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1. Mirror Symmetry Before SYZ

Calabi-Yaumanifolds are important inmathemat-

ics for many reasons: they give examples of Einstein

manifolds whose metrics are Ricci-flat but not flat,

and they occupy a special position in algebraic geom-

etry as a class of varieties with Kodaira dimension 0.

But when Yau [177, 178] gave his celebrated solution

of the Calabi conjecture in 1976, no one had expected

that these manifolds were also going to play such an

indispensable role in physics, or more precisely, in

string theory [13] – a candidate for unifying general

relativity and quantum field theory, whose develop-

ment in turn lead to the discovery of a mathematical

phenomenon called mirror symmetry that has gener-

ated a huge amount of research and drastically influ-

enced many branches of mathematics.

The story began in the late 1980’s when Dixon

[44] and Lerche-Vafa-Warner [119] discovered that

string theory might not distinguish Calabi-Yau man-

ifolds, or more precisely, that two different Calabi-

Yaumanifolds, when used as compactifications of the

hidden extra dimensions of spacetime, could give rise

to equivalent string theories. This surprising idea was

soon realized by Greene-Plesser [67] and Candelas-

Lynker-Schimmrigk [14] who independently found

nontrivial examples of such pairs of Calabi-Yau man-

ifolds; these are calledmirror pairs because two such

manifolds exhibit an interchange of Hodge numbers.

Mathematicians became really interested in mir-

ror symmetry when it was exploited by Candelas, de

la Ossa, Green and Parkes in a remarkable calcula-

tion of the numbers of rational curves on a quintic
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3-fold in P4 [12], which solved a long-standing prob-

lem in enumerative geometry and caught much atten-

tion from algebraic geometers at that time.

This triggered the development of important sub-

jects like Gromov-Witten theory, and eventually lead

to independent proofs of the mirror theorems by

Givental [63, 64] and Lian-Liu-Yau [125, 126, 127,

128], which in particular showed that the calculations

by Candelas et al. are mathematically correct. This

marked the first milestone in the mathematical study

of mirror symmetry. The next question is how to un-

derstand mirror symmetry in an intrinsic and mathe-

matical way.

The first such formulation was Kontsevich’s Ho-

mological Mirror Symmetry (HMS) conjecture, pro-

posed in his 1994 ICM address [111]. In physics ter-

minology, a Calabi-Yau manifold X determines two

topological string theories: the A-model and B-model,

which are controlled by the symplectic and complex

geometry of X respectively [169, 175]. From this per-

spective, mirror symmetry can be understood as an

isomorphism between the A-model (symplectic geom-

etry) of X and the B-model (complex geometry) of its

mirror X̌ , and vice versa. The above enumerative pre-

dictions about the quintic 3-fold is one of many inter-

esting manifestations of this bigger picture.

Kontsevich’s HMS conjecture formulates mir-

ror symmetry succinctly as an equivalence between

the Fukaya category of Lagrangian submanifolds in

X (A-model) and the derived category of coherent

sheaves on the mirror X̌ (B-model). His conjecture is

both deep and elegant, and is expected to imply the

enumerative predictions by mirror symmetry. Never-

theless, it does not indicate how such an equivalence

can be found, nor does it tell us how to construct the

mirror of a given Calabi-Yau manifold.
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2. Formulation of the SYZ Conjecture

In 1996, Strominger, Yau and Zaslow [163] made

a ground-breaking proposal which revealed the in-

timate relation between a pair of mirror Calabi-Yau

manifolds in a geometric manner:

Conjecture 2.1 (The SYZ conjecture [163]). Suppose

that X and X̌ are Calabi-Yau manifolds mirror to each

other. Then

(i) both X and X̌ admit special Lagrangian torus fi-

brations with sections µ : X → B and µ̌ : X̌ → B over

the same base:

X

µ
��

X̌

µ̌��
B

which are fiberwise dual to each other in the sense

that if the fibers µ−1(b) ⊂ X and µ̌−1(b) ⊂ X̌ over

b ∈ B are nonsingular, then they are dual tori; and

(ii) there exist fiberwise Fourier–type transforms re-

sponsible for the interchange between symplectic-

geometric (resp. complex-geometric) data on X
and complex-geometric (resp. symplectic-geome-

tric) data on X̌ .

