
Reflections on studies and outlooks

by Theodore Yao-Tsu Wu*

With long admiration for The International

Congress of Chinese Mathematicians, Presided by

Prof. Shing-Tung Yau of The Harvard University, it

is a great pleasure to present some of my represen-

tative works by self-learning studies with reflections

and outlooks in view. In high spirit, I wish to present

some of my studies on characteristic subjects for mu-

tual interest.

1. Group Self-Learning

I recall in fond memory on attending the Provin-

cial Shanghai High School where we students were

enthused conducting class-group studies aspired to

pursue from excurricular books in addition to what

we were already receiving epic teaching by our most

famed teachers. As I recall, we studied geometry from

a voluminous college-book found by Lu Ting, a class-

mate who is now teaching at the Courant Institute in

New York. We rejoiced from resolving such problems

as theNine-point circle set on a generic triangle, which

we pursued separately for all the individual solutions

providing the group discussions at last. That was a

huge step to the differential geometry, as we realized

later for being benefited from earlier preparations.

2. Base-Matrices Elimination

For resolving a set of n ≥ 2 linear equations, e.g.,

with a generic regular matrix A = An×n, Axn×1 = bn×1

say, the Gaussian matrix elimination is widely use-

ful. It operates to reduce the matrix A = [ai j] ∀|A| 6= 0
by row- and/or column-vectors reductions in order to

obtain A−1, the inverse of A, ∃A−1A=AA−1 = In, the unit

matrix.
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A new approach is by mapping the unit matrix In

backward into A (rather than conventionally mapping

A into In) by applying three basic operators called the

base matrices,

(1a)

EI : ERi↔R j , EII : ERk 7→aRk , EIII : ERi 7→Ri+bR j , (a,b ∈ R),

where they signify: i., interchanging row Ri and row

R j; ii., row Rk 7→ a×Rk; and iii., row Ri 7→ [Ri +bR j], and

with each inverse given by

(1b) E−1
I : ERi↔R j , E−1

II : ERk 7→a−1Rk
, E−1

III : ERi 7→Ri−bR j .

Example 1 (Base-matrices elimination). This case first

exemplifies for inverting the matrix

(1c) A =

[
1 1
2 3

]
,

By (1a), (1b), this matrix A can be mapped from I2 by

(1d)

A = E2E1I2 ≡ PI2, E1 = ER1 7→R1+R2 , E2 = ER2 7→R2+2R1 ,

hence by (1a)–(1d), the inverse A−1 of A is given by

A−1 = P−1I2 = E−1
1 E−1

2 I = ER1 7→R1−R2 ER2 7→R2−2R1 I2(1e)

=

[
3 −1
−2 1

]
≡ B, −→ B = A−1,

for BA = AB = I2, hence B = A−1, resulted from applying

solely the relevant base matrices.

Therefore, by induction to order n ≥ 2, there af-

fords the proclamation as:

Theorem 1 (Base-matrices elimination). By using base

matrices, E ′js ( j = 1, · · · ,n,) if

A = An×n = E` · · ·E2E1In ≡ PIn, −→(1f)

A−1 = P−1In = E−1
1 E−1

2 · · ·E
−1
` In,

62 NOTICES OF THE ICCM VOLUME 4, NUMBER 1



which has the inverse A−1 produced by using solely the

relevant base matrices. This also shows that the base

matrices can provide all regular matrices, An, just like

the base vectors for building all vectors.

Therefore, this establishes the basematrices elim-

ination, in parallel to Gaussian’s matrix elimination.

They differ soundly between that any generic regu-

lar matrix An and the unit matrix In can be related all

by the base matrices, whereas Gaussian’s matrix elim-

ination may differ in general.

3. Uniformly Continuous Analytica
Functions

Cauchy’s integral theorem and integral formu-

las (1855) provide the values of the Cauchy integral,

J[ f (z)], for an analytic function f (z) of a complex vari-

able z = x+ iy in the Argand z-plane, as shown by

J[ f (z)]≡
∮

C

f (t)
t− z

dt(2a)

= 2πi f (z) (z ∈D+− open domain inside C),

= 0 (z ∈D−− open domain outside C),(2b)

with f (t) integrated over Cauchy’s kernel, (t − z)−1,

around a Jordan contour C. Here, (2a) is the inte-

gral formula, providing the value for J[ f (z)] as shown
within domain D+ inside contour C, and the value

J[ f (z)] = 0 in domain D− outsideC, since the integrand
of J[ f (z)] is then regular for z ∈ D−. However, it is so

conspicuous that (2a)–(2b) provide no value for J[ f (z)]
when z lies exactly on contourC, since contourC is left

out by domains D+ and D−, both being open.

