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Rational homotopy theory begins with Sullivan’s

introduction of the localization of a topological space

([78]) although as he states in his preface, the compul-

sion to localize began with the author’s work on invari-

ants of combinatorial manifolds in 1965–67. The two

foundational articles ([79], [75]) then firmly estab-

lished the subject as an independent sub-discipline

of algebraic topology.

The two distinct approaches by Quillen and Sul-

livan directly reflect the original two means of com-

puting homology and cohomology at the start of the

twentieth century: simplicial homology of a polyhe-

dron, and deRham cohomology of a manifold. On the

one hand, Quillen establishes an equivalence of ho-

motopy categories between simply connected ratio-

nal spaces and a class of differential graded Lie al-

gebras (dgl’s). On the other, inspired by the differen-

tial forms on a manifold, Sullivan constructs a mor-

phism APL of homotopy categories from all topolog-

ical spaces, X , to rational commutative differential

cochain algebras (cdga’s).

For simply connected rational spaces with finite

Betti numbers, and the corresponding category of

cdga’s, this is also an equivalence. (Hess [53] provides

a more detailed and excellent history of the subject.)

Moreover, if a cdga (A,d) corresponds to a path con-

nected space X , then with it Sullivan associates its

minimal model, a cdga which is free as a commu-

tative graded algebra and whose isomorphism class
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depends only on the homotopy type of X . These min-

imal models, which can often be computed, provide

detailed information about X and its invariants, in-

cluding its Lusternik-Schirelmann category and a new

invariant depthX . In particular, properties of funda-

mental groups, including their Malcev completions,

are accessible with this approach.

Our objective, then, is to provide an overview of

rational homotopy theory as viewed through the lens

of Sullivan’s minimal models. We describe many of

the main results, and a range of examples and ap-

plications new and old. However, for ease of reading

the proofs and what are now classical constructions

are not included. For these the reader is generically

referred to [32] and [33] or to the excellent introduc-

tions to the subject by Hess [54] and Berglund [7];

other references are provided in the text where re-

quired. We also include a range of open problems,

new and old, distributed throughout the text.

The breadth of established material, as well as

ongoing new results, applications and conjectures,

poses a challenge to authors of such a survey, which

cannot hope to be encyclopaedic. We have had to be

selective, understanding that others might well have

made different choices.

Finally, we would like to express our profound ap-

preciation to the other rational homotopy theorists

with whom we have had the good fortune to be able

to collaborate over the last 40 years, and most espe-

cially to our good friend, Jean-Claude Thomas, fre-

quently our co-author, including in particular for the

two volumes on rational homotopy.
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1. Notation and Terminology

Unless otherwise specified we work over Q as

ground field, noting that for much of the material any

field of characteristic zero could be used.

A graded vector space, S, is a collection {Sp}p∈Z or

a collection {Sp}p∈Z of vector spaces, with the conven-

tion Sp = S−p used to avoid negative indices. A graded

vector space S has finite type if dimSp < ∞, p ∈ Z.
If S and T are graded vector spaces then

Hom(S,T ) is the graded space of linear maps given by

Homk(S,T ) =∏r∈ZHom(Sr,Tr+k), butmorphisms are re-

quired to preserve degrees. For simplicity, Hom(S,Q)

is then denoted by S#. When S = {Sp} an element x ∈ Sp

has degree p.
The suspension sS is the graded vector space de-

fined by (sS)p = Sp−1; this isomorphism is denoted

x 7→ sx. The inverse isomorphism is denoted by s−1.

Graded algebras, A, are graded vector spaces to-

gether with an associative multiplication A⊗A→ A of

degree zero, and have an identity 1 ∈ A0. A graded al-

gebra is commutative (cga for short) if for a,b ∈ A,

ab = (−1)dega·degbba .

Graded Lie algebras, L, are graded vector spaces

equipped with a Lie bracket [ , ] : L⊗L→ L of degree

0 and satisfying for x,y,z ∈ L:

[x,y]+ (−1)degx·degy[y,x] = 0 and

[x, [y,z]] = [[x,y],z]+ (−1)degx·degy[y, [x,z]] .

The universal enveloping algebra, UL, is the

graded algebra T L/J, where T L is the tensor alge-

bra and J is the ideal generated by the elements

[x,y]− (x⊗ y− (−1)degx·degyy⊗ x).
A complex or a differential graded vector space,

(S,d), is a graded vector space together with a lin-

ear map d ∈ Hom−1(S,S) satisfying d2 = 0. Its homol-

ogy H(S) is the graded vector space kerd/ Imd. A
quasi-isomorphism in a category of complexes, de-

noted by
'−→, is a morphism ϕ satisfying H(ϕ) is an

isomorphism. A differential graded algebra (dga for

short) is a pair (A,d) in which A is a graded alge-

bra, (A,d) is a complex, and d is a derivation: d(ab) =
(da)b+ (−1)degaa(db). If A is commutative then A is a

cdga. A differential graded Lie algebra (dgl for short)

is a pair (L,∂ ) in which L is a graded Lie algebra, (L,∂ )
is a complex, and ∂ is a derivation: ∂ [x,y] = [∂x,y] +
(−1)degx[x,∂y].

If (A,d) is a dga then an (A,d)-module is a pair

(M,d) in which M is a (graded) A-module, (M,d) is

a complex, and d(a ·m) = (da) ·m + (−1)degaa · dm. An
(A,d)-module, (P,d), is semi-free if P is the union of

an increasing sequence (P0,d)⊂ ·· · ⊂ (Pr,d)⊂ ·· · of sub
(A,d)-modules in which (P0,d) and each (Pr+1/Pr,d) are
direct sums of copies of (A,d). Any (A,d)-module M,d)
admits a quasi-isomorphism

ϕ : (P,d)
'−→ (M,d)

from a semi-free (A,d)-module.

Finally, for any topological space X , the rational

cohomology H∗(X ;Q) is denoted simply by H(X), to

simplify the notation in the many places this appears.

Otherwise homology is always denoted with the coef-

ficient ring.

2. Sullivan Models

Sullivan’s approach to rational homotopy the-

ory is accomplished by a passage from topological

spaces X to commutative differential graded algebras

(cdga’s) via a quasi-isomorphism

ϕ : (∧V,d)→ APL(X) ,

where in particular

(i) ∧V is the free commutative graded algebra on a

graded vector space V = {V n}n≥1; ∧V = ⊕r≥0 ∧r V ,
where ∧rV is the linear span of the monomials in

V of length r.
(ii) APL : Top // Cdga is a contravariant functor

for which the graded algebras H(X) and H(APL(X))

are naturally isomorphic.
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This construction has three steps.

The first step is the definition of the simplicial

cdga (APL)∗ and the definition of APL as the composite

of two functors

Top
Sing // Simpl

APL // Cdga ,

where Simpl is the category of simplicial sets, Sing(X)

is the simplicial set of singular simplices in X , and
APL(S) = Simpl(S,(APL)∗). Here (APL)∗ is defined as fol-

lows: let ti denote variables of degree 0, then

(APL)k = ∧(t0, · · · tk,dt0, · · · ,dtk)/(∑ ti)−1,∑dti).

The face and degeneracy morphisms are given by

∂it j =


t j , j < i
0 , j = i
t j−1 , j > i

and s jti =

{
ti , i < j
ti+1 , i≥ j .

Thus ϕ ∈ An
PL(X) := APL(SingX) assigns to each singular

k simplex in X an element of degree n in (APL)k, com-

patibly with the face and degeneracy maps.

The second step is the introduction of a distin-

guished class of cdga’s, the Sullivan algebras, and the

establishment of their properties.

Definition.

(i) A Sullivan algebra is a cdga of the form (∧V,d)
in which V = {V k}k≥1 is the union of subspaces

V (0) ⊂ ·· · ⊂ V (r) ⊂ ·· · in which d : V (0)→ 0 and d :
V (r+1)→∧V (r) for r≥ 0. (Note: a Sullivan algebra

will admit many choices of generating space V !).
(ii) (∧V,d) isminimal if d : V →∧≥2V , and contractible

if for some W ⊂V the inclusions of W and d(W ) in

∧V extend to an isomorphism

∧W ⊗∧d(W )
∼=→∧V .

Arguments from linear algebra then establish the

Properties:

(i) A Sullivan algebra is the tensor product of a min-

imal Sullivan algebra and a contractible Sullivan

algebra.

(ii) A Sullivan algebra (∧V,d) is the direct limit of the

sub Sullivan algebras (∧Vα ,d) in which Vα ⊂V and

dimVα < ∞.

(iii) A quasi-isomorphism between minimal Sullivan

algebras is an isomorphism.

Additionally, in analogy with the inclusion of the

endpoints in an interval, the cdga ∧(t,dt)with deg t = 0
has augmentations ε0,ε1 :∧(t,dt)→Q defined by ε0(t)=
0 and ε1(t) = 1.

Definition. Two cdga morphisms ϕ0,ϕ1 : (∧V,d) →
(A,d) from a Sullivan algebra are homotopic via a ho-

motopy Φ : (∧V,d)→ ∧(t,dt)⊗ (A,d) if (εi⊗ id) ◦Φ = ϕi.

This is denoted ϕ0 ∼ ϕ1.

Moreover, the cdga analogue of a based topolog-

ical space X is an augmented cdga ε : (A,d) → Q: if
j : x→ X is the inclusion of a base point then APL( j) :
APL(X)→ APL(x) =Q is an augmentation. Thus if in the

definition above ε : (A,d)→Q is an augmentation, then

Φ is a based homotopy if Φ(∧+V )⊂∧(t0, t1)⊗kerε , and

this is denoted ϕ0 ∼∗ ϕ1.

As in the topological category, homotopy and

based homotopy are equivalence relations.

Finally, the essential property of Sullivan algebras

(∧V,d) is that morphisms from Sullivan algebras lift

up to homotopy through quasi-isomorphisms. More

precisely, given ϕ and η in the diagram below

(C,d)

' η

��
(∧V,d)

ψ

::

ϕ
// (A,d) ,

there is a unique homotopy class of morphisms ψ

such that η ◦ ψ ∼ ϕ . Moreover, the homotopy class

only depends on the homotopy class of ϕ . The analo-

gous result also holds for based homotopy when η is

a morphism of augmented cdga’s.

The third and final step is the

Theorem 2.1. For each path connected topological

space X there is a quasi-isomorphism

ϕ : (∧V,d)
'→ APL(X)

from aminimal Sullivan algebra. If ψ : (∧W,d)
'→APL(X)

is a second quasi-isomorphism, then there is an iso-

morphism

χ : (∧W,d)
∼=→ (∧V,d)

such that ϕ ◦ χ ∼ ψ . If X is a based space then χ may

be chosen so that ϕ ◦χ ∼∗ ϕ .

Definition. The morphism ϕ : (∧V,d)
'→ APL(X) is a

minimal Sullivan model for X .

Similarly, given a map f : X → Y of (based) topo-

logical spaces, minimal Sullivan models for X and Y
embed in a (based) homotopy commutative diagram

(∧V,d)
' // APL(X)

(∧W,d)

ϕ

OO

' // APL(Y )

APL( f )

OO

in which the (based) homotopy class of ϕ is deter-

mined by the (based) homotopy class of f . The mor-

phism ϕ is a Sullivan representative of f .

Remark 1. Theorem 1 remains true if APL(X) is re-

placed by any cdga (A,d) for which H0(A,d) =Q. In this
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case a quasi-isomorphism (∧V,d)
'→ (A,d) from a min-

imal Sullivan algebra is a minimal Sullivan model for

(A,d).

Remark 2. Two cdga’s (A,d) and (B,d) are weakly

equivalent if there is a finite chain of cdga quasi-

isomorphisms

(A,d) = (C(0),d)
'→ (C(1),d)

'← ···
'→ (C(p),d) = (B,d) .

In this case we write (A,d) ' (B,d). If H0(A,d) =

Q = H0(B,d) then (A,d) ' (B,d) if and only if for

some minimal Sullivan algebra (∧V,d) there are quasi-
isomorphisms

(A,d)
'← (∧V,d)

'→ (B,d) .

