,δ ) ∈N ∗(S). In [73], the author

shows that the Lp → Lp mapping properties of Tλ are

fully captured by the reduced Newton polyhedron:

Theorem 9 ([73]). Let S and φ be as above. Assume

α > 0 and φ(0,0) 6= 0. Then

‖Tλ‖p→p ≤C|λ |−α ⇐⇒ (
1

pα
,

1
p′α

) ∈N ∗(S)

and this estimate is sharp iff ( 1
pα

, 1
p′α ) ∈D∗(S).

In particular, this theorem implies the fundamen-

tal work of Phong and Stein [56], which corresponds

to the p = 2 and α = δ case. Another interesting fea-

ture of this theorem lies in its connection to a two-

dimensional van der Corput Lemma. A well known re-

sult [64] states that under the assumption ∂ k
x ∂ l

yS(x,y) 6=
0 on the support of φ , the scalar oscillatory integral Iλ

has a decay rate estimate |λ |−
1

k+l . Using a compactness

argument, the above theorem can used to establish an

operator analogue of this result:

Theorem 10 ([73]). Assume the real analytic function

S satisfies ∂ k
x ∂ l

yS(x,y) 6= 0 pointwisely on the support of

φ (assumed to be compact) for some k, l ≥ 1. Then there

is a constant C independent of λ such that

‖Tλ‖ k+l
k → k+l

k
≤C|λ |−

1
k+l .(3.12)

This estimate for Tλ also preserves certain scaling

properties that its scalar analogue Iλ doesn’t: if (k, l)
is a least pair such that ∂ k

x ∂ l
yS(x,y) 6= 0, then the decay

rate |λ |−
1

k+l is optimal for the norm of Tλ but not for Iλ

in general (for instance S(x,y) = xkyl). The proof of this

theorem is quite involved, which is based on the res-

olution algorithm built up in [72] and various ideas

and techniques from many previous works, includ-

ing Phong-Stein’s operator van der Corput lemma, the

theory for oscillatory BMO and Hardy spaces, Stein’s

complex interpolation, a lifting trick from Zygmund

and many others.

3.4 Uniform Estimates for Bilinear Hilbert

Transform Along Curves [41]

In joint work with X. Li, we studied the BHT and its

maximal function analogue along polynomial curves

without linear term. We are particularly interested in

the full Lp × Lq → Lr ranges for both operators. We

show that these ranges can be characterized by three

equivalent statements, algebraically by the maximal

order of roots, geometrically by the maximal contact

order, and analytically by the growth of sublevel sets.

Theorem 11 ([41]). Let P(t) be a polynomial contains

no linear term and HΓ and MΓ be the corresponding

BHT and bilinear maximal function along the curve

Γ(t) = (t,P(t)). Then the following are equivalent:

1. All the roots of P′(t)− 1 = 0 have order at most

(k-1);

2. For any tangent line L of (t,P(t)) with slope equal

to 1, the contact order between L and Γ is atmost k.
3. There is a constant CP = C(P) s.t. the following

sublevel set estimate is true for h sufficiently small

|{t : |P′(t)−1|< h}|<CPh
1

k−1 .

4. The operators HΓ and MΓ map from Lp ×Lq to Lr

for all r > k−1
k , p, q > 1 satisfying 1

r = 1
p +

1
q .

98 NOTICES OF THE ICCM VOLUME 5, NUMBER 2



The assumption that Γ is a polynomial curve is

not essential. For instant, when Γ(t) = (t, tα) (α > 0 and
6= 1), same proof of the theorem [41] implies that HΓ

maps into Lr for r > 1/2. The significance is that it

also provides some hope for the conjecture that the

classical BHT also maps into Lr in the same range. Our

result concerns the uniformity of both operators, in

which we prove the bound for both operators can be

uniform in the coefficients of the polynomial.

Theorem 12. Let P(t), HP and MP be as above. Then

HΓP and MP map from Lp × Lq into Lr for all r > d−1
d ,

p, q > 1 satisfying 1
r = 1

p +
1
q . In addition, the bound is

uniform in a sense that it depends on the degree of

P but is independent of its coefficients and the range

of p,q,r is best possible except for the endpoint case

r = d−1
d .

This result extends the uniform estimates for

BHT of Thiele [70], Grafakos and Li [24, 40], and the

bilinear maximal function of Lacey [38] to the curva-

ture setting. The general outline of approach for these

two theorems is as follows. The operator is decom-

posed into dyadic pieces H j which are broken into a

dichotomy of a finite number of terms that are “good”

and an infinite collection of terms that are “bad” (cor-

responding to regions where one particular term in P
vastly dominates all other terms in the polynomial).

The finite collection is bounded from Lp×Lq → Lr term

by term, where the constraint of r (r > k−1
k in the first

theorem and r > d−1
d in the second one) arises. The

key tool employed here is the classical van der Corput

lemma. The remaining infinite collection requires the

most work, and is split into two parts. One is treated

by using Li’s σ -uniformity and certain trilinear oscil-

latory integral forms, in which an exponential decay

in a certain index is obtained. The other is handled by

applying the method of time-frequency analysis and

a Whitney decomposition (when handling some error

terms) with a slow (polynomial) growth bound. The

final bound follows by interpolation.

