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Introduction

One of the great mysteries of mathematics is the

fact that the most primitive of all mathematical ob-

jects, namely the integers Z = {0,±1,±2, . . .} and the

rational numbers Q = {m/n : m, n ∈ Z, with n 6= 0}, have
certain deep and very beautiful properties, which of-

ten cannot be at all explained by elementary arith-

metic. It is the role of number theory to uncover these

properties, usually by numerical experiment, and to

try and prove them. In my lecture today, I want to

discuss one example, which remains the oldest ma-

jor unsolved problem in number theory, and explain

some important recent progress on it. This problem

also exhibits one of the most striking examples of a

purely elementary arithmetic phenomena, which can

only be explained in terms of L-functions (see Con-

jecture 1.2 below). An integer D ≥ 1 is defined to be

a congruent number if it is the area of a right-angled

triangle, all of whose sides have lengths in Q. For ex-
ample, 5, 6, and 7 are all congruent numbers, because

of the existence of the right-angled triangles with side

lengths given respectively by (40/6, 9/6, 41/6), (3, 4,

5), and (288/60, 175/60, 337/60). Note that, because

of similarity considerations, we need only consider

square free positive integers in determining whether

a number is congruent or not, and we shall always as-

sume in this lecture that D is square free. The origins

of the search for congruent numbers lies shrouded

in mystery in the ancient Eastern world. The writ-

ten history can be traced back at least to the tenth

century Arab manuscript of al-Kazin in the Biblio-

theque Nationale de Paris, which gives quite exten-

sive tables of congruent numbers. The first known

European manuscript related to congruent numbers
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is Fibonacci’s book Liber Quadratorum published in

1225, in which he points out that 5 and 7 are congru-

ent numbers, and claims without proper justification

that 1 is not. We owe to Fermat, probably a little be-

fore 1640 (see [24], Chapter 2, §10), the first proof

that 1 is not a congruent number, and the method of

infinite descent which Fermat introduced in his proof

underlies all subsequent work to the present day. Fer-

mat also pointed out that his method proves that, for

n = 4, the equation

xn + yn = zn

has no solution in integers x,y,z with xyz 6= 0, and con-

jectured that the same assertion holds for all integer

exponents n≥ 3. This celebrated conjecture was at last
finally proven by Wiles [26] in 1995.

Today, vast tables of square free congruent num-

bers exist, created always by the naive procedure

of explicitly writing down a corresponding rational

right-angled triangle of the given area. These tables

begin with

(1.1)

5,6,7,13,14,15,21,22,23,29,30,31,34,37,38,39,41,46,47,

and it is known that this is the complete list of square

free congruent integers D with 1≤D≤ 50. The two fun-
damental open problems about congruent numbers

are the following conjectures:-

Conjecture 1.1. There exists an algorithm which will

decide in a finite number of steps whether or not a

given integer D ≥ 1 is a congruent number or not.

Conjecture 1.2. Every integer D of the form 8n+5,8n+
6,8n+7, for some integer n ≥ 0, is a congruent number.

In the case of the first conjecture, what is curi-

ous is that in practice it is usually possible to decide

fairly rapidly whether or not a given numerical D≥ 1 is
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congruent or not. Nevertheless, noone has ever suc-

ceeded in proving theoretically that, for any D, the
process will always terminate after a finite number

of steps. The second conjecture seems totally inex-

plicable in terms of elementary arithmetic, and it was

only after the discovery of the conjecture of Birch and

Swinnerton-Dyer in the early 1960’s that a probable

explanation for it in terms of L-functions was uncov-
ered.

It has long been known that the problem of decid-

ing whether a given integer is a congruent number or

not is equivalent to the following statement about the

existence of a non-trivial rational point on a curve.

Lemma 1.3. Let D be an integer ≥ 1. Then D is a con-

gruent number if and only if there exists a point (x,y),
with both coordinates x,y in Q and y 6= 0, on the curve

(1.2) E(D) : y2 = x3 −D2x.

Proof. Suppose first that (x,y) is a point on E(D) with

x and y in Q, and y 6= 0. Then

a =

∣∣∣∣ (D2 − x2)

y

∣∣∣∣ , b =

∣∣∣∣2Dx
y

∣∣∣∣ , c =

∣∣∣∣D2 + x2

y

∣∣∣∣
are the sides of a right-angled triangle, whose area is

D. Conversely, suppose we are given positive rational

numbers a, b, c such that a2+b2 = c2 and ab/2 = D. One
verifies easily that

x =
D(a+ c)

b
, y =

2D2(a+ c)
b2

is a rational point on E(D), with y 6= 0. This completes

the proof.