The cdga APL(X), and by consequence the minimal

Sullivan model of X , are directly related to other dga’s

associated with X :

1. Denote by C∗(X ;Q) the usual cochain algebra on

X with rational coefficients. Then there is a se-

quence of quasi-isomorphisms of dga’s

APL(X)
'←− E(X)

'−→C∗(X) .

Two dga’s (A,d) and (B,d) are equivalent if they

are connected by quasi-isomorphisms,

(A,d)
' // (A(1),d) · · ·'oo '// (A(k),d) (B,d).

'oo

When a simply connected CW complex X has fi-

nite Betti numbers then Adams-Hilton ([1]) con-

struct a natural bijection between the equiva-

lence classes of C∗(X ;Q) and C∗(ΩX ;Q), ΩX denot-

ing the loop space.

It is an open question to construct two spaces

X and Y with equivalent cochain algebras,

C∗(X ;Q)'C∗(Y ;Q), but different minimal Sullivan

models. Is there an obstruction theory to mea-

sure the difference?

2. If X is a connected manifold, then APL(X)⊗QR is

weakly equivalent to the cdga of de Rham forms

on X , APL(X)⊗QR' ADR(X).

3. It is an open question whether geometric data

(as opposed to triangulations) on a manifold

M could permit the construction of a rational

Sullivan model. However ([50]) a Riemannian

metric does determine an algorithm for com-

puting an finitely generated field extension, lk
of Q and the minimal Sullivan model defined

over lk.
4. The existence of a free torus action on a finite

CW complex X imposes restrictions on the min-

imal Sullivan model. Could these be extended to

resolve the question: in this case is dimH(X) ≥
2n?

Examples of Sullivan models

1. Denote by MX the minimal Sullivan model of a

space X . Then

MS2n+1 = (∧u,0), degu = 2n+1

MS2n =(∧(a,b),d), da= 0,db= a2, dega= 2n

MX×Y
∼= MX ⊗MY , if one of H(X) or H(Y ) is a

graded vector space of finite type

MX∨Y 'MX ⊕Q MY

MK(Z,n) = (∧a,0), dega = n

2. The minimal Sullivan model of a connected com-

pact Lie group is a cdga of the form (∧VG,0)where
VG is finite dimensional and concentrated in odd

degrees. A Sullivan model of its classifying space

BG is (∧s−1VG,0) with as usual (s−1VG)
n = V n−1

G . If

X = G/H is a homogeneous space where G and

H are compact connected Lie groups, denote by

ϕ : (∧s−1VG,0)→ (∧s−1VH ,0) a Sullivan representa-

tive of the induced map f : BH→ BG. Then a min-

imal Sullivan model for G/H is

(∧s−1VH ⊗∧VG,d)

where d(s−1VH) = 0 and d(x) = ϕ(s−1x) for x ∈VG.

3. Suppose a compact connected Lie group G acts

on amanifold M. Then the injection of the algebra

of G-invariant forms AG
DRM → ADR(M) is a quasi-

isomorphism.

4. Let f : X → Y be a continuous map between sim-

ply connected spaces and let ϕ : (∧W,d)→ (∧V,d)
be a representative of f . Extend ϕ to a surjective

map ϕ : (∧W,d)⊗∧(S⊕dS)→ (∧V,d), from the ten-

sor product with a contractible Sullivan algebra.

Then a minimal Sullivan model for Q⊕ kerϕ is

a minimal Sullivan model for C f , the homotopy

cofibre of f .
5. A space X with minimal Sullivan model (∧V,d)

is formal if there is a quasi-isomorphism ϕ :
(∧V,d)→ (H(X),0). Every (n− 1)-connected space,

n ≥ 2, of dimension ≤ 3n − 2 is formal. The

H-spaces, symmetric spaces of compact type,

and compact Kähler manifolds ([27]) are formal.

In a formal space all Massey products of order≥ 3
are trivial, and so a non-trivial Massey product is

an obstruction to formality. In [51] Halperin and

Stasheff have given a simple algorithm for decid-

ing the formality of a space.

There are many non formal spaces. For instance

(∧u,v,w),d) with du = dv = 0 and dw = uv with u and
v in odd degrees is a non formal space. In geome-

try [43, Sec.10.12] gives a Lie theoretic character-

ization of formal homogeneous spaces, while ex-

amples of non-formal simply connected symplec-

tic manifolds have been given by Babenko and
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Taimanov ([4]). Moreover, in [20] Cavalcanti, Fer-

nández and Munoz give an example of a non for-

mal simply-connected compact symplectic man-

ifold of dimension 8 which satisfies the Lefchetz

property, raising the question whether there is a

nice generalization of Kähler that implies formal-

ity.

3. The Spatial Realization of a
Sullivan Algebra

The second component of Sullivan’s approach to

rational homotopy theory is the passage from Sulli-

van algebras to CW complexes via the composite of

two functors

| | : Cdga // Simpl // CW

respectively adjoint to APL and to Sing. (As with APL,

we use the same notation for the composite and for

the second functor alone.)

Here < A,d >n= Cdga((A,d),(APL)n) , while | | is the
Milnor realization.

In particular, if X is a CW complex then adjoint to

idSingX is a (based) homotopy equivalence |SingX | → X
which determines up to (based) homotopy a (based)

homotopy equivalence

rX : |SingX | → X .

Definition. The spatial realization of a Sullivan al-

gebra (∧V,d) is the based CW complex | ∧V,d| := | <
∧V,d > |. (Note that | ∧V,d| has a single 0-cell which
serves as the base point.)

There are two distinct contexts in which it is use-

ful to convert a cdga morphism to a continuous map.

Both constructions preserve (based) homotopy.

(i) If ϕ : (∧V,d)→ (∧W,d) is a morphism of Sullivan

algebras, then ϕ 7→ |ϕ|,

|ϕ| : |∧V,d| ← |∧W,d|,

is the functor described above, applied to mor-

phisms.

(ii) If ϕ : (∧V,d)→ APL(X) is a morphism from a Sul-

livan algebra and if X is a CW complex, then by

adjunction, ϕ induces a map

ϕ̂ : X → |∧V,d| .

Example. Suppose ϕ : (∧V,d)→ APL(X) is the minimal

Sullivanmodel of a CW complex with finite Betti num-

bers. If H1(X) = 0 thenV =V≥2 is a graded vector space

of finite type, and

H(ϕ̂) : H(|∧V,d|)
∼=−→ H(X)

is an isomorphism. If, in addition, X is simply con-

nected then

π∗(ϕ̂) : π∗(X)⊗Q→ π∗(|∧V,d|)

is also an isomorphism. In this case ϕ̂ : X → |∧V,d| is
the rationalization of X .

This example generalizes under certain condi-

tions to non-simply connected spaces. For instance

Sullivan’s infinite telescope is a rationalization S1 →
S1
Q of the circle. But, as the next example shows, when

X is not simply connected π∗| ∧V,d| may be quite

different from π∗(X)⊗Q in degrees ≥ 2 even when

H1(X) = 0 and the Betti numbers of X are finite. In fact

the determination of the cohomology of |∧V,d| when
V 1 is infinite dimensional remains an open question.

Example. The involution τ : (x,y,z) → (−x,−y,−z) in

S2 × S2 × S2 acts freely, and so dividing by τ gives a

CW complex X . The cohomology algebra of X is the

sub algebra of H(S2× S2× S2) of classes left fixed by

τ . Let α,β ,γ be the fundamental classes for the three

2-spheres. Then 1,αβ ,αγ and βγ are a basis of H(X). It

follows that H(X) = H(S4∨S4∨S4).

But S4 ∨ S4 ∨ S4 is intrinsically formal, which im-

plies that the minimal Sullivan model (∧V,d) of X is

also the minimal Sullivan model of S4∨S4∨S4, and so

|∧V,d|= (S4∨S4∨S4)Q .

A simple computation also shows that in this case,

while each dimV k < ∞, V itself is infinite dimensional.

Moreover, while π≥2(X)⊗Q is concentrated in degrees

2 and 3, π∗| ∧V | is infinite dimensional and concen-

trated in degrees 3n+1.

Finally, for each Sullivan algebra (∧V,d), adjoint
to id(∧V,d) is a morphism, natural in (∧V,d),

mV : (∧V,d)→ APL|∧V,d|, with |mV |= id|∧V,d| .

In general it may not be a quasi-isomorphism, but if V
is a graded vector space of finite type then H(mV ) is an

isomorphism and mV is the minimal Sullivan model.

Further, for any connected CW complex X and any

morphism ϕ : (∧V,d)→ APL(X) from a Sullivan algebra,

ϕ ∼∗ APL(ϕ̂)◦mV .

In particular, if ϕ is the minimal Sullivan model of X
then H(mV ) is injective and H (ϕ̂) is surjective. Thus

H(mV ) is an isomorphism if and only if H (ϕ̂) is an iso-

morphism.

4. Homotopy Groups

Associated with any minimal Sullivan algebra

(∧V,d) are its homotopy groups π∗(∧V,d), whose defi-
nition is motivated by the following construction.
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Suppose X is a based connected CW complex and

ϕ : (∧V,d)→ APL(X)

is a morphism. Then ϕ determines a set map

π∗(ϕ) : π∗(X)→
(
∧+V/∧+V∧∧+V

)#
=V #

as follows:

• Represent α ∈ πn(X) by f : Sn→ X , so that APL( f )◦
ϕ : (∧V,d) → APL(Sn). Since APL(Sn) ' H(Sn), this

morphism lifts (up to based homotopy) to a mor-

phism

ϕ f : (∧V,d)→ H(Sn) .

• The standard orientation in ∆n together with the

map ∆n→ ∆n/∂∆n = Sn defines an orientation class

ωn ∈ Hn(Sn).

• Define π∗(ϕ)α by

(π∗(ϕ)α)(Φ) ·ωn = Hn(ϕ f )(Φ) , Φ ∈V n .

Remark. The set map π∗(ϕ) is natural with respect

to morphisms of minimal Sullivan algebras and with

respect to based maps of CW complexes.

Theorem 4.1. When ϕ : (∧V,d)→ APL(X) is the minimal

Sullivan model of a simply connected space with finite

Betti numbers, then π∗(ϕ) : π∗(X)⊗Q→ V # is a linear

isomorphism.

The construction above applies in particular to

the morphism

mV : (∧V,d)→ APL|∧V,d| ,

where we have the

Theorem 4.2. For any minimal Sullivan algebra

(∧V,d),

(i) πk(mV ) : πk| ∧V,d| → (V k)# is a linear isomorphism

for k ≥ 2.
(ii) π1(mV ) : π1|∧V,d| → (V 1)# is a bijection.

In particular, when k = 1, π1(mV ) induces a group

structure on (V 1)#:

Definition. The groups πk(∧V,d) := (V k)#, k ≥ 1 are

the homotopy groups of the minimal Sullivan algebra

(∧V,d).

Remark 1. The group multiplication in π1(∧V,d) will
be made explicit in the next section.

Remark 2. By naturality it follows that if X is a CW

complex and ϕ : (∧V,d)→ APL(X) is a morphism from

a minimal Sullivan algebra then the commutative di-

agram

π∗|∧V,d|

∼=π∗(mV )

��

π∗(X)

π∗ϕ̂
66

π∗(ϕ)
((
V #

identifies π∗(ϕ) with the homomorphism π∗ϕ̂ .

Remark 3. When ϕ : (∧V,d)→ APL(X) is the minimal

Sullivan model of a based connected CW complex

then

H(∧V,d)∼= H(X) and π∗(∧V,d)∼= π∗|∧V,d| .

However it may happen that neither H(ϕ̂) nor π∗ϕ̂ is

an isomorphism.

Example. Let (∧Z,d) be the minimal model of the

sphere Sn, for some n≥ 1. Since Sn is formal, there is a

quasi-isomorphism ρ : (∧Z,d)→ (H(Sn),0) ∼= (∧u/u2,0).
Next, let g : Sn×X → Y be a continuous map and f its
restriction to {x0}×X where x0 is a base point in Sn.

The Sullivan representative for g (followed by ρ ⊗ id)
has the form

ψ : (∧V,d)→ (∧u/u2,0⊗∧W,d),

ψ(v) = ϕ(v)+u⊗uθ(v) , v ∈V.

