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Abstract. In this note, we briefly review the

mathematical structures of topological strings and

their applications in mathematics. We focus on the

discussions of integrality structures in topological

strings and large N Chern-Simons/topological string

duality. More precisely, prediction of the number

of rational curves in quintic, LMOV conjectures

of open topological strings and framed knots,

derivation of Mariño-Vafa formula and interpretation

of Rogers-Ramanujan identities by topological string

will be described.

1. Introduction

For decades, we have witnessed the great devel-

opment of string theory and its powerful impact on

mathematics. There have been a lot of marvelous re-

sults revealed by string theory. It was found that the

mysterious string duality deeply relate different as-

pects ofmathematics. The topological sector of string

theory leads to a simplified model of string theory,

topological string theory. Mirror symmetry and large

N Chern-Simons/topological string duality are two of

most important dualities in topological string theory.

Two different topological twists of string theory

give rise to A-model and B-model topological strings

respectively, they are related by mirror symmetry. A-

model is described by Gromov-Witten theory in math-

ematics [39], while B model is described by BCOV the-

ory [11, 18] which can be regarded as a quantized
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version of variation of Hodge structures. The mir-

ror symmetry predicts that the A-model on a Calabi-

Yau 3-fold X is equivalent to the B-model on a mirror

Calabi-Yau 3-fold X̂ . The first important application

of the mirror symmetry is the discovery of the enu-

merative formula for the numbers of rational curves

in a quintic Calabi-Yau 3-fold [16] which will be re-

viewed in Section 2.

The study of large N Chern-Simons/topological

string duality was originated in physics by an idea

that gauge theory should have a string theory ex-

planation [37]. In 1992, Witten [88] constructed a

topological string theory on cotangent bundle T ∗M
of a 3-manifold M with N D-branes to explain the

SU(N) Chern-Simons gauge theory on M. In 1998,

Gopakumar and Vafa [36] proposed that the topo-

logical string theory on T ∗S3 with N D-branes con-

structed by Witten [88] is dual to the string the-

ory on the resolved conifold X̂ at large N. In 2000,

Ooguri and Vafa [75] extended the above picture to

explain the Chern-Simons theory on S3 with a knot

inside by open topological string theory on resolved

conifold with a corresponding Lagrangian submani-

fold associated to this knot. The large N duality of

Chern-Simons/topological string is very mysterious

since it relates the topological invariants of three

manifolds and knots to the Gromov-Witten invariant

of Calabi-Yau 3-folds, this duality provides new in-

sights both in physics and mathematics. For exam-

ple, by considering a framed unknot in S3, Mariño

and Vafa [72] discovered a remarkable closed for-

mula for Hodge integrals up to three Chern classes

of Hodge bundle on moduli spaces of curves. This

Mariño-Vafa formula, proved in [54, 74], has powerful

applications in intersection theory of moduli space

of curves. It implies Witten conjecture [87, 43], ELSV
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formula [26], λg-integrals [29] and several other inter-

esting Hodge integral identities. We will review the

Chern-Simons theory, large N duality and LMOV con-

jecture for framed knots in Section 4. The derivation

of Mariño-Vafa formula will be illustrated in Section 5.

On the other hand, Ooguri and Vafa [75] refor-

mulated the open topological string generating func-

tion in terms of new integral invariants capturing

the spectrum of M2 branes ending on M5 branes

embedded in the resolved conifold. Later, Labastida,

Marinõ and Vafa [58] refined the analysis of [75]

and conjectured a more precise integrality structure.

Such integrality structures imply the infinite product

structures for open topological string partition func-

tions which will be showed in Section 3. In partic-

ular, in Section 6, by studying the open topological

string partition function on the trivial toric Calabi-

Yau 3-fold C3, we show that the corresponding in-

finite product formula gives a “1-deformed Rogers-

Ramanujan formula” which includes the celebrated

Rogers-Ramanujan identities [38] as the special cases.

Thus it provides a topological string interpretation of

the Rogers-Ramanujan identities.

2. Closed Topological Strings

In quantum mechanics, in order to compute the

amplitude of a particle propagating in a space X , we
should consider the contributions of all the maps

from all the graphs to X . The basic idea of string the-
ory is that the particle is replaced by a string, all the

possible paths of a string are also replaced by all the

surfaces in X . Similarly, the string amplitude should

be computed by studying all the contributions of the

maps from surfaces to X [4]. Superstring theory is

the string theory with supersymmetry incorporated.

Topological string is a topological variant of super-

string theory by modifying the supersymmetry. When

X is a Calabi-Yau manifold, we have two ways to ob-

tain topological string theory, the A-model depending

on the Kähler structure of X , and the B-model depend-

ing on the complex structure of X [19].

