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Introduction

In mathematics, we are interested in special num-

bers, particularly “constants” which arise from vari-

ous mathematical contexts and structures. For exam-

ple π , e. These special values are frequently transcen-
dental numbers, meaning that they are not algebraic

numbers, substituting such a number into any non-

zero polynomial with integral coefficients, you will

never get 0. However the transcendence of a specific

number needs to be proved. Hermite did such a proof

for e in 1873, and Lindemann did such a proof for π

in 1882. Whenever you encounter a number for which

there is no apparent reason to be algebraic, then it is

most natural to suspect that this number is transcen-

dental. Ironically, more often than not, mathemati-

cians are unable to confirm the transcendence nature

of specific numbers.

When we are confronted with several transcen-

dental numbers, a natural question is asking for their

relationships, if they are related or not. This is a

more subtle challenge. Ideally, we would like to know

whether, say e and π are algebraically dependent, i.e.

whether there are two variables polynomials P(X ,Y )
with coefficients from Z not all zero so that P(e,π) = 0.
We see no reason that e and π should be algebraically

dependent. Hence we conjecture that they are alge-

braically independent. However till today, no one can

prove such a statement about this pair of very classi-

cal constants! Whenever a set of transcendental spe-

cial values is given to us, we would dream to find

out and to explain all the possible algebraic relations
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among them. Only after that, can we say that we really

“understand” these special values.

A very classical family of special values comes

from the following series, for integer m > 1,

ζ (m) =
∞

∑
n=1

1
nm .

These are the values of the Riemann zeta function

taken at positive integers greater than 1. As is well-

known to all students, this family goes back to Euler

and Bernoulli who proved for even m = 2s the beauti-

ful formula:

ζ (2s) =
−B2s

(
2π

√
−1
)2s

2(2s)!
,

where B2s ∈ Q are the Bernoulli numbers. When m
is odd, very little is known about these special val-

ues, the irrationality of ζ (3) is confirmed by R. Apéry

(1976) while the transcendence of ζ (3) is still open.

Nevertheless we would believe that all these values

ζ (m) are transcendental and the Bernoulli-Euler iden-

tity above is the only source of algebraic relations

among the very special values from this classical fam-

ily. This means, in particular, that all ζ (m) with odd

m > 1 should be algebraically independent from π ,

and they are also algebraically independent from each

other.

Euler went on to introduce multizeta values

(henceforth abbreviated MZV’s) which are defined by

the reciprocal power sums:

ζ (s1, · · · ,sr) := ∑
n1>···>nr≥1

1
ns1

1 · · ·nsr
r
,

where s1, . . . ,sr are positive integers with s1 ≥ 2. Here
r is called the depth and w := ∑

r
i=1 si is called the
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weight of the presentation ζ (s1, . . . ,sr). The following

are some known evaluations of weight 2w multiple

zeta values:

ζ (2w,2w) =
(ζ (2w))2 −ζ (4w)

2
,

ζ (2,2, · · · ,2) = π2w

(2w+1)!
,

ζ (3,1, . . . ,3,1) =
2π2w

(2w+2)!
.

A given multizeta value MZV ζ (s) = ζ (s1, . . . ,sr) of

weight w = s1 + . . .+ sr and depth r is said to be Eule-

rian if the ratio ζ (s)/(2π
√
−1)w is rational. In the case

of depth 1 Riemann zeta value at positive integer s> 1,
ζ (s) is Eulerian if and only if s is even. Depth > 1 Eule-
rian zeta values should be rare, to date there is no ex-

plicit rule completely describing these rather excep-

tional MZV’s.

We conjecture that all multizeta values are tran-

scendental numbers. However, once depth r > 1 are

taken into considerations, Euler already knew that

there are many Q-linear relations among monomials

of MZV’s with the same weight, e.g. Euler’s stuffle re-

lation:

ζ (s1,s2)+ζ (s2,s2)+ζ (s1 + s2) = ζ (s1)ζ (s2).