Here ϕ is a Sullivan representative for f , and θ : ∧V →
∧W is a ϕ-derivation, i.e. a linear map satisfying

θ(ab) = θ(a)ϕ(b)+(−1)dega·degθ
ϕ(a)θ(b) .

Suppose X is a finite CW complex and Y is a nilpo-

tent space with finite Betti numbers. Denote by F(X ,Y )
the mapping space of continuous maps from X to

Y , and by F(X ,Y ; f ) the path component of g. Then
F(X ,Y ; f ) is a nilpotent space ([56]), and the above cor-

respondence g 7→ θ induces for n≥ 2 an isomorphism,

and for n = 1 a bijection,

πn(F(X ,Y ; f ))⊗Q
∼=−→ Hn

(
Derϕ(∧V,∧W ),D)

)
,

where Derϕ denotes the vector space of ϕ-derivations

and Dθ = dθ − (−1)degθ θd ([15], [67]).

In particular, if f is the constant map, then

Derϕ(∧V,∧W ) =Hom(V,∧W ) and

πn(F(X ,Y ; f ))⊗Q∼=⊕qHom(πq(Y ),Hq−n(X)) .

5. The Homotopy Lie Algebra and the
Fundamental Group

Fix a minimal Sullivan algebra (∧V,d). Theorem
4.2 identifies the abelian groups πk| ∧V,d|, k ≥ 2, as
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the rational vector spaces (V k)#. To make explicit the

multiplication in π1(∧V,d)we introduce the homotopy

Lie algebra of (∧V,d), defined next.

First we establish the convention that in the pair-

ing between V and V #, V # will act from the right so

that the pairing is written

V ×V #→Q , v, f 7→< v, f > .

This induces the pairing ∧2V × (V #×V #)→Q given by

< v∧w, f ,g >=< v,g >< w, f >

+(−1)degv·degw < v, f >< w,g > .

Now denote by d1v the component of dv in ∧2V ,
(∧V,d1) is a quadratic Sullivan algebra.

Definition. The homotopy Lie algebra, LV is the

graded Lie algebra in which sLV is the graded vector

space V #, and

< v,s[x,y]>= (−1)degy+1 < d1v,sx,sy > .

Thus If V 1 6= 0 then (LV )0 6= 0.

For simplicity, in the rest of this section, LV will

be denoted simply by L.
To describe π1(∧V,d), let In denote the nth power

of the augmentation ideal in the universal envelop-

ing algebraUL. Then ÛL := lim←−n
UL/In is the completion

of UL. In particular, an injective set map L0
exp−→ ÛL is

given by exp(x) = ∑
∞
n=0 xn/n! .

Theorem 5.1. Suppose dimH1(∧V,d)< ∞. Then multi-

plication in ÛL restricts to a product in exp(L0) which

makes GL := exp(L0) into a group, and

exp◦s−1 : π1(∧V,d)
∼=→ GL

is an isomorphism of groups.

Remark 1. The inverse of exp is the formal power se-

ries log : GL → L0, loga = ∑n≥1(−1)n−1 (a−1)n

n . Thus the

product in π1(∧V,d) is given explicitly by

α ·β = s log(exps−1
α · exps−1

β ) .

Remark 2. While the theorem has the restriction

dimH1(∧V,d)< ∞, it does apply when dimV < ∞. Since

(∧V,d) = lim−→α
(∧Vα ,d) with dimVα < ∞, it follows that in

general

π1(∧V,d) = lim←−
α

Gα

where Gα if the “exponential group” of (∧Vα ,d).

Associated with the group π1 := π1(∧V,d) and the

Lie algebra L0 are their respective lower central series

π1 = π1
1 ⊃ ·· · ⊃ πr

1 ⊃ ·· · and L0 = L1
0 ⊃ ·· · ⊃ Lr

0 ⊃ ·· · . Here
π

r+1
1 and Lr+1

0 are respectively the subgroup generated

by the commutators [α,β ], α ∈ π1, β ∈ πr
1 and the linear

span of the commutators [x,y], x ∈ L0, y ∈ Lr
0.

On the other hand, d1 determines the increasing

filtration V 1
0 ⊂ ·· ·V 1

r ⊂ ·· · given by

V 1
0 =V 1∩kerd1 and V 1

r+1 = d−1
1 (∧V 1

r ) .

The defining condition for Sullivan algebras gives

V 1 = ∪mV 1
m. In particular,

V 1
0 = H1(∧V,d) .

These three filtrations are closely related when

dimH1(∧V,d)< ∞:

Theorem 5.2. The vector spaces π1/π2
1 ,L0/L2

0, and

(V 1
0 )

# are isomorphic if one of them is finite dimen-

sional. In this case

(i) s : L0
∼=→ π1 restricts to bijections s : Lm

0
∼=→ πm

1 , m≥ 1.
(ii) EachV 1

m is finite dimensional,<V 1
m,sLm+2

0 >= 0, and
the induced linear maps

s
(
L0/Lm+1

0

) ∼=→ (V 1
m)

#

are isomorphisms.

(iii) L0 = lim←−m
L0/Lm

0 is a pronilpotent Lie algebra.

Next observe that the isomorphism π∗| ∧V,d|
∼=→

π∗(∧V,d) transports the action of π1| ∧V,d| in πk| ∧V,d|
to a representation of π1 in πk(∧V,d). Denote this by

α×β 7→ α •β , α ∈ π1,β ∈ πk(∧V,d) .

On the other hand, suppose x ∈ L0, y ∈ Lk and

k ≥ 1. Then it follows from the Sullivan condition

that for some m = m(y), (ad x)m(y) = 0. Thus, when
dimH1(∧V,d)< ∞, a representation of GL in Lk is given

by

exp(x)• y = ead x(y) .

Moreover, in this case,

α •β =s
(

ead(s−1α)(s−1
β )

)
, α ∈ π1,β ∈ πk(∧V,d).

Finally, associated with any differential graded

Lie algebra (E,∂ ), E = E≥0, is the chain coalgebra

C∗(E,∂ ) := (∧sE,∂ + δ ) whose differential is deter-

mined by the conditions ∂ sx = −s∂x and δ (sx∧ sy) =
(−1)deg ,x+1s[x,y]. The dual, C∗(E,∂ ) := [C∗(E,∂ )]# is a

cdga. Moreover, if E/[E,E] is a graded vector space

of finite type then so is each En/En+1, and in this case

(∧VE ,d) = lim−→
m

C∗(E/Em)

is a quadratic Sullivan algebra. If also ∂ = 0 then

LVE = Ê := lim←−
m

E/Em .
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In particular, in [40] Getzler defines a realization

functor for differential graded Lie algebras that is di-

rectly related to spatial realization. If (∧V,d) is a mini-

mal Sullivan algebra where V =V≥2 is a graded vector

space of finite type, then there is a dgl (L,∂ ) in which

L = L≥1 is a vector space of finite type, the cochain al-

gebra C∗(L,∂ ) is itself a Sullivan algebra, and (∧V,d) is
its minimal Sullivan model. Thus |∧V,d| ' |C∗(L,∂ )|.

Now we can form the simplicial dgl L⊗APL, where

the bracket is defined by

[`⊗a, `′⊗a′] = (−1)deg`′·dega[`,`′]⊗aa′ .

For a dgl (L,∂ ) denote by MC(L,∂ ) the space of Maurer-

Cartan elements of L, i.e., elements ω ∈ L with ∂ω +
1
2 [ω,ω] = 0.

Theorem 5.3. When A is an artinian finite dimen-

sional algebra, the natural isomorphism between

Hom((sL)#,A) and L⊗A induces a bijection between the

space of morphisms from C∗(L,∂ ) to A and the space

MC(L⊗A).
In particular there is an isomorphism of simplicial

sets

<C∗(L,∂ )>∼= MC(L⊗A∗PL) .

Minimal Sullivan models (∧V,d) provide an inter-

esting example of discrete groups, about which a

number of open questions remain, including:

1. When dimH1(∧V,d) < ∞ does the inclusion GL ↪→
ÛL0 extend to an isomorphism Q̂[GL]

∼=−→ ÛL0 from

the completion of the group ring.

2. Must it always be the case that some Ln
0/[L

n
0,L

n
0] is

infinite dimensional?

Example. Let (∧V,d) be the minimal Sullivan model

of S1 ∨ S1. Then LV is the completion of the free Lie

algebra on two generators E = L(x,y):

LV = lim←−
n

E/En .

The group π1(∧V,d) is the associated group and can

be described as the vector space LV equipped with

the Baker-Campbell-Hausdorff product,

a∗b = a+b+
1
2
[a,b]+

1
12

[a, [a,b]]− 1
12

[b, [a,b]]+ · · ·

6. Whitehead Products and Nilpotence

Fix a minimal Sullivan algebra (∧V,d) with homo-

topy Lie algebra L and, for simplicity, denote πk(∧V,d)
simply by πk. Recall that the Whitehead products in

|∧V,d| are maps

[ , ]W : πk(|∧V,d|)×π`(|∧V,d|)→ πk+`−1(|∧V,d|) .

The isomorphism πk(| ∧V,d|) → πk(∧V,d) then trans-

ports these to Whitehead products [ , ] in πk. In par-

ticular, when k, `≥ 1,

[sx,sy]W = (−1)degxs[x,y] , x ∈ Lk−1,y ∈ L`−1 .

When k = 1 and `= 1, then

[α,β ]W = αβα
−1

β
−1 , α,β ∈ π1 ,

and when k = 1 and ` > 1 then

[α,β ]W = α •β −β , α ∈ π1,β ∈ πk .

Thus if dimH1(∧V,d) < ∞ these can be expressed di-

rectly via the exponential map L0
∼=→ GL using the for-

mulae in Section 4.

The three filtrations in Section 4 also generalize

to general k. First, the lower central series of πk is

the sequence πk = π1
k ⊃ ·· · ⊃ πr

k ⊃ ·· · , where π
r+1
k is the

(abelian for k≥ 2) subgroup generated by the elements

[α,β ]W , α ∈ π1,β ∈ πr
k . Then, the lower central series for

Lk is the sequence Lk = L1
k ⊃ ·· · ⊃ Lr

k ⊃ ·· · where Lr+1
k

is the linear span of the Lie brackets [α,β ], α ∈ L0,

β ∈ Lr
k. Finally, denote by δ the derivation of ∧V in

which δv is the component of dv in V 1∧V . Then a fil-

tration V k
0 ⊂ V k

1 ⊂ ·· · ⊂ V k
r ⊂ ·· · of each V k is given by

V k
0 =V k ∩kerδ and Vr+1 = δ−1(V 1∩V k

r ). Note that when

k = 1 these filtrations coincide with those defined in

Section 4.

Definition. Let (∧V,d) be a minimal Sullivan algebra.

Then, with the notation above, nilπk (k ≥ 1), nilLk (k ≥
0), and nilV k (k ≥ 1) are respectively the greatest inte-

gers Nπ , NL and NV (or ∞) such that

π
Nπ

k 6= 0 , LNL
k 6= 0 , and V k/V k

NV−1 6= 0 .

When dimH1(∧V,d) < ∞, Section 4 establishes

close relations for the filtrations of π1, L0 and V 1. Sim-

ilar relations hold for the filtrations of πk, Lk−1 and V k

for an arbitrary k, provided also that dimV k < ∞. In

particular, these relations hold for all k, if dimV < ∞.

Since (∧V,d) = lim−→α
(∧Vα ,d) with dimVα < ∞ an (inverse

+ direct) limit establishes

Theorem 6.1. For any minimal Sullivan algebra

(∧V,d) and any k ≥ 1,

nilπk = nilLk−1 = nilV k .

Remark. A connected CW complex X is nilpotent if

π1(X) and each πk(X), k ≥ 2, are respectively a nilpo-

tent group and a nilpotent π1(X)-module. Thus The-

orem 6.1 characterizes the possible nilpotence of

|∧V,d|:

|∧V,d| is nilpotent ⇐⇒ for each k ≥ 1

and some N(k),V k =V k
N(k) .
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7. Hurewicz Homomorphisms

The Hurewicz homomorphism in topology

hur : π∗(X)→ H∗(X)

also has an analogue for minimal Sullivan algebras,

(∧V,d). The surjection ζ : ∧+V → ∧+V/∧+ V∧∧+ V = V
induces a linear map H(ζ ) : H+(∧V,d)→V , and for any

based CW complex X , and a morphism ϕ : (∧V,d)→
APL(X), the diagram

π∗(X)

hur

��

π∗(ϕ) // π∗(∧V,d)

H(ζ )#

��
H∗(X) // H(X)# H(ϕ)#

// H(∧V,d)#

commutes.