The curve E(D) is non-singular and has genus 1,

and the projective version of it, given by the equation

y2z = x3 −D2xz2, has a unique rational point at infinity

O with projective coordinates x = 0,y = 1,z = 0, making

it into what is called an elliptic curve. What is impor-

tant for us is that its set of rational points E(D)(Q)

consisting of the point O and all points (x,y) on E(D)

with coordinates x,y in Q has a natural structure as an

abelian group. This abelian group law, which we will

denote by⊕, is characterized by the property that O is

the zero element, and points P,Q,R in E(D)(Q) satisfy

P⊕Q⊕R = O whenever P,Q,R are the points of inter-

section, taken with multiplicity, of some straight line

with E(D). Moreover, it is not difficult to prove, by a

classical argument, that the only points of finite or-

der in E(D)(Q) are the 4 points O,(0,0),(D,0),(−D,0),
and that the latter three points are of order 2. Thus

the above lemma can be rephrased as follows:-

Corollary 1.4. D ≥ 1 is congruent if and only if E(D)(Q)

is infinite.

An immediate consequence of this corollary is

that if there exists one right-angled triangle with ra-

tional side lengths of area D, then there are infinitely

many such triangles.

Fermat’s highly original proof that 1 is not a

congruent number introduced the notion of infinite

descent, and used it to show that the only rational

points on the curve E(1) are the four obvious points

O,(0,0),(1,0),(−1,0). About three hundred years later,

Mordell [15] beautifully generalized Fermat’s argu-

ment to prove that the abelian group E(D)(Q) is finitely

generated for all non-zero positive integers D, and in

fact showed more generally that this statement holds

for every elliptic curve defined over Q. Thus, by the

structure theory of finitely generated abelian groups,

it follows from Mordell’s theorem that we must have

(1.3) E(D)(Q) = ZgD ⊕T,

where T is isomorphic to a product of two cyclic

groups of order 2, and gD is some integer ≥ 0. In par-

ticular, D will be a congruent number if and only if

gD > 0. One of the great unresolved mysteries of num-

ber theory is to somehow discover a stronger form

Mordell’s descent argument to show that it will al-

ways infallibly decide, in a finite number of steps,

whether or not gD > 0. Our inability to do this to date

is why Conjecture 1.1 still remains open. We shall re-

turn to this question later.

In the early 1960’s, Birch and Swinnerton-Dyer [2,

3] made the revolutionary discovery, as a special case

of a general conjecture for all elliptic curves defined

over Q, that the question of whether or not D is con-

gruent is related to L-functions. The first person to

define and use L-functions to prove deep arithmetic

results was Dirichlet [5], who in 1837 proved the ex-

istence infinitely primes in an arithmetic progression

with prime modulus, and also established a remark-

able exact formula, which had been conjectured ear-

lier by Jacobi, for the order of the group of ideal

classes of an imaginary quadratic field of prime dis-

criminant. Later in the 19th century, German mathe-

maticians realized that many other L-functions play

an important role in number theory, and today these

L-series are ubiquitous in the subject. As is the case

for all L-functions of number theory, the L-series at-

tached to E(D), which we shall denote by L(E(D),s), is
defined by an Euler product. Let O denote the set of

all complex numbers of the form a+bi, where a,b lie

in Z and, as usual, i2 = −1. Note that O is closed un-

der addition and multiplication, and so is a subring

of the field of complex numbers C. If z is an element

of O, we write as usual z̄ for its complex conjugate.

Now O obviously contains the group of all 4-th roots

of unity, and it is easily verified that no two distinct

4-th roots of unity are congruent modulo 2+2i in the
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ring O. Let p be any prime number which does not di-

vide 2D, where we recall that D is always assumed to

be square free. If p ≡ 3mod4, we define ap = 0. Suppose
now that p ≡ 1mod4. Since the multiplicative group of

the field Fp = Z/pZ is a cyclic group of order p−1, we
follow Legendre and define the symbol (D/p) to be +1
or −1, according as the image of D in Fp is a square or

a non-square. It is then not difficult to see that there

exists an element αp inO such that αp ≡ (D/p)mod2+2i
and αpᾱp = p. Note that the complex conjugate ᾱp of