The task for extending (2a)–(2b) to cover also con-

tour C was taken by Wu [7]. Despite the continuity

condition for f (z) on contour C as so asserted by

Cauchy, Wu extended it to a new one assuming that

(2c) f (z) ∈Cn− class ∀(n < ∞, |z− z0 ∈C|< ε� 1),

i.e., f (z) is n (< ∞)-times continuously differentiable

in a neighborhood striding across contour C on both

sides. This then enables contour C to be indented for

letting a generic point z+ in D+ and a point z− in D−

both tending to a generic point zo exactly on contour

C for the integral retaining its value intact, since con-

tour C is thus being never crossed by z+ and z− in

integration, as shown in Figure 1.

This assumption (2c) is first necessary because

the f (z) in J[ f (z)] may well also be such a function as

so assumed by (2c). Thus, by apt proceedings with

counting the residues at the indented contour, hence

yielding

(I) : f+(zo) = f (zo);

(II) : f−(zo) = 0;(2d)

Figure 1. A Cauchy integral
∮

C f (t)dt/(t− z) around a

contour C enclosing domain D+ and excluding

domain D− has its contour deformed, C 7→C±, with

only a small semicircle C±ε indented onto the D∓ side,

centered at a generic point z0 ∈C so as to let point

z± ∈D± tend, respectively, to z0 ∈C without

crossing C±.

(III) : f (zo) =
1
πi

P
∮

C

f (t)
t− zo

dt (zo ∈C),

where relations (I)–(II) prove that f (z) is uniformly con-

tinuous in the entire z-plane, and relation (III) for the

uniform convergence of the generalized integral for-

mula of its principal value twice that of (2a). Thus,

what was assumed by (2c) for f (z) of J[ f (z)] behaving
merely in a neighborhood striding across contourC is

now proved to cover the entire z-plane, thereby lend-

ing the theory valid with the complete consistency

for having multiple merits such as in comprising all

the derivatives of integral J[ f (z)] uniformly continu-

ous everywhere. This invaluable result bearsmore im-

plications, one lending success in establishing the fol-

lowing new field.

4. Generalized Line-Integral
Transforms

First, it may ascertain if there exists an integral

analog of the Cauchy-Riemann differential relations

between the conjugate functions u(x,y) and v(x,y) of
analytic function f (z) = u+ iv. This leads to generat-

ing the generalized Hilbert-type transforms. Critically,

they appear to rely on the geometry of contour C
whether it is inevitable for reaching the goal.

Above all, four such geometric regions readily ex-

ist. They are (i), upper-half Argand plane; (ii), lower-

half Argand plane; (iii), inside and (iv), outside of a

unit disc.

To exemplify, we take the pioneering case (i) given

by David Hilbert (1862–1943), which is for an analytic

function f (z) regular in domain D+ in the upper half

z-plane, bounded by the upper semicircular contour

Cu, use of which renders (2d) to becoming

(I) : f+(x) = f (x),
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(II) : f−(x) = 0,(2e)

(III) : f (x) =
1
πi

P
∫

∞

−∞

f (ξ )
ξ − x

dξ (x ∈C),

since the integral round the upper semi-circle van-

ishes in the limit. Hence, substituting f (x)= u(x)+ iv(x),
f (ξ ) = u(ξ )+ iv(ξ ) in (2e) yields:

u(ξ ) = H[v(x)] =
1
π
P
∫

∞

−∞

v(x)dx
x−ξ

,

v(x) = H−1[u(ξ )] =
−1
π

P
∫

∞

−∞

u(ξ )dξ

ξ − x
.

(2f)

Here, we note that all the four pairs of this four groups

of the transforms given in (2f) are as proved, based on

((1a)–(1f))–((2a), (2b)), by invoking (2d)–(2e), also with

the original pair.

In (2f), u(x), v(x) are said to be conjugate to each

other, in skew-reciprocal signs. The reciprocity has

f (x) = u(x)+ iv(x)(= u(x,0)+ iv(x,0)) along the y = 0-axis
afford a new proof that a generic analytical function

f (z) is determined in all the Argand plane if either u(x)
or v(x) is given, a factor well known.