In a nutshell, this says that the mysterious mirror

phenomenon can be understood simply as a Fourier

transform, known as T -duality. This remarkable and

far-reaching conjecture not only provides a beautiful

geometric explanation to mirror symmetry, but also

suggests a concrete mirror construction, namely, a

mirror of any given Calabi-Yau manifold X is given by

fiberwise dualizing a special Lagrangian torus fibra-

tion on X . It immediately became a major approach

in the mathematical study of mirror symmetry (the

other being Kontsevich’s HMS conjecture), and has at-

tracted a lot of attention from both mathematicians

and physicists.

Let us briefly review the heuristic reasoning be-

hind the SYZ conjecture. First of all, a key idea in

string theory is the existence of Dirichlet branes, or

D-branes. Physical arguments suggest that D-branes

in the B-model (or simply B-branes) are coherent

sheaves over complex subvarieties while those in the

A-model (A-branes) are special Lagrangian submani-

folds equipped with flat connections. As mirror sym-

metry predicts an equivalence between the A-model

of X and the B-model of X̌ , the moduli space of an A-

brane on X should be identified with themoduli space

of the mirror B-brane on X̌ .
Note that a point in X̌ is a B-brane and the moduli

space is X̌ itself, so it should be identified with the

moduli space of a certain A-brane (L,∇) on X , where
L ⊂ X is a special Lagrangian submanifold and ∇ is

a flat U(1)-connection on L. Since X̌ is swept by its

points, X should be swept by deformations of L as

well. Now McLean’s theorem [136] tells us that the

moduli space of a special Lagrangian submanifold

L ⊂ X is unobstructed and modeled on H1(L;R), while
the moduli space of flat U(1)-connections (modulo

gauge) on L is given by H1(L;R)/H1(L;Z). So in order to

match the dimensions, we should have dimH1(L;R) =
dimC X̌ = n, and hence X should admit a special La-

grangian torus fibration

µ : X → B.

Furthermore, the manifold X̌ itself may be viewed as

a B-brane whose moduli space is a singleton, and it

intersects each point in X̌ once, so the corresponding

A-brane (L,∇) should give a special Lagrangian sec-

tion σ to µ with H1(σ ;R) = 0. In particular, the base B
should have first Betti number b1 = 0.

Applying the same argument to X̌ yields a special

Lagrangian torus fibration with section

µ̌ : X̌ → B̌.

For a torus fiber Lb := µ−1(b) ⊂ X , its dual L∨
b can be

viewed as the moduli space of flat U(1)-connections
on L which, under mirror symmetry, correspond to

points in X̌ . This shows that L∨
b is a submanifold in X̌ .

More elaborated arguments show that L∨
b should be

identified with a special Lagrangian torus fiber of µ̌ ,

and we deduce that µ and µ̌ are fibrations over the

same base which are fiberwise dual to each other.

Notice that the above gives a transform carrying

the A-branes (L,∇) where L is a fiber of µ to points

(as B-branes) in X̌ . This is an instance of so-called

SYZ transforms, which are Fourier–type transforms

mapping symplectic-geometric data on X to complex-

geometric data on X̌ .
In the original SYZ paper [163], it was observed

that Ricci-flat metrics on the mirror X̌ should be-

have differently from the semi-flat Calabi-Yau met-

rics, constructed earlier by Greene-Shapere-Vafa-Yau

[68]. Therefore, the SYZmirror construction should in

general be modified by instanton or quantum correc-

tions. As we shall see, a key step in the investigation of

mirror symmetry is to understand these corrections,

which should come from higher Fourier modes of the

SYZ transforms.

3. Semi-Flat SYZ

When there are no singular fibers in the special

Lagrangian torus fibrations, the SYZ construction can

be worked out nicely. Firstly, McLean’s classic results

[136] give us two naturally defined integral affine
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structures1 on the base manifold B of a special La-

grangian torus fibration µ : X → B: the symplectic and

complex affine structures. More specifically, a nor-

mal vector field v to a fiber Lb := µ−1(b) determines

a 1-form α := −ιvω ∈ Ω1(Lb;R) and an (n − 1)-form
β := ιvImΩ ∈ Ωn−1(Lb;R), where ω and Ω are the Käh-

ler and holomorphic volume form on X respectively.

McLean [136] proved that the corresponding defor-

mation is special Lagrangian if and only if both α

and β are closed. By identifying T B with H1(Lb;R)
(resp. Hn−1(Lb;R)) using the cohomology class of α

(resp. β ), we get the symplectic (resp. complex) affine

structure on B. This also gives us the McLean metric

g(v1,v2) :=−
∫

Lb
ιv1 ω ∧ ιv2 ImΩ on B.