αp has the same properties, and the rational integer

ap = αp + ᾱp is then unique. For every prime number

p, which does not divide 2D, it can be shown that the

number of solutions in Fp of the congruence

y2 ≡ x3 −D2x mod p

is precisely equal to p − ap. We now define the

L-function L(E(D),s) by the Euler product

(1.4) L(E(D),s) = ∏
(p,2D)=1

(1−ap p−s + p1−2s)−1,

which converges to a holomorphic function of the

complex variable s in the half plane given by the

real part of s is greater than 3/2, because |ap| ≤ 2
√

p
for all primes p with (p,2D) = 1. Of course, the Eu-

ler product (1.4) does not converge at the point s = 1,
and so to make sense of the conjecture of Birch and

Swinnerton-Dyer, we must find an analytic continua-

tion of the function L(E(D),s) to a region of the com-

plex plane which includes s = 1. In fact, such an ana-

lytic continuation was already discovered by German

mathematicians in the 19th century (Eisenstein and

Kronecker [25], and Hecke [9]), and we merely state

the final result which emerges from their work (see

Koblitz [14] for a good self contained account).

Theorem 1.5. Let C(D) = 32D2 or 16D2, according as

the square free positive integer D is odd or even, and

put Φ(E(D),s) =C(D)s/2(2π)−sΓ(s)L(E(D),s), where Γ(s) is
the classical Gamma function. Then Φ(E(D),s) has an
analytic continuation to the whole complex s-plane,
and satisfies the functional equation

(1.5) Φ(E(D),s) = w(D)Φ(E(D),2− s),

where w(D) = +1 if D ≡ 1, 2, 3 mod 8 and w(D) = −1 if

D ≡ 5, 6, 7 mod 8.

Note that s = 1 is the only fixed point of the map

s 7→ 2−s. Since Γ(1) = 1, we conclude immediately from

the theorem that L(E(D),s) is holomorphic at s = 1.
Moreover, from the functional equation (1.5), we see

that L(E(D),s) has a zero of even or odd multiplicity

at s = 1, according as w(D) = +1 or w(D) = −1. The
mystery discovered by Birch and Swinnerton-Dyer is

that the purely arithmetic question of whether or not

gD > 0 seems to be precisely related to the question of

whether or not L(E(D),1) = 0.

Conjecture 1.6. We have gD > 0 if and only if

L(E(D),1) = 0.

Note that a poof of this conjecture would im-

mediately solve the ancient Conjectures 1.1 and 1.2.

Indeed, it is well known (see, for example, Tunnell

[23]) that there are simple algorithms which will al-

ways decide in a finite number of steps whether or

not L(E(D),1) = 0, and so Conjecture 1.6 implies Con-

jecture 1.1. Moreover, it is clear from Theorem (1.5)

that L(E(D),1) = 0 whenever D is a positive square free

integer with D ≡ 5, 6, 7 mod 8, whence Conjecture 1.6

also implies Conjecture 1.2. One direction of Conjec-

ture 1.6 was proven 40 years ago by Wiles and myself

[4], using p-adic ideas from Iwasawa theory inspired

by Iwasawa’s great paper [12].

Theorem 1.7. If gD > 0, then L(E(D),1) = 0.

Unfortunately, a general proof of the implica-

tion in the opposite direction, i.e. the assertion that

L(E(D),1)= 0 implies that gD > 0, still seems to be a long

way off. However, as we shall briefly explain later, a

better understanding of the Iwasawa theory of the el-

liptic curve E(D) at the prime p = 2 could hopefully

lead some day to a proof of a weaker but very useful

partial result in this direction. The one deep partial

converse result established so far is due to Gross and

Zagier [8], who found a remarkable proof of a conjec-

ture of Birch and Stephens, which, in turn, had grown

out of the earlier work of Heegner [11].

Theorem 1.8. If L(E(D),s) has a simple zero at s = 1,
then gD > 0.

Chinese mathematicians, notably C. Zhao and

Y. Tian, have been the leaders in showing how to ex-

ploit Theorems 1.7 and 1.8 to study congruent num-

bers, and we shall briefly discuss their work later.