For n≥ 2 this is in ([33]). When n = 1, let ϕ0 be the

restriction of ϕ to V 1
0 =V 1∩ kerd. Then

H(ζ )# ◦π1(ϕ) = π1(ϕ0) : π1(X)→ π1(∧V 1
0 ) = (V 1

0 )
# .

The discussion of Whitehead products shows that

π1(∧V 1
0 ) is abelian. Thus π1(ϕ0) factors through

π1(X)/[π1(X),π1(X)] = H1(X), and so the diagram above

commutes when n = 1.

Example 1. If V =V k then

πm|∧V,d|=
{

V # , m = k
0 , otherwise.

Thus |∧V,d|= K(V #,k).

Example 2. If ϕ : (∧V,d)→ APL(X) is the minimal Sulli-

van model of an n-connected CW complex with finite

Betti numbers, thenV =V≥n+1 is a graded vector space

of finite type and

πk(ϕ) : πk(X)⊗Q
∼=−→ (V k)# .

Since d : V →∧≥2V , it vanishes in V≤2n and so H(ζ ) :

Hk(∧V )
∼=→V k, k≤ 2n. Thus the Hurewicz diagram gives

hur : πk(X)⊗Q
∼=−→ Hk(X ;Q) , k ≤ 2n .

Moreover, in degrees k≤ 3n+1, d : V k→∧2V . It follows
that ImH(ζ )k is the subspace of V k orthogonal to the

linear span of Whitehead products. This then implies

that

ker(hur) : πk(X)⊗Q→ H∗(X ;Q) , k ≤ 3n+1

is the linear span of the Whitehead products.

8. Rationalizations, Malcev
Completions and Sullivan Spaces

With a nilpotent connected CW complex, X , is as-
sociated ([32]) a continuous map f : X → XQ in which

XQ is a nilpotent CW complex, and each of Hi( f ;Z),
i≥ 1 and πi( f ), i≥ 2 extend to isomorphisms

Hi(X ;Z)⊗Q
∼=−→ Hi(XQ,Z) and πi(X)⊗Q

∼=−→ πi(XQ).

The space XQ is the rationalization of X , and X is a ra-

tional CW complex if f is a homotopy equivalence. In

particular, a rationalization induces an isomorphism

of minimal Sullivan models.

If ϕ : (∧V,d)→ APL(X) is a minimal Sullivan model

of a nilpotent connected CW complex, and in addition

H(X) is a graded vector space of finite type, then ϕ̂ :
X → |∧V,d| is a rationalization, and so πi(ϕ) : πi(X)⊗
Q

∼=−→V #
i , i≥ 2.

Example (Eilenberg-MacLane spaces). If G is an

abelian group and r ≥ 1, then the Eilenberg-MacLane

space K(G,r) is an H-space and therefore nilpotent.

Write GQ = G⊗ZQ. Then

K(G,r)→ K(GQ,r)

is a rationalization.

Now suppose dimGQ < ∞. Then the minimal Sulli-

vanmodel of K(G,r) has the form (∧V r,0) and dimV r =

dimGQ. In this case the map

K(GQ,r)→ |∧V r|

is a homotopy equivalence.

Sullivan spaces are a broader class of connected

CW complexes X in which the fundamental group,

G may not be nilpotent, but in which if ϕ : (∧V,d)→
APL(X) is a minimal Sullivan model then π1(ϕ̂) is aMal-

cev completion (described next) and πi(ϕ̂), i ≥ 2 and

H i(ϕ̂), i≥ 0 are isomorphisms,

πi(X)⊗Q
∼=−→ πi|∧V,d| and H i(|∧V,d|)

∼=−→ H i(X) .

Recall then G2 = [G,G] is the commutator sub-

group of G. Because H1(X) = (G/[G,G])# it follows from

the Hurewicz diagram that dimH1(X)< ∞ if and only

if the morphism induced by π1(ϕ) is an isomorphism.

G/[G,G]⊗Q
∼=→ π1(∧V,d)

[π1(∧V,d),π1(∧V,d)]
.

When this holds π1(ϕ) induces isomorphisms

Gn/Gn+1⊗Q
∼=−→ π

n
1 (|∧V,d|)/π

n
1 (|∧V,d|) , n≥ 1 ,

and

π1(∧V,d)
∼=−→ lim←−

n
π1(∧V,d)/π

n
1 (∧V,d) .
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These isomorphisms identify π1(∧V,d) as a Malcev

completion of G.
The distinct role of fundamental groups in topol-

ogy as opposed to the abelian higher homotopy

groups is reflected in Sullivan’s models: if ϕ : (∧V,d)
'→

APL(X) is a minimal Sullivan model then while H(ϕ)

is an isomorphism π∗(ϕ) may not be. Now, the fun-

damental group G of X determines a classifying map

γ : X → K(G,1) = BG, whose homotopy fibre is the uni-

versal covering space X̃ of X . Then, because H1(γ) and

H2(γ) are respectively an isomorphism and injective,

there is a commutative diagram,

(∧V 1,d)

ϕG

��

λ // (∧V,d)

ϕ '
��

ρ // (∧V≥2,d)

ϕ

��
APL(BG)

APL(γ) // APL(X) // APL(X̃) ,

in which ϕ is the minimal Sullivan model of X . More-

over, (∧V 1,d) and the morphism ϕG are invariants just

of G.
Thus for ϕ to fully capture the “rational homo-

topy type” of X it should satisfy the following three

conditions:

• ϕG is a quasi-isomorphism

• π1(ϕ) is a Malcev completion

• For n≥ 2, πn(ϕ) : πn(X)⊗Q
∼=→ πn(∧V,d).

Definition. X is a Sullivan space if the three con-

ditions above are satisfied by its minimal Sullivan

model.

Remark. The second condition implies that

dimH1(X) < ∞ and it follows that V 1 is at most

countable. If V<n is at most countable then the

Hurewicz diagram together with the third condition

implies that V n is at most countable via the exact

sequence

V n∩kerd→V
d→∧V<n .

Thus these two conditions imply that ∧V is countable

and hence that H(X) is countable. But a cohomology

algebra cannot be countable unless it has finite type.

Thus

X is a Sullivan space =⇒ H(X) has finite type.

It follows that this definition is equivalent to the

definition in [33], and so X is a Sullivan space if and

only if:

• H(X) is a graded vector space of finite type;

• H(BG) = lim−→n
H(BG/Gn);

• G acts nilpotently by covering transformations in

H(X̃).

Finally, the minimal Sullivan model (∧V,d) of a

Sullivan space satisfies

• H(∧V,d) and V≥2 are graded vector spaces of fi-

nite type,

• H(BG) = lim−→n
H(BG/Gn), G denoting π1(∧V,d).

Conversely, if a minimal Sullivan model satisfies

these two conditions, then

mV : (∧V,d)→ APL(|∧V,d|)

is a quasi-isomorphism and |∧V,d| is a Sullivan space.

In particular,

Theorem 8.1. If X is a Sullivan space with minimal

Sullivan model (∧V,d), then H(ϕ̂) is an isomorphism,

π1(ϕ̂) is a Malcev completion, and

πi(ϕ̂) : πi(X)⊗Q
∼=−→ πi(|∧V,d|) , i≥ 2 .

Remark. The spatial realization | ∧V,d| of a minimal

Sullivan algebra is a nilpotent Sullivan space if and

only if dimV p < ∞, p≥ 1. In this case, H>0(|∧V,d|;Z) is
a rational vector space.

It is an open question as to when in general the

realization |∧V,d| satisfies H>0(|∧V,d|;Z) is a rational

vector space even in the case (∧V,d) is the minimal

Sullivan model of a Sullivan space.

Examples.

1. A simply connected space X is a Sullivan space if

and only if H(X) has finite type.

2. Nilpotent connected CW complexes with finite

Betti numbers are Sullivan spaces.

3. An oriented Riemann surface is a Sullivan space.

4. A finite wedge of circles is a Sullivan space.

5. The classifying spaces of pure braid groups and

the Heisenberg group are Sullivan spaces.

6. The connected sums RP2k+1#RP2k+1, k > 0, are

not Sullivan spaces, but the classifying spaces of

their fundamental groups are Sullivan spaces.

It is an open question whether | ∧V,d| is a Sul-

livan space if mV : (∧V,d) → APL| ∧ V,d| is a quasi-

isomorphism.

9. LS Category

The LS (Lusternik-Schnirelmann) category of a

topological space X is the least m (or ∞) for which X
can be covered by m+ 1 open sets, each contractible

in X . If X is a normal space then catX is the least m
for which X is a retract of an m-cone.

Analogously, a Sullivan algebra (∧V,d) determines

diagrams,

(∧V,d)

ρ

��
(∧V/∧>m V,d) (∧W,d),'

ϕoo m≥ 0,
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in which ρ is the quotient map and ϕ is a Sullivan

model. The LS category, cat(∧V,d) of (∧V,d) is then

the least m (or ∞) such that there is a morphism ψ :
(∧W,d)→ (∧V,d) satisfying ρ ◦ψ ∼ ϕ .

This invariant has three key properties, which to-

gether are central to a number of applications in the

following sections of this survey. Thus, let (∧V,d) be
any minimal Sullivan algebra.

(i) If (∧V,d) is the minimal Sullivan model of a con-

nected CW complex X then

cat(∧V,d)≤ catX .

(ii) (Mapping Theorem). If (∧V,d)→ (∧Z,d) is a surjec-
tion of minimal Sullivan algebras then

cat(∧V,d)≥ cat(∧Z,d) .

(iii) If H>n(∧V,d) = 0, then cat(∧V,d)≤ n.

Now fix a minimal Sullivan algebra (∧V,d). The in-
variants mcat(M,d) and e(M,d) are then defined for

any (∧V,d)-module (M,d), via a construction analo-

gous to the definition of cat(∧V,d): associated with

(M,d) are diagrams of (∧V,d)-modules

(P,d)

ρ

��
(P/∧>m V ·P,d) (Q,d)'

ϕoo

in which (P,d) is a semi-free model of (M,d), ρ is the

quotient map and ϕ is a semifree model. The module

category, mcat(M,d) is then the least m (or ∞) such

that there is a morphism of modules ψ : (Q,d)→ (P,d)
such that ρ ◦ψ ∼ ϕ , and the Toomer invariant e(M,d)
is the least m (or ∞) for which H(ρ) is injective. They

satisfy

e(∧V,d)≤mcat(∧V,d) = cat(∧V,d) ,

the inequality following because (∧V,d) is

(∧V,d)-semifree, while the equality is a deep the-

orem of Hess ([52]).

The Toomer invariant can also be defined for a

connected CW complex X , and an old question of

Berstein asked whether rationally e(X) = catX . This
turns out not to be true, but it follows from Hess’

theorem that if H(∧V,d) is a vector space of finite type
then

cat(∧V,d) = e((∧V,d)#) .

This has two consequences:

• If both (∧V,d) and (∧W,d) are minimal Sullivan al-

gebras with homology of finite type, then

cat((∧V,d)⊗ (∧W,d))

= cat(∧V,d)+ cat(∧W,d) .

• If H(∧V,d) satisfies Poincaré duality then

e(∧V,d) = cat(∧V,d) .

Remark 1. If X is a simply connected CW complex

with rational homology groups of finite type andmin-

imal Sullivan model (∧V,d) then catXQ = cat(∧V,d). As
pointed out to us by Parent, the hypothesis of simple

connectivity is essential: if ∧V = ∧v, degv = 1, then cat

(∧V ) = 1 but cat |∧V |= 2.

Remark 2. The theory of semi-free resolutions, and

with it the definition of the Toomer invariant, ap-

plies to modules over any dga. In particular, suppose

(∧V,d) is the minimal Sullivan model of a connected

CW complex X with finite Betti numbers. Then, as

for any path connected space, (∧V,d) is connected by

quasi-isomorphism to the singular cochain complex

C∗(X ;Q). It follows that

e(C∗(X ;Q)) = cat(∧V,d) ,

where C∗(X ;Q) acts on the chain complex C∗(X ;Q) by

the cap product.