Further, the successive transforms of H and its

inverse H−1 yield the unity operator as

H−1H[v(x)] = v(x), HH−1[u(ξ )] = u(ξ ), −→(3a)

H−1H = HH−1 = I (unity operator).

These two formulas are shown for specific u(x)
or v(x) by consecutive transform integrals as exempli-

fied. In general, for arbitrary v(x) (or u(x)), interchang-
ing the order of integrations in (2f) yields

(3b) H−1H[v(x)] =
1

π2

∫
∞

−∞

v(ξ )dξ

∫
∞

−∞

dt
(t−ξ )(t− x)

= v(x),

with a product of two Cauchy kernels therein. This

clearly implies the principle of generalized distribu-

tion for Dirac’s delta function such that∫
∞

−∞

dt
(t−ξ )(t− x)

= π
2
δ (x−ξ ), ←→(3c)

δ (x) =
1

π2

∫
∞

−∞

dt
(t− x)t

= δ (−x),

as much previously marked for vital applications and

further developments.

For most general cases, (3c) is still abiding by the

Poincaré-Bertrand formula:

∫
L

dt
t− x

∫
L

f (t,ξ )
t−ξ

dξ = π
2 f (x,x)+

∫
L

dξ

∫
L

f (t,ξ )dt
(t− x)(t−ξ )

(3d)

((Poincaré-Bertrand formula), for x ∈ L)

where L is a regular Jordan arc, assumed finite (or in-

finite) in length, with end-points at t = a and t = b and

without double point, the integration variable t moves

from a to b, and function f (t,ξ ) is assumed regular in

a neighborhood of the entire line L, while each of the

integrals assumes its own principal value ever, as un-

derstood.

If the function f depends only on one variable,

f = f (t), then (3d) reduces to

∫
L

dξ

ξ − x

∫
L

f (t)
ξ − t

dt = π
2 f (x) (Poincaré-Bertrand formula),

(3e)

which is called, as for (3d), also the Poincaré-Bertrand

formula.

5. Matched Perturbation Expansion
Theory

This theory is first given to rise in fluid mechan-

ics. Intuitively speaking, consider a solid body, of typ-

ical length L, moving with velocity U through a vis-

cous fluid (air and water being viscous, albeit weakly),

the viscous effects exert concentrated in a neighbor-

hood of the body surface Sb(x), having both the body

and fluid velocities kinematically equal at body sur-

face, giving rise to the no-slip condition. Dynamically,

swirling vortices (or eddies) of all sizes are generated

at solid surfaces whilst being retarded and diffused

sidewise by viscosity in producing a thin layer en-

veloping the body surface, reckoned as the laminar

boundary layer, (well streamlined, as those seen with

model aircraft, ormight become turbulent due to flow

instabilities), whereas outside this thin layer the flow

is inviscid, or non-viscous, or called potential, as the

velocity vector can be derived from a scalar potential.

The eddies carried downstream form also a viscous

flow. However, the eddies gradually decay off by na-

ture, owing to the intrinsic viscous friction within the

flow wake. Eventually, the wake flow reduces back

into a uniform potential flow far downstream, being

all inertial in nature just like it in Newton’s law. So the

final steady flow comprises the inner viscous flow,

with a potential flow trailing.

The contrast between the two flows is character-

ized by a parameter called the Reynolds number, Re.
The Reynolds number is the ratio of the inertial force

to the viscous force as

Re = ρU2L2/µUL = ρUL/µ =UL/ν ,(4)

where the defining ratio is that between the typical

two forces, with µ being the dynamic viscosity and ν

the kinematic viscosity (per unit mass) of the fluid of

density ρ .

To illustrate a boundary layer being generated,

set a flat plate of length L and ignorable thickness in

parallel to a uniform unbounded free stream of veloc-

ity U , in an apt Re range, thereby producing a steady
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boundary layer, y=±δ (x) ∀(0≤ x<L) symmetrically on

both sides, we may proceed evaluating this layer iter-

atively as follows. At first, the thin layer is set to van-

ish, δ (x)0 ≡ 0, it then lends the first-order outer flow

velocity u(x)'U0(x) =U in the reduced outer region.