Goldfeld’s Conjecture

While every square free integer in the residue

classes of 5,6,or7 modulo 8 is conjecturally a con-

gruent number, the situation is very different for the

square free integers which lie in the residue classes

of 1,2,or3 modulo 8. Indeed, the list (1.1) of all square

free congruent numbers ≤ 50 shows that 34 and 41 are
the only two congruent numbers in this range in these

latter three residue classes modulo 8. In fact, this

paucity of congruent numbers in these three residue

classes continues if one considers much more exten-

sive tables. A conjectural explanation for this phe-

nomenon was first proposed by Goldfeld [7]. We write

D(e) for the set of all square free positive integers

which lie in the residue classes of 1,2,or3 modulo 8,

andD(o) for the set of all square free positive integers
which lie in the residue classes of 5,6,or7 modulo 8.
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Writing W for the set of all square free positive in-

tegers, we say that any subset U of W has density δ ,

where 0 ≤ δ ≤ 1, if

lim
M→∞

#(UM)/#(WM) = δ ;

here WM (resp. UM) denotes the set of D in W (resp.

D in U) with D ≤ M. Then Goldfeld’s conjecture is the

following assertion.

Conjecture 2.1. The subset of all D ∈ D(e) where

L(E(D),s) vanishes at s = 1 has density 0, and similarly

the subset of all D in D∈D(o)where L(E(D),s) has a zero
at s = 1 of order strictly greater than 1 has density 0.

Of course, in view of Theorem 1.7, we see that,

in particular, Goldfeld’s conjecture would imply that

the set of all square free congruent numbers lying

in the residue classes of 1,2,or3 modulo 8, has den-

sity zero, an assertion which no longer explicitly in-

volves L-functions. The first important progress on

this question was made by Heath-Brown [10], who

showed that at least 41.9% of all integers in D(e) were
not congruent numbers. Very recently, a remarkable

preprint of Smith [18] gives a full proof of the general

assertion.

Theorem 2.2 (Smith). The set of all square free con-

gruent numbers in D(e) has density 0.

The arguments of Heath-Brown and Smith rely

crucially on techniques from classical analytic num-

ber theory. However, beyond implicitly making use

of the value of the root number w(D) given by The-

orem 1.5, it should be stressed that their methods

at present make no explicit use of the analytic prop-

erties of the complex L-function L(E(D),s). As far as

congruent numbers lying in the set D(o) is concerned,
the best result at present is due to the work of Tian-

Yuan-Zhang [22], and Smith [19], combined with The-

orem 1.8 of Gross-Zagier.

Theorem 2.3. There is an explicit subset of D(o) with
density at least 1/2 such that every D lying in this sub-

set is a congruent number.

Unlike Theorem 2.2, the proof of this result does

make crucial use of the L-series L(E(D),s), and pro-

ceeds by showing that there is an explicit subset of

D(o) with density at least 1/2 such that L(E(D),s) has
a simple zero at s = 1, whence the assertion follows

from Theorem 1.8.

Infinite Descent

Ultimately, all important results we know about

the congruent number problem, follow from some

form of analysis of the procedure of infinite descent,

which was first introduced by Fermat. For simplicity,

write E = E(D). Let p = 2,3,5, . . . be any prime number,

and n ≥ 1 a positive integer. If P is any point in E(Q),

the naive idea underlying infinite descent theory is

to try and find a simpler or smaller point, in a sense

which has to be made precise, by dividing P by pn.

Of course, this is not always possible in the abelian

group E(Q) itself, and this is what leads us into Ga-

lois cohomology. Indeed, writing Q̄ for a fixed alge-

braic closure of Q, the abelian group E(Q̄) of points

on E with coordinates in Q̄ is divisible, and so we can

always find a point R in E(Q̄) such that pnR = P. Of
course, R is then only determined up to the addition

of any element of E(Q̄) which is annihilated by pn. Let

GQ denote the Galois group of Q̄ over Q, which oper-

ates on the left on E(Q̄) via its action on the coordi-

nates of a point. Defining fP(σ) = σR	R for σ ∈GQ, we

see immediately that fP defines a 1-cocycle on GQ with

values in the Galois module E[pn] of all points in E(Q̄)

of order dividing pn. If A is any discrete GQ-module,

we write, as usual, H1(Q,A) for the usual cohomology

group H1(GQ,A) of continuous 1-cocycles for this ac-
tion. In particular, by mapping P to the cohomology

class of fP, we obtain a canonical homomorphism

(3.1) κ(pn) : E(Q)/pnE(Q)→ H1(Q,E[pn]),

which is easily seen to be injective, and to have cok-

ernel equal to H1(Q,E(Q̄))[pn]; in general if B is any

abelian group we write B[pn] for the subgroup of all

points of order dividing pn. Similarly, if v is any place
of Q, we write Qv for the completion of Q at v, Q̄v for

its algebraic closure, and Gv for the Galois of Q̄v over

Qv. Exactly, as above we obtain a canonical injective

homomorphism

(3.2) κv(pn) : E(Qv)/pnE(Qv)→ H1(Qv,E[p
n]),

with cokernel equal to H1(Qv,E(Q̄v))[pn]. Moreover, for

each such v, we can identify the local Galois group Gv

with a subgroup of GQ, and then the restriction map

on cocycles gives a canonical homomorphism

(3.3) rv(pn) : H1(Q,E[pn])→ H1(Qv,E[p
n]).