Moreover for monomials of MZV’s having different

weights, the conjecture is that they should be linearly

independent over Q. Let Z be the Q-algebra inside R
generated by all the MZV’s, and letZw be the Q-span of

all weight w MZV’s. Then Zw1Zw2 ⊂ Zw1+w2 . It has been

conjectured (Goncharov, Zagier) that:

Z = Q⊕w≥2 Zw.

Naively we would regard weight w monomials of

MZV’s as kind of degree w polylogarithms. For non-

zero logarithms of algebraic numbers, there is the

phenomenon described by a fundamental theorem of

Alan Baker [Bak] asserting that these logarithms are

in fact linearly independent over Q (the field of all al-

gebraic numbers) if they are known to be linearly in-

dependent over Q. We suspect that there is also such

a phenomenon for monomials of MZV’s with equal

weight. Let Z be the Q-algebra inside C generated by

all the MZV’s, and let Zw be the Q-span of all weight

w MZV’s. Then we conjecture:

Z = Q⊕w≥2 Zw = Z⊗Q Q.

This implies that for any given set of MZV’s of the

same weight w, if they are linearly independent over

Q then they are actually linearly independent over all

algebraic numbers.

A consequence of the above extremely bold con-

jecture answers the following enquiry. We say that

a given set of nonzero numbers has the Euler di-

chotomy property if taking any two numbers from

this set either their ratio is rational or else they are

algebraically independent. We are particularly inter-

ested in the following problem: consider the set Sw of

weight w MZV’s together with the period (2π
√
−1)w,

is this set of special values satisfying the Euler di-

chotomy?

Multizeta values have been widely studied in re-

cent years. The wealth of Q-rational algebraic rela-

tions is a mathematical treasure. Breakthroughs in-

clude the 2012 proof ([B12]) by F. Brown of Hof-

mann’s conjecture that all MZV’s can be written as

Q-linear combinations of ζ (s1, · · · ,sr), with si ∈ {2,3}.
Also there is the beautiful dimension formula conjec-

tured by D. Zagier which describes the dimension of

Q-vector space of weight w double zeta values (depth

two MZV’s) via the dimension of the space of weight

w cusp modular forms for SL2(Z).

Special Zeta Values for Fq[θ ]

We now move to the special values in a world of

positive characteristic. Fix a finite field Fq with q ele-

ments. Let A= Fq[θ ] be the polynomial ring in the vari-

able θ over Fq with quotient field k. We embed k into

its completion k∞ = Fq((
1
θ
)) with respect to the infinite

place ∞ of k. Let A+ be the set of monic polynomials

in A and consider the series, for n ∈ N,

ζA(n) := ∑
a∈A+

1
an ∈ Fq((

1
θ
)).

These values, called Carlitz zeta values [Car], are ana-

logues of classical Riemann zeta values. We note that

in this “non-archimedean” situation the series for

ζA(1) does converge in Fq((
1
θ
)). Also if p is the char-

acteristic of the base finite field Fq, there are the ob-

vious Frobenius relations among these zeta values:

ζA(pmn) = (ζA(n))pm
,

for any positive integer m.
In the function field setting the role of the multi-

plicative group Gm is played by the so-called Carlitz

module, and the role of 2π
√
−1 is played by a funda-

mental period π̃ for the Carlitz module:

1
π̃

:= (−θ)
−q
q−1

∞

∏
i=1

(
1− θ

θ qi

)
∈ C∞,

where (−θ)
1

q−1 can be any choice of (q− 1)-st root of
−θ , and C∞ is the completion of a fixed algebraic clo-

sure of k∞. The period π̃ is transcendental over the

rational function field k (Wade 1941). There is the

Fq-linear Carlitz exponential function expC(z) lineariz-
ing the Carlitz module:

0 → π̃A → Ga(C∞)
expc−−−−→ Ga(C∞)→ 0
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C∞

expC−−−−→ Ga(C∞) = C∞

θ(·)
y yx 7→θx+xq

C∞

expC−−−−→ Ga(C∞) = C∞

The multi-valued inverse map to the Carlitz expoen-

tial is called the Carlitz logarithm function which has

the following simple series expansion near the origin:

LogC(z) :=
∞

∑
i=0

zqi

Li
,

where the denominator of the coefficients are given

by L0 := 1, and Li := (θ −θ q) · · ·(θ −θ qi
) for i ∈ N.