Next taking the inner free variable x̂1 =(x,y/δ1)≡ (x,Y1)

for describing the inner flow inside the expanded re-

gion (0 < y < Y1) with v/u = O(δ1/L), thus with Y1 = δ1

yet undetermined so as to obtain the 1st-order inner

flow velocity (e.g. by means of elementary methods)

u1(x̂1) as well as the outer flow velocity U1(x) beyond

the expanded layer Sb(x)1 = Sb(x)+δ1. Then by match-

ing both flow fields of U1(x) and u1(x̂1) at their com-

mon boundary along Sb(x)1 = Sb(x) + δ1, which gives

a scalar equation with no new unknowns appearing,

hence precisely determines δ1(x) as the sole unknown
to bring forth the first-order solution to completion.

Similarly, the same scheme can apply in analogy to

yield solutions of higher orders by induction, thus

having illustrated the perturbation theory, whenever

the scheme converges. This therefore proves that the

matching step is the vital step in this theory, hence

aptly called the matched perturbation theory.

In operating this matched perturbations step-

wise, a singular trend of the flow solutions is found

arising at the leading edge of the plate. Such a limit

of this matched perturbation scheme can also be sim-

ulated by the intimately associated differential equa-

tion given by

ε
d2u
dx2 +a

du
dx

+bu = 0(5a)

(u(0) = A, u(1) = B; (0≤ x≤ 1;A, B ∈ R),

which is singular with 0 ≤ ε� 1 being the coefficient

of the leading term in (5a).

In the limit equation, (ε = 0), (5a) reduces by one

order, hence can adopt only one of the two condi-

tions, yet aptly defines the outer equation as

a
du
dx

+bu = 0,(5b)

holding valid in the outer region, Ro say, spanning

0 < δ (= Oε) < x ≤ 1, with the outer variable x, intact
from (5a), by assuming its outer expansion in a power

series of ε given by

u(x;ε)∼= u0(x)+ εu1(x)+ ε
2u2(x)+ · · · ,(5c)

(u0(1) = B, u j(1) = 0, j = 1,2, · · ·),

where the various u j(x) terms satisfy the following

non-homogeneous differential equations:

a
du0

dx
+bu0 = 0, a

du j

dx
+bu j =−

d2u j−1

dx2 , ( j = 1,2, · · ·),

(5d)

in which u0(x) has the solution given by

u0(x) = Be(1−x)b/a
, −→ u0(1) = B, u0(0) = Beb/a =C,

(5e)

say, with C 6= A in general, hence a boundary layer ex-

ists in the inner region, Ri ∀(0≤ x < δ = O(ε)� 1) say.
The suitable inner variable is Poincaré’s expanded

variable X = x/ε, since it uniquely converts (5a) into

an equation essentially with the same comparable co-

efficients for yielding the inner equation given as

d2u
dX2 +a

du
dX

+ εbu = 0 (X = x/ε, u(0) = A),(6a)

with one boundary condition at X = 0. Likewise, the
adequate inner expansion is

u(x;ε)∼=U0(X)+ εU1(X)+ ε2U2(X)+ · · · ,(6b)

X = x/ε (U0(0) = A, U j(0) = 0, j = 1,2, · · ·).

Thus, the U j(X)’s satisfy their equations in the inner

limit given as

d2U0

dX2 +a
dU0

dX
= 0,

d2U j

dX2 +a
dU j

dX
+bU j−1 = 0(6c)

(U0(0) = A, U j(0) = 0, ∀ j = 1,2, · · ·).

Their inner solutions are readily derived to obtain as

U0(X) = Ae−aX +B0(1− e−aX ),(6d)

where the constant B0 comes from matching U0(X)

with u0(x).
It is convenient to adopt an intermediate limit for

this problem given by

Limit(ε→ 0) : xη =
x

η(ε)
, O(ε)< O(η)< 1,(6e)

by means of which it can be shown that

u(x;ε) = Be(1−x)b/a
+(A−Beb/a)e−ax/ε +o(1),(6f)

is the first approximation uniformly valid in 0≤ x≤ 1.
Higher approximations can be pursued in analogy, it-

eratively.

