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Abstract. This is a survey on some recent advances

on the mean field equation with multiple singular

sources on flat tori, mainly based on a joint project

with T.-J. Kuo and C.-S. Lin. Recent theories indicate

that this equation has essential relations with

several different subjects, such as the complex linear

ODE with the Treibich-Verdier potential, Painlevé VI

equation and premodular forms. Besides reviewing

the known results and announcing new results, I will

also raise some open questions from these different

aspects.

Introduction

Let τ ∈ H = {τ| Imτ > 0} and Eτ := C/Λτ be a flat

torus in the plane with lattice Λτ = Zω1 +Zω2, where

ω1 = 1, ω2 = τ . Also ω0 = 0 and ω3 = 1 + τ . Consider

the following curvature equation with four singular

sources:

(1.1) ∆u+ eu = 8π

3

∑
k=0

nkδ ωk
2

on Eτ ,

where δωk/2 is the Dirac measure at ωk
2 , and nk ∈ Z≥0

for all k with ∑nk ≥ 1. By changing variable z 7→ z+ ωk
2 ,

we can always assume n0 = maxk nk ≥ 1.
Not surprisingly, (1.1) is related to various re-

search areas. In conformal geometry, a solution u of
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(1.1) leads to ametric ds2 = 1
2 eu(dx2+dy2)with constant

Gaussian curvature +1 acquiring conic singularities at
ωk
2 ’s. Equation (1.1) also belongs to a general class of

equations, the so-called mean field equations:

∆u+ρ

(
heu∫
heu − 1

|M|

)
= 4π

n

∑
j=1

α j

(
δQ j −

1
|M|

)
on M,

(1.2)

where h(x) is a positive C1 function on a compact

Riemann surface M without boundary. Equation (1.2)

arises not only from conformal geometry, but also

from many physical problems. For example, it arises

in statistical physics as the equation for the mean

field limit of the Euler flow in Onsager’s vortex model

(cf. [2]), hence its name. Recently it was shown that

(1.2) is related to the self-dual condensates of the

Chern-Simons-Higgs model in superconductivity; see

e.g. [7, 17, 19, 28, 30]. Clearly (1.2) becomes (1.1)

by letting M = Eτ , h = 1, n = 4, α j = 2n j, Q j =
ωk
2 and

ρ = 8π ∑n j.

Equation (1.2) has been studied extensively. It was

proved in [1, 4, 5] that outside a countable set of crit-

ical parameters ρ ’s, solutions u of (1.2) have uniform

a priori bounds in C2
loc(M \{Q j}n

j=1). Thus the topolog-

ical Leray-Schauder degree dρ is well-defined for non-

critical ρ ’s. Recently, an explicit degree counting for-

mula has been proved in [6], which has the following

consequence: Suppose that 0 < ρ /∈ 8πN, α j ∈ N for all

j and the genus g(M) of M is at least 1. Then dρ > 0,
hence the mean field equation (1.2) has a solution.

However, the existence of solutions of (1.1) is

very challenging from the PDE point of view, because
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ρ = 8π ∑n j are critical parameters in the above sense

and the a priori estimates fail. In fact, the solvability

of (1.1) essentially depends on the moduli τ in a sophis-

ticated manner. This phenomena was first discovered

by Lin andWang [25] when they studied the case n0 = 1
and n1 = n2 = n3 = 0, i.e.

(1.3) ∆u+ eu = 8πδ0 on Eτ .

They proved that the Green function G(z;τ) on Eτ de-

fined by

−∆G(z;τ) = δ0 −
1

|Eτ |
on Eτ ,

∫
Eτ

G(z;τ) = 0,

has either three or five critical points (depending on

τ), and (1.3) has solutions if and only if G(z;τ) has five

critical points. For example, when τ ∈ iR>0 (i.e. Eτ is a

rectangular torus), G(z;τ) has only three critical points
ωk
2 (k = 1,2,3) and so (1.3) has no solution; while for

τ = 1
2 +

√
3

2 i (i.e. Eτ is a rhombus torus), G(z;τ) has five

critical points ωk
2 (k = 1,2,3) and ±ω3

3 , so (1.3) has solu-

tions. Recently, (1.3) was thoroughly investigated in

[14, 27], where among other things, the geometry of

Ω5 (i.e. the set of τ such that (1.3) has solutions) was

studied.