Set D0 = 1 and Di := ∏
i−1
j=0

(
θ qi −θ q j)

for i ∈ N. For a
non-negative integer n, we express n as

n =
∞

∑
i=0

niqi (0 ≤ ni ≤ q−1,ni = 0 for i � 0),

and the Carlitz factorials are defined by

Γn+1 :=
∞

∏
i=0

Dni
i ∈ A.

On the other hand the Carlitz exponential function

has entire expansion expC(z) = ∑i≥0 zqi
/Di. This leads

to the Bernoulli-Carlitz numbers BC(n) ∈ k:

z
expC(z)

= ∑
n≥0

BC(n)
Γn+1

zn.

In [Car], Carlitz derived an analogue of Euler’s for-

mula if n is divisible by q− 1 (called these integer n
q-even):

ζA(n) =
BC(n)
Γn+1

π̃
n.

We note that π̃n ∈ Fq((
1
θ
)) if and only if n is divisible by

q− 1, and so Carlitz’s result implies that ζA(n)/π̃n ∈ k
if and only if n is q-even. When q = 2, every integer

is q-even, it follows from the above formula and the

transcendence of π̃ that all ζA(n) are transcendental

over k (hereafter we will just say that these values are
transcendental).

The story of all Carlitz zeta values was unfold

more than a quarter of a century ago in two papers

[AT90], [Yu91]. In particular all the positive charac-

teristic zeta values ζA(n) for n “q-odd” are proved to

be transcendental. When positive integers n are not

divisible by q−1, the ratio ζA(n)/π̃n are also shown to

be transcendental by [Yu91], as a highly non-trivial

consequence of the k-linear independence of ζA(n)
with π̃n. An analogue of Baker’s theory on linear forms

of logarithms is hereby established in the positive

characteristic world, for Carlitz logarithms of alge-

braic functions in k̄, as well as for degree n last-

coordinate logarithms of algebraic points on the n-th

tensor powers of the Carlitz module. For those spe-

cial values in question, we find again the phenomenon

that linear independence over the rationals forces lin-

ear independence over the algebraic closure.

Since a decade ago it has also been discovered

that analogue of Baker’s theory in positive charac-

teristic can be further refined to deal with the alge-

braic independence of special values. Continuing the

efforts of Anderson, Brownawell and Yu, Papaniko-

las in [P08] solved the problem of algebraic indepen-

dence of Carlitz logarithms of algebraic “numbers”,

assuming only that these logarithms are linearly in-

dependent over k. Chang-Yu [CY07] goes on replac-

ing Carlitz logarithms by higher degree Carlitz poly-

logarithms. Applying this powerful tool to the Carlitz

zeta values, they are able to prove that all the poly-

nomial relations among the values ζA(n) come from

the Bernoulli-Carlitz identity, together with the obvi-

ous Frobenius relations. This confirms the specula-

tion that every ζA(n)with n not divisible by q−1 should
be algebraically independent from the fundamental

period π̃ over k, and these odd zeta values ζA(n1),ζA(n2)

are algebraically independent over k if n1/n2 is not a

power of the characteristic p.
Replacing Z by the polynomial ring A = Fq[θ ],

D. Thakur 2004 [T04] introduced multizeta values

ζA(s1,s2, · · · ,sr) over A, generalizing the depth one Car-

litz zeta value at positive integers. For s= (s1, . . . ,sr) ∈
Nr, these characteristic p multizeta values are:

ζA(s1, . . . ,sr) := ∑
1

as1
1 · · ·asr

r
∈ Fq((

1
θ
)),

where the sum is taken over r-tuples of monic poly-

nomials a1, . . . ,ar with dega1 > · · · > degar. Not surpris-

ingly, there are interesting k-linear relations as well

as Fp-linear relations for these positive characteritic

multizeta values. Euler’s stuffle relation is replaced

by the following more subtle [Chen]:

ζA(s1)ζA(s2) = ζA(s1,s2)+ζA(s2,s1)+ζA(s1 + s2)

+ ∑
i+ j=s1+s2,q−1| j

[
(−1)s1−1

(
j−1

s1 −1

)

+(−1)s2−1
(

j−1
s2 −1

)]
ζA(i, j).

As samples of k-linear relations, we cite [T09] (here [i]
stands for θ qi −θ ):

ζA(q−1,(q−1)2) = (
−1
[1]

)q−1
ζA(q2 −q),

ζA(q−1,(q−1)q, · · · ,(q−1)qr−1)

=
[r−1] · · · [1]

[1]qr−1 · · · [r−1]q
ζA(qr −1),

ζA(1,(q−1)q,q3 −q2 +q−1) =
[3]−1

[3][2][1]q2−q+1
ζA(1)q3

.
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Chang [C14] succeeds in proving that all these

positive characteristic multizata values ζA(s) are

transcendental (over the rational field k). Following
Thakur we say that ζA(s) is Eulerian if the ratio

ζA (s1, . . . ,sr)/π̃s1+···+sr is in k. Contrast to our knowl-

edge about classical MZV’s, such quotients are proved

to be either rational or transcendental over k. Indeed,
we already know that either ζA (s1, . . . ,sr)/π̃s1+···+sr is

in k or ζA(s1, . . . ,sr) and π̃ are algebraically indepen-

dent over k [C14]. Moreover a much strengthened ana-

logue of Goncharov’s conjecture is proved, and the

whole theory of algebraic relations for multizeta val-

ues over A (henceforth also abbreviated as MZV’s) is

reduced to studying the k-inear relations among these

positive characteristic special values. Let ZA be the

k-algebra inside k∞ generated by all the MZV’s, and let

Zw be the k-span of all weight w MZV’s. Then again

Zw1Zw2 ⊂ Zw1+w2 ([T09]). Let Zw be the k-span of all

weight w MZV’s. Then Chang has verified:

ZA = k⊕w≥1 Zw = ZA ⊗k k.

Given any set of multizeta values over A of the same

weight w, if they are linearly independent over k then
they are in fact linearly independent over k̄. These
special values of weight k in positive characteristic

are indeed the “ideal” polylogarithms of degree k. In
particular, such a set of multizeta values always has

the Euler dichotomy property, meaning that two such

special values either has their ratio in k or are alge-

braically independent over k. In fact, as Chang shows,

any set of fixed weight multipolylogarithms of alge-

braic elements in k̄ satisfies Euler dichotomy.

Recently Chang, Papanikolas and Yu ([CPY], [KL])

have found an effective criterion (algorithm) deter-

mining whether given MZV over A is Eulerian. Data

from implementing this algorithm lead to conjectural

description of all the Eulerian MZV’s in the positive

characteristic world: Fix prime power q, and call the

sequence of r-tuples below Eulerian r-tuples with re-

spect to Fq:

Eu1 := (q−1) and Eur+1 := (q−1,qEur) ∈ Nr+1.

For each depth r, we introduce a sequence of r-tuples
in Nr as follows:

Eur(`) := (q`−1,q` Eur−1), for r > 1, `≥ 1,

and Eu1(`) := (q`−1). Call this the canonical sequence
of depth r with respect to Fq. The corresponding MZV

ζA(Eur(`)) are all Eulerian. This follows from the Euler-

Carlitz identity and the following inductive formula

of Chen, for all r ≥ 2 and `≥ 1:

ζA(Eur(`)) = ζA(q`−1)ζA(Eur−1)
q` −ζA(Eur−1(`+1)).