2.1 Closed Topological String Partition Function

The mathematical theory for A-model is de-

scribed by Gromov-Witten theory [39]. Let Mg,n(X ,Q)

be the moduli space of stable maps ( f ,Σg, p1, .., pn),

where f : Σg → X is a holomorphic map from the nodal

curve Σg to the Kähler manifold X with f∗([Σg]) = Q ∈
H2(X ,Z). In general, Mg,n(X ,Q) carries a virtual fun-

damental class [Mg,n(X ,Q)]vir in the sense of [12, 62],

whose virtual dimension is given by:

vdim[Mg,n(X ,Q)]vir =
∫

Q
c1(X)+(dimX −3)(1−g)+n.

When X is a Calabi-Yau 3-fold, i.e. c1(X) = 0, then
vdim[Mg,0(X ,Q)]vir = 0. The genus g, degree Q Gromov-

Witten invariants of X is defined by

KX
g,Q =

∫
[Mg,0(X ,Q)]vir

1.

In A-model, the genus g closed free energy FX
g (ω) of

X is the generating function of Gromov-Witten invari-

ants KX
g,Q

FX
g (ω) = ∑

Q 6=0

KX
g,Qe−Q·ω ,

where ω is the complexified Kähler parameter of X .
Let

FX (gs,ω) = ∑
g≥0

g2g−2
s FX

g (ω) ZX (gs,ω) = exp(FX (gs,ω))

be the total free energy and partition function, where

gs is the string coupling constant. The central ques-

tion in topological string theory is how to compute

this partition function ZX (gs,ω) or every Gromov-

Witten invariants KX
g,Q.

2.2 Gopakumar-Vafa Formula

Usually, the Gromov-Witten invariants KX
g,Q are ra-

tional numbers. In 1998, Gopakumar and Vafa [35]

expressed the total free energy FX (gs,ω) in terms of

the generating function of integer-valued invariants

NX
g,Q obtained by counting BPS states in M theory:

FX (gs,ω) = ∑
g≥0

g2g−2
s ∑

Q 6=0

KX
g,Qe−Q·ω(1)

= ∑
g≥0,d≥1

∑
Q 6=0

1
d

NX
g,Q

(
2sin

dgs

2

)2g−2

e−dQ·ω .

Obviously, genus 0 part of the formula (1) gives

∑
Q 6=0

KX
0,Qe−Q·ω = ∑

Q 6=0

NX
0,Q ∑

d≥1

1
d3 e−d·Qω .

which is called the multiple covering formula [5].

Remark 2.1. The invariants NX
g,Q are called

Gopakumar-Vafa invariants in literatures. A cen-

tral problem in topological string is how to define

the Gopakumar-Vafa invariants directly. We refer to

[41, 48, 42, 71] for some approaches in this direction.

2.3 Example 1: Quintic X5

Let X5 ⊂ CP4 be a nonsingular quintic hypersur-

face, which is a compact Calabi-Yau 3-fold. In this

case, the genus 0 free energy and multiple covering

formula gives

FX5
0 (T ) = ∑

d≥1

KX5
0,dedT = ∑

d≥1

NX5
0,d ∑

k≥1

1
k3 ekdT .(2)
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Mirror symmetry transfers the difficult computation

of FX5
0 (T ) to the simple computation in B-model on

mirror quintic family X̂t which is dealt with by the the-

ory of variation of Hodge structures [69]. Let

∂
4
t f (t)−5et(5∂t +1) · · ·(5∂t +4) f (t) = 0

be the associated Picard-Fuchs equation of the family

X̂t , and define

∞

∑
j=0

I j(t)k
j = ekt

∞

∑
d=0

edt ∏
5d
j=1(5k+ j)

∏
d
j=1(k+ j)5

.(3)

By Frobenius method, one can see that

{I0(t), I1(t), I2(t), I3(t)} forms a basis of solutions

of the equation (3). Let Jk(t) =
Ik(t)
I0(t)

and T = J1(t), in

their celebrated work [16], Candelas, de la Ossa,

Green and Parkes made the following prediction by

using mirror symmetry

FX5
0 (T ) =

5
2
(J1(t) · J2(t)− J3(t)) .(4)

Therefore, one can compute all KX5
0,d and NX5

0,d by for-

mula (4), for examples NX5
0,1 = 2875 and NX5

0,2 = 609250.
They conjectured that these numbers gave the num-

bers of rational curves of degree d in X5, while it is

a difficult question in classical enumerative geome-

try. Topological string theory provides an effective

way to compute these numbers. From then on, topo-

logical string theory attracted the interests of alge-

braic geometers. Kontsevich [44] introduced themod-

uli space of stable maps and the method of localiza-

tion [2] to compute the genus 0 Gromov-Witten invari-

ant KX5
0,d . Then the Candelas-de la Ossa-Green-Parkes

formula (4) was later proved by Lian-Liu-Yau [52] and

Givental [33]. We refer to [19] for more details.