For the case n0 = n ≥ 2 and n1 = n2 = n3 = 0, i.e.

(1.4) ∆u+ eu = 8nπδ0 on Eτ ,

Chai, Lin, Wang [3] and subsequently Lin, Wang [26]

studied it from the viewpoint of algebraic geometry.

They developed a theory to connect this PDE prob-

lem with a multiple Green function on En
τ , the classi-

cal Lamé equation, the associated hyperelliptic curves

and premodular forms. We refer the interested read-

ers to [3, 26] for the story of this theory.

In view of [3, 25, 26], it is natural for us to con-

sider the general case nk ∈Z≥0 for all k. Our purpose of
this research project is not only to study this problem

from its PDE aspect, but also to explore its connection

with various different subjects and to understand

how these different subjects apply to each other. In

the following sections, we briefly review some re-

cent advances on (1.1) from three different aspects

and raise some open questions. As we will see, quite

different phenomenon happens for the general case

nk ∈ Z≥0 comparing to the case n1 = n2 = n3 = 0.

From the Aspect of Linear ODE

This section is devoted to the connection between

the mean field equation (1.1) and a complex linear

ODE from the viewpoint of the integrable system. See

[3] for the special case n1 = n2 = n3 = 0, i.e. equation
(1.4).

The Liouville theorem says that for any solution

u(z) of (1.1), there is a meromorphic function f (z) in

C such that

(2.1) u(z) = log
8| f ′(z)|2

(1+ | f (z)|2)2 .

This f (z) is called a developing map. Differentiating

(2.1) leads to

(2.2) uzz − 1
2 u2

z = { f ;z} :=
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
.

Conventionally, the RHS of (2.2) is called the

Schwarzian derivative of f (z), denoted by { f ;z}. Note
that outside the singularities Eτ [2] := {ωk

2 |0 ≤ k ≤ 3}+
Λτ , we have (uzz − 1

2 u2
z )z̄ = 0. Furthermore, using the lo-

cal behavior of u(z) at ωk
2 , we see that uzz − 1

2 u2
z has at

most double poles at each ωk
2 . Therefore, uzz − 1

2 u2
z is

an elliptic function with at most double poles at Eτ [2].
Assume in addition that u(z) is even, i.e. u(z) =

u(−z). Then uzz − 1
2 u2

z is even elliptic and so has the

following simple expression

uzz −
1
2

u2
z =−2

[ 3

∑
k=0

nk(nk +1)℘(z+ ωk
2 ;τ)+B

]
=: −2I(z),

(2.3)

where B is some constant and ℘(z;τ) is the famous

Weierstrass℘-function with periods ω1 = 1 and ω2 = τ ,

because due to the evenness, uzz− 1
2 u2

z has no residues

at z ∈ Eτ [2]. This fact motivates us to study the follow-

ing generalized Lamé equation (GLE)

(2.4) y′′(z) = I(z)y(z) =

[ 3

∑
k=0

nk(nk+1)℘(z+ ωk
2 ;τ)+B

]
y(z).

Since { f ;z} = −2I(z), a classical result says that there

exist linearly independent solutions y1(z),y2(z) of GLE
(2.4) such that f (z) = y1(z)/y2(z).

Note that GLE (2.4) becomes the classical Lamé

equation when three nk’s vanish, such as n1 = n2 = n3 =

0. GLE (2.4) is the elliptic form of Heun’s equation

and the potential −∑
3
k=0 nk(nk +1)℘(z+ ωk

2 ;τ) is the so-

called Treibich-Verdier potential ([34]), which is well

known as an algebro-geometric finite-gap potential

associated with the stationary KdV hierarchy. We re-

fer the readers to [22, 31, 32, 33, 34] and references

therein for historical reviews and subsequent devel-

opments. The precise relation between (1.1) and GLE

(2.4) is stated as follows.

Theorem 2.1. The mean field equation (1.1) has an

even solution if and only if there exists B ∈C such that

the monodromy representation of GLE (2.4) is unitary

(i.e. the monodromy group is conjugate to a subgroup

of SU(2)).

Theorem 2.1 in the case n1 = n2 = n3 = 0 was proved
in [3]. The necessary part of Theorem 2.1 is not diffi-

cult; see e.g. [16, 20]. The proof of the sufficient part

is much more delicate and will be given in a coming

paper.
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Theorem 2.1 provides a newway to attack the PDE

problem of solving (1.1). Recently, we applied Theo-

rem 2.1 to obtain a sharp nonexistence result for (1.1).