This theory was a primary pursuit for vital gen-

eralization taken by Prof. Paco Lagerstrom at Caltech

who was a leading master on the Navier-Stokes the-

ory in fluid mechanics and mathematics since 1940

or so with his research group. That was a remarkable

group, pursuing studies in high spirit and serenity,

sharing warmly closed friendship, and gathered daily

for revealing day’s achievements at evening coffee-

shop break. Archives publications from the group on

the central fields together with diversified and pro-

found applications was so abundant that the papers

so promoted to have appeared in the leading profes-

sional journals from allover were found full of the

same coined terms like inner and outer variables for
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inner and outer expansions, etc. This dynamic tide

surely illustrated the tremendous power of the per-

turbation expansion methods being so effective that

numerous problems formerly hindered from resolu-

tion then readily solved, hence deserving to be at-

tributed to the new methods.

In this regard, Wu and students also resolved

problems of interest. One is concerning the classic

problem for water-ski of a two-dimensional flat plate,

of length L, advancing initially at an infinitesimal in-

cident angle α , returning a very thin spray sheet to

the front infinity over the quiescent surface of a deep

water at rest, being a status-quo equivalent to the

lower half solution-space of an unbounded uniform

stream past the plate as a wing with lift, thereby yield-

ing half or so lift to the water-skiing plate. This ini-

tial free-surface flow is next extended by addingmore

weight onto the plate to be more deeply submerged,

hence rendering the spray-sheet thicker as well as

increasing its up-shooting angle β leaving the plate.

Critically, the spray sheet shoots vertically upward at

β = 90◦, then falling behind in forming a cavity flow,

with the former free surface forming the inside cav-

ity surface, leaving the plate in the new cavity flow

to lose about half its wing lift owing to having the

low suction pressure on the wing top-side replaced

by higher cavity pressure. (Cf. [4]).

Another task is Wu’s Ph.D. thesis expounding on

the Navier-Stokes flow of a compressible fluid embed-

ded with a stationary point-source of heat, a rather

unique study in this respect. The diversified proceed-

ings require analytical computations, in scrutiny, for

the internal molecular motions of the fluid, in transla-

tional, rotational, and vibrational modes all required

to be accounted in precision as high as possible. This

is necessary for the flow so heated near the source

origin prior to being diffused and convected away

at subsonic speeds, or along the shock waves and

flow wake at supersonic speeds. It was given an in-

query from Prof. Theodore von Kármán, Wu’s much

revered grand teacher, the teacher of Prof. H. S. Tsien,

or splendidly known later as Qian, Xue-sen in China,

my post-doctoral advisor earlier at Caltech. In gen-

tle smile, the grand teacher nodded, knowing that in

supersonic speeds, the flow propagating along the

shock waves slanted back from the heat-source is

splendidly isentropic, holding a constant value of en-

tropy whenever the flow analytically computed in

the neighborhood surrounding the heat-source had

been achieved in great precision, yet would be more

and more remiss in retaining the epic isentropy had

the computational results found less and less accu-

rate in particular. Reflecting on such verifications, the

grand teacher would clap in smile, saying that “This

is good, for it shows the all-embracing beauty of the

nature.”

6. Fluid Mechanical Boundary-Layer
Theory

As regards boundary layer in fluid flows, it has

been explained physically in clarity. We continue to

study its structure and properties. In expounding

two-dimensional fluid flows of various kinds, the fun-

damental base is a streamline, merely one is for all

kinds of flows, and a bunch is a flow field. For the

base it is the stream function, ψ(x,y), which provides

the velocity u(x) = (u,v,0), x = (x,y,0), and its total dif-

ferential dψ given by

u(x,y) =
∂ψ

∂y
, v(x,y) =−∂ψ

∂x
,

dψ =−vdx+udy =
∂ψ

∂x
dx+

∂ψ

∂y
dy,

(7a)

where dψ = 0 indeed signifies a streamline with v/u =

dy/dx ∀dψ = 0. The vorticity, ω(x,y), realized as ω ≡
e3 ·∇×u(x) (x = (x,y,0), u= (u,v,0), which has one com-

ponent perpendicular out of the paper) given as

ω(x,y) =
∂v
∂x
− ∂u

∂y
=−∇

2
ψ,(7b)

a result of clarity signifying that the vorticity ω(x,y)
is invariant along each abd every steamline for ψ =

const., or, in other words, vorticity propagates on

steamlines.

To illustrate boundary layers, an apt example is

for a uniform free stream past a flat plate in paral-

lel, of length unity and ignorable thickness, with its

boundary layer denoted by δ .