As to the genus 1 free energy FX5
1 (T ) =∑d≥1 KX5

1,dedT ,

Bershadsky-Cecotti-Ooguri-Vafa [11] obtained the fol-

lowing formula also by the computations on mirror

manifold

FX5
1 (T ) =

25
12

(J1(t)− t)− log
(

I0(t)
31/3(1−55et)1/12J′1(t)

1/2
)
.

(5)

Formula (5) was proved by Zinger [92].

For higher genus free energy FX5
g (T ), Huang-

Klemm-Quackenbush [40] have made the predictions

for g up to 51 by using the BCOV theory [11] and mir-

ror symmetry. To calculate all genus Gromov-Witten

invariants of the quintic X5 is a central problem in

Gromov-Witten theory, see [20, 17, 30] for some re-

lated works.

2.4 Example 2: Toric Calabi-Yau 3-Folds

A toric Calabi-Yau 3-fold is a toric variety with

trivial canonical bundle [13] which is noncompact. Be-

cause of its toric symmetry, the geometric informa-

tion of a toric Calabi-Yau 3-fold is encoded in a triva-

lent graph named “toric diagram” [9] which is the glu-

ing of some trivalent vertices. The topological string

partition function ZX of a toric Calabi-Yau 3-fold X
can be computed by using the method of topological

vertex [9, 53]. The integrality of the invariants NX
g,Q for

toric Calabi-Yau 3-fold X in Gopakumar-Vafa formula

(1) was later proved by P. Peng [76] and Konishi [45].

3. Open Topological Strings

Let us now consider the open sector of topolog-

ical A-model of a Calabi-Yau 3-fold X with a sub-

manifold D, we assume dim H1(D,Z) = 1 for conve-

nience of the following discussion. The open sector

topological A-model can be described by holomor-

phic maps φ from open Riemann surface of genus g
with l-holes Σg,l to X , with Dirichlet condition speci-

fied by D. These holomorphic maps are called open

string instantons. More precisely, an open string in-

stanton is a holomorphic map φ : Σg,h → X such that

∂Σg,l = ∪l
i=1Ci →D ⊂ X where the boundary ∂Σg,l of Σg,l

consists of l connected components Ci mapped to La-

grangian manifold D of X . Therefore, an open string

instanton φ is described by the following two dif-

ferent kinds of data: the first is “bulk part” which

is given by φ∗[Σg,l ] = Q ∈ H2(X ,L), and the second is

“boundary part” which is given by φ∗[Ci] = wiγ , for

i= 1, ..l, where γ is the generator of H1(D,Z) and wα
i ∈Z.

Let w = (w1, ...,wl) ∈ Zl , “open Gromov-Witten invari-

ants” KX
w,g,Q are determined by the data w,Q in the

genus g. See [63, 47] for mathematical aspects of

defining these invariants in special cases.

We take all wi ≥ 1 as in [72], and use the notations
of partitions and symmetric functions [67]. Denote by

P the set of all partitions including the partition 0 of 0,
and P+ the set of nonzero partitions. Let x = {x1,x2, ...}
be the set of infinitely many independent variables.

For n ≥ 0, let pn(x) = ∑i≥1 xn
i be a power sum symmetric

function. For a partition µ ∈ P+, let pµ(x) = ∏
l
i=1 pµi(x).

The total free energy and partition function of open

topological string on X are expressed in the following

forms:

F(X ,D)
str (gs,ω,x) =− ∑

g≥0
∑

µ∈P+

√
−1

l(µ)

|Aut(µ)|
g2g−2+l(µ)

s

× ∑
Q6=0

K(X ,D)
µ,g,Q e−Q·ω pµ(x)

Z(X ,D)
str (gs,ω,x) = exp(F(X ,D)

str (gs,ω,x)).

The central problem in open topological string

theory is how to calculate the partition function

Z(X ,D)
str (gs,ω,x) or the open Gromov-Witten invariants

K(X ,D)
µ,g,Q . In the case of compact Calabi-Yau 3-folds, such
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as the quintic X5, there are only a few works devoted

to the study of its open Gromov-Witten invariants, for

example, a complete calculation of the disk invariants

of X5 with boundary in a real Lagrangian was given

in [77].

