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Introduction

We present one of the shortest examples of a

statement with a visionary impact: we discuss an ex-

pectation by Gauss. His idea preludes developments

only started more than a century later. Several proofs

were given for the prediction by Gauss. We show

where this statements fits into modern mathematics.

We give a short proof, using methods, developed by

Hasse, Weil and many others. Of course this is his-

tory upside down: instead of seeing the Last Entry as

a prelude to modern developments, we give a 20-th

century proof of this 19-th century statement.

I thank Norbert Schappacher for discussions and

suggestions on this topic.

(1) Carl Friedrich Gauss (1777–1855) kept a mathe-

matical diary (from 1796). The last entry he wrote was

on 7 July 1814. A remarkable short statement.

Observatio per inductionem facta gravissima theoriam
residuorum biquadraticorum cum functionibus lemniscati-
cis elegantissime nectens. Puta, si a+bi est numerus primus,
a− 1+ bi per 2+ 2i divisibilis, multitudo omnium solutionum
congruentiae 1 = xx+yy+xxyy (mod a+bi) inclusis x = ∞, y =±i,
x =±i, y = ∞ fit = (a−1)2 +bb.

The text of the “Tagebuch” was rediscovered in

1897 and edited and published by Felix Klein, see [9],

with the Last Entry on page 33. A later publication

appeared in [5]. For a brief history see [6], page 97. In

translation:

A most important observation made by induction which
connects the theory of biquadratic residues most elegantly
with the lemniscatic functions. Suppose, if a+ bi is a prime
number, a− 1+ bi divisible by 2+ 2i, then the number of all
solutions of the congruence 1 = xx+ yy+ xxyy (mod a+ bi) in-
cluding x = ∞, y =±i; x =±i, y = ∞, equals (a−1)2 +bb.
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Remarks. In the original we see that Gauss indeed

used the notation xx, as was used in his time. In [4]

for example we often see that x2 and x′x′ are used in

the same formula.

The terminology “Tagebuch” used, with subti-

tle “Notizenjournal”, is perhaps better translated by

“Notebook” in this case. In the period 1796–1814 we

see 146 entries, and, for example, the Last Entry is

the only one in 1814. Gauss wrote down discover-

ies made. The first entry on 30 March 1796 is his fa-

mous result that a regular 17-gon can be constructed

by ruler and compass.

A facsimile reproduction and a transcript we find

in [5].

(2) We phrase the prediction by Gauss in other

terms. We write Fp = Z/p for (the set, the ring) the

field of integers modulo a prime number p. Suppose
p ≡ 1 (mod 4). Once p is fixed we write

N = #
(
{(x,y) ∈ Fp | 1 = x2 + y2 + x2y2}

)
+4.

A prime number p with p ≡ 1 (mod 4) can be written

as a sum of two squares of integers (as Fermat pre-

dicted, possibly proved by Fermat, and as proved by

Euler). These integers are unique up to sign and up to

permutation. Suppose we write

p = a2 +b2, with b even and a−1 ≡ b (mod 4);

this fixes the sign of a. In this case Gauss predicted

N = (a−1)2 +b2

for every p ≡ 1 (mod 4).

(3) Some history. In [9] we find the original formula-

tion edited and published by Klein. In [7] we find the

first proof for this expectation by Gauss. More histor-

ical details and descriptions of the Last Entry can be

found in [14]; [10]; Chapter 10; [3], page 86; [8], 11.5.
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We see the attempt and precise formulation of Gauss

of this problem as the pre-history and a prelude of the

Riemann hypothesis in positive characteristic as devel-

oped by E. Artin, F. K. Schmidt, Hasse, Deuring, Weil

and many others; a historical survey and references

can be found in [12] and [11].

(4) We give some examples. For p = 5 we obtain a =

−1, and b = ±2 and N = 8. Indeed, (x = ±1,y = ±1) are
the only solutions for Y 2 = X(X −1)(X +1) (see Propo-
sition 2(a) for an explanation).

We easily show that #(E13) = 8, as predicted by

Gauss.

For p = 17 we obtain a = +1 and b = ±4 and N =

16. Here are the 12 solutions of Y 2 = X(X − 1)(X +

1): the point 0, the three 2-torsion points and x =

4,5,7,10,12,13; the points (x = 4,y =±3) and (x = 13,y =
±5) we will encounter below as (x =−e,y = 1+ e) with
e2 =−1.

