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Note. The readers are welcome to propose the so-

lutions. The authors should send their solutions to

liu@math.ucla.edu and post their solutions in arXiv.

The correct solutions will be announced and some

souvenirs will be presented to the solvers.—The Ed-

itors

Problem 2017012 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Compute the Green’s functions for a flat torus.

The heat kernel for the torus can be computed by

looking into the dual lattice that defines the torus

(see §9.5 of [1]). Green’s function can be obtained

by integrating the heat kernel in time, after subtract-

ing the constant term. But this is complicated to be

expressed in a nice form. For two dimensional tori,

Green’s function can be expressed in terms of auto-

morphic forms (see Chapter 2 of Serge Lang’s book

[2]). D’Hoker and Phong [3] studied the conformally

invariant Green’s function on curves of higher genus,

which admits an expression in terms of theta func-

tions (more precisely, in terms of the “prime form”).

It is attractive since it depends only on the complex

structure and not the metric, and it is used frequently

in string theory.

In my survey article for IMU [4], I suggested to

study zeros and critical points of eigenfunctions,

Green’s function and heat kernel. The best testing

problem is on flat tori where the problem is already

deep and difficult. C.-L. Wang and C.-S. Lin [5] made

fundamental progress in the two dimensional case.

C.-S. Lin was able to relate it to arithmetic of elliptic

* Department of Mathematics, University of California at Los
Angeles
E-mail: liu@math.ucla.edu
† Department of Mathematics, University of Pittsburg, Penn-
sylvania, U.S.A.
E-mail: mathxuhao@gmail.com

curves. The same problem for studying critical points

of Green’s function for 3-dimensional flat tori should

be very interesting.

We can also ask for more general situation:

Compute the Green’s function for locally symmetric

spaces and their critical points; What are their arith-

metic properties if the discrete group is arithmetic?
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Problem 2017013 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

About forty years ago, I made a conjecture [1,

Problem 100] that the first eigenvalue of an embed-

ded minimal hypersurface in the n+ 1-sphere Sn+1 is

equal to n. Choi andWang [2] proved that it is≥ n/2. So
far no significant improvement on the work of Choi-

Wang has been found. It will be interesting to find an

upper bound of k (depending only on n) such that n
is the k-th eigenvalue. This will show that the hyper-

plane passing through the origin can at most cut the

hypersurface into k+1 pieces.

We can turn the question around. Given a com-

pact Riemannian manifold M, when can we tell that it

is a minimal hypersurface in codimension one whose

complement has two distinct components in a com-

pact space N whose Ricci curvature has a positive
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lower bound. In this case, according to the argument

of [2], one can give a positive lower bound of its first

eigenvalue. Note that we can allow N to have singu-

larities as long as some integral formula holds on N.
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Problem 2017014 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Classify the topology of manifolds that support

a metric without minimal 2-spheres. By the work of

Sack-Uhlenbeck [1], such manifolds cannot have any

homotopy group with dimension greater one. But it

is still possible that such manifold may still have the

property of the existence of minimal 2-spheres if the

topology is exotic. Meeks-Simon-Yau theorem [2] says

that is the case if the three manifold admits exotic

cells. It will be interesting to look for other exotic

K(p,1). A very interesting one is the 4-dimensional

manifold constructed by Davis [3] which is covered

by a contractible manifold which is not homeomor-

phic to Euclidean space. Does there exist a metric

on such manifold which admits no minimal two-

spheres? Does similar question apply to other exotic

manifolds of this type?
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Problem 2017015 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Let M be a 2m-dimensional Calabi-Yau manifold

with a nonvanishing holomorphic 2m-form W . There

are three parallel 2m-forms given by ReW , ImW and

m-fold product ωm of the Kähler form. Take any non-

trivial linear combination of them which is still a par-

allel form. One can define calibrated submanifold of

this form. Find nontrivial examples of such subman-

ifolds in a compact Calabi-Yau manifold.

Problem 2017016 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

This is about eigenfunctions for the Laplacian. Let

us look at the eigenfunctions f with eigenvalue equal

to −λ 2. we look at its zero set. Besides the question I

asked many years ago about the asymptotic behavior

of the one-codimensional Hausdorff measure of the

nodal set, we can ask the flux of the eigenfunctions

along the nodal set, namely the integral of the gradi-

ent of the eigenfunction along the nodal set. When we

ask this global question for a closed manifold, this

can be expressed by the L1 norm of the eigenfunc-

tion. This was pointed out to me by Yaiza Canzani

that there is a formula of Dong-Sogge-Zelditch [1,2]

that allows one to do this expression. (The paper of

Dong was in fact part of his Harvard thesis.) But lo-

cal problem is more tricky. Namely we fix a ball in

the manifold, and ask the asymptotic behavior of the

same quantity within this ball.
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Problem 2017017 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Kollár [1] made the following conjecture: For two

algebraic manifolds that are symplectic deformation

equivalent, if one of them is rationally connected,

then the other one is also rationally connected.

For 3-dimensional manifolds, this was proved by

Voisin [2] under extra assumptions which was re-

moved by Zhiyu Tian [3], who also obtained partial

results in 4-dimension [4].

[1] J. Kollár, Low degree polynomial equations:

arithmetic, geometry and topology. In Euro-

pean Congress of Mathematics, Vol. I (Budapest,

1996), volume 168 of Progr. Math., pp. 255–288.

Birkhäuser, Basel, 1998.

[2] C. Voisin, Rationally connected 3-folds and sym-

plectic geometry. Astérisque 322 (2008), 1–21.