Suppose X is a toric Calabi-Yau 3-fold, and D is a

special Lagrangian submanifold named as Aganagic-

Vafa A-brane in the sense of [6, 8]. The open string

partition function Z(X ,D)
str (gs,ω,x) can be computed

by using the method of topological vertex [9, 53]

and the method of topological recursion developed

by Eynard and Orantin [27]. The second approach

was first proposed by Mariño [68], and studied fur-

ther by Bouchard, Klemm, Mariño and Pasquetti [14],

the equivalence of the two methods was proved

in [28, 31].

The open Gromov-Witten invariants KX
µ,g,Q are ra-

tional numbers in general. Just as in the closed string

case [35], the open topological strings compute the

partition function of BPS domain walls in a related

superstring theory [75]. It follows that F(X ,D)
str (gs,ω,x)

also carries an integral expansion. This integrality

structure was further refined in [56, 57, 58].

We introduce the variables

q = e
√
−1gs , a = e−ω .(6)

Let fλ (q,a) be a function determined by the following

formula

F(X ,D)
str (gs,ω,x) =

∞

∑
d=1

1
d ∑

λ∈P+

fλ (q
d ,ad)sλ (x

d),(7)

where sλ (x) is the Schur symmetric functions [67].

Then fλ (q,a) has the following structure [58]:

fλ (q,a) =
∞

∑
g=0

∑
Q 6=0

∑
|µ|=|λ |

Mλ µ(q)Nµ,g,Q(q
1
2 −q−

1
2 )2g−2aQ,(8)

where Nµ,g,Q are integers which compute the net num-

ber of BPS domain walls [75] and Mλ µ(q) is defined by

Mλ µ(q) = ∑
ν

χλ (Cν)χµ(Cν)

zν

l(ν)

∏
j=1

(q−ν j/2 −qν j/2),(9)

where χν(Cµ) is the character of an irreducible rep-

resentation of the symmetric group. For conve-

nience, we usually introduce the new integers nµ,g,Q =

∑ν χν(Cµ)Nν ,g,Q. These integers Nµ,g,Q and nµ,g,Q are

both called LMOV invariants. The expression (8) can

be rewritten as follow:

fλ (q,a) = ∑
g≥0

∑
Q6=0

∑
µ∈P

χλ (Cµ)

zµ

nµ,g,Q

×
l(µ)

∏
j=1

(q−
µ j
2 −q

µ j
2 )(q−

1
2 −q

1
2 )2g−2aQ.

Combing the formula (7), we obtain the following

multiple covering formula for open string illustrated

in [72]:

∑
g≥0

∑
Q 6=0

g2g−2+l(µ)
s K(X ,D)

µ,g,Q aQ(10)

= ∑
g≥0

∑
Q 6=0

∑
d|µ

(−1)l(µ)+g

∏
l(µ)
i=1 µi

dl(µ)−1nµ/d,g,Q

×
l(µ)

∏
j=1

(2sin
µ jgs

2
)(2sin

dgs

2
)2g−2adQ.

Hence we have the following integrality structure con-

jecture which is called the Labastida-Mariño-Ooguri-

Vafa (LMOV) conjecture for open string.

Conjecture 3.1 (LMOV conjecture for open string).

Let F(X ,D)
µ (gs,ω) be the generating function determined

by

F(X ,D)
str (gs,ω,x) = ∑

µ

F(X ,D)
µ (gs,ω)pµ(x),

then F(X ,D)
µ (gs,ω) has the integral expansion as in the

right-hand side of the formula (10).

Remark 3.2. In the original paper [75], Ooguri and

Vafa proposed the following structure for fλ (q,a), i.e.
there exist integers Nλ ,i, j such that

fλ (q,a) =
∑i, j Nλ ;i, ja

i/2q j/2

q1/2 −q−1/2
.(11)

The integral expansion form (8) of fλ (q,a) was refined
in [58]. In fact, the Ooguri-Vafa invariants Nλ ;i, j are

certain linear sums of the LMOV invariants Nµ,g,Q.

Remark 3.3. The integral expansions (8) and (11) lead

to certain infinite product formulas for open topo-

logical string partition function, see [60] for the infi-

nite product formula by using the expansion formula

(8). Similarly, expansion formula (11) implies the fol-

lowing infinite product formula for open topological

string partition function

Z(X ,D)
str

(12)

= ∏
µ 6=0

∏
j1,.. jl(µ)≥1

∏
l≥0

∏
i,k

(
1−a

i
2 q

k+1
2 +lxµ1

j1
· · ·x

µl(µ)
jl(µ)

)∑λ
χ

λ
(Cµ )N

λ ,i,k
zµ

.