10. The Trichotomy: Growth of
Homotopy Groups

For any based connected CW complex, set

rkk(X) = dimπk(X)⊗Q , k ≥ 2 .

There are then exactly three mutually exclusive pos-

sibilities:

• ∑k≥2 rkk(X)< ∞ (X is rationally elliptic).

• Each rkk(X)<∞ but ∑k≥2 rkk(X) =∞ (X is rationally

hyperbolic).

• Some rkk(X) = ∞ (X is rationally infinite).

When X is N-dimensional an application of Got-

tlieb’s evaluation subgroups ([41]) establishes in the

rationally infinite case that there is a constant K and

an infinite sequence · · ·kn < kn+1 < · · · such that kn ≤ nK
and rkkn(X) = ∞.

When X is rationally elliptic or rationally hyper-

bolic then the universal cover X̃ is a Sullivan space

and its minimal model (∧V,d) satisfies

dimV k = rkk(X) .

Moreover, since cat X̃ ≤ catX and dim X̃ = dimX , it fol-
lows that if catX <∞ (resp. dimX ≤N) then cat(∧V,d)<
∞ (resp. H>N(∧V,d) = 0). In these two cases a non-

elementary application of minimal Sullivan model

technology yields strong information on the size and

growth of the integers rkk(X).
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1. The rationally hyperbolic case.

When X is rationally hyperbolic,

αX := limsup
logrkk(X)

k
> 0 ,

and the rkk(X) exhibit the following very refined ver-

sion of exponential growth: for some positive inte-

ger r

lim−→
n→∞

max
n≤k≤n+r

logrkk(X)

k
= αX .

When H>N(X̃) = 0, there are explicit error terms for

the limit above, and r can be taken as N−2: there are
positive constants γ,β depending only on H(X̃), and

there is a positive constant K such that

αX −
γ

logn
≤ max

n≤k≤n+N−2

logrkk(X)

k

≤ αX +
β

n
, n≥ K .

(Note the typo in the statements of Theorems 12.10

and 12.11 in [33] where the left hand error term in-

correctly appears as γ
logn

n instead of γ

logn .)

For a family of rationally hyperbolic spaces con-

taining spaces of LS category 1 and 2, a stronger esti-

mate of rkk(X) is given by Lambrechts [61]: There are

constants A and B such that

A
n

enαX ≤ max
n≤k≤n+N−2

rkk(X)≤ B
n

enαX .

There are open questions about rationally hyper-

bolic spaces:

1. Does the stronger estimate of Lambrechts hold

in general?

2. Do the numbers dim(LV/[LV ,LV ])
k grow at most

exponentially at a slower rate then the numbers

rkk(X)?

3. There is an analogous phenomenon in the theory

of local commutative noetherian rings R, where
deviations εk play the role of the numbers rkk(X).

If R is not a local complete intersection it is

known that each εk 6= 0, but whether they satisfy

the same growth as the rkk(X) in the hyperbolic

case is unknown.

2. The rationally elliptic case.

When X is rationally elliptic, if catX < ∞ then H(X̃)

is finite dimensional, so that for some N, H>N(X̃) = 0.
In this case ∑idimHi(X̃)≤ 2N , and

rk(X) = 0, k ≥ 2N and ∑
k≥2

rk(X)≤ 2 catX .

Moreover, there is an explicit algorithm ([38]) which

decides when a sequence r2, · · · ,r2N−1 arises as the

ranks of the rational homotopy groups of a ratio-

nally elliptic spaces X . In fact a finite sequence

2a1, · · · ,2aq,2b1−1, · · · ,2bp−1 are the degrees of a basis
of π≥2(X)⊗Q with X rationally elliptic and catX < ∞ if

and only if the following condition is satisfied:

• For any subsequence a j1 · · ·a js at least s of the bi

can be written as an integral combination bi =

∑kλ a jλ with each kλ ≥ 0 and ∑kλ ≥ 2.

If X is a nilpotent, rationally elliptic space then its

minimal Sullivan model (∧V,d) satisfies dimV < ∞. If

in addition, catX <∞ then H(X) is a finite dimensional

Poincaré duality algebra. In this case, the homotopy

Euler characteristic χπ := dimV even−dimV odd satisfies

χπ ≤ 0 and

χπ = 0⇐⇒ Hodd(X) = 0 .

Further, if χπ < 0 then the Euler characteristic of H(X)

is zero. Finally, if χπ = 0, then X is a formal space

and (∧V,d) has the form (∧(v1, · · · ,vn,w1, · · · ,wn),d) with
degvi even, degw j odd, dvi = 0 and dw j ∈ ∧(v1, · · · ,vn).

In this case

H(X) = ∧(v1, · · · ,vn)/(dw1, · · · ,dwn) .

Nilpotent connected rationally elliptic spaces X
with catX < ∞ include compact connected Lie groups

G, homogeneous spaces G/K (with G,K compact and

connected), and connected sums CPn#CPn. Finally if a

compact connected Lie group G acts on a closed man-

ifold M with principal orbits of codimension 1, or if

M is a closed Dupin hypersurface in Sn+1, then M is

rationally elliptic ([47]).

There remain a number of open questions about

rationally elliptic spaces:

1. In [6] Berger and Bott limit the rate of poten-

tial exponential growth of the Betti numbers of a

closed positively curved manifold. An open con-

jecture, attributed to Bott, asserts that such man-

ifolds are rationally elliptic.

2. If X is rationally elliptic, catX < ∞ and χπ = 0 it re-
mains an open conjecture whether Der<0(H(X)) =

0. This has been resolved when X is a homoge-

neous space ([76]).

3. An open conjecture of Hilali ([55]) asserts that if

X is rationally elliptic and catX < ∞, then

∑
k

rkk(X)≤∑
k

dimHk(X) .

11. Minimal ∧-Models
Any continuous map f : X → Y may be converted

to a fibration in a commutative diagram of the form

X ′ //

p

��

X

f
xx

Y
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in which p is a fibration and the horizontal arrow is a

homotopy equivalence. In this case the fibre of p is a

homotopy invariant of f , called its homotopy fibre.

There is an analogue construction for morphisms

ψ : (A,d)→ (C,d) of cdga’s satisfying H0(B) =Q=H0(C).

Definition 1. Aminimal ∧-extension of a cdga (B,d) is
a cdga morphism of the form

λ : (B,d)→ (B⊗∧Z,d)

in which λ (b)= b⊗1, Z = Z≥0, and there is an increasing

filtration 0 = Z(0)⊂ ·· · ⊂ Z(r)⊂ ·· · for which Z = ∪rZ(r)
and

d : 1⊗Zp(r)→ B⊗∧(Z<p⊕Z≤p(r−1)) .

If Z = Z≥1 this is a minimal Sullivan extension.

Definition 2. Aminimal ∧-model (resp. aminimal Sul-

livan model) for a cdga morphism ψ : (B,d)→ (C,d) is
a commutative diagram

(B⊗∧Z,d) '
ϕ // (C,d)

(B,d)

λ

OO

ψ

66

in which λ (b) = b⊗ 1 and ϕ is a quasi-isomorphism

from a minimal ∧-extension (resp. a minimal Sullivan

extension).

Remark. While Z has a filtration satisfying a condi-

tion similar to that of the defining condition for Sul-

livan algebras, because H1(ψ) may not be an isomor-

phism, Z may have elements of degree 0, which can

invalidate some arguments used for minimal Sullivan

algebras (∧V,d).

The definition of homotopy, the homotopy lifting

theorem, and the existence and uniqueness of mini-

mal ∧-models all generalize from the theory of Sul-

livan models of a cdga. In particular, two cdga mor-

phisms

ϕ0,ϕ1 : (B⊗∧Z,d)→ (C,d)

are homotopic rel B (ϕ0 ∼B ϕ1) if there is a morphism

Φ : (B⊗∧Z,d)→ ∧(t,dt)⊗ (C,d) for which ϕ0, Φ and ϕ1

restrict to the same morphism in B⊗ 1 and (εi⊗ id) ◦
Φ = ϕi; there is also the

Theorem 11.1. If ψ : (B,d) → (C,d) is any cdga-

morphism in which H0(B) = Q = H0(C), then ψ has a

minimal ∧-model, and any two are isomorphic by an

isomorphism restricting to the identity in B.

A closed model category ([10], [54]). In [75] Quillen

introduced closed model categories as an abstract

framework within which homotopy theoretic tech-

niques apply. In particular, a closed model category,

C, is defined as follows:

• C is the category of complexes (A,d) in which

A = A≥0 has a commutative product, and d is a

derivation, but A is not required to have an iden-

tity 1 ∈ A0.

• 0 is both the initial and terminal object.

• The weak equivalences are the quasi-

isomorphisms

• The fibrations are the surjective morphisms

• Minimal ∧-extensions (A,d)→ (A⊗∧V,d) are cofi-

brations.

In this context right homotopy coincides with Sulli-

van’s definition.

12. Minimal ∧-Models of a Fibration
Suppose that p : X → Y is a fibration of path con-

nected spaces, and j : F → X is the inclusion of the

fibre at a base point y0 ∈ Y . Then a minimal Sulli-

van model ϕY : (∧W,d)→ APL(Y ) extends to a minimal

∧-model

ϕX : (∧W ⊗∧Z,d)→ APL(X)

of the morphism APL(p) ◦ϕY . Because the composite

F → X → Y is the constant map it follows that APL( j)◦
APL(p) is the augmentation APL(Y )→ APL(y0) =Q. Thus
APL( j)◦ϕX factors to give the commutative diagram,

(∧W,d)
λ //

ϕY'
��

(∧W ⊗∧Z,d)
ρ //

ϕX'
��

(∧Z,d)

ϕF

��
APL(Y )

APL(p) // APL(X)
APL( j) // APL(F) ,

even when F is not path connected and Z0 6= 0.

Definition. This diagram is the minimal ∧-model of

the fibration.

Now the homotopy lifting property of a fibration

results in a right “action up to homotopy” of π1(Y,y0)

on F , which in particular determines a left holonomy

representation of π1(Y,y0) in H(F). Thus, while in gen-

eral ϕF may not be a quasi-isomorphism there is the

Theorem 12.1. Assume in the diagram above that

F is path connected, that one of H(F) and H(Y ) is a

graded vector space of finite type, and that π1(Y,y0)

acts nilpotently in each Hk(F). Then H(ϕF) is also an

isomorphism.

Remark. Theorem 12.1 also holds when p is a Serre

fibration and F has the homotopy type of a CW com-

plex.

Conversely, suppose (∧W ⊗∧Z,d) is a Sullivan ex-

tension, and that ϕY : (∧W,d) → APL(Y ) is a minimal

Sullivan model. Then the sequence | ∧W,d| ← | ∧W ⊗
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∧Z,d| ← | ∧ Z,d| is a Serre fibration. Pulling this back

over ϕ̂Y gives a Serre fibration

Y X
poo |∧Z,d|oo

and a commutative diagram

(∧W,d) //

ϕY

��

(∧W ⊗∧Z,d) //

ϕX

��

(∧Z,d)

mZ

��
APL(Y ) // APL(X) // APL|∧Z,d| .

Moreover, if mZ is a quasi-isomorphism, so is ϕX .

Example. In the diagram above suppose that Y is a

Sullivan space and that π1(p) and each πk(p)⊗Q are

surjective. Then Z0 = 0, (∧W⊗∧Z,d) is the minimal Sul-

livan model of X , and

cat(∧Z,d)≤ catX .

In fact, let S ⊂ Z be the subspace such that d(1⊗
S) ⊂ ∧≥2(W ⊕Z) and write Z = S⊕T . Then division by

∧≥2(W ⊕ Z) induces from d a linear injection d0 : 1⊗
T →W and division by 1⊗ T and d(1⊗ T ) is a quasi-

isomorphism ψ : (∧W ⊗∧Z,d) onto a minimal Sullivan

algebra (∧V,d).
By construction, (∧W ⊗∧Z,d) is the minimal Sul-

livan model of X if and only if T = 0, or equivalently
if the morphism λ : (∧W,d)→ (∧V,d) induced from λ

is injective. But since Y is a Sullivan space, for each

w ∈W there is an α ∈ π∗(Y ) satisfying

< w,π∗(ϕY )α >6= 0 .