At first, take the initial δ0 = 0, for which the po-

tential flow velocity is simply U0 = ∇x.
As regards boundary layers, it all began with Lud-

wig Prandtl (1875–1953), a pioneer master on fluid

mechanics, who defined the boundary layer in fluid

flows by a paper of a most penetrating new concep-

tion as he presented on August 12, 1904 at the Third

International Congress of Mathematicians in Heidel-

berg, Germany. For a smooth solid body of typical

length L moving with velocity U in a viscous fluid It

simplifies the fluid mechanics by dividing the flow

field into two areas: one inside the boundary layer

dominated by viscosity with friction, and the other

outside the layer where ignoring viscosity with negli-

gible effects on the solution. This provides a closed-

form solution for the flow in both areas, a significant

simplification of the full Navier-Stokes equations.

At this vital point, the keystone goal is therefore

to find the deftly useful equation desired. For this

purpose, introducing a set of dimensionless variables

given as follows.

With an innovative idea, namely, how best to dif-

ferentiate the flow properties near the body and also
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far away, as he delivered his at the 1904 The key no-

tion is in regard with an arbitrary boundary layer at-

tached at body surface, characterized by a magnify-

ing normal velocity gradient and by a vorticity vary-

ing rapidly in the layer, denoted by a typical thick-

ness δ , outside of the boundary layer is the invis-

cid (non-viscous) potential flow. For two-dimensional

plane flows, the complex variable z = x+ iy provides

the basic equations for potential flows as

f (z) = φ(x,y)+ iψ(x,y),
d f
dz

= u(x,y)− iv(x,y),(8a)

u = φx = ψy, v = φy =−ψx,

where φ(x,y) is the potential and ψ(x,y) the stream

functions, and u, v the velocity components in the x, y
directions.

For thin boundary layers along the x-axis, the
derivatives of the tangential velocity u arise with

|ux| � |uy|, |uxx| � |uyy|, and by the mass conservation,

ux + vy = 0, it also follows that v/u = O(δ/L), all in

accord to Prandtl’s hypothesis. Hence the flow with

nearly uniform pressure reads

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 .(8b)

Higher the Reynolds number, narrower becomes

the viscous flow field until it reduced so narrow to

become the boundary layer.

For moderate to higher Reynolds numbers (Re >

104 say), the layer is given by δ ' L/
√

Re, implying the

layer diminishing with increasing Re, making the nor-

mal velocity gradient at body surface more singular

as the outer potential flow has its tangential veloc-

ity remaining almost intact. (The relation δ ' L/
√

Re
is evident by the dimensionless Navier-Stokes equa-

tion with coefficient Re−1 for the viscous stress terms.

Therefore it gives rise to the kinematic viscosity pa-

rameter as the proportional coefficient of the viscous

stress on the right-hand side of (8b)).

Similarly, this perturbation expansion scheme

can be applied to various problems.

7. Solitary Waves

The first solitary wave was encountered in 1834

by John Scott Russell, a commanding engineer, who

was observing a boat rapidly drawn by two horses

along a Scottish canal, when the boat suddenly

stopped, whilst the water was agitated round the

prow in forming a large solitary wave rolling forward

in quite uniform shape and speed as observed by

Russell catching it on horseback. Physically, the for-

ward rolling wave carried with it a certain momen-

tum, hence sending an equal and opposite momen-

tum, by Newton’s law, onto the boat and the horses

Figure 2. α = 0.8331990, 0.822279, 0.811386, 0.796952;
Fr = 1.290890, 1.291738, 1.293358, 1.294208.

that were apparently lacking the power to move on.

This may be rich with implications.

Following such pioneers as Sir George G. Stokes

(1880), a new theory called the unified intrinsic func-

tional expansion (UIFE) theory was announced for

evaluating fully nonlinear and fully dispersive soli-

tary wave of height a moving in rest water of depth h
with speed c under gravity constant g (i.e., [6]). This

theory is founded on the wave velocity distributions

in terms of the intrinsic component functional expan-

sion (ICFE) representing the regional wave properties,

including the exponential falling-off far away and the

wave crest regime approaching the highest wave with

cornered 120◦ crest owing to the primary and sec-

ondary singularities so that the wave can be deter-

mined accurately in these specific algorithms. The

method is based on minimizing the mean-square er-

ror of the wave energy equation stepwise, by finding

the steepest descent of the error with interactive op-

timizations. It is exemplified here to illustrate the re-

sults for wave amplitude α = a/h, and speed Froude

number Fr = c/
√

gh for several high waves as shown in

Fig. 2, with the fourth highest wave quite close to the

fastest solitary wave specified with α f st = 0.7959034,
Fr f st = 1.294211, also in a telescopic view of these

waves.