Formula (12) is closely related to the infinite prod-

uct formula appearing in the studying of motivic

Donaldson-Thomas invariants [49, 50, 78]. An exam-

ple for the relationship of open topological string par-

tition function on (C3,Dτ) and Poincare polynomial of

the cohomological Hall algebra of a symmetric quiver

was provided in [66]. Application of the formula (12)

to interpret Rogers-Ramanujan identities will be illus-

trated in the following Section 6.
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4. Large N Duality

4.1 Quantum Invariants

In his seminal paper [86], E. Witten introduced a

topological invariant of a 3-manifold M defined as the

partition function in quantum Chern-Simons theory.

Let G be a compact gauge group which is a Lie group,

and M be an oriented three-dimensional manifold. Let

A be a g-valued connection on M where g is the Lie

algebra of G. Chern-Simons [22] action is given by

S(A) =
k

4π

∫
M

Tr

(
A∧dA+

2
3
A∧A∧A

)
where k is an integer called the level.

Chern-Simons partition function is defined as the

path integral in quantum field theory

ZG(M;k) =
∫

eiS(A)DA

where the integral is over the space of all g-valued

connections A on M. Although the definition is not

rigorous in mathematics, Witten [86] developed some

techniques to deal with such invariants.

If the 3-manifold M contains a knot K, we define
WR(K) = TrRHolK(A) = TrR (Pexp

∮
KA) to be the trace of

holonomy along K taken in representation R. Then
Witten’s invariant of the pair (M,K) is given by

ZG(M,K;R;k) =
∫

eiS(A)
L

∏
j=1

WR(K)DA.

We often use the following normalization form

PG
R (M,K;k) =

ZG(M,K;R;k)
ZG(M;k)

.(13)

When M = S3 and the Lie algebra of G is a semisim-

ple Lie algebra, Reshetikhin and Turaev [79, 80] de-

veloped a systematic way to constructed the above

invariant (13) by using the representation theory of

quantum groups. Their construction led to the def-

inition of colored HOMFLY-PT invariants [57, 65],

which can be viewed as the large N limit of the quan-

tum Uq(slN) invariants. Usually, we use the notation

Wλ 1,..,λ L(L;q,a) to denote the (framing-independent)

colored HOMFLY-PT invariants for a (oriented) link

L =
⊔L

j=1K j, where each component K j is colored by

an irreducible representation Vλ j of Uq(slN). Some ba-

sic structures for Wλ 1,..,λ L(L;q,a) were proved in [59,

60, 90]. It is difficult to obtain an explicit formula

for Wλ 1,..,λ L(L;q,a) in any irreducible representations

λ i. We refer to [65] for an explicit formula for torus

links, and a series of works due to Morozov et al. [70]

and Nawata et al. [73] for the conjectural formulas

for twist knots. In particular, we have the following

explicit formula for a trivial knot (unknot) U :

Wλ (U ;q,a) = ∏
x∈λ

a1/2qcn(x)/2 −a−1/2q−cn(x)/2

qh(x)/2 −q−h(x)/2
.

For a box x = (i, j)∈ λ , the hook length and content are

defined to be hl(x) = λi + λ t
j − i− j + 1 and cn(x) = j − i

respectively. We let Wλ (q) be the coefficient of a
|λ |
2 in

Wλ (U ;q,a), i.e.

Wλ (q) = [a
|λ |
2 ]Wλ (U ;q,a) = ∏

x∈λ

qcn(x)/2

qh(x)/2 −q−h(x)/2
.(14)

4.2 Large N Duality

In another fundamental work of Witten [88],

SU(N) Chern-Simons gauge theory on a three-

manifold M was interpreted as an open topological

string theory on T ∗M with N topological branes wrap-

ping M inside T ∗M. Furthermore, Gopakumar and

Vafa [36] conjectured that the large N limit of SU(N)

Chern-Simons gauge theory on S3 is equivalent to the

closed topological string theory on the resolved coni-

fold. Furthermore, Ooguri and Vafa [75] generalized

the above construction to the case of S3 with a knot

K inside. They introduced the Chern-Simons partition

function Z(S3,K)
CS (q,a,x) for (S3,K) which is a generating

function of colored HOMFLY-PT invariants in all irre-

ducible representations.