Then by hypothesis for some β ∈ π∗(X),

< w,π∗(ϕY )π∗(ρ)β >6= 0. Since π∗(ϕY )π∗(ρ) = π∗(λ )π∗(ϕX )

this gives

0 6=< w,π∗(λ )π∗(ϕX )β >=< Q(λ )w,π∗(ϕX )β >,

where Q(λ )w is the component in V of λw.
It follows that λ is injective and (∧W ⊗∧Z,d) is

the minimal Sullivan model of X . In particular, Z0 = 0.
Finally, the Mapping Theorem gives

catX ≥ cat(∧W ⊗∧Z,d)≥ cat(∧Z,d) .

13. Holonomy Representations

Suppose F
j // X

p // Y is a fibration in which

j is the inclusion of the fibre at y0 ∈Y . As described in

§12, there is then a right homotopy action of π1(Y,y0)

on F , which in turn gives a left holonomy representa-

tion hol : π1(Y,y0)→Aut(H(F)). (In [33] this is denoted

H hol)
There is an analogous construction for

∧-extensions (∧W,d) → (∧W ⊗ ∧Z,d) → (∧Z,d) of a

minimal Sullivan algebra when dimH1(∧W,d) < ∞.

Here we obtain a holonomy representation

hol : π1(∧W,d) → AutH(∧Z,d) constructed from

the differential d in ∧W ⊗∧Z. Moreover, if

(∧W,d)

ϕY

��

// (∧W ⊗∧Z,d)

ϕX

��

// (∧Z,d)

ϕF

��
APL(Y ) // APL(X) // APL(F)

is a commutative diagram then for α ∈ π1(Y ),

H(ϕF)◦hol (π1(ϕY )α) = hol (α)◦H(ϕF) .

The representation hol of π1(∧W,d) is constructed
from the holonomy representation,

θ : LW → DerH(∧Z) ,

defined as follows. Filter ∧W⊗∧Z by the ideals ∧≥kW⊗
∧Z to yield a spectral sequence whose E1-term is

(∧W ⊗H(∧Z,d),d1). Then d1(1⊗ [Φ]) = ∑i wi⊗ θ i([Φ]), wi

denoting a basis of W , and

θ(x)([Φ]) =−∑ < wi,sx > θ i([Φ]) , x ∈ LW .

This then extends to the holonomy representation θ

of ULW in H(∧Z,d).
In particular, the restriction of θ to LW0 is locally

nilpotent and so extends to ÛLW0 . Restricting this to

π1(∧W,d) gives the representation hol of that group.

14. Fiber Squares

A homotopy pullback diagram is a map of Serre

fibrations,

E ′ //

p′

��

E

p

��
B′

f // B

inducing a weak homotopy equivalence in the fibres.

(Equivalently, E ′→ E×B B′ is a weak homotopy equiv-

alence).

Suppose given such a homotopy pullback dia-

gram in which B and B′ are both path connected, the

fibre F has finite Betti numbers, and π1(B) acts nilpo-
tently in H(F). Let (∧W,d)→ (∧W ⊗∧Z,d) be a minimal

Sullivan model for p and let ϕ : (∧W,d)→ (∧V,d) be a

Sullivan representative for f . Then a Sullivan model

for p′ is given by

(∧V,d)→ (∧V ⊗∧Z,d′) ,

where d′(v) = (ϕ⊗ id)d(v).
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Example 1 (Elementary principal fibrations). For any

abelian group G, an Eilenberg-MacLane space K(G,r),
is a path connected based topological space for which

πi(K(G,r)) =

{
G , i = r
0, otherwise.

Now suppose f : Y → K(G,r) is a map from a path

connected space to an Eilenberg-MacLane space with

r ≥ 2. If q : P→ K(G,r) is a fibration with contractible

total space P, and if

X //

p

��

P

��
Y

f // K(G,r)

is a homotopy pullback diagram, then the fibre F of p
is a K(G,r−1) and π1(Y ) acts nilpotently in H(F). The

fibration p is called an elementary principal fibration.

If in addition GQ := G⊗Q is finite dimensional

then H(K(G,r)) =∧V r and dimV r = dimGQ. In this case

there is a commutative diagram

(APL(Y )⊗∧Z,d)
' // APL(X)

APL(Y ) .

gg

APL(p)

::

Moreover, if v1, · · · ,vm is a basis of V r then Z = Zr−1, Z
has a basis z1, · · · ,zm with dzi ∈ APL(Y ), and [dzi] =H( f )vi.

Example 2 (Nilpotent Serre fibrations). Suppose Y is

a path connected CW complex and Y = X0
p1← X1← ··· is

a possibly infinite sequence of elementary principal

fibrations defined by homotopy pullback diagrams

Xr //

pr

��

P

��
Xr−1 // K(Gr+1,kr+1) , r ≥ 1

.

The resulting map p : X := lim←−r
Xr → Y is a Serre fibra-

tion. If in addition, for each n there is an r(n) such
that kr > n if r ≥ r(n), then p is a nilpotent fibration. In

this case the fibre of X → Xr(n) is n-connected and it

follows that H(X) = lim−→r
H(Xr). Moreover, the fibre, F ,

of p is path connected and nilpotent, and π1(Y ) acts
nilpotently in H(F).

Now suppose in such a nilpotent fibration that

each Gr ⊗ Q is finite dimensional. Then there are

quasi-isomorphisms

(APL(Xr−1)⊗∧Zr,d)
'−→ APL(Xr)

in which d : Zr → APL(Xr−1), dimZr = dimGr+1⊗Q, and
Zr = Zkr

r . These combine to give a commutative dia-

gram

(APL(Y )⊗∧Z,d)
' // APL(X)

APL(Y )

gg

APL(p)

::

in which (APL(Y )⊗∧Z,d) is a Sullivan extension. Here

Z =⊕rZr is a graded vector space of finite type.

In this case the construction in §12 gives a map

of nilpotent Serre fibrations

X

~~
hX

��

Foo

hF

��

Y

X ′

__

|∧Z,d|oo

in which hX and hF induce isomorphisms of rational

cohomology. In particular, H(F) is a graded vector

space of finite type and hF is a rationalization of F .

Example 3. Let G be a compact connected Lie group

and H a closed connected subgroup. The homoge-

neous space G/H is the the quotient of G by right

multiplication by H. Let now K be another closed con-

nected subgroup of G acting on G on the left. If this

action induces a free action on G/H, the quotient is

called a biquotient and is denoted by K\G/H. There is

then a homotopy pullback diagram ([77])

K\G/H //

��

BH

B f

��
BK

Bg // BG,

where f and g denote the natural injections of H and

K in G.
Then with the notation of Example 2 (p. 17), a Sul-

livan model for K\G/H is given by

(∧s−1VK⊗∧s−1VH ⊗∧VG,d)

where dx = H∗(B f )(x)−H∗(Bg)(x), x ∈VG.

Example 4. Suppose G is a compact connected Lie

group and p : P→M is a smooth principal fibre bundle.

This fits in a homotopy pullback diagram

P //

p

��

EG

��
M

f // BG

where EG is contractible. In the notation of Exam-

ple 2 (p. 17), write H(G) = ∧VG and H(BG) = ∧s−1VG;
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let s−1a1, · · · ,s−1an be a basis of s−1VG. Denoting the

tangent bundles by TM and TP, and the pullback

of TM to P by p∗TM , Chern-Weil theory ([18]) uses

an appropriate embedding of p∗TM in TP to con-

struct closed differential forms ω1, · · · ,ωn on M repre-

senting H( f )a1, · · · ,H( f )(an). It also provides a quasi-

isomorphism

(ADR(M)⊗∧(a1, · · · ,an),0)
'→ ADR)(M), Dai = ωi,

which is one of the earliest relative Sullivan models.

Example 5. The free loop space LX = Top(S1,X) is the

pullback in the diagram

LX //

��

X [0,1]

p0,p1

��
X

∆ // X×X

where ∆ is the diagonal map and pi : X [0,1]→ X denotes

the evaluation at the point i. Using this construction

in perhaps the earliest application of Sullivanmodels,

Vigué-Poirrier and Sullivan ([83]) obtain the model of

LX .

Theorem 14.1. Let (∧V,d) be the minimal Sullivan

model for a simply connected space X , then the mini-

mal Sullivan model for LX is

(∧V ⊗∧sV,d) ,

where D(sv) =−sdv. Here the suspension s has been ex-

tended to the derivation to ∧V ⊗∧sV which is zero in

sV .

Using this model they prove that the free loop

space of a simply connected compact manifold M
whose cohomology algebra H∗(M;Q) requires at least

two generators has unbounded Betti numbers. By

a theorem of Gromoll and Meier ([45]) this implies

with respect to any Riemannian metric that M has in-

finitely many geometrically distinct closed geodesics.

Now let nT denote the number of geometrically

distinct closed geodesics of length ≤ T . In [46], Gro-

mov proves that for a simply connected compact

manifold with a generic metric there are constants

a > 0 and c > 0 such that

nT ≥ a ·maxp≤cT dimH p(LM;Q) .

Thus exponential growth of the Betti numbers of LM
would imply exponential growth of nT .

Example 6. Generalizing Example 5, let N ⊂ X ×X be

a path connected subspace, where X is a simply con-

nected CW complex, and consider the pullback dia-

gram,

XN

��

// X [0,1]

p0,p1

��
N

iN // X×X ,

where iN is the inclusion. If (∧W,d) and (∧V,d) are re-

spectively the minimal Sullivan models of N and of X
then ([48]) XN has a (not necessarily minimal) Sullivan

model of the form (∧W ⊗∧sV,D).

When N is the graph of a periodic map g : X → X
then the Sullivan-Vigué theorem generalizes: if H(X)

has at least two generators fixed by g then the Betti

numbers of XN are unbounded. This in turn implies

that, if g is an isometry of a rationally hyperbolic Rie-

mannian manifold, then there are infinitely many ge-

ometrically distinct g-invariant geodesics.

There remain open problems dealing with fibre

squares.

1. If X is a simply connected, rationally hyperbolic

space, do the Betti numbers of LX grow exponen-

tially?

2. Is the image of the Hurewicz homomorphism for

LX always finite dimensional if X is a simply con-

nected finite CW complex?

3. If the base of a principal bundle is formal, what

condition on the classes [ωi] make P formal as

well?

15. Mapping Spaces

SupposeY is a finite connected CW complex and X
is a nilpotent path connected space. Denote by (XY , f )
the path component of a map f : X → Y in the space

XY of all maps Y → X . Then ([56]), (XY , f ) is a nilpotent
space and (XY , f )Q = ((XQ)

Y , f ).
More generally, suppose p : X→Y is a nilpotent fi-

bration. Then ([72]) each path component (Γ,σ) in the

space Γ of all cross-sections of p is nilpotent, and its

rationalization is a path component in the space of

cross-sections of X ′→ Y , where X ′ is the “rationaliza-

tion along the fibres” of X ([71]), described in Example

2 of §14 when the fibre F of p has rational homology

of finite type.

Finally, Haefliger ([49]), following an idea of Sul-

livan and relying on earlier work of Thom ([81]) con-

structs a minimal Sullivan model for a path compo-

nent (Γ,σ) of the space of cross-sections of a nilpo-

tent fibration p : Y → X under the following hypothe-

ses:

• Y is a finite, nilpotent connected CW complex.