When q > 2 and depth r > 2, these seem account for all

the Eulerian multizeta values (there is an extra family

of Eulerian MZV’s and also an exceptional one when

r = 2, and more exceptions when q = 2).

Motivic Transcendence Theory

We interpret number theory in a broad sense.

Both the algebraic number fields and the algebraic

function fields (in one variable over finite constant

fields) are included as our global fields. We are inter-

ested in arithmetic objects defined over these global

fields, andwe study closely the parallels between phe-

nomena in characteristic zero and in positive char-

acteristic p. Opportunities arise to examine some of

the most difficult open problems in classical number

theory, not in the original context but in the positive

characteristic world.

Let t 6= θ be another variable and we consider the

rational function field k̄(t), where k̄ is a fixed algebraic

closure of the rational field k = Fq(θ). The (inverse)

Frobenius automorphism on k̄ gives rise the following
natural “conjugation” on k̄[t] (hence also on k̄(t)) by
taking 1/q-th root on their coefficients in k̄:

f = ∑
i

ait i 7→ f (−1) := ∑
i
(ai)

1
q t i.

Let V be a finite-dimensional k̄(t)-vector space, to-

gether with a conjugate linear bijective operator σ

on V, satisfying, for v ∈V :

σ( f v) = f (−1)
σ(v).

We call such pair (V,σ) a Frobenius module of rank

r = dimk̄(t)V . Choose a basis of V , then the operator σ

is represented by amatrix φ ∈Matr(k̄(t)). If B∈GLr(k̄(t))
changes the original basis to another basis, then the

matrix representation of σ with respect to the new

basis becomes B(−1)φB−1, where B(−1) is obtained from

B via replacing all entries by their 1/q-th root. We re-

gard these Frobenius modules as pre-t-motives ([A86],

[P08]).

The t-motivic study of special zeta values in pos-

itive characteristic was initiated by Anderson-Thakur

[AT90]. They introduces a sequence of “Bernoulli type

elements” Hn inside Fq[t,θ ], now called the Anderson-

Thakur polynomials. Take y to be yet another variable,
and define polynomials Gn(y)∈Fq[t,y] by G0(y) := 1 and
Gn(y) for n ∈ N such that

Gn(y) :=
n

∏
i=1

(
tqn − yqi

)
.

Note that Gn+1(yq) = (t − yq)qn+1
Gn(y)q. For n = 0,1,2, . . .

the sequence of Anderson-Thakur polynomials Hn ∈
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Fq[θ ][t] is given from the generating function identity:(
1−

∞

∑
i=0

Gi(θ)

Di|θ=t
xqi

)−1

=
∞

∑
n=0

Hn

Γn+1|θ=t
xn.

We note that for 0 ≤ n ≤ q−1 simply Hn = 1.
It turns out that the Carlitz zeta values ζA(n) can

be recognized as “period” of a dimension two Frobe-

nius module with its σ operator represented by the

following matrix

Φn :=

(
(t −θ)n 0
H(−1)

n−1 1

)
.

Given a Frobenius module with its operator σ rep-

resented by matrix Φ ∈ Matr(k̄[t]), we consider the fol-
lowing Frobenius difference equation:

Ψ
(−1) = ΦΨ,

with Ψ to be solved in Matr×1(E), where E is the ring of

entire power series ∑
∞
n=0 antn ∈ k̄[[t]] such that

lim
n→∞

n
√

|an|∞ = 0, [k∞ (a0,a1,a2, . . .) : k∞]< ∞.

Here the Frobenius twisting f 7→ f (−1) is extended

from to k̄[t] to E , and then to matrices with entries in

E by twisting entry-wise. These Frobenius difference

equations are analogues of systems of classical linear

differential equations.

Explicitly solving the Frobenius equation of Φn,

we introduce the entire power series

Ω(t) := (−θ)
−q

q−1
∞

∏
i=1

(
1− t

θ qi

)
.