Hitchin used these structures and the Legendre

transform to illustrate the SYZ conjecture in his beau-

tiful paper [95]. Let x1, . . . ,xn be local coordinates on B
with respect to the symplectic affine structure. Then

the McLean metric can be written as the Hessian of a

convex function φ on B, i.e. g
(

∂

∂xi
, ∂

∂x j

)
= ∂ 2φ

∂xi∂x j
. Setting

x̌i := ∂φ/∂xi (i = 1, . . . ,n) gives precisely the coordinates
on B with respect to the complex affine structure, and

if

φ̌ :=
n

∑
i=1

x̌ixi −φ(x1, . . . ,xn)

is the Legendre transform of φ , then we have xi =

∂ φ̌/∂ x̌i and g
(

∂

∂ x̌i
, ∂

∂ x̌ j

)
= ∂ 2φ̌

∂ x̌i∂ x̌ j
.

If the fibration µ : X → B admits a Lagrangian

section, a theorem of Duistermaat [45] will give us

global action-angle coordinates so that symplectically

we have

X = T ∗B/Λ
∨,

where the lattice Λ∨ ⊂ T ∗B is locally generated by

dx1, . . . ,dxn, and ω can be identified with the canoni-

cal symplectic form

ω =
n

∑
i=1

dxi ∧dui

on T ∗B/Λ∨. Here u1, . . . ,un are the fiber coordinates on

T ∗B.
Then by the SYZ conjecture, the mirror of X

should be the fiberwise dual of µ , i.e.

X̌ := T B/Λ,

where the lattice Λ ⊂ T B is locally generated by

∂/∂x1, . . . ,∂/∂xn. Note that X̌ is naturally a complex

manifold with holomorphic coordinates given by zi :=
exp(xi+ iyi), where y1, . . . ,yn are fiber coordinates on T B

1 An integral affine structure on a manifold is an atlas of
charts whose transition maps are all integral affine linear
transformations.

dual to u1, . . . ,un. X is equipped with the holomorphic

volume form

Ω̌ := d logz1 ∧·· ·∧d logzn.

There is an explicit fiberwise Fourier–type transform,

called the semi-flat SYZ transformF semi-flat, that carries

exp iω to Ω̌ (see e.g. [23, Section 2]). Many other details

on semi-flat SYZ mirror symmetry were worked out

by Leung in [120].

If we now switch to the complex affine structure

on B, we obtain a symplectic structure on X̌ compat-

ible with its complex structure so that the mirror X̌
becomes a Kähler manifold. Furthermore, if the func-

tion φ above satisfies the real Monge-Ampère equa-

tion

det
(

∂ 2φ

∂xi∂x j

)
= constant,

we get T n-invariant Ricci-flat metrics on both X and

X̌ . The McLean metric on B is then called a Monge-

Ampère metric and B is called a Monge-Ampère man-

ifold. This links mirror symmetry to the study of real

Monge-Ampère equations and affine Kähler geome-

try, where Cheng and Yau had made substantial con-

tributions [35, 36, 37] way before mirror symmetry

was discovered. It turned out that the construction

of Monge-Ampère metrics on affine manifolds with

singularities is a very difficult question. The highly

nontrivial works of Loftin-Yau-Zaslow [131, 132] con-

structed such metrics near the “Y” vertex, a typical

type of singularity in the 3-dimensional case. But be-

sides this, not much is known.

4. Constructing SYZ Fibrations

Right after the introduction of the SYZ conjecture

in 1996, a great deal of effort was devoted to find-

ing examples of special Lagrangian torus fibrations,

or SYZ fibrations, on Calabi-Yau manifolds.2 Zharkov

[182] first constructed topological torus fibrations

on Calabi-Yau hypersurfaces in a smooth projective

toric variety P∆, which includes the important quin-

tic 3-fold example. He obtained his fibrations by de-

forming the restriction of the moment map on P∆ to

the boundary ∂∆ of the moment polytope to a nearby

smooth Calabi-Yau hypersurface.

Applying similar ideas and a gradient-

Hamiltonian flow, W.-D. Ruan found Lagrangian

torus fibrations on quintic 3-folds in a series of pa-

pers [151, 152, 153]. He also carried out a nontrivial

computation of the monodromy of the fibrations,

which was later used by Gross [72] to work out

2 In [69, 70], instead of constructing such fibrations, Gross
assumed their existence and deduced interesting conse-
quences which were predicted by mirror symmetry.
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a topological version of SYZ mirror symmetry for

Calabi-Yau manifolds. On the other hand, Mikhalkin

[137] produced smooth torus fibrations on hypersur-

faces in toric varieties by using tools from tropical

geometry.