• The fibre, F , is path connected and H(F) has finite

type.
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Explicitly, since Y is finite and nilpotent its min-

imal Sullivan model (∧W,d) is a graded vector space

of finite type, and for simplicity we write (∧W,d) = A.
Then, since the fibration satisfies the hypothesis of

Theorem 12.1, it has a Sullivan model of the form (A⊗
∧V,d) where (∧V,d) is a minimal Sullivan model for F .
In this tensor product decomposition the choice of

subspace V can be and is made so that a Sullivan rep-

resentative of σ vanishes on V .
Now let B=A# be the dual differential graded coal-

gebra, and define an algebra morphism

ϕ : A⊗∧V → A⊗̂∧ (B⊗V )

by ϕ(a) = a⊗̂1 and ϕ(v) =∏i ai⊗̂(bi⊗v), v∈V , where ai,b j

are dual basis of A and B. Then a cdga (∧(B⊗V ),d) is
uniquely determined by the condition ϕ ◦d = d ◦ϕ . Fi-

nally, divide ∧(B⊗V ) by the ideal generated by (B⊗
V )≤0 and d(B⊗V )0, noting that d(B⊗V )0 ⊂ ((B⊗V )≤0 ∧∧
(B⊗V ))⊕(B⊗V )1. Thus the quotient is a Sullivan alge-

bra (∧Z,d) and Haefliger’s theorem reads

Theorem 15.1 ([49]). The Sullivan algebra (∧Z,d) is a
Sullivan model for (Γ,σ).

Remark. An essential step in the proof of Theo-

rem 15.1 is that (with the notation of Example 2 in

the previous section)

XY
r+1

//

pY
r+1
��

PY

��
XY

r
// K(Gr+2,kr+1)

Y

is a homotopy pullback diagram, and that the fibre

of pY
r+1 is K(Gr+2,kr+1)

Y . Moreover, for any K(G,m) the

space K(G,m)Y has the weak homotopy type of the

product ∏
m
i=0 K(Hm−i(Y,G), i).

Example. Suppose X is a finite simply connected CW

complex. Then multiplication in a Lie group G makes

XG into a principal G-bundle. Constructing a Sullivan

model for the fibration XG → XG/G→ BG is an open

question, solved by Burghelea and Vigué-Poirrier in

the case G = S1 and XS1
is the free loop space ([16]).

Remark. If f : Y → X is a continuous map, then (XY , f )
is homotopy equivalent to the space of sections of the

trivial fibration p : X×Y →Y homotopic to the section

s, defined by s(y) = (y, f (y)). On the other hand, if s is
a section for a fibration p : X → Y , then (Γ,s) is the

homotopy fibre of the map (XY ,s)→ (YY , id) ([59]).

Now let (∧V,d) be a minimal Sullivan algebra and

K be a nilpotent simplicial set with finitely many

non-degenerate simplices. The space (| ∧ V,d|)|K| is
the geometric realization of the simplicial set whose

n-simplices are the continuous maps K×∆n→ |∧V,d|.

By the adjunction property between spatial realiza-

tion and APL, this is the geometric realization of the

simplicial set whose n simplices are the morphisms

of cdga’s, (∧V,d)→ APL(K)⊗APL(∆
n) ([7]). As above, de-

note by A the minimal Sullivan model of K. Then there

is a sequence of equivalences of simplicial sets

Cdga((∧V,d),APL(K)⊗APL(∆
∗))

' Cdga((∧V,d),A⊗APL(∆
∗))

' Cdga((∧(B⊗V ),d),APL(∆
∗)) = |(∧B⊗V ),d)| .

Proceed then as above to obtain a model for the path

components of the mapping space ([13], [14]).

16. Acyclic Closures and Loop Spaces

The inclusion of a base point in a connected CW

complex X converts to the path space fibration PX →
X with fibre the based loop space ΩX . In Moore’s con-

struction of PX , composition of loops, µX : ΩX×ΩX→
ΩX , makes ΩX into an associative H-space acting on

the right on PX .
The analogue in Sullivan’s theory is the acyclic clo-

sure

(∧V ⊗∧U,d)
'
ε

// Q

(∧V,d)

λV

OO

εV

66

of a minimal Sullivan algebra, (∧V,d). Note that if

V 1 6= 0 then U0 6= 0; the augmentation ε is chosen so

that ε(U) = 0. In this minimal ∧-extension there is a

linear isomorphism α : U
∼=→V of degree 1, and the dif-

ferential satisfies

d(1⊗u)−α(u)⊗1 ∈V∧∧+ (V ⊕U) , u ∈U .

In particular, the quotient differential in ∧U is zero.

Multiplication in ΩX and the inverse f−1(t) = f (−t)
also have analogues: a diagonal

∆ : ∧U →∧U⊗∧U

and an involution ω in ∧U , whichmake ∧U into a com-

mutative graded Hopf algebra. Moreover, the spatial

realizations

|∆| : |∧U |× |∧U | → |∧U |,
|ω| : |∧U | → |∧U |,
|ε| : ∗→ |∧U |

make |∧U | into a topological group. Similar construc-

tions identify

|∧V,d| |∧V ⊗∧U,d|oo |∧U |oo

as a principal |∧U | fibre bundle.
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Now suppose ϕX : (∧V,d)→APL(X) is aminimal Sul-

livan model, so that there is a commutative diagram

(∧V,d) //

ϕX

��

(∧V ⊗∧U,d) //

ϕPX

��

(∧U,0)

ϕΩX

��
APL(X) // APL(PX) // APL(ΩX) .

Moreover, even through H(ϕΩX )may not be an isomor-

phism,

APL(µX )◦ϕΩX ∼ ϕΩX ⊗ϕΩX ◦∆ .

Remark. The constructions above generalize to an

action of ΩX on the fibre when a continuous map is

converted to a fibration, and to a diagonal (∧Z,d)→
(∧Z,d)⊗ (∧U,0) for any ∧-extension (∧V,d) → (∧V ⊗
∧Z,d)→ (∧Z,d).

With the notation above, the diagonal ∆ dualizes

to a multiplication,

(∧U)#⊗ (∧U)#→ (∧U)# ,

which makes (∧U)# into a graded algebra. The natu-

ral morphism mU : ∧U→ APL|∧U | induces a morphism

∧U → H(| ∧U |) of Hopf algebras, which then dualizes

to an inclusion of graded algebras

H∗(|∧U |,Q)� (∧U)# .

Now assume that H1(∧V,d) and each V p, p≥ 2, are
finite dimensional, and denote by L the homotopy Lie

algebra of (∧V,d). Then the holonomy representation

of ÛL0⊗UL≥1 in ∧U yields the isomorphism of graded

algebras,

ηL : ÛL0⊗UL≥1
∼=→ (∧U)#,

defined by ηL(a)(Φ) = ε(a • Φ). With π1 denoting

π1(∧V,d), ηL restricts to an isomorphism

Q[π1]⊗UL≥1
∼=−→ H∗(|∧U |;Q)

of graded Hopf algebras.

17. Depth

The depth of a connected CW complex, X , is a new
homotopy invariant, constructed via its minimal Sul-

livan model (∧V,d) as follows. Denote by LV and by

Lα the homotopy Lie algebras of (∧V,d) and (∧Vα ,d),
where the (∧Vα ,d) are the sub Sullivan algebras sat-

isfying Vα ⊂ V and dimVα < ∞. Then the Lα form an

inverse system and LV = lim←−α
Lα . Similarly, the ÛLα

also form an inverse system of Lα -modules, and so

lim←−α
ÛLα is naturally an augmented LV -module.

Finally, there are natural maps H∗(ΩX ;Q)→ ÛLα

which then give a morphism H∗(ΩX ;Q) → lim←−α
ÛLα .

This exhibits lim←−α
ÛLα as a completion of H∗(ΩX ;Q)

and we denote

Ĥ(ΩX) = lim←−
α

ÛLα .

Definition. The depth of a connected CW complex X
is the least p (or ∞) such that

Extp
ULV

(Q, Ĥ(ΩX)) 6= 0 .

This definition is motivated by the original definition

of the depth of an (graded or ungraded) algebra A aug-

mented to Q, as the least p (or ∞) such that

Extp
A(Q,A) 6= 0 .

On the other hand, since each Vα is finite dimen-

sional the holonomy representation of Lα in the fibre

∧Uα of the acyclic closure gives an isomorphism

ÛLα

∼=−→ (∧Uα)
#

of ÛLα -modules. Passing to inverse limits defines an

isomorphism

Ĥ(ΩX)
∼=−→ (∧U)#

of ULV -modules, where ∧U is the fibre of the acyclic

closure of (∧V,d), and the representation ofULV is the

holonomy representation. In particular,

ExtULV (Q, Ĥ(ΩX)) =
[
TorULV (Q,∧U)

]#
,

and so

depthX = least p(or ∞) such that TorULV
p (Q,∧U) 6= 0 .

For connected CW complexes X we have the fun-

damental relation ([35])

depthX ≤ catX .

Moreover ([34]) let radLV be the radical of LV , i.e., the

sum of its solvable ideals. If depthX < ∞ then radLV

is finite dimensional and

dim(radLV )even ≤ depthX .

Remark 1. If dimH1(∧V,d) and dimV p, p ≥ 2 are

finite, then depthX = least p (or ∞) such that

Ext
p
ULV

(Q,ÛLV ) 6= 0.

Remark 2. In particular, if X is simply connected and

H(X) has finite type then

depthX = least p (or ∞) such that Extp
ULV

(Q,ULV ) 6= 0;

i.e., depthX = depthULV .

Remark 3. Suppose LV is the quotient of a free Lie

algebra L(S) by relations xα ∈ L(S)rα . If H(∧sLV ,δ ) is

finite dimensional, then again

depthX = least p (or ∞) such that TorULV
p (Q,∧U) 6= 0 .

It is an open question when in general depthX =

depthULV .
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Next, for any discrete group G there are two as-

sociated depths: the depth of the classifying space

K(G,1) and the depth of the group ring Q[G]. It is an

open question when and how these two invariants are

related, but in the two examples below they are in fact

equal.

Example 1 ([36]). If Mg is a compact orientable Rie-

mann surface of genus g≥ 2 then Mg =K(π1(Mg),1) and

depthMg = 2 = depthQ[π1(Mg)] .

Example 2 ([36]). A right angled Artin group G is the

quotient of a free group on generators g1, · · · ,gn by re-

lations of the form gig j = g jgi. For such groups it also

holds that

depthK(G,1) = depthQ[G] .

There are a number of open questions about the

depth of a connected CW complex, X , with minimal

Sullivan algebra (∧V,d), acyclic closure (∧V ⊗∧U,d)
and homotopy Lie algebra L. They include

1. Does depthX depend only on the dga equivalence

class of C∗(X ;Q)?

2. What follows if depthX = cat(∧V,d)? (When X is

1-connected with finite Betti numbers, this im-

plies that depthX = gl dimUL.)
3. Are there two connected CW complexes X and Y

with isomorphic homotopy Lie algebras but dif-

ferent depths?

4. If depthX = 1 and dimL/[L,L] ≥ 2, must L con-

tain a free Lie algebra on two generators? (This is

known if X is simply connected with finite Betti

numbers.)

5. If dimH1(X)< ∞, is there a more general relation

between depthX and depthQ[GL]. Alternatively,

is there a more general relation between depthX

and the least p such that Ext
p
Q[G]

(Q,Q̂[GL]) 6= 0?

Every connected finite type graded Lie algebra, L,
is the rational homotopy Lie algebra of a simply con-

nected space with finite Betti numbers, |C∗(L)|. Two
questions arise directly. First, with what conditions

on L can we find a space X with catX < ∞ and LX = L.
A necessary condition is given by the depth, because

depthUL ≤ catX . On the other hand, let L be a com-

plete graded Lie algebra such that L/[L,L] is a graded

vector space of finite type. Then on what conditions

does there exist a space X with LX = L?

18. Configuration Spaces

Let M denote a compact m-dimensional manifold.

The space of ordered configurations of k points in M
is the space

F(M,k) = {(x1, · · · ,xk) ∈Mk |xi 6= x j for i 6= j} .

An example of Longoni and Salvatore ([66]) shows

that the homotopy type of F(M,k) is not a homotopy

invariant of M when M is not simply connected. It re-

mains a problem whether for simply connected com-

pact manifolds the homotopy type (resp. the rational

homotopy type) of F(M,k) depends only on the homo-

topy type (resp. the rational homotopy type) of M.