Z(S3,K)
CS (q,a,x) = ∑

λ∈P
Wλ (L,q,a)sλ (x).(15)

Ooguri and Vafa [75] conjectured that for any knot

K in S3, there exists a corresponding Lagrangian sub-

manifold DK, such that the Chern-Simons partition

function Z(S3,K)
CS (q,a,x) is equal to the open topologi-

cal string partition function Z(X ,DK)
str (gs,ω,x) on (X ,DK),

under the variable changes (6). They have established

this duality for the case of a trivial knot U in S3.

The link case was further discussed in [58]. The large

N Chern-Simons/topological string duality predicts,

for any link L in S3, there exist a corresponding La-

grangian submanifold DL such that

Z(S3,L)
CS (q,a,x) = Z(X̂ ,DL)

str (gs,ω,x) for q = e
√
−1gs ,a = e−ω .

(16)

To establish the large N duality in mathematics,

first we should find a way to construct the Lagrangian

submanifold DL corresponding to the link L in geom-

etry. See [58, 46, 84, 24] for such constructions for

some special links. Then, we need to develop some

methods to compute the open sting partition func-

tion under this geometry. For the trivial knot (i.e. un-

knot U) in S3, the dual open string partition function

was computed by J. Li and Y. Song [63] and S. Katz

and C.-C. M. Liu [47].
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4.3 Integrality of the Quantum Invariants

The large N duality (16) together with the integral-

ity structure conjecture for open topological string,

i.e. Conjecture 3.1 imply that the Chern-Simons par-

tition function Z(S3,L)
CS (q,a,x) carries the integrality

structure which is named as the LMOV conjecture

for links in [59]. Furthermore, as mentioned previ-

ously, the large N duality was generalized to the case

of framed knot Kτ with framing τ ∈ Z in [72], with

the Chern-Simons partition Z(S3,Kτ )
CS for framed knot

Kτ given by formula (17). For convenience, we only

formulate the LMOV conjecture for framed knot Kτ

in following, although LMOV conjecture should also

holds for any framed link, see [61].

Conjecture 4.1 (LMOV conjecture for framed knots

or framed LMOV conjecture). Let

F(S3,Kτ )
CS (q,a,x) = logZ(S3,Kτ )

CS (q,a,x)

be the Chern-Simons free energy for a framed knot Kτ

in S3. Then there exist functions fλ (Kτ ;q,a) such that

F(S3,Kτ )
CS (q,a,x) =

∞

∑
d=1

1
d ∑

λ∈P+

fλ (Kτ ;qd ,ad)sλ (x
d).

Let f̂µ(Kτ ;q,a) =∑λ fλ (Kτ ;q,a)Mλ µ(q)
−1,where Mλ µ(q) is

given by formula (9). Let z = q
1
2 −q−

1
2 , then for any µ ∈

P+, there are integers Nµ,g,Q(τ) such that

f̂µ(Kτ ;q,a) = ∑
g≥0

∑
Q

Nµ,g,Q(τ)z
2g−2aQ ∈ z−2Z[z2,a±

1
2 ].

K. Liu and P. Peng [59] first studied the math-

ematical structures of LMOV conjecture for general

links (as to the Chern-Simons partition (15)), which

is equivalent to the framed LMOV conjecture for any

links in framing zero. They provided a proof for this

case by using cut-and-join analysis and cabling tech-

nique [65]. Motivated by the work [72], K. Liu and P.

Peng [61] formulated the framed LMOV conjecture for

any links. In [21], together with Q. Chen, K. Liu and

P. Peng, we developed the ideas in [61] to study the

mathematical structures hidden in framed LMOV con-

jecture and formulate congruence skein relations of

colored HOMFLY-PT invariants.

5. Mariño-Vafa Formula

We have mentioned that Mariño and Vafa [72]

generalized the large N duality to the case of knot

with arbitrary framing. They studied carefully and es-

tablished the large N duality between a framed un-

knot in S3 and the open string theory on resolved

conifold with AV-brane with help of the localization

computations in [47]. By comparing the coefficient of

the highest degree of Kähler parameter in this dual-

ity, they derived a remarkable Hodge integral identity

which now is called the Mariño-Vafa formula. Two dif-

ferent mathematical proofs for Mariño-Vafa formula

were given in [54] and [74] respectively.