Our motivation comes from a conjecture of Lin and

Wang [26], which asserts that (1.4) has no solutions

for all n ∈ N if τ ∈ iR>0 (i.e. Eτ is a rectangular torus).

Geometrically, this conjecture is equivalent to assert

that the rectangular torus admits no metric with con-

stant curvature 1 and a conical singularity with angle

2π(1+2n). This conjecture seems challenging from the

PDE point of view, and is known to be true only for

n = 1 ([7, 25]) and n = 2 ([10]), but the approach does

not work for n ≥ 3. Now this conjecture is a conse-

quence of the following sharp nonexistence result.

Theorem 2.2 ([16]). Let nk ∈Z≥0 for all k with maxk nk ≥
1. If (n0,n1,n2,n3) satisfies neither

(2.5)
n1 +n2 −n0 −n3

2
≥ 1, n1 ≥ 1, n2 ≥ 1

nor

(2.6)
n1 +n2 −n0 −n3

2
≤−1, n0 ≥ 1, n3 ≥ 1,

then for each τ ∈ iR>0, the monodromy of GLE (2.4) can

not be unitary for any B ∈C, namely equation (1.1) on

Eτ has no even solutions.

It was proved in [3] that once (1.4) has a solution,

then it has also an even solution. Thus Theorem 2.2

confirms the aforementioned conjecture. We want to

emphasize that the statement that the monodromy of

GLE (2.4) can not be unitary is interesting itself from

the viewpoint of monodromy theory of linear ODEs.

Our condition on nk in Theorem 2.2 is sharp, be-

cause Eremenko and Gabrielov [19] proved that (1.1)

has an even and symmetric solution u(z) (i.e. u(z) =
u(−z) = u(z̄)) on some rectangular torus Eτ if and only

if (n0,n1,n2,n3) satisfies either (2.5) or (2.6). Their ap-

proach is geometric and relies essentially on the even

symmetric assumption. Theorem 2.2 improves their

result because the symmetric assumption u(z) = u(z̄)
is removed. We emphasize that this improvement is

not trivial at all, because our numerical computation

shows that there exist 1 < b1 < b2 <
√

3 such that for

any τ = ib with b ∈ (b1,b2),

∆u+ eu = 16πδ0 +16πδω3/2 on Eτ

has no even and symmetric solutions but does have

two even solutions. We suspect that the even assump-

tion u(z) = u(−z) is not necessary either, namely we

propose the following conjecture.

Conjecture 2.3 ([16]). Equation (1.1) has no solution

for any τ ∈ iR>0 if and only if (n0,n1,n2,n3) satisfies nei-

ther (2.5) nor (2.6).

On the other hand, Theorem 2.2 is also related

to the following conjecture concerning counting so-

lutions.

Conjecture 2.4 ([16]). Suppose τ ∈ iR>0 and ρ ∈ (8π(n−
1),8πn), n ∈ N. Then the equation

∆u+ eu = ρδ0 on Eτ

possesses exactly n solutions.

Conjecture 2.4 was already proved for ρ ∈ (0,8π)

in [27] and for ρ = 8π(n− 1
2 ) in [3]. In a coming paper,

we will apply Theorem 2.2 to prove Conjecture 2.4 for

|ρ −8πn| � 1 and |ρ −8π(n−1)| � 1.
Our proof of Theorem 2.2 is to apply the spec-

tral theory of finite-gap potential, or equivalently the

algebro-geometric solutions of stationary KdV hier-

archy equations [21], and can be seen as an unex-

pected application of the KdV theory. More precisely,

our proof is based on the study of the so-called spec-

tral polynomial. It is well known (cf. [22, 31]) that

there associates a spectral polynomial Q(n0,n1,n2,n3)(B;τ)

of B for the Treibich-Verdier potential; see Section 4

for a brief review. When τ ∈ iR>0, Q(n0,n1,n2,n3)(B;τ) is a

polynomial of B with real coefficients. Then a natural

question is whether Q(n0,n1,n2,n3)(B;τ) has real and dis-

tinct zeros for τ ∈ iR>0. We can prove the following

surprising result on this aspect.