We explain below in which way the condition “di-

visible by 2+ 2i” mentioned by Gauss enters the dis-

cussion, and in which way, once p ≡ 1 (mod 4) is fixed,
this determines the choice of a. Also we explain the

four values “at infinity” as observed by Gauss.

(5) Notation. In this paper we consider fields of

characteristic zero or of characteristic p 6= 2. We will

consider an elliptic curve denoted by EK once a base

field K is given, to be described below. These base

fields will be Q, Q(
√
−1) or Fp. The equation 1 =

XX +YY +XXYY studied by Gauss gives a nonsingular,

affine curve and the corresponding projective curve

Z(−Z4 +X2Z2 +Y 2Z2 +X2Y 2)⊂ P2

has two singularities at infinity, both ordinary double

points; it follows that the normalization has genus

one (we will make this explicit below); moreover the

curve does have rational points, e.g. (x = 0,y = ±1),
hence E is an elliptic curve:

the curve E minus a finite set of points will be an affine

curve isomorphic with the curve

Z(−1+X2 +Y 2 +X2Y 2)⊂ A2,

where Z(−) stands for the set of zeros.

When saying for example “E is given by Y 2 =

X3+4X”, we intend to say that E is this unique projec-

tive, non-singular curve containing this affine curve;

in this case we see that

E = Z(−Y 2Z +X3 +4XZ2)⊂ P2

over any field of characteristic not equal to 2.
We see in the statement by Gauss four points “at

infinity”. Here is his explanation. Consider the projec-

tive curve

C = Z(−Z4 +X2Z2 +Y 2Z2 +X2Y 2)⊂ P2
K

over a field K of characteristic not equal to 2. For
Z = 0 we have points P2 = [x = 0 : y = 1 : z = 0] and
P1 = [x = 1 : y = 0 : z = 0]. Around P2 we can use a local

chart given by Y = 1, and Z(−Z4 +X2Z2 +Z2 +X2); we

see that the tangent cone is given by Z(Z2 +X2) (the

lowest degree part); hence we have a ordinary double

point, rational over the base field K and the tangents

to the two branches are conjugate if−1 is not a square
in K, respectively given by X = ±eZ with e2 = −1 in L.
This is what Gaussmeant by x=∞, y=±i. Analogously
for P2 and y = ∞, x =±i.

Explanation. Any algebraic curve (an absolutely re-

duced, absolutely irreducible scheme of dimension

one) C over a field K is birationally equivalent over

K to a non-singular, projective curve C′, and C′ is

uniquely determined by C. The affine curve Z(−1+
X2 +Y 2 +X2Y 2) ⊂ A2

K , over a field K of characteristic

not equal to 2 determines uniquely a curve, denoted

by EK in this note. This general fact will not be used:

we will construct explicit equations for EK (over any

field considered) and for EL over a field with an ele-

ment e ∈ L satisfying e2 =−1.
In the present case, we write C ⊂ P2

K as above (the

projective closure of the curve given by Gauss), E for

the normalization. We have a morphism h : E →C de-

fined over K. On E we have a set S of 4 geometric

points, rational over any field L ⊃ K in which −1 is

a square, such that the induced morphism

E \S −→ Z(−1+X2 +Y 2 +X2Y 2)⊂ A2
K

is an isomorphism.

(6) Normal forms.

Proposition 1. Suppose K is a field of characteristic

not equal to 2.

(a) The elliptic curve E can be given by T 2 = 1−X4.

(b) The elliptic curve E can be given by U2 =V 3 +4V .
(c) There is a subgroup Z/4 ↪→ E(K).

Proof. (a) From 1 = X2 +Y 2 +X2Y 2 we see

1−X2

Y 2 = 1+X2, and we write T =
1−X2

Y
.

(b) Starting from T 2 = 1−X4 with the substitutions

U =
(V +2)2T

4
, X =

V −2
V +2

we arrive at U2 =V 3+4V.

(c) The point P :=(v= 2,u= 4) is on the curve Z(−U2+

V 3 + 4V ); the line U = 2V passes through (0,0), a
2-torsion point, and substituting U = 2V we ob-

tain: (−2S)2 + S3 + 4S = S(S− 2)2, hence this line is

tangent at P, hence 2P is 2-torsion, hence P is a

4-torsion point.