These single solitary waves are systematically

closed, for the viscous friction exerted on the canal

water by the horizontal river bottom, being the sole

force, is negligible. However, the boat under tow by

horses is an open system, producing dynamic water

waves propagating away behind the boat constituting

a primary part of the drag force on the boat. The water

waves in response can result in fascinating phenom-

ena of great significance, as we now expound next.

8. Periodic Forward Radiating Solitons

The open system of water waves produced by

exterior critical forcing involves issues lends more
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Figure 3.

facets for pursuit. (i), First, it involves acting and re-

acting momenta, as just mentioned. (ii), The physi-

cal progressions have to lie in a critical speed range,

(0.8 < Fr < 1.2 or so, say), lasting long enough for the

critical nonlinear coupled with critical dispersive ef-

fects jointly conceived long enough in acquiring the

water mass and momentum up to maturity for radi-

ating each solitary wave propagating forward away as

a free wave. (iii), As it consumes a duration in radiat-

ing a single solitary wave, it is conceivable that if the

critical forcing be long endured, periodic radiation of

solitary waves appears evident to be realized.

For this purpose, the basic set of partial dif-

ferential equations were derived, and used in dedi-

cated computations by Prof. Demin Wu, visiting from

Harbin, China. The vital snag to be conquered was for

determining the boundary conditions at the front and

rear progressing edges of the computation region in

order to sustain the same stationary state as every-

thing else. As this also implies the wave group veloc-

ity as the energy transfer rate that may well take the

steepest ascend to its critical nonlinear limit, which

requires determination in scrutiny with optimum it-

erations. As exemplified with Figure 3 in display, the

two-dimensional motion is generated by a humped

steel yard-stick with its image darkened at the center

of the body-frame of reference, with each and every

curve representing a wave ridge along the longitudi-

nal axis, its height distribution in y, and the time t
as the transverse axis. The waves propagating down-

stream to the right are the regular ship waves, whilst

the waves to the left are the newly discovered solitary

waves (or solitons) being radiated upstream, periodi-

cally generated by the uniformly critical forcing. The

mass of the new solitary waves is drawn from the wa-

ter further behind the downstream waves, pulled for-

ward through an ever-lengthening stretch of higher

flow velocity, falling in this stretch (just behind the

stick) to a depressed water surface exposed to the

constant air pressure. The darkened longitudinal im-

age is rendered by the light deflected at the glass side

wall of the water tank, an image which is found in

perfect agreement with the computed wave profiles,

a result thus verifying the theory by experiment.

Incidentally speaking, research endeavors may

also be incidental. Had there been available with more

horses pulling the boat, the periodic radiating soli-

tons might have been seen by Russell. On the other

hand, once discovered, the flyers received in return

at all have also been cheerful. Similar phenomena

have subsequently been also found in other disci-

plines, such as in plasma, nonlinear critical optics

and nonlinear sound wave media, density-jump lay-

ers existing for inner waves arising in atmosphere
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and in the oceans, even in fundamental particles,

as disseminated in seminar lectures by Wu, e.g. for

commemorating Sir Geoffrey I. Taylor in Cambridge,

U.K. [5].

The group research interests have expanded to

diversified types of animal self-locomotion, the first

being on fish swimming.

9. Fish Swimming

The joy in watching fish swimming has the clas-

sic tale (circa 300 B.C.) of Zhuangfucius and Huifu-

cius strolling across a bridge, seeing a good clus-

ter of whitish fish swimming below. With a rejoicing

sigh, Zhuang: “What a joy to fish swimming effort-

less around! Hui queried, “You are not fish, how do

you know of their joy? Zhuang, rebutting: “You are

not me, how do you know I don’t know of their joy?

On the other hand, this academic era began in 1936

with Sir James Gray’s paradox on fish swim: ‘Either

the drag of cruising fish is only tenth of that from the

laboratory model tests, or the fish muscle power can

be ten folds of the equivalent warm-blood animals.

This furnished at once a brisk stimulus to mechan-

ics and biology professions for resolution. Cf. e.g.,

[2, 3, 8].