Theorem 2.5 ([16]). Let nk ∈Z≥0 for all k with maxk nk ≥
1. Then all the zeros of Q(n0,n1,n2,n3)(·;τ) are real and dis-

tinct for τ ∈ iR>0 if and only if (n0,n1,n2, n3) satisfies

neither (2.5) nor (2.6).

In view of Theorem 2.5, the next key step of prov-

ing Theorem 2.2 is to show that if all the zeros of

Q(n0,n1,n2,n3)(·;τ) are real and distinct for τ ∈ iR>0, then

the monodromy of GLE (2.4) can not be unitary for

any B ∈ C. This statement is also interesting itself

from the viewpoint of monodromy theory of linear

ODEs.

From the Aspect of Painlevé VI
Equation

In this section, we introduce the connection be-

tween the mean field equation (1.1) and the well-

known Painlevé VI equation, which seems not appear

in the literature and is new. The classical Painlevé

VI equation with four free parameters (α,β ,γ,δ )

(PVI(α,β ,γ,δ )) is written as

d2λ

dt2 =
1
2

(
1
λ
+

1
λ −1

+
1

λ − t

)(
dλ

dt

)2

−
(

1
t
+

1
t −1

+
1

λ − t

)
dλ

dt
+

λ (λ −1)(λ − t)
t2(t −1)2

×
[

α +β
t

λ 2 + γ
t −1

(λ −1)2 +δ
t(t −1)
(λ − t)2

]
.(3.1)
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Historically, PVI was originated from the research on

complex ODEs, led by many famous mathematicians

including Poincaré, Picard, Painlevé and so on. The

aim is to classify those nonlinear ODEs which possess

the so-called Painlevé property, i.e. any solution has

neither movable branch points nor movable essential

singularities. Due to an increasingly important role in

both mathematics and physics, PVI has been widely

studied since the early 1970’s. We refer to the text

[23] for the introduction of Painlevé equations.

From the Painlevé property, any solution λ (t)
of (3.1) is a multi-valued meromorphic function in

C\{0,1}. Therefore, it is natural to lift (3.1) to the cov-

ering space H= {τ | Imτ > 0} of C\{0,1} by the follow-
ing transformation:

t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
, λ (t) =

℘(p(τ);τ)− e1(τ)

e2(τ)− e1(τ)
,

where ek(τ) :=℘(ωk
2 ;τ), k ∈ {1,2,3}. Consequently, p(τ)

satisfies the following elliptic form (cf. [29])

(3.2)
d2 p(τ)

dτ2 =
−1
4π2

3

∑
k=0

αi℘
′ (p(τ)+ ωk

2 ;τ
)
,

where ℘′(z;τ) = d
dz℘(z;τ) and (α0,α1,α2,α3) =

(α,−β ,γ, 1
2 − δ ). The advantage of (3.2) is that

℘(p(τ);τ) is single-valued for τ ∈H, although p(τ) has
a branch point at those τ0 such that p(τ0) ∈ Eτ0 [2].

Another important feature of PVI is that it gov-

erns the isomonodromic deformation of a second or-

der Fuchsian ODE on CP1. Recently we proved in [8]

that similar to this well-known case on CP1, the ellip-

tic form (3.2) is closed related to the isomonodromy

theory of the following generalized Lamé equation

(GLE):

y′′(z) =

[
∑

3
k=0 nk(nk +1)℘(z+ ωk

2 ;τ)+ 3
4 (℘(z+ p;τ)

+℘(z− p;τ))+A(ζ (z+ p;τ)−ζ (z− p;τ))+B

]
y(z),

(3.3)

with ±p /∈ Eτ [2] and

B = A2 −ζ (2p;τ)A− 3
4℘(2p;τ)−

3

∑
k=0

nk(nk +1)℘
(

p+ ωk
2 ;τ

)
,

(3.4)

where ζ (z) = ζ (z;τ) :=−
∫ z

℘(ξ ;τ)dξ is the Weierstrass

zeta function and the relation of parameters is given

by

(3.5) αk =
1
2

(
nk +

1
2

)2
for k ∈ {0,1,2,3}.