Explanation. Starting with the equation given by

Gauss we take the 2 : 1 covering given by 1/Y , and
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remove denominators; this gives (a). We see two ra-

tional branch points: x =±1. We see that (x =±1,y = 0)
correspond with (x =±1, t = 0) and (x = 0,y =±1) with
(x = 0, t =±1). See [17], page 298.

We take one of these, the point with x = 1 and

make a coordinate change transporting this to infin-

ity in the Z-coordinate, andmake a further coordinate

change in order to obtain this Weierstrass equation;

this gives (b). The point (x = 1,y = 0) gives v = ∞ and

(x = −1,y = 0) gives (v = 0,u = 2). For x = 0 we obtain

v−2/v+2 = 0 hence v = 2 and u =±4.
In this form (c), or in the form in (b), we recognize

that the 4 obvious zeros (x =±1,y = 0), (x = 0,y =±1)
in the equation in (a) give a subgroup cyclic of order

4.

Proposition 2. Suppose L is a field of characteristic

not equal to 2. Suppose there is an element e ∈ L with

e2 =−1.

(a) The elliptic curve EL can be given by Y 2 =

X(X −1)(X +1).
(b) There is a subgroup (Z/4×Z/2) ↪→ E(L).

We will study this in case either L =Q(
√
−1) or L =

Fp with p ≡ 1 (mod 4) (as Gauss did in his Last Entry).

Proof. (a) Note that in L we have

(1+ e)2 = 2e; hence ((1+ e)3)2 = (2e)3.

Starting from U2 = V 3 + 4V , hence U2 = V (V +

2e)(V − 2e), after dividing by (2e)3, we write

V/(2e) = X and Y = U/(1+ e)3 and arrive at Y 2 =

X(X −1)(X +1).
(b) There is a 4-torsion point, see Proposition 1(c); in

fact (x = −e,y = 1+ e) ∈ L2 is such a pout. Also all

2-torsion points are rational over L, and we arrive

at the conclusion (b).

Explanation. Starting from U2 = V 3 +4V as in Propo-

sition 1(b) we see that over L all 2-torsion is rational

and we change the Weierstrass form to a Legendre

normal form by moving the branch ponts to −1,0,+1
and observing that we can already make the neces-

sary coordinate change over L.

Remark. We see that EL defined by U2 = V 3 + 4V has

complex multiplication by
√
−1 given by the map

v 7→ −v, u 7→ e·u with e ∈ L with e2 = −1. Tracing back

through the coordinate transformations this gives on

the equation as proposed by Gauss, with (x=+1,y= 0)
as zero-point on E, the transformation

1 = x2 + y2 + x2y2, x =
v−2
v+2

7→ −v−2
−v+2

=
1
x
, y 7→ e·u.

(7) The case p ≡ 3 (mod 4) (not mentioned by Gauss).

Theorem 3. The elliptic curve E over Fp with p ≡ 3
(mod 4) has:

#(E(Fp)) = p+1.

First proof. The elliptic curve E can be given by the

equation Y 2 = X3 + 4X . We define E ′ by the equation

−Y 2 = X3 +4X . We see:

#(E(K))+#
(
E ′(K)

)
= 2p+2; E ∼=K E ′.

Indeed, any x ∈ P1(K) giving a 2-torsion point con-

tributes +1 to both terms, and any possible (x,±y)
with y 6= 0 contributes +2 to exactly one of the terms.

The substitution X 7→ −X shows the second claim.

Hence #(E(K)) = (2p+2)/2.

Second proof. Partly taken from [10], page 318. We

note that E can be given by the equation as in Prop.

1(a). We write

C0 = Z(−Y 2 +1−X4)⊂ A2, and

D0 = Z(−Y 2 +1−X2)⊂ A2 and

D = Z(−Y 2 +Z2 −X2)⊂ P2.

Lemma. The images

2exp(Fp) = 4exp(Fp)

are equal.

Here aexp stands for themap x 7→ xa, and here p≡ 3
(mod 4). Note that (p−1)/2 is odd.