The all important Selmer group Selpn(E) is then de-

fined to be the subgroup of H1(Q,E[pn]) consisting all

elements z such that rv(pn)(z) lies in the image of κv(pn)

for all places v of Q. It is not too difficult to prove that
Selpn(E) is always a finite group, which, at least in the-

ory, can always be computed in a finite number of

steps. Moreover, simple diagram chasing shows that

we always have the exact sequence

(3.4) 0 → E(Q)/pnE(Q)→ Selpn(E)→X(E)[pn]→ 0,

where X(E) is the Tate-Shafarevich group of E de-

fined by

X(E) = Ker(H1(Q,E(Q̄))→ ∏
v

H1(Qv,E(Q̄v))).
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This group X(E) is unquestionably one of the most

mysterious, and so far largely inaccessible, objects in

number theory. It is always conjectured to be finite,

but at present this is only known to be true when the

complex L-series L(E,s) has a zero at s = 1 of order

at most 1. Some indication of its importance for the

congruent number problem is given by the following

theorem due to the Dokchitser brothers [6]. If B is

any abelian group, B(p) will denote the subgroup of

elements of B of p-power order.

Theorem 3.1. Let D be any square free positive integer

lying in the residue classes of 5,6,or7 modulo 8. If there

exists a prime number p such that X(E(D))(p) is finite,
then D is a congruent number.

Unfortunately, at present we have no idea of how

to prove that, for any given D, there does always exist
at least one prime p with X(E(D))(p) finite.

Smith’s Work

We now briefly discuss the ideas which have led

to the proof of Theorem 2.2 in [18], building on the

earlier work in [10], [13], [20]. Unlike the Iwasawa

theory to be discussed in the next section, the argu-

ments from analytic number theory used in this work

seem to only work for studying the p-power Selmer

groups Selpn(E(D)) for the special prime p = 2. For each
n ≥ 1, the abelian group 2n−1Sel2n(E(D)) is a finite di-

mensional vector space over the field F2 with 2 ele-

ments. For n ≥ 2, we define

(4.1) rD(n) = dimF2(2
n−1Sel2n(E(D))),

and for n = 1, we take rD(1) = dimF2(Sel2(E(D)))−2. It is
clear from (3.4) that rD(n)≥ gD, for all n ≥ 1, where gD

is the rank of E(D)(Q). Moreover, we have

(4.2) lim
n→∞

rD(n) = gD

if, and also only if by a classical result from Galois co-

homology, the group X(E(D))(2) is finite. Recall that

an m×m matrix A with entries in F2 is defined to be

alternating if At =−A, and the diagonal elements of A
are zero. Take m, j to be any pair of integers satisfy-

ing m ≥ j ≥ 0. Define δ (m, j) to be the probability that

an arbitrary m×m-alternatingmatrix with entries in F2

has a kernel of dimension j. Recall thatW denotes the

set of all square free positive integers. For any n > 1,
we define

Rn(m, j) = {D ∈W : rD(n−1) = m and rD(n) = j},

and

Sn(m) = {D ∈W : rD(n−1) = m}.

As before, if M is any positive integer, and U is a sub-

set of W, then UM will denote the set of all U in U with

U ≤ M. Then the main result of [18] is as follows.

Theorem 4.1. . Let m, j be arbitrary integers with m ≥
j ≥ 0. Then, for all integers n > 1, the limit

(4.3) lim
M→∞

#(Rn(m, j)M)/#(Sn(m)M)

exists, and is equal to δ (m, j).

What is remarkable about this result is that, while

it does not tell us the precise structure of any partic-

ular 2n-Selmer group, it does give the asymptotic dis-

tribution of these groups, and shows that this asymp-

totic distribution is exactly as predicted by the prob-

abilistic model given in [1]. Moreover, it is shown in

[1] that Theorem 2.2 then follows from Theorem 4.1.