This GLE has regular singularities at Eτ [2]∪{±p} with
local exponents −nk, nk + 1 at ωk

2 and −1
2 , 3

2 at ±p, re-
spectively. Since the exponent difference at ±p is 2,
(3.3) might have solutions with logarithmic singular-

ity at ±p. The formula (3.5) guarantees that ±p are

apparent singularities (i.e. non-logarithmic). Define a

completely integrable Hamiltonian system:

(3.6)
d p(τ)

dτ
=

∂K
∂A

,
dA(τ)

dτ
=−∂K

∂ p
,

where the Hamiltonian K := −i
4π
(B+2pη1(τ)A). Here

(3.7) η1(τ) := 2ζ ( 1
2 ;τ) = ζ (z+1;τ)−ζ (z;τ)

is a quasi-period of ζ (z;τ). Then the Hamiltonian

system (3.6) is equivalent to the elliptic form (3.2)

with parameter (3.5). Furthermore, under the non-

resonant condition nk 6∈ 1
2 +Z for all k, (p(τ),A(τ)) sat-

isfies the Hamiltonian system (3.6) if and only if GLE

(3.3) with (p(τ),A(τ)) is monodromy preserving as τ

deforms. See [8].

Now we turn back to the integer case nk ∈ Z≥0. Let

p(τ) be a solution of the elliptic form (3.2). We call

that p(τ) is a real solution if the monodromy of the

corresponding GLE (3.3) with (p(τ),A(τ)) is unitary. On
the other hand, if p(τ0)≡ 0 mod Λτ0 for some τ0, then

t(τ0) /∈ {0,1} is a pole of λ (t) = ℘(p(τ);τ)−e1(τ)
e2(τ)−e1(τ)

, and so we

call τ0 a pole of p(τ). We proved in [8] that the asymp-

totics at a pole τ0 is

(3.8) p(τ)− p(τ0) = c0(τ − τ0)
1
2 (1+h(τ − τ0)+O(τ − τ0)

2)

with c2
0 =±i 2n0+1

2π
and some constant h ∈ C. Recall n0 ≥

0. As in [11] we call that a pole τ0 of p(τ) is a neg-

ative pole (resp. a positive pole) if the asymptotics

is given by (3.8) with c2
0 = i 2n0+1

2π
(resp. c2

0 = −i 2n0+1
2π

).

Now we can introduce the relation between GLE (3.3)

and GLE (2.4). Let p → ωk
2 in GLE (3.3) and suppose its

potential converges, then GLE (3.3) will converge to

GLE (2.4) with nk replaced by nk ± 1. See [12] for the

proof. In particular, if τ0 is a negative pole (resp. a

positive pole) of p(τ), then GLE (3.3) with (p(τ),A(τ))
will converge to GLE (2.4) with n0 replaced by n0 + 1
(resp. n0 − 1) as τ → τ0. From here and the theory in

Section 2, we obtain the following surprising connec-

tion between the mean field equation (1.1) and the

elliptic form of Painlevé VI equation.

Theorem 3.1 ([13]). Suppose nk ∈Z≥0 with n0 ≥ 1. Then
the mean field equation (1.1) has even solutions on Eτ0

if and only if τ0 is a negative pole of some real solution

p(τ) of the elliptic form (3.2) with parameter

α0 =
1
2

(
(n0 −1)+ 1

2

)2
, αk =

1
2

(
nk +

1
2

)2
for k ∈ {1,2,3}.

(3.9)

As mentioned before, the existence of even solu-

tions of (1.1) depends essentially on the moduli τ of

the underlying torus Eτ . Theorem 3.1 gives a precise

characterization of those τ ’s such that (1.1) has even

solutions from the viewpoint of Painlevé VI equation.

This theory has interesting applications to Painlevé
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VI equation. For example, if (1.1) has no even solu-

tions on Eτ0 , then τ0 can not be a negative pole of real

solutions of (3.2) with parameter (3.9). Applying this

idea, we proved in [14, 9] that all real solutions of

PVI( 1
8 ,

−1
8 , 1

8 ,
3
8 ) and PVI( 9

8 ,
−1
8 , 1

8 ,
3
8 ) have no poles on the

real line R. We will prove this assertion for Painlevé

VI equation with more general parameters (α,β ,γ,δ )

in a subsequent one of [9].

We also study the connection between Painlevé VI

equation and the mean field equation with additional

singularities ±p /∈ Eτ0 . A related result of Theorem 3.1

is following.