Proof of the Lemma. The isomorphism

((Fp)
∗,×)∼= (Z/(p−1),+)∼= (Z/2)× (Z/((p−1)/2)

translates aexp in multiplication by a. Both under 2exp
and 4exp the image is {0}×Z/((p−1)/2).

We have:

Step one;

E(Fp) =C0(Fp).

The transformation Y = η/ξ 2 and X = 1/ξ gives the

model η2 = ξ 4 − 1. Hence the points ξ = 0, η2 = 1 are

not rational over Fp.

Step two;

#
(
C0(Fp)

)
= #

(
D0(Fp)

)
.

This follows from the lemma.

Step three;

D0(Fp) = D(Fp).

Analogous proof as in Step one.

Step four;

#(D(Fp)) = p+1.

Over any field L a conic D with a rational point we

have a bijection D(L) = L∪{∞}.
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Note that Z/4 ∼= E(F3) and Z/4 $ E(Fp) for p > 3.
It is not difficult to show that E(Q)∼= Z/4.

(8) Frobenius and formulas. We recall some theory

developed by Emil Artin, F. K. Schmidt, Hasse, Deur-

ing, Weil and many others, now well-known, and later

incorporated in the general theory concerning “the

Riemann Hypothesis in positive characteristic”; for

a survey of the history, and for references see [12]

and [11]. For proofs in the case of elliptic curves used

and described here one can consult [15]. Notions in

this section are not fully explained nor documented

here.

The Frobenius morphism. For a variety V over a

field κ ⊃ Fp we construct V (p) over κ : instead of defin-

ing polynomials ∑aα Xα (multi-index notation, local

equations) for V we use the polynomials ∑ap
α Xα in or-

der to define V (p). There exists a morphism

Frob = F : V →V (p),

defined by “raising all coordinates to the power p”.
Note that if (xα | α) is a zero of f = ∑aα Xα , then indeed

(xp
α | α) is a zero of ∑ap

α Xα , because

f (x)p =

(
∑aα Xα

)p

= ∑ap
α xp

α .

Suppose κ = Fq with q = pn. Then there is an identi-

fication V (q) = V , and the n-times repeated Frobenius

morphism gives:

“Fn ”= FrobV/Fq

=
(

π : V →V (p) →V (p2) → ··· . . .→V (q) =V
)
.

This morphism was considered by Hasse in 1930. In

the case in this note we only consider Fp, i.e. n = 1 and
F = π .

A little warning. The morphism π : V → V induces

a bijection π(k) : V (k) → V (k) for every algebraically

closed field k ⊃ Fq; however (in case the dimension

of V is at least one) π : V →V is not an isomorphism.

Here is where the central idea starts: note that the

map x 7→ xq is the identity on Fq, and the set of fixed

points of this map on any field k ⊃ Fq is exactly the

subset Fq.

Along these lines one shows that set of invariants

(fixed points) of π(k) : V (k)→V (k) is exactly the set of
rational points V (Fq). On an elliptic curve V = E, using
the addition, we see that

Ker(π −1 : E → E) = E(Fq).

We can consider π ∈ End(E) as a complex number.

A small argument shows that

Norm(π −1) = #(E(Fq)) =: N.

Moreover for the complex conjugate π we have

π ·π = q. Write β := π + π , the trace of π . We see that

π is a zero of

T 2 −β ·T +q,

N=Norm(π −1)=(π −1)(π −1)=1−β +q;

|π|=√
q.

This is the first form of the characteristic p ana-

logue of the Riemann Hypothesis for elliptic curves;

the proof above is the second proof by Hasse (in 1934)

for elliptic curves, generalized by Weil for curves

of arbitrary genus, for abelian varieties, and further

generalized in the Weil conjectures, and proved by

Grothendieck, Deligne and many others; for a survey

and references see [12], [11].

Remark. Not used in this note. Suppose C is an ellip-

tic curve over K = K1 = Fq with FrobC/Fq = ρ . For every

m∈Z>0 we can compute the number of rational points

on C over Km := Fqm by:

#(C(Km)) = Norm(ρm −1).

The statements usually indicated by “the Rie-

mann hypothesis in positive characteristic” I tend to

indicate by pRH, in order to distinguish this from

the classical Riemann hypothesis RH. For any ellip-

tic curve C over a finite field Fq one can define its

zeta function (as can be done formore general curves,

and more general varieties over a finite field). As E.