3.5 Bilinear Hilbert Transform Along Plane Curves

[32]

In this joint work with J.W. Guo, the author fur-

ther studies the role of curvature in the bounded-

ness of BHTaCs. In the linear setting, Nagel, Vance,

Wainger, and Weinberg proved that such bounded-

ness can be indeed characterized by the auxiliary

function h(t) = tγ ′(t)− γ(t) (assuming γ(0) = 0). In the

case γ(t) is odd and convex, the corresponding Hilbert

transform is bounded if and only if h(t) has bounded
double time. It turns out that the quotient between

γ(t) and tγ ′(t) seems to be the analogue of h(t) in the

bilinear setting. More precisely, for each dyadic num-

ber ε> 0 define qε(t)= (εγ ′(ε))−1γ(εt) for |t| ∈ [1/4,4]. The

conditions imposed on γ(t) (assumed to be smooth in

some neighborhood of the origin) are there exists a

constant C > 0 such that the following holds for all

|t| ∈ [1/4,4] and all ε small∣∣∣q( j)
ε (t)

∣∣∣<C for 0 ≤ j ≤ 5,(3.13) ∣∣q′′ε (t)∣∣>C−1,(3.14) ∣∣(q′′ε (t))2 −q′ε(t)q
′′′
ε (t)

∣∣>C−1.(3.15)

We prove that:

Theorem 13 ([32]). If γ(t) is a smooth function defined

on [−1,1] satisfying (3.13), (3.14) and (3.15), then the

corresponding bilinear Hilbert transform is bounded

from L2 ×L2 → L1.

It is unclear at this moment whether these condi-

tions are also necessary for the L2 ×L2 → L1 bounded-

ness.

4. Some Open Problems

To date the theory of multilinear oscillatory inte-

grals and multilinear singular Radon-like transforms

is still in its early stage and very little is known. The

classical L2-theory, though works perfectly well in the

linear setting, becomes increasingly inefficient as the

level of the multi-linearity of the transform increases.

Completely novel ideas are required to understand

the role of curvature in the theory of multilinear oper-

ators and to develop novel analytic tools. In this sec-

tion, we will propose some interesting open problems

in this field.

4.1 Van der Corput in Higher Dimentions

The goal in this direction is to obtain uniform

(stable) and optimal estimates for oscillatory inte-

grals a la the van der Corput lemma. In the two di-

mensional setting, it can be formulated as follows,

Problem 1. Let k, l ≥ 1 be fixed integers and Uk,l be

the set of smooth functions S with ∂ k
x ∂ l

yS(x,y)≥ 1 for all

(x,y) ∈ Q = [0,1]2. Let φ be a fixed smooth cut-off func-

tion supported on Q. Is there a constant C independent

of λ such that∥∥∥∥∫ ∞

∞

eiλS(x,y)
φ(x,y) f (y)dy

∥∥∥∥
k+l

k

≤C|λ |−
1

k+l ‖ f‖ k+l
k
,(4.16)

for all S ∈ Uk,l?

This problem amounts to the generalization of

Theorem 10 to the smooth and uniform setting. There

is evidence that a loss of a log factor might be un-

avoidable if either k = 1 or l = 1. The Taylor expansion
of the phase fails to capture all its information and
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consequently the method based on resolution of sin-

gularities alone is certainly not sufficient to handle all

the cases. The stopping time argument from Green-

blatt [25] will be useful. A good starting point for the

much more difficult problem of proving sharp and

uniform estimates is to restrict the class of phases

to the class of polynomial phases and allow the con-

stant C to depend on the degrees of the polynomials.

In another word, to remove the log terms from the

estimates of Phong, Stein and Sturm [58].

4.2 Multilinear Oscillatory Forms

A second problem concerns higher-dimensional

generalizations, namely, estimates of multilinear os-

cillatory integrals in form of∣∣∣∣∣
∫
Rd

eiλS(x1,...,xd)φ(x1, . . . ,xd)
d

∏
j=1

f j(x j)dx1 . . .dxd

∣∣∣∣∣(4.17)

.log |λ |−α
d

∏
j=1

‖ f‖p j .

The scalar analogue of this multilinear form was first

considered by Varchenko [71] for analytic phases sat-

isfying Varchenko’s non-degeneract condition. Esti-

mates of the form in (4.17) under the assumption

∑
d
j=1

1
p j

= (d −1) were considered by Phong, Stein and

Sturm [58] and Carbery and Wright [4]. It turns out

that the behavior of (4.17) is substantially richer

than anticipated by these earlier results. Some par-

tial progress has been obtained by M. Gilula and P.T.