Now, we describe the derivation of Mariño-Vafa

formula more precisely. For a framed knot Kτ with

framing τ ∈ Z, we define the framed colored HOM-

FLYPT invariants Kτ as follow,

Hλ (Kτ ,q,a) = (−1)|λ |τ q
κ

λ
τ

2 Wλ (K,q,a),

where κλ = ∑
l(λ )
i=1 λi(λi −2i+1). The Chern-Simon parti-

tion function for (S3,Kτ) is given by

Z(S3,Kτ )
CS (q,a;x) = ∑

λ∈P
Hλ (Kτ ,q,a)sλ (x).(17)

In particular, for the framed unknotUτ , we define

the coefficient of a
|λ |
2 in Hλ (Uτ ,q,a) as follow

Hλ (q;τ) : = [a
|λ |
2 ]Hλ (Uτ ,q,a)(18)

= (−1)|λ |τ q
κ

λ
τ

2 Wλ (q),

where Wλ (q) is given by formula (14).

Let X̂ :=O(−1)⊕O(−1)→ P1 be the resolved coni-

fold, and Dτ be the corresponding AV-brane which is

the large N duality of the framed unknot Uτ in S3. The

open string partition function for (X̂ ,Dτ) has the fol-

lowing structure

Z(X̂ ,Dτ )
str (gs,a;x)

= exp

(
− ∑

g≥0,µ

√
−1

l(µ)

|Aut(µ)|
g2g−2+l(µ)

s Fτ
µ,g(a)pµ(x)

)

where Fτ
µ,g(a) = ∑Q∈Z/2 Kτ

µ,g,QaQ and Kτ
µ,g,Q is the open

Gromov-Witten invariants defined by S. Katz and C.-C.

Liu [47]:

Kτ
µ,g,Q =

∫
[Mg,l(µ)(D

2,S1|2Q,µ1,..,µl)]
e(V).

In particular, when Q = |µ|
2 , the computations in [47]

show

Kτ

µ,g, |µ|2

= (−1)|µ|τ(τ(τ +1))l(µ)−1

l(µ)

∏
i=1

∏
µi−1
j=1 (µiτ + j)

(µi −1)!

∫
Mg,l(µ)

Λ∨
g (1)Λ

∨
g (−τ −1)Λ∨

g (τ)

∏
l(µ)
i=1 (1−µ jψ j)

where Λ∨
g (τ)= τg−λ1τg−1+ · · ·+(−1)gλg. Large N duality

in this case predicts

Z(S3,Uτ )
CS (q,a;x) = Z(X̂ ,Dτ )

str (gs,a;x)
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where q = eigs . Considering the coefficients of a
|µ|
2 in

the following equality:

[pµ(x)] logZ(S3,Uτ )
CS (q,a;x) = [pµ(x)] logZ(X̂ ,Dτ )

str (gs,a;x),

we obtain the Mariño-Vafa formula:

∑
g≥0

√
−1

l(µ)

|Aut(µ)|
g2g−2+l(µ)

s Kτ

µ,g, |µ|2

= ∑
n≥1

(−1)n

n ∑⋃n
j=1 µ j=µ

n

∏
j=1

∑
ν j=µ j

∑
|ν j |=|µ j |

χν j (Cµ j )

zµ

q
τκ

ν j
2 Hν j (q).

We construct the following generating function

which in fact gives the open topological string free

energy of (C3,Dτ):

F(C3,Dτ )
str (gs;x) = ∑

µ∈P+
∑
g≥0

√
−1

l(µ)

|Aut(µ)|
g2g−2+l(µ)

s Kτ

µ,g, |µ|2

pµ(x).

We also consider the generating function:

Fτ(q,x) = ∑
µ∈P

∑
n≥1

(−1)n

n

× ∑⋃n
j=1 µ j=µ

n

∏
j=1

∑
ν j=µ j

∑
|ν j |=|µ j |

χν j (Cµ j )

zµ

Hν j (q;τ)pµ(x).

Then the proof of Mariño-Vafa formula is equivalent

to show that

F(C3,Dτ )
str (gs;x) = Fτ(q;x).(19)

Identity (19) was proved in [54] by showing that

both sides of it satisfy the following cut-and-join

equation:

∂C
∂τ

=−gs

2 ∑
i, j≥1

(
(i+ j)pi p j

∂C
∂ pi+ j

+ i jpi+ j
∂ 2C

∂ pi∂ p j
+ i jpi+ j

∂C
∂ pi

∂C
∂ p j

)
and when τ = 0, identity (19) holds.

Mariño-Vafa formula has powerful applications in

intersection theory of moduli space of curves [3]. It

implies the famous Witten conjecture [87, 43], ELSV

formula [26], and various Hodge integral identities,

see [55, 51, 23, 89] for discussing the applications of

Mariño-Vafa formula.