Artin and F. K. Schmidt showed, for an elliptic curve

we have

Z(C,T ) =
(1−ρT )(1−ρT )
(1−T )(1−qT )

.

As is usual, the variable s is defined by T = q−s. The

theorem proved by Hasse is

|ρ|=√
q = |ρ|; this translates into s =

1
2

(pRH),

and we see the analogy with the classical RH, which

explains the terminology pRH.

Third proof of Theorem 3. (But not all concepts used

are explained). A prime number p ≡ 3 (mod 4) is in-

ert in Z[i] = End(EK); write K = Fp. This implies that

EK is supersingular. Its Frobenius homomorphism

π = FrobE/K is a zero of T 2 − βT + p ∈ Z[T ]. In the su-

persingular case we know that p divides β . As p > 2
and β 2 −4p ≤ 0 we conclude either β = 0 or p = 3 and

β = ±3. The last case would imply N = 1−3+3 = 1 or

N = 1+3+3 = 7, in contradiction with the fact that E
has a K-rational 2-torsion point. Hence β = 0 and

N = #(E(K)) = 1−β + p = p+1.

(9) A proof for the statement by Gauss in his Last

Entry. We analyze the condition
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a+bi is a prime number in Z[i], with i =
√
−1 and

a−1+bi divisible by 2+2i.

Claim. This implies a2 + b2 = p, a prime number with

p ≡ 1 (mod 4).

We use the fact (already known by Gauss) that

prime elements (up to units) of Z[i] are:

(2) π =±1± i,
(3) or a rational prime number ` with `≡ 3 (mod 4),
(4) or a+bi with a2 +b2 = p, a rational prime number

with p ≡ 1 (mod 4).

Suppose π = a+ bi ∈ Z[i], a prime. If π = ±1± i, then
2+2i does not divide π −1.

If `≡ 3 (mod 4), then `−1 ≡ 2 (mod 4) is not divisi-
ble by 2+2i; also `·i−1 is not divisible by 2+2i because
Norm(`·i− 1) ≡ 2 (mod 4). The cases (2) and (3) are ex-

cluded, hence we are in case (4).

Theorem 4 ((Gauss, Herglotz), [9], [7]). Suppose K =Fp

with p≡ 1 (mod 4). Let E =EK be the elliptic curve given

by the equation Gauss gave in his Last Entry. Then

(a) 8 divides #(E(Fp));

(b)

#(E(Fp)) = Norm(π −1) = (a−1)2 +b2;

we see a−1 ≡ b (mod 4);
(c) either p ≡ 1 (mod 8), and p = a2 + b2 with b even

and a≡ 1 (mod 4), or p≡ 5 (mod 8), with b even and

a ≡ 3 (mod 4).

Proof. (a). We have seen that for K = Fp with p ≡ 1
(mod 4) we have (Z/4×Z/2) ↪→ E(K).

(b) and (c). For K = Fp we know by the pRH for E,
that π·π = p; hence π = FrobE/Fp = a+bi with a2+b2 = p,
and

Norm(π −1) = #(E(Fp)) =: N.

Using the condition given by Gauss, or using that 8
divides N, we see that (a− 1)2 ≡ b2 (mod 8), hence a−
1 ≡ b (mod 4). Note that

N = (a−1)2 +b2 = (a2 +b2)−2a+1 = p−2a+1.

If p ≡ 1 (mod 8) we obtain 2a ≡ 2 (mod 8); if p ≡ 5
(mod 8)we obtain 2a≡ 6 (mod 8). Hence (c) follows.

What a precision in the statement by Gauss in his

Last Entry to to formulate the statement in this exact

form.

Remark. For any prime number p with p > 13 and for

the elliptic curve E in this note we have 8 < #(E(Fp))

and #(E(F13)) = 8. (However, there does exist an ellip-

tic curve C over F13 with #(C(F13)) = 7.)

Remark. Several other cases finding rational points

over a finite field (solving an equation modulo p) were
considered by Gauss; see [4], §358, [14], (2.1)–(2.5),

[3], §14C.