In general, constructing special Lagrangian sub-

manifolds is a very difficult problem. One promising

approach is by mean curvature flow. Thomas [164]

formulated a notion of stability for classes of La-

grangian submanifolds with Maslov index zero in a

Calabi-Yau manifold, and it should be mirror to the

stability of holomorphic vector bundles. Thomas-Yau

[165] conjectured that there should exist a unique

special Lagrangian representative in a Hamiltonian

isotopy class if and only if the class is stable, and

that such a representative should be obtained by

mean curvature flow, the long time existence of which

should hold. They further proposed a Jordan-Hölder–

type decomposition for special Lagrangian submani-

folds and related this to formation of singularities in

mean curvature flow.

These proposals and conjectures have a big in-

fluence on the development of Calabi-Yau geometry

and the SYZ conjecture, and a lot of advances in this

area have been seen: [32, 33, 104, 118, 140, 141, 143,

158, 159, 160, 170, 171, 172, 173]; see [174] and

[142] and references therein for more details. Unfor-

tunately, despite so much effort, existence of special

Lagrangian torus fibrations on the quintic 3-fold is

still unknown.

In contrast, noncompact examples of special La-

grangian fibrations are much easier to come by. Har-

vey and Lawson’s famous paper on calibrated geome-

tries [94] gave the simplest of such examples: themap

defined by

f : C3 → R3,

(z1,z2,z3) 7→
(
Im(z1z2z3), |z1|2 −|z2|2, |z1|2 −|z3|2

)
,

is a special Lagrangian fibrations with fibers invari-

ant under the diagonal T 2-action on C3. This was

later largely generalized by independent works of

Goldstein [65] and Gross [71], who constructed ex-

plicit special Lagrangian torus fibrations on any toric

Calabi-Yau n-fold. The discriminant loci of these ex-

amples are of real codimension two and can be de-

scribed explicitly.

Another set of noncompact examples, which has

a historic impact on the development of SYZ mirror

symmetry and special Lagrangian geometry, was dis-

covered by Joyce [103]. It was once believed that spe-

cial Lagrangian fibrations would always be smooth

and hence have codimension two discriminant loci.

But the examples of Joyce indicated that this is

unlikely the case. What he constructed are explicit

S1-invariant special Lagrangian fibrations that are

only piecewise smooth and have real codimension one

discriminant loci. The set of singular points of such a

fibration is a Riemann surface whose amoeba-shaped

image gives the codimension one discriminant locus.

Joyce argued that his examples exhibited the generic

behavior of discriminant loci of special Lagrangian fi-

brations.

This important work of Joyce not only deepens

our understanding of possible singularities of special

Lagrangian fibrations, but also forces us to rethink

about the SYZ conjecture. Originally, a mirror pair of

Calabi-Yau manifolds X and X̌ are expected to have

special Lagrangian torus fibrations to the same base B
and share the same discriminant loci. Now Joyce’s ex-

amples suggest that while the discriminant locus on

one side may be of codimension two, that on the mir-

ror side can well be of codimension one. The best one

can hope for is that as one approaches the large com-

plex structure limits, the discriminant loci on both

sides converge to the same codimension two subset

in B.
More precisely, let X → D and X̌ → D be maxi-

mally unipotent degenerations of Calabi-Yau mani-

folds mirror to each other, where D is the unit disk

and 0 ∈ D are the large complex structure limits on

both sides. We choose a sequence {ti} ⊂ D converg-

ing to 0, and let gi, ǧi be Ricci-flat metrics on Xti , X̌ti
respectively, normalized to have fixed diameters C.
Then a limiting version of the SYZ conjecture can be

expressed as:

(i) there are convergent subsequences of (Xti ,gi)

and (X̌ti , ǧi) converging (in the Gromov-Hausdorff

sense) to metric spaces (B∞,d∞) and (B̌∞, ď∞) re-

spectively;

(ii) the spaces B∞ and B̌∞ are affine manifolds with

singularities which are both homeomorphic to Sn;

(iii) outside a real codimension 2 locus Γ ⊂ B∞ (resp.