6. Deformed Rogers-Ramanujan
Formula

The following two Rogers-Ramanujan identities

∑
n≥0

qn2

(1−q) · · ·(1−qn)
= ∏

n≥0

1
(1−q5n+1)(1−q5n+4)

(20)

∑
n≥0

qn2+n

(1−q) · · ·(1−qn)
= ∏

n≥0

1
(1−q5n+2)(1−q5n+3)

(21)

were first discovered by Rogers [81], and then redis-

covered by Ramanujan [38], Schur [82] and Baxter

[10]. Now, there have been many different proofs and

interpretations for them [1, 32, 64, 15, 83]. We refer

to [34] for most modern understanding of the Rogers-

Ramanujan identities.

We will show that the Rogers-Ramanujan identi-

ties can be interpreted by open topological string the-

ory on (C3,Dτ) in framing τ = 1. Furthermore, we hope

to find the topological string interpretations for more

general Rogers-Ramanujan type identities [34] in near

future. We refer to [91] for more details about the re-

sults in this section.

By Mariño-Vafa formula (19), we have

Z(C3,Dτ )
str (gs,x) = exp

(
F(C3,Dτ )

str (gs,x)
)
= ∑

λ∈P
Hλ (q;τ)sλ (x).

In particular, we let

Zτ(q,x) := Z(C3,Dτ )
str (gs,x = (x,0,0, ..))

= ∑
n≥0

Hn(q;τ)xn

= ∑
n≥0

(−1)n(τ−1)q
n(n−1)

2 τ+ n2
2

(1−q)(1−q2) · · ·(1−qn)
xn,

where in the last “=” formulas (18) and (14) are used.

In this case, the infinite product formula (12) is

reduced to the following formula:

Zτ(q,x) = ∏
m≥1

∏
k∈Z

∏
l≥0

(
1−q

k+1
2 +lxm

)Nm,k(τ)
(22)

for any τ ∈ Z.
When τ ≤ −1, it turns out [66] that Z−τ(q,x) is

equivalent to the Poincare polynomial of the cohomo-

logical Hall algebra [50] of one vertex quiver with −τ

loops, for which the infinite product formula and the

integrality of Nm,k(τ) were proved in [78, 25].

Furthermore, the special case of formula (22) in

τ = 1 implies the following conjecture which can be

viewed as the 1-parameter deformation of the two

Rogers-Ramanujan identities (20) and (21):

Conjecture 6.1. Fix m ≥ 1, there exist finite many pos-

itive integers Nm,k such that

∑
n≥0

qn2

(1−q) · · ·(1−qn)
(q−

1
2 x)n(23)

= ∏
m≥1

∏
k∈Z

∏
l≥0

(
1−q

k+1
2 +lxm

)(−1)mNm,k

In particular, when x = q
1
2 and x = q

3
2 , these inte-

gers Nm,k together with the formula (23) give the two

Rogers-Ramanujan identities (20) and (21).
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Let us give some numerical checks for Conjec-

ture 6.1. We introduce the polynomial

fm(q) = ∑
k∈Z

Nm,kqk,

By using Maple 13, we have computed the polynomial

fm(q) for 1 ≤ m ≤ 20. Here are a list of them for m ≤ 6:

f1(q) = 1

f2(q) = q,

f3(q) = q4,

f4(q) = q5 +q9,

f5(q) = q6 +q8 +q10 +q12 +q16,

f6(q) = q7 +2q9 +q11 +3q13 +q15 +2q17 +q19 +q21 +q25

If we let x = q
1
2 , identity (23) becomes

∑
n≥0

qn2

(1−q) · · ·(1−qn)
= ∏

m≥1
∏
k≥0

∏
l≥0

(
1−q

m+k+1
2 +l

)(−1)mNm,k

(24)

= ∏
i

∏
l≥0

(1−qi+l)ni

where ni = ∑m+k+1=2i(−1)mNm,k, our computations im-

ply that:

ni =


−1, i = 5k+1 or 5k+4, for k ≥ 0

1, i = 5k+2 or 5k+5, for k ≥ 0

0, otherwise,

It turns out formula (24) gives the first Rogers-

Ramanujan identity (20).

Similarly, letting x = q
3
2 , identity (23) becomes

∑
n≥0

qn2+n

(1−q) · · ·(1−qn)
= ∏

m≥1
∏
k∈Z

∏
l≥0

(
1−q

3m+k+1
2 +l

)(−1)mNm,k

(26)

= ∏
i

∏
l≥0

(1−qi+l)ri

where ri = ∑3m+k+1=2i(−1)mNm,k, we find that:

ri =


−1, i = 5k+2, for k ≥ 0

1, i = 5k+4, for k ≥ 0

0, otherwise,

Hence formula (26) gives the second Rogers-

Ramanujan identity (21).
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