Remarks. We have seen that for p ≡ 1 (mod 4) and

E = EFp the Frobenius morphism is π = a±bi. One can
wonder whether −a ± bi is also the Frobenius of an

elliptic curve.

(a) For E = EK over a field K given by Y 2 = X3 + 4X
we choose δ ∈ K with δ not a square in K. We write E
for the elliptic curve over the field K given by δ ·Y 2 =

X3 +4X . For any finite field K = Fq we see that

#(E(K))+#
(
E ′(K)

)
= 2q+2.

(b) Choose p ≡ 1 (mod 4), with K = Fp and π ′ = −a±
bi. General theory tells us that this indeed is the

Frobenius of an elliptic curve, see Honda-Tate the-

ory [16]; the proof in the general case, using analytic

parametrization, is non-trivial; for a purely algebraic

proof see [2]. However in this particular case we see:

FrobE ′/K =−a±bi.

Indeed, we see that β = 2a and

#
(
E ′(K)

)
= 2p+2− (1−β + p) = 1− (−2a)+ p

and we conclude

FrobE ′/K =−a±bi,

a zero of T 2 + 2aT + p. Note that E and E ′ are non-

isomorphic over K = Fp, in this case p ≡ 1 (mod 4), but
that they become isomorphic over the quadratic ex-

tension Fp2 of K; also we see that (a+bi)2 = (−a−bi)2.

Remarks. The quartic equation given by Gauss in his

Last Entry originates in the theory of the lemniscate

functions. We refer to [1], Section 3, and to [13] for

details. The lemniscate functions sl(t) and cl(t) give a
parametrization

t 7→ (x = cl(t),y = sl(t))

of the curve given by x2 +y2 +x2y2 = 1; these functions
are analogous of the usual sine and cosine functions,

with the circle replace by the lemniscate of Bernouilli.

For example see [1], Section 3. Addition theorems and

other aspects of this uniformization are a rich source

of beautiful mathematics, but not the focus of this

note.

This parametrization of this particular elliptic

curve was generalized by Abel, Jacobi andWeierstrass

for all elliptic curves uniformized by elliptic func-

tions and by Koebe and Poincaré (1907) for arbitrary

curves of genus at least two.

Gauss used the lemniscate functions in his work.

However it is not so clear in which way this was of

inspiration for him to consider modulo p solutions

for this equation. Certainly his interest in biquadratic

residues and his thoughts and results about primes

in the ring Z[i] are connected with the topic discussed.
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Even so it is remarkable the precision in which he

found the right conditions and statement in the Last

Entry.

In [17], on page 106 André Weil comments on

the Last Entry. The statement “Observatio per in-

ductionem” could be translated by “empirically”. We

see comments on the connection with biquadratic

residues: the number of solutions of the equation in

this case is the analogue of pRH. On page 106 of

[17] we see how the “two memoirs on biquadratic

residues” were the cradle for the “generalized Rie-

mann Hypothesis”.

Gauss considered solution of this equation mod-

ulo p. Only much later EFp was considered as an in-

dependent mathematical object, not necessarily a set

of modulo p solutions of a characteristic zero polyno-
mial. What did Gauss consider? Note that in his Last

Entry Gauss wrote · · ·= · · · (mod a+bi); we see in work

by Gauss that he knew very well when to use “=” and

when to use “≡”. Was he foreshadowing the later use

of geometric objects in characteristic p? Note that Fe-
lix Klein in [9] made the “correction” replacing the =

sign by ≡.
In the beginning EFp was seen as the set of val-

uations of a function field, as in the PhD-thesis by

Emil Artin, 1921/1924. For elliptic curves this was

an accessible concept, but for curves of higher genus

(leave alone for varieties of higher dimensions) this

was cumbersome. A next step was to consider instead

a geometric object over a finite field; a whole now as-

pect of (arithmetic) algebraic geometry had to be de-

veloped, by Weil, Grothendieck and many others, be-

fore we could proceed. Each of these new insights was

not easily derived; however, as a reward we now have

a rich theory, and a thorough understanding of the

impact of ideas as in the Last Entry of Gauss.
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Figure 1. Carl Friedrich Gauss, 1777–1855.
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Figure 2. Facsimile in [5].
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Figure 3. Handwritten notes by Gauss.
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Figure 4. See [5], page 571.
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Figure 5. See [5], page 572.
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