Partial results have been obtained using PD mod-

els. A PD (Poincaré duality) model for a simply con-

nected closed manifold is a cdga (A,d) weakly equiv-

alent to the minimal Sullivan model of M and that is

a Poincaré duality algebra: there is a linear isomor-

phism ε : Am → Q such that the morphism ϕ : Ap →
(An−p)# given by ϕ(a)(b) = ε(ab) is an isomorphism. In

[62] Lambrechts and Stanley show that every simply-

connected closed manifold admits a PD model. Note

that by duality A0 =Q ·1. The diagonal class DA is then

a cycle in A⊗A defined by

DA = ∑
degai

ai⊗a′i

where ai and a′i are graded basis of A with ai ·a′j = δi jω ,

ω denoting the fundamental class; i.e, a element with

ε(ω) = 1.
Let (A,d) be a PD model for a manifold M. Denote

by pi : A→ A⊗k and pi j : A⊗2→ A⊗k the injections,

pi(a) = 1⊗·· ·⊗a⊗1⊗·· ·⊗1,

pi j(a,b) = 1⊗·· ·⊗a⊗·· ·⊗b⊗·· ·⊗1

injecting a (resp. a and b) in position i (resp. in posi-

tions i and j). Form the cdga

F(A,k) = (A⊗k⊗∧(xi j, i, j = 1 · · · ,k)/I,d)

where dxi j = pi j(DA), degxi j = m−1 and where the ideal

I is generated by the relations
xi j− (−1)mx ji,x2

i j

pi(x) · xi j− p j(x) · xi j

xi jxik + x jkxki + xkixi j

A main conjecture asserts that F(A,k) is weakly

equivalent to the minimal Sullivan model of F(M,k).
This conjecture has been solved by Lambrechts and

Stanley for k = 2 when M is 2-connected [63] and inde-

pendently, by Kriz [60] and Totaro [82], with A =H(M)

for simply connected complex projective manifolds.

Recently Campos and Willwacher, and independently

Idrissi, have proved that F(A,k)⊗R is weakly equiva-

lent to APL(M)⊗R for 1-connected closed manifolds

([19], [57]).

On the other hand, for manifolds of dimension

≥ 3, Church proves a stability theorem for the ac-

tion of the symmetric group Σn on H∗(F(M,n);Q) ([23]).

There is a branching rule Rn+1
n that transforms an ir-

reductible representation of Σn into a representation
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of Σn+1. This branching rule is then extended to all

finite dimensional representations by Rn+1
n (V ⊕W ) =

Rn+1
n (V )⊕ Rn+1

n (W ). The stability theorem of Church

states that H i(F(M,n+1)) = Rn+1
n

(
H i(F(M,n)

)
for n≥ 2i.

It is a natural question if there is an analogous stabil-

ity result for the rational homotopy groups of F(M,n)
or for their homotopy types.

19. The Complement of
Arrangements

An arrangement A of subspaces is a finite set of

linear subspaces Xi in some Cn. Its complement is the

space M =Cn\∪Xi. Suppose first that the Xi are hyper-

planes and denote by ϕi linear forms with kernel Xi.

Then Brieskorn shows that M is a formal space, and

that H∗(M;R) is the subalgebra of ADR(M) generated

by the forms ωi =
1

2π
d(logϕi) ([11]).

The arrangement of hyperplanes is of fiber-type

if there is a tower M =Mn
pn→Mn−1→·· ·

p2→M1 =C∗ where
each Mk is the complement of an arrangement of hy-

perplanes in Ck, and where pk is the restriction of a

linear map Ck → Ck−1 whose fiber is a copy of C with

finitely many points removed. In that case the mini-

mal Sullivan model (∧V,d) of M satisfies V =V 1 ([29]).

Consider now the more general case when the Xi

are general linear subspaces of Cn. In [30], Feichner

and Yuzvinsky associate to the arrangement a com-

plex (D,d)where D is theQ-vector space with basis the

subsets σ = {X1, · · · ,Xp} ofA. Order the elements of the

arrangement so that in the writing of σ , X1 < · · ·< Xp.

Write |σ | = p and ∩σ = ∩iXi. Then the differential d is

defined by

d(σ) = ∑
{i |∩σ=∩{σ\{Xi}}

(−1)i
σ\{Xi} .

Moreover a product on (D,d) is defined by

σ · τ =


(−1)ε(σ ,τ)σ ∪ τ if codim∩σ + codim ∩ τ

= codim ∩ (σ ∪ τ)

0 otherwise

The cdga (D,d) is then weakly equivalent to the min-

imal Sullivan model of the complement in Cn of the

union of the subspaces of the arrangement A [30].

The arrangement is called geometric if the lattice

formed by the intersections of the elements of A sat-

isfies the following property: if X ⊂ Y and there is no

Z with X ⊂ Z ⊂ Y , then for any T in the lattice there

is no Z between X ∩T and Y ∩T . A geometric lattice is

rationally a formal space ([30]).

20. The Group of Homotopy
Self-Equivalences of a Space

Let X be a simply connected finite CW complex of

dimension m. Denote by XQ its rationalization and by

E(X) the group of homotopy classes of self-homotopy

equivalences of X , and by Em
# (X) the subgroup gener-

ated by self-equivalences inducing the identity in ho-

motopy in degrees ≤ m. Dror and Zabrodsky prove

that Em
# (X) is a nilpotent group ([28]) and Maruyama

proves that the natural map Em
# (X) → Em

# (XQ) is a

rationalization [70]. Now Em
# (XQ) is anti-isomorphic

to the group Em
# (∧V,d) of homotopy classes of self-

equivalences of the minimal Sullivan model of X that

induce the identity on π≤m(∧V,d). It follows ([37]) that

nilEm
# (XQ)< catX .

On the other hand, Costoya and Viruel have

proved that every finite group G can be realized as

E(X) for a rationally elliptic space X ([25]). The re-

sult is based on the fact that every finite group is the

group of automorphisms of a finite graph G, and that

we can associate to every graph G an elliptic space X
with E(X) =AutG.

A space X is called homotopically rigid if E(X) =

{1} and a 1-connected closed manifold is inflexible if

the degrees of the continuous self-maps form a finite

set. Rational homotopy enables the construction of

such manifolds: up to certain dimension there exist

infinitely many 1-connected rationally elliptic inflexi-

ble compact smooth manifolds ([3]), and there exist

infinitely many non equivalent homotopically rigid

spaces [26].

21. Topological Complexity

A motion planning algorithm for a space X is

a continuous section of the fibration ev := (p0, p1) :
X [0,1] → X × X . Such a section exists if and only if X
is contractible. A local section s : V → X [0,1] is called a

motion planning rule on V . The topological complex-

ity TC(X) is 1 less than the minimum number of open

sets V covering X ×X which admit motion planning

rules. This is a homotopy invariant and

catX ≤ TC(X)≤ 2catX .

When X is a 1-connected formal space with finite

Betti numbers, then ([65]) TC(XQ) is the cup length

cH of the kernel of the multiplication law H(X) ⊗
H(X)→ H(X). For general spaces cH is a lower bound

for TC(XQ). There is an algebraic characterization in

terms of the minimal model (∧V,d) of X that resem-

bles the definition of the category of a minimal Sul-

livan model ([17]): let µ : (∧V,d)× (∧V,d)→ (∧V,d) be
the multiplication map. Then TC(XQ) is the least in-

teger n such that the projection (∧V,d)⊗ (∧V,d) →
(∧V,d)⊗2/(kerµ)n+1) admits a homotopy retraction.

An interesting approximation to topological com-

plexity has been obtained by Grant, Lupton and Oprea

([42]): Let f : Y → X and g : Z→ X be continuous maps
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between simply connected finite CW complexes. Sup-

pose π∗( f )⊗Q and π∗(g)⊗Q are injective with disjoint

images, then catYQ+catZQ ≤ TC(XQ). In particular,

cat(XQ)+ cat(YQ)≤ TC((X ∨Y )Q) .

Rational homotopy has led to important progress

in many other domains in topology and geometry:

the topology of torus actions ([2]), the topology of

complex manifolds ([73], [24]), the intersection coho-

mology for manifolds with singularities ([22]), string

topology, and the topology of the space of embed-

dings of amanifold into another (work of Lambrechts,

Turchin, Volic and others, see for instance [64]).

22. DG Lie Models

Sullivan’s approach to rational homotopy theory

has a counterpart in Lie algebras. By the work of

Quillen ([75]) each simply connected space X has a

Lie model LX that is a differential graded Lie alge-

bra (L(V ),d) with V = s−1H∗(X ;Q). Moreover ([69], [5])

the cochain algebra C∗(LX ) is quasi-isomorphic to the

minimal Sullivan model, (∧V,d), of X , and H∗(LX ) = LV .

Similarly each continuous map f : X→Y between sim-

ply connected CW complexes has a Lie model ϕ :LX →
LY , and each operation that can be done with Sullivan

models of simply connected spaces has a counterpart

with Lie models ([80], [75], [5]).

In particular, the homotopy Lie algebra of the

mapping space Map∗f (X ,Y ) of pointed maps homo-

topic to f is given by the homology of the space

Derϕ(LX ,LY ) of ϕ-derivations of LX into LY ([68]),

H∗Derϕ(LX ,LY ))∼= LMap∗f (X ,Y ) .

This isomorphism has been interpreted in terms

of Hochschild and André-Quillen homology ([9]). For

that we need to recall that when A is a differential

graded algebra and M and N are differential graded

A-modules, then

Extp
A(M,N) := H p(HomA(P,N)) ,

where P→M is a semifree resolution. A particular ex-

ample is given by the Hochschild cohomology of a

differential graded algebra A with coefficients in a bi-

module M,

HH∗(A,M) := ExtA⊗Aop(A,M)

where Aop is the opposite algebra a ·op b= (−1)dega·degbb ·
a and the action of A⊗Aop on A is given by

(a⊗b) · c = (−1)degb·degca · c ·b .

The morphism ϕ : LX → LY equips ULY with a

structure of ULX -bimodule, and there is a canonical

isomorphism

HH∗(ULX ,ULY )∼= ExtULX (Q,ULY ) .

The action of LX on the right is the adjoint action. For

this action ULY decomposes into a direct sum

ULY =Q⊕LY ⊕ (ULY )(2)⊕·· ·

Therefore ExtULX (Q,LY ) is a direct factor of

ExtULX (Q,ULY ).

Now recall that, since LX is the free Lie alge-

bra L(V ), Q has a nice presentation as a (T (V ),d) =
ULX -module. There is a natural quasi-isomorphism

ψ : (T (V )⊗ (Q⊕ sV ),d)
'−→ (Q,0) ,

where d(sv) = v− Sdv and S is the linear map T+V →
TV ⊗ sV defined by S(v1 · · ·vr) = (−1)∑i<r degvi v1 · · ·vr−1 ⊗
svr. Extending each linear map sV → LY into a

ϕ-derivation induces isomorphisms ([9], [39])

ExtULX (Q,LY )∼= H∗(Derϕ(LX ,LY ))∼= LMap∗f (X ,Y ) .

Now let ϕ : C∗(L)→ (A,d) be a model of a pointed

map f : X → Y , with dimA < ∞, and let τ ∈ A⊗L be the

corresponding MC element (Theorem 5.3). Then a Lie

model for Map∗(X ,Y ; f ) is given by the dgl

(A⊗L,dτ), dτ(a⊗ `) = d(a)⊗ `+(−1)degaa⊗d`+[τ,a⊗ `] .

In many contexts it is interesting to determine the

Lie model of a space. For instance it is an open prob-

lem to determine the Lie model of the space of con-

figurations of points in a manifold.

Finally, let (∧V,d) be a general minimal Sullivan al-

gebra and (∧V ⊗∧U,d) its acyclic closure. By hypothe-
sis V and U are quipped with filtrations V (p) and U(p)
such that dV (p) ⊂ V (p− 1) and dU(p) ⊂ ∧(V (p)⊕U(p−
1)). We denote by L the Lie algebra of derivations θ of

∧V ⊗∧U such that θ(V ) = 0 and for each p, θ(U(p)) ⊂
V⊗∧U(p−1). Then ([35]) L is a dgl whose homology is

LV . This dgl can be understood as a Lie model corre-

sponding to (∧V,d), because when V =V≥2 is a graded

vector space of finite type then L is quasi-isomorphic

to the usual Lie model associated to (∧V,d) ([31]).
Question: Is it possible to make the association

(∧V,d) 7→ L the basis of a correspondence between

cdga’s and dgl’s. In particular, is it possible to recon-

struct directly (∧V,d) from L.
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