Theorem 3.2 ([13]). Suppose nk ∈ Z≥0, τ0 ∈ H and p 6∈
Eτ0 [2]. Then the following mean field equation with six

singularities

(3.10) ∆u+ eu = 8π

3

∑
k=0

nkδ ωk
2
+4π (δp +δ−p) on Eτ0 ,

has an even solution if and only if there exists a real

solution p(τ) of the elliptic form (3.2) with parameter

(3.5) such that p = p(τ0).

Theorem 3.2 shows a new phenomena for the

mean field equation: For a fixed underlying torus Eτ0 ,

the existence of even solutions depends essentially

on the location of the additional singularities ±p, i.e.
(3.10) has even solutions if and only if p ∈ Ωτ0 , where

Ωτ0 :={p(τ0) | p(τ) is a real solution of (3.2) with (3.5)}\Eτ0 [2].

We have explicit examples that Ωτ0 6= Eτ0 \ Eτ0 [2]. An
interesting question is to study the geometry of this

set Ωτ0 . Besides, we remark that our assumption of

evenness of solutions in Theorems 3.1 and 3.2 is not

needed if three of nk’s are zeros, because in this case,

we can prove that once (3.10) (resp. (1.1)) has a solu-

tion, then it has an even solution. We believe that this

assertion holds for all nk ∈ Z≥0, namely we conjecture

that the assumption of evenness of solutions in The-

orems 3.1 and 3.2 can be removed.

From the Aspect of Premodular Forms

In this section, we introduce the connection be-

tween the mean field equation (1.1) and premodular

forms. First we briefly recall the spectral polynomial

mentioned in Section 2. Denote n = (n0,n1,n2,n3) and

consider the second symmetric product equation of

GLE (2.4):

(4.1) Φ
′′′(z)−4I(z)Φ′(z)−2I(z)Φ(z) = 0.

It is known (cf. [31]) that (4.1) has a solution Φ(z;B)
which is a polynomial in B with coefficients being

even elliptic functions. Multiplying Φ and integrating

(4.1), we obtain that

(4.2) Φ
′(z;B)2 −2Φ(z;B)Φ′′(z;B)+4I(z)Φ(z;B)2

is a polynomial of B which independent of z. Let
Qn(B) = Qn(B;τ) denote the correspondingmonic poly-

nomial given by (4.2). This Qn(B) is known as the spec-

tral polynomial and

Γn = Γn(τ) := {(B,W )|W 2 = Qn(B;τ)}

is called the spectral curve of the Treibich-Verdier po-

tential.

To introduce the notion of premodular forms and

its relation with Γn, we recall that the monodromy

representation ρ of (2.4) is a group homomorphism

from π1(Eτ) to SL(2,C), because the Treibich-Verdier

potential is a Picard potential in the sense of Gesztesy

and Weikard (cf. [21, 22]). Since π1(Eτ) is abelian,

the monodromy group is always abelian. In terms of

any linearly independent solutions y1(z) and y2(z), the
monodromy group is generated by two matrices M1,

M2 ∈ SL(2,C) satisfying

(4.3) (y1,y2)(z+ωi) = (y1(z),y2(z))Mi, i = 1,2,

and M1M2 = M2M1. From here, M1 and M2 can be nor-

malized to satisfy one of the followings.

a) If ρ is completely reducible, then

M1 =

(
e−2πis 0

0 e2πis

)
,(4.4)

M2 =

(
e2πir 0

0 e−2πir

)
, (r,s) ∈ C2 \ 1

2Z
2.

b) If ρ is not completely reducible, then

M1 = ε1

(
1 0
1 1

)
,(4.5)

M2 = ε2

(
1 0
C 1

)
, ε j =±1, C ∈ C∪{∞}.

When C = ∞, the monodromy matrices are under-

stood as

(4.6) M1 = ε1

(
1 0
0 1

)
,M2 = ε2

(
1 0
1 1

)
.