Iwasawa Theory and Other Methods

The idea underlying Iwasawa theory is to pre-

cisely relate the Selmer groups Selpn(E(D)), for all

primes p and all sufficiently large integers n ≥ 1, to
the behaviour at the point s = 1 in the p-adic plane

of a p-adic analogue of the complex L-series L(E(D),s).
This connexion is achieved by first proving a so called

main conjecture of Iwasawa theory for the Selmer

group of E(D) over an appropriate infinite Galois ex-

tension, with Galois group isomorphic to the addi-

tive group of p-adic integers Zp of the field Q(i). Here
is a typical example of the type of result, which can

be proven at present by these methods (see [17] and

[16]).

Theorem 5.1. Let p be any prime which does not di-

vide 2D. Then L(E(D),1) 6= 0 if and only if both gD = 0
and X(E(D))(p) is finite.

Unfortunately, this result as it stands is of no real

use in proving the non-vanishing of L(E(D),s) at the
point s = 1 because we have no alternative method at

present for proving that X(E(D))(p) is indeed finite

for some prime p which does not divide 2D. For this
and other reasons, there would be great interest in

establishing this theorem also for the primes p which
divide 2D, especially in the most interesting case of

the prime p= 2, since, as Alexander Smith has pointed

out to me, his methods in [18] do indeed show that

we have both gD = 0 and X(E(D))(2) finite for a set of

square free D of density 1 lying in the residue classes

of 1, 2, and 3 modulo 8. We remark that E(D) has po-

tential supersingular reduction at the prime p= 2, and
this seems to be one of the main reasons for the tech-

nical difficulties which arise when one attempts to

prove a suitable main conjecture of Iwasawa theory

for our curve at p = 2.
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We also mention two other results proving the

non-vanishing of L(E(D),1)when gD = 0 andX(E(D))(2)
is finite. Firstly, Zhao [27], [28], [29] has shown that

L(E(D),1) 6= 0 for certain explicit infinite families of

square free D ≡ 1 mod 8 with many prime factors,

which haveX(E(D))(2) either trivial or of order 4. Sec-
ondly. the results of [22], when combined with [19],

prove, in general, that L(E(D),1) 6= 0 for all positive

square free D lying in the residue classes of 1, 2, or 3

modulo 8 such that both gD = 0 and X(E(D))(2) = 0.
The arguments used to establish these results de-

pend on the ingenious use of explicit expressions for

L(E(D),1), and make no appeal to ideas from Iwasawa

theory.

Heegner [11] was the first person to prove that,

in each of the residue classes of 5, 6, or 7 modulo 8,

every square free positive integer D with exactly one

odd prime factor is a congruent number. The nextma-

jor progress was made by Tian [21], who introduced

a powerful new induction argument to prove the fol-

lowing result.

Theorem 5.2. Let D be a square free positive integer

lying in the residue classes of 5, 6, or 7 modulo 8 such

that its odd part N has a prime factorization of the

form N = p0 p1 . . . pk where k ≥ 0, and pi ≡ 1 mod 8 for

1 ≤ i ≤ k. Assume that the ideal class group of the field

K =Q(
√
−N) has no element of exact order 4. Then D is

a congruent number, and L(E(D),s) has a simple zero

at s = 1.

In order to strengthen this result to the statement

of Theorem 2.3, one first needs the following result

due to Heath-Brown [10] and Kane [13]. For k = 5,6,7,
let Wk be the set of all square free positive integers D
with D ≡ k mod 8. Recall that

rD(1) = dimF2(Sel2(E
(D)))−2 = gD +dimF2(X(E(D))[2].

We define Mk to be the subset of all D ∈ Wk with

rD(1) = 1.

Theorem 5.3. For k = 5,6,7, the subset Mk of Wk has

density equal to 2∏
n=∞
n=1 (1+2−n) = 0.8388 . . . .

On the other hand, Smith [19] has shown that, for

each of k = 5,6,7, a remarkable explicit formula for the

value at s = 1 of the first derivative of L(E(D),s) proven
in [22] enables one to establish the existence of an

explicit subset Uk of Mk such that (i) L(E(D),s) has a

simple zero at s= 1 for all D∈Uk, and (ii) the density of

Uk inMk is equal to 3/4,1/2,3/4, according as k = 5,6,7.
Theorem 2.3 now follows from Theorems 1.8 and 5.3.
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