In this regard, Wu stressed on a principle that re-

solving this paradox of great significance might ben-

efit from a strongly linked endeavors between both

mechanics and biology, just as it appeared to Gray.

Following this principle, Wu utilized Brett’s experi-

mental data on the oxygen consumption by salmon

specimens of five size groups working in five dis-

tinct levels of activities were analyzed to carry out

the scaling energetic effects on metabolic conserva-

tion in biology in parallel with Prof. von Kármán’s

specific energy cost in mechanics to have attained ex-

perimental proof showing that fish swim all stream-

lined with laminar boundary-layers rather than any

turbulent friction at all for all fishes. This provides

the solid and sound data base for a complete res-

olution to Gray’s paradox. Hence all the species of

fishes may enjoy their effortless cruising. More de-

tails can be referred to the review: [10]. Summing

up, the same observations across thousands of years

on the joy of watching fish, joy by fish, and all as-

says for fish are now bound together by Yuk Yung

and Wu at Caltech and Jiachuan Li of The Chinese

Academy of Sciences in a poem, signifying that the

truth is invariant timelessly as seen by ageless views

of curiosity, singing swirling around the pillars in the

palace:

Behold, the white fish cruising so effortlessly, how mag-
nificently they exhibit their delight, observed the witty
Zhuangfucius, all resolved, with no turbulence, fish swim all
streamlined.

10. Bird/Insect Flight

For oscillating wing flight, the pioneering linear

theory by Prof. von Kármán and W. R. Sears brought

forth the keystone proposition for the distribution of

vortices. It lends γ0 + γ1 spanning the wing surface Sb

jointly with γw covering the wake surface Sw, with γ0

standing for the instantaneous steady vortex on Sb

whilst γ1 interacting with γw in producing γ0 + γ1 just

for satisfying the time-varying velocity of the oscillat-

ing wing surface Sb for time-stepwise computations,

under the Kutta condition at the wing trailing edge.

This principle further renders the algorithm to es-

tablish a theory published in [9]. This theory is fully

nonlinear and fully unsteady, entirely general, even

with swift wing deforming, hence capable of describ-

ing such wings flashing with such wings bending as

that of a humming-bird fleeting away from a flower.

Of the various types of animal self-propulsion,

one limiting group comprises the single celled flag-

ellates and ciliates of microscopic scales. For re-

search studies in this field, it requiems a special dis-

cipline called the low-Reynolds number fluid mechan-

ics, Re� 1, where Re, the Reynolds number, stands

for the ratio between the inertial force and the vis-

cous force, or Re = ρU2L2/µUL = ρUL/µ =UL/ν , where

ρ denotes the density of the fluid medium support-

ing the relevant body motion within it,U , L are typical

body velocity and length, and µ is the dynamic vis-

cosity coefficient of the fluid, and ν = µ/ρ the kine-

matic viscosity coefficient. For microscopic cellular

self-locomotion, Re < 10−4, down to Re ' 10−6 or so.

In this range, the general Navier-Stokes equations re-

duce, with all the inertial factors omitted, to the lin-

ear Stokes equations. The fully nonlinear theory for

swiftly deforming wing surface Sb(t) is given by for-

mulas in [9]. The relevant fluid dynamics did advance

to furnishing fully nonlinear and fully unsteady the-

ory, even for deformable bodies. For references, see

“Fish Swimming and Bird/Insect Flight” [10].

11. Resolving the Spirochete Paradox

This paradox is well known in biology for lack of

expounding for the helical motion of its single-celled

body swirling at uniform speed of several score body-

lengths per second, yet with self-induced force and

torque vanishing by Newton’s law. The final resolu-

tion was taken by Allen T. Chwang for his Ph.D. thesis.

The basic concept stems from assuming the cell mem-

brane being capable of spinning opposite in sense

to the coil rotation, thereby resulting in zero torque,

with results all verified with ourmicroscope. This the-

sis was instantly accepted by Sir James Lighthill, the

Secretariat of the Royal Society [1]. Two decades later,

it was indeed discovered inside each self-propelling
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Figure 4.

flagellate that there are interior flagellar rooted on a

platform driven by protonmotor swirling on bearings

to whip the cell membrane opposite to the coil rota-

tion, all reported from advanced hi-tech on such phe-

nomena. This is of course the same phenomenon as

postulated in the proposition advanced in Chwang’s

1971 Thesis.
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