In particular, the monodromy is unitary if and only

if Case a) occurs with (r,s) ∈ R2 \ 1
2Z

2. See e.g. [12].

The aforementioned spectral polynomial Qn(B;τ) also

plays a key role in the monodromy theory: ρ is com-

pletely reducible if and only if Qn(B;τ) 6= 0. Obviously,
not all 2×2 matrices of the form (4.4)–(4.5) are mon-

odromy matrices of (2.4). Thus the following ques-

tions naturally arise:

(1) If Qn(B;τ) 6= 0, how to determine the monodromy

data (r,s)?
(2) If Qn(B;τ) = 0, how to determine the monodromy

data C?
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For the Lamé equation

(4.7) y′′(z) = [n(n+1)℘(z;τ)+B]y(z),

in [3, 26] Chai, Lin and Wang have constructed a pre-

modular form Z(n)
r,s (τ) such that the monodromy ma-

trices M1, M2 of (4.7) at τ = τ0 with some B are given

by (4.4) if and only if Z(n)
r,s (τ0) = 0. Therefore, the image

of M1, M2 for ρ is {(r,s) ∈C2 \ 1
2Z

2|Z(n)
r,s (τ0) = 0}. We note

that Z(n)
r,s (τ) is holomorphic in τ if (r,s)∈R2 \ 1

2Z
2. More-

over, Z(n)
r,s (τ) is a modular form of weight

n(n+1)
2 with

respect to the principal congruence subgroup Γ(N) if

(r,s) = ( k1
N , k2

N ) is a N-torsion point; see [26]. Thus Z(n)
r,s (τ)

is called a premodular form.

Here we want to extend the result in [26] to in-

clude the Trebich-Verdier potential. In [12] and a sub-

sequent one, we will prove the following result.

Theorem 4.1. There exists a premodular form Zn
r,s(τ)

defined in τ ∈H for any pair of (r,s)∈C2 \ 1
2Z

2 such that

the followings hold.

(a) If (r,s) = ( k1
N , k2

N ) with N ∈ 2N≥2, k1,k2 ∈ Z≥0 and

gcd(k1,k2,N) = 1, then Zn
r,s(τ) is a modular form of

weight ∑
3
k=0 nk(nk + 1)/2 with respect to the princi-

pal congruence subgroup Γ(N).

(b) For (r,s)∈C2 \ 1
2Z

2 and τ0 ∈H such that r+sτ0 6∈Λτ0 ,

Zn
r,s(τ0) = 0 if and only if there is B ∈ C such that

GLE (2.4) with τ = τ0 has its monodromy matrices

M1 and M2 given by (4.4).

(c) The mean field equation (1.1) on Eτ0 has even so-

lutions if and only if Zn
r,s(τ0) = 0 for some (r,s) ∈

R2 \ 1
2Z

2.

Theorem 4.1 generalizes the theory in [26] to the

general case nk ∈ Z≥0 for all k. As mentioned before,

the existence of even solutions of (1.1) depends es-

sentially on the moduli τ of the underlying torus Eτ .

Theorem 4.1-(c) gives a precise characterization of

those τ ’s such that (1.1) has even solutions from the

viewpoint of zeros of certain premodular forms. To-

gether with Theorem 3.1, we see that the zeros of pre-

modular forms Zn
r,s(τ)with (r,s)∈R2\ 1

2Z
2 coincide with

the negative poles of real solutions of the elliptic form

(3.2) with parameter (3.9). This phenomena strongly

suggests the following conjecture.

Conjecture 4.2. The premodular form Zn
r,s(τ) appears

in the denominator of the expression of ℘(p(τ);τ) for

real solutions p(τ) of the elliptic form (3.2) with param-

eter (3.9).

For the case n1 = n2 = n3 = 0, Conjecture 4.2 is

known to be true [11, 24], where we proved that the

premodular form Z(n)
r,s (τ) constructed by Lin and Wang

[26] appears in the denominator of the expressions of

real solutions of the elliptic form (3.2) with parame-

ter ( 1
2 (n−

1
2 )

2, 1
8 ,

1
8 ,

1
8 ). From here, we proved that for

any (r,s) ∈ R2 \ 1
2Z

2, Z(n)
r,s (τ) has only simple zeros in H.

This simple zero property is crucial for us [11, 24] to

confirmDahmen and Beukers’s conjecture (cf. [18]) of

counting the number of the Lamé equation (4.7) with

its monodromy group being Dihedral DN . Therefore,

Conjecture 4.2 is crucial to the following conjecture.

Conjecture 4.3. For any (r,s) ∈R2 \ 1
2Z

2, the premodu-

lar form Zn
r,s(τ) has only simple zeros for τ ∈H.

For n ≤ 4, the explicit expression of Z(n)
r,s (τ) is

known; see [26]. Define ηk(τ) := 2ζ (ωk
2 ;τ), k = 1,2 to be

two quasi-periods of ζ (z;τ):

η1(τ) = ζ (z+1;τ)−ζ (z;τ), η2(τ) = ζ (z+ τ;τ)−ζ (z;τ).