Gressman and the author. We prove that (4.17) holds

if and only if the point ( α

p1
, . . . , α

pd
) lies in the reduced

Newton polyhedron of S under a Varchenko-type non-
degenerate condition [22]. It will be interesting to find

out all possible estimates for arbitrary degenerate

phases:

Problem 2. Given a real analytic function S, what is
the maximal convex hull of the tuple ( 1

p1
, . . . , 1

pd
,α) such

that (4.17) is true?

One of the main challenges of this problem is

to develop a suitable resolution of singularities algo-

rithm in higher dimensions. One can also ask a similar

question for the trilinear form.

Problem 3. For any given real analytic phase S, find
the maximal convex hull ( 1

p1
, 1

p2
, 1

p3
,α) such that∣∣∣∣∫∫ eiλS(x,y)

φ(x,y) f1(x) f2(y) f3(x+ y)dxdy

∣∣∣∣
≤C|λ |−α

3

∏
j=1

‖ f j‖p j .

The main challenge of this problem is quite dif-

ferent from that of the previous one. The nondegen-

erate case is indeed the most challenging one: does

the following holds∣∣∣∣∫∫ eiλ (x−y)3
φ(x,y) f1(x) f2(y) f3(x+ y)dxdy

∣∣∣∣
≤C|λ |−1/3

3

∏
j=1

‖ f j‖3?

Preliminary investigation of this question sug-

gests the answer will be extremely complicated, in

contrast, for example, to the simply-stated results of

Phong, Stein, and Sturm [58]. It will be helpful to com-

pute such convex hull for some class ofmodel phases,

for example, when the phase has relatively small or-

der of vanishing.

4.3 Necessary and Sufficient Condition for the

Boundedness of BHTaCs

Recall that a theorem from [47] states that for an

even (odd) convex curve Γ(t) = (t,γ(t)) on the plane,

the operator

TΓ f (x) = p.v.
∫

∞

−∞

f (x−Γ(t))
dt
t

is bounded from L2(R)→ L2(R) if and only if there is

a constant C > 0 such that γ ′(Ct) ≥ 2γ ′(t) (h(Ct) ≥ 2h(t)
where h(t) = tγ ′(t)− γ(t), respectively). One can ask a

similar question for the BHTaCs.

Problem 4. Let Γ(t) be a convex even (or odd) plane

curve. Find a necessary and sufficient condition for Γ

so that the corresponding bilinear Hilbert transform is

bounded from L2 ×L2 → L1.

A first step might be to find a new proof of the

monomial case, which bears more features from the

classical tools for the Hilbert transform along curves.

In Li’s approach, he decomposes HΓ along the critical

points of the phase, namely the zeros of (ξ t+ηγ(t))′ =
0. Away from the critical points is the minor part, in

which fast decay can be obtained using Fourier se-

ries and can be handled via classical tools from para-

products. Near the critical points is the major part, in

which one applies the method of stationary phase.

Unlike the linear theory, the resulting decay is not

sufficient to obtain any useful estimates and the os-

cillatory terms are critical in the bilinear theory. One

also needs to work simultaneously in the time and

phase plane, in which the problem can be reduced to

certain bilinear restriction problems and certain tri-

linear oscillatory integrals respectively. By employing

the method of T T ∗, sharp L2×L2×L2 estimates are ob-

tained, which can only handle half of the major part

(referred as the first major part). The difficulty in the

other half (referred as the second major part) is over-

come by the σ -uniformity trick. It will be significant

to find a method completely based on T T ∗ to handle
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the secondmajor parts, providing a possible entrance

for classical tools (like Cotla-Stein’s almost orthogo-

nality principle) to the bilinear theory.

4.4 Multilinear Hilbert Transform Along Curves

(MHTaCs)

While the boundedness of the multilinear Hilbert

transform (n ≥ 3) might be beyond the scope of cur-

rent techniques in analysis, its curvature analogue

might be somewhat more approachable.

Problem 5. Let γ j : R→R be smooth functions, for 1 ≤
j ≤ n. Defined the MLHaC

M( f1, . . . , fn)(x) = p.v.
∫

∞

−∞

n

∏
j=1

f j(x− γ j(t))
dt
t

Does M map Lp1 ×·· ·×Lpn into Lr?

To the author’s best knowledge, no bound is

known for this operator for n ≥ 3, even for the model

case γ j(t) = t j. Again, the difficulty lies in the lack of

systematic methods to explore the curvature in the

multilinear setting. The classical L2 theory becomes

less and less efficient as the level of multi-linearity in-

creases. All of this calls for further development for

the theory of multilinear oscillatory integrals. For in-

stance, the MHTaCs are intrinsically connected to the

estimates of the form∣∣∣∣∣
∫

eiλS(ξ1,...,ξn)φ(ξ1, . . . ,ξn)gn+1(ξ1 + · · ·+ξn)

×
n

∏
j=1

g j(ξ j)dξ1 . . .dξn

∣∣∣∣∣. |λ |−δ
n+1

∏
j=1

‖ĝ j‖p j .
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