Then 1
Ω(θ) = π̃ and Ω satisfies the functional equation

Ω(−1) = (t − θ)Ω. Also define the following family of

entire power series Ln:

Ln(t) := ∑
i≥0

(ΩnHn−1)
(i).

Then

Ψn :=
(

Ωn

Ln

)
gives the desired solution of our equation. Specializ-

ing at t = θ , we arrived at ([AT09])

Ψn(θ) =

( 1
π̃n

ΓnζA(n)
π̃n

)
.

To study multizeta values ζA(s1, · · · ,sr) of depth r
in positive characteristic, we consider Frobeniusmod-

ules of rank r+1 with its operator σ represented by

Φs :=



(t−θ)s1+···+sr 0 0 ··· 0

H(−1)
s1−1(t−θ)s1+···+sr (t−θ)s2+···+sr 0 ··· 0

0 H(−1)
s2−1(t−θ)s2+···+sr

. . .
...

...
. . . (t−θ)sr 0

0 ··· 0 H(−1)
sr (t−θ)sr 1

 .

A solution to the corresponding Frobenius difference

equation is of the form:

Ψs :=



Ωs1+···+sr

Ωs2+···+srL21
...
...

ΩsrLr1

L(r+1),1


,

where the last coordinate entire power series L(r+1,1)
is

L(r+1,1) = Ls := ∑
i1>···>ir≥0

(Ωsr Hsr−1)
(ir) · · ·(Ωs1 Hs1−1)

(i1)

which specializes at t = θ to the value ([AT09])

Ls(θ) = ψs := Γs1 · · ·Γsr ζA(s1, . . . ,sr)/π̃
s1+···+sr .

Given any finite set of multizeta values with the same

weight, ζA(s1), · · · ,ζA(sm), a crucial theorem of Chang

[C14] asserts that linear independence over k of

the corresponding last coordinate periods ψs1 , · · · ,ψsm

forces their linear independence over k̄. In other

words, these “periods” behave as if they are the usual

logarithms of algebraic numbers. However, proof of

this theorem is based on principles quite different

from the theory laid down by Baker half century

ago.

Frobenius modules are just finite-dimensional

vector spaces with a “twisting” operator σ . The ma-

trices Φs = Φ(s1,··· ,sr) describing the Frobenius mod-

ules in question possess a key property discovered

by Anderson-Brownawell-Papanikolas [ABP] which

makes our transcendence dream coming true: all en-

tries of Φs are integral, i.e. inside k̄[t], and further-

more detΦs equals c(t − θ)` for some nonzero c ∈ k̄.
Under such a condition on r × r matrix Φ describing

a given Frobenius module, if Ψ is analytic solution of

the Frobenius difference equation Ψ(−1) =ΦΨ in E , any
k̄-linear relation among the coordinates of Ψ(θ) can

be “lifted” to a k̄[t]-linear relation among the coordi-

nates of the vector Ψ. In other words if ρ ∈ Mat1×r(k̄)
and ρΨ(θ) = 0, then there exists vector P ∈ Mat1×r(k̄[t])
such that PΨ = 0 and P(θ) = ρ holds.

The above ABP criterion formulated (2004) for

Frobenius modules is extremely powerful analytic

tool for transcendence theory in positive character-

istic. It explains linear relations among special val-

44 NOTICES OF THE ICCM VOLUME 4, NUMBER 1



ues by way of linear relations among analytic func-

tions which come from solutions of Frobenius differ-

ence equations relating to these special values. This

ABP criterion can be viewed as a motivic reformu-

lation of the theory of logarithmic vectors of alge-

braic points on abelian t-modules developed by Yu in

the 1990’s ([Yu97]). Further traced back, Yu’s theory

was inspired by G. Wüstholz’s theory in the 1980’s in

the context of logarithms on commutative algebraic

groups. If one considers the specific group which is

product of copies of Gm, it goes back to the celebrated

work of A. Baker in 1960’s.
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