Define

Z = Zr,s(τ) := ζ (r+ sτ;τ)− rη1(τ)− sη2(τ).

Then it is known [26] that (write ℘=℘(r + sτ;τ) and

℘′ =℘′(r+ sτ;τ) for convenience): Z(1)
r,s (τ) = Zr,s(τ),

Z(2)
r,s (τ) = Z3 −3℘Z −℘

′,

Z(3)
r,s (τ) = Z6 −15℘Z4 −20℘

′Z3 +
(

27
4 g2 −45℘

2)Z2

−12℘℘
′Z − 5

4 (℘
′)2.

Z(4)
r,s (τ) = Z10 −45℘Z8 −120℘

′Z7 +( 399
4 g2 −630℘

2)Z6

−504℘℘
′Z5 − 15

4 (280℘
3 −49g2℘−115g3)Z

4

+15(11g2 −24℘
2)℘′Z3

− 9
4 (140℘

4 −245g2℘
2 +190g3℘+21g2

2)Z
2

− (40℘
3 −163g2℘+125g3)℘

′Z

+ 3
4 (25g2 −3℘

2)(℘′)2.

For general n, the expression of Z(n)
r,s (τ) is too compli-

cate to be written down. Here are new examples for

Zn
r,s(τ):

Z(1,1,0,0)
r,s = Z2 −℘+ e1(τ),

Z(1,0,1,0)
r,s = Z2 −℘+ e2(τ),

Z(1,0,0,1)
r,s = Z2 −℘+ e3(τ).

We believe that such premodular forms will have im-

portant applications. For example, we used Z(2)
r,s (τ)

to completely determine the critical points of the

Eisenstein series E2(τ) of weight 2. See [15] where we

proved that E ′
2(τ), as a quasimodular form, has at

most one zero in each fundamental domain of Γ0(2).
Finally, we briefly explain the basic idea of prov-

ing Theorem 4.1. Following the ideas in [3, 26], the

spectral curve Γn(τ) can be embedded into SymNEτ :=
EN

τ /SN , the symmetric space of N-th copy of Eτ , where

N :=∑
3
k=0 nk fromnow on. Obviously, SymNEτ has a nat-

ural addition map to Eτ : {a1, · · · ,aN} 7→ ∑
N
i=1 ai. Then the

composition give arise to a finite morphism σn(·|τ) :
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Γn(τ) → Eτ , still called the addition map. The degree

of σn is defined as degσn(·|τ) = #σ−1
n (z), z ∈ Eτ , counted

with multiplicity. Then the first key step of proving

Theorem 4.1 is to prove the following result.

Theorem 4.4 ([12]). Let τ ∈H. Then the addition map

σn(·|τ) : Γn(τ)→ Eτ has degree ∑
3
k=0 nk(nk +1)/2.

A corollary of Theorem 4.4 is that degσn(·|τ) (the
same as the weight of the premodular form in The-

orem 4.1) is independent of τ , which is not very ob-

vious at the moment. When n1 = n2 = n3 = 0, Theorem
4.4 was proved in [26] by applying Theorem of the

Cube for morphisms between varieties in algebraic

geometry, but this method seems not work in the

general case. Our new strategy is to study GLE (3.3).

Like GLE (2.4), we could associate a hyperelliptic curve

Γn,p(τ) := {(A,W )|W 2 = Qn,p(A;τ)} and an addition map

σn,p for GLE (3.3). As mentioned in Section 3, when

p → ωk/2,k = 0,1,2,3, the limiting equation of GLE (3.3)

would be GLE (2.4) with n = n±
k , where n±

k is defined by

replacing nk in nwith nk±1. This relation motivates us

to prove the following formula.

Theorem 4.5 ([12]). For p /∈ Eτ [2] and k ∈ {0,1,2,3},
there holds

degσn,p = degσn+k
+degσn−k

.

Since Lin and Wang already proved in [26] that

degσ(n,0,0,0) =
n(n+1)

2 , Theorem 4.4 can be proved by ap-

plying Theorem 4.5 and an induction argument. In

particular, this proof also implies degσn,p = ∑k nk(nk +

1)+1. Once Theorem 4.4 is proved, we can prove The-

orem 4.1 by adopting the approach in [26]; see a forth-

coming paper.
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