[3] Z. Tian, Symplectic geometry of rationally con-

nected threefolds. Duke Math. J. 161 (2012), 803–

843.

[4] Z. Tian, Symplectic geometry and rationally con-

nected 4-folds. J. Reine Angew. Math. 698 (2015),

221–244.

Problem 2017018 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Let M be a compact manifold. Let Ti j be a given

symmetric tensor and f to be a given function defined
on M. Find conditions on M,Ti j and f so that we can

find a metric gi j on M whose Ricci tensor is f gi j +Ti j.

This problem was originally proposed by me in 1979
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Problem 2017019 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

We conjecture that a compact complex manifold

satisfies the ∂ ∂̄ -lemma if and only if it can be de-

formed to a complex variety which is birational to a

Kähler manifold. On the other hand, it was proved in

[1] that the property of satisfying the ∂ ∂̄ -lemma is not

closed under holomorphic deformations. In [2], it was

proved that for any (smooth) complex analytic family

of compact complexmanifolds, the central fibre must

be Moishezon if the other fibres are Moishezon.
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Problem 2017020 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

This problem is about the realization of Rieman-

nian metric by some concrete constructions. Given

an n-dimensional Riemannian metric on a manifold,

it has been a long open question of how to embed it

isometrically into an n(n+1)/2 dimensional Euclidean

space. If the metric is real analytic, it can be done

locally. However, this is unknown even for n = 2 for

smoothmetric. The best known result in this case was

due to C.-S. Lin [1] when the curvature is nonnegative.

And there are works by various people [2] when the

curvature is not too degenerate at the zero locus.

The global problem is even more difficult. The

first Weyl problem works well for 2-dimensional sur-

faces when the curvature is positive, due to the works

of Pogorelov [3] and Nirenberg [4]. The existence is

fine if the curvature is nonnegative. But the optimal

regularity is not completely understood, although

there are works due to several people [5,6]. Pogorelov

generalized the Weyl problem allowing the curvature

to be negative on the sphere, if one allows the ambi-

ent space to be the hyperbolic space form.

The rigidity (or uniqueness) of the Weyl problem

was known tomany people if the embedding isC2. But

in a famous work of Pogorelov, he claimed to prove

the rigidity of closed convex surface without smooth-

ness assumption. It will be great to give a transparent

proof of the theorem of Pogorelov.

There is no known rigidity theorem for n-dimen-

sional submanifold embedded into an n(n+1)/2 space

for n > 2. This is unfortunate as it means we do not

have a canonical way to realize such n-dimensional

manifold in Euclidean space.

Infinitesimal rigidity problem for closed surfaces

were also studied extensively. The most definite re-

sult was due to Blaschke [7] who showed that closed

convex surfaces are infinitesimally rigid. A result of

Minagawa and Rado [8] showed that generically, sur-

faces of rotation are infinitesimally rigid. Would that

be a more general phenomena? In order words, would

any closed surfaces be generally infinitesimally rigid?

Since it is likely that higher dimensional rigidity

is virtually impossible (of course, one needs a rigor-

ous argument here), we like to propose other ways to

realize a Riemannian metric, which hopefully will be

more canonical.

I like to illustrate the proposal in the follow-

ing manner for a 3-dimensional metric. Given a

3-dimensional space M, we can find a hypersurface

M′ in the product space M ×R defined by a function

f on M. Then we can conformally change M′ to a new

manifold M′′ where the conformal factor is a function

g > 0 defined over M′. By choosing f and g suitably,

can we then isometrically embed M′′ into R4?

Perhaps under suitable chosen condition (such as

positivity of curvature) on the metric of M, we can

conclude the above procedure is canonical (unique).

For higher dimension, we can iterate the graph

and conformal construction several times. The prob-

lem here is related to the work of Chen-Wang-Yau [9]

on quasilocal mass in higher dimension.
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Problem 2017021 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

In the foundational work of Kodaira [1], it was

proved that if the Kähler class of the manifold is in-

tegral, then it can be embedded into projective space.

Such Kähler manifold is equipped with a positive line

bundle L. I proposed that one can approximate any

Kähler metric in this Kähler class by projective em-

bedding of the manifold using high power of L. I sug-
gested this problem to Tian for his thesis and pointed

out the method similar to what I did with Siu [2] pre-

viously can solve this problem. The problem is more

complicated for those Kähler metrics that is not in a

rational class. What is the best way to resolve this?

The universal embedding for Hodge manifolds is

projective space, as shown by Kodaira. What about

Kähler but non-projective manifolds? As was shown

by Claire Voisin [3], there are Kähler manifolds that

cannot be deformed to projective manifolds. Is there

universal space for Kähler manifolds to be sub-

manifolds? The algebraic dimension of the manifold

should play a role. There is a conjecture that any Käh-

ler manifold with algebraic dimension zero is a com-

plex torus. If that is the case, can Kähler manifolds be

embedded into a complex torus fiber space over the

projective space? What class of complex torus fiber

space over projective space admits a Kähler metric?

How to classify them?

A much weaker version of Kähler manifolds

are balanced manifolds. These are n-dimensional

complex manifolds which admit a closed positive

(n− 1,n− 1)-form. The form gives rise to a Hermitian

metric which we call balanced metric. They were

studied by [4] and an important fact is that if M ad-

mits a balanced metric, so is other complex manifold

that is bimeromorphic to it. Such a metric plays an

important role in string theory because it admits

certain supersymmetry. It would be interesting to

classify those balanced manifolds that have algebraic

dimension zero.
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