Γ̌ ⊂ B̌∞), d∞ (resp. ď∞) is induced by a Monge-

Ampère metric; and

(iv) the Monge-Ampère manifolds B∞ \Γ and B̌∞ \ Γ̌ are

Legendre dual to each other.

This was proposed independently by Gross-

Wilson [92] and Kontsevich-Soibelman [114]. In fact,

the general question of understanding the limiting

behavior of Ricci-flat metrics was raised by Yau in

his famous lists of open problems [179, 180]. Moti-

vated by the SYZ picture of mirror symmetry, this

question has been studied extensively in the last

15 years, and substantial progress has been made

by Gross-Wilson [92], Tosatti [166, 167], Ruan-Zhang

[154], Zhang [181], Rong-Zhang [149, 150] and more

recently, Gross-Tosatti-Zhang [91, 90].

The metric spaces B∞ and B̌∞ should be viewed

as limits of bases of SYZ fibrations on the Calabi-Yau

families. Applying the above picture, one may try to
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construct the mirror of a maximally unipotent degen-

eration of Calabi-Yau manifolds X→ D by first identi-

fying the Gromov-Hausdorff limit B∞, taking the Leg-

endre dual B̌0 of B∞ \Γ, and then compactifying the

quotient X̌0 := T B̌0/Λ.

Unfortunately this approach is never going to

work because the semi-flat complex structure on X̌0

is not globally defined because of nontrivial mon-

odromy of the affine structure around the singular-

ities in B̌∞. To get the correct mirror, we need to de-

form the complex structure of X̌0 by quantum correc-

tions from holomorphic disks, as suggested by SYZ.

5. SYZ for Compact Calabi-Yau
Manifolds

It is believed that the symplectic structure that

we get using semi-flat SYZ mirror symmetry can nat-

urally be compactified to give a global symplectic

structure on the mirror. Indeed, Castaño-Bernard and

Matessi [15] have shown that the topological com-

pactifications constructed by Gross in [72] can be

endowed with symplectic structures, thus produc-

ing pairs of compact symplectic 6-folds which are

homeomorphic to known mirror pairs of Calabi-Yau

3-folds, including the quintic 3-fold and its mirror,

and equipped with Lagrangian torus fibrations whose

bases are Legendre dual integral affine manifolds

with singularities.

On the other hand, as we mentioned above, the

original SYZ proposal [163] pointed out that Ricci-

flat metrics on themirror should differ from semi-flat

Calabi-Yaumetrics [68] by instanton corrections com-

ing from holomorphic disks whose boundaries wrap

non-trivially around fibers of an SYZ fibration. Since

a metric on the mirror is determined uniquely by its

symplectic and complex structures, it is natural to

expect that the instanton corrections can be used to

perturb the mirror complex structure. This is the key

idea underlying the SYZ conjecture. As holomorphic

disks can be glued to give holomorphic curves, this

explains why mirror symmetry can be used to solve

enumerative problems.

Given an affine manifold with singularities B, let
Γ ⊂ B and B0 = B \Γ be its singular and smooth loci

respectively. What we want is the construction of a

complex manifold X as a (partial) compactification of

a small deformation of X0 := T B0/Λ. This is called the

reconstruction problem in mirror symmetry.

The problem was first studied by Fukaya in [53]

where he attempted to find suitable perturbations by

directly solving the Maurer-Cartan equation that gov-

erns the deformations of complex structures on X0.

In the two-dimensional case, his heuristic arguments

showed that the desired perturbations should come

from gradient flow trees in B emanating from Γ. The

latter should come from limits of holomorphic disks

bounding Lagrangian torus fibers of an SYZ fibration

when one approaches a large complex structure limit.

Fukaya made a series of intriguing conjectures ex-

plaining how quantum corrections are modifying the

mirror complex structure. Nevertheless the analysis

required to make his intuitively clear picture rigorous

seemed out of reach.3

Kontsevich-Soibelman [115] got around the ana-

lytic difficulties in Fukaya’s arguments by working

with rigid analytic spaces. They started with an in-

tegral affine structure on S2 with 24 singular points

such that the monodromy of the affine structure

around each singular point is
(

1 1
0 1

)
, and managed to

reconstruct a non-Archimedean analytic K3 surface.

The basic idea is to attach an automorphism to each

gradient flow line in Fukaya’s construction, and use

them to modify the gluing between charts on the

mirror, thereby canceling the effect of the nontrivial

monodromy of the affine structure around the dis-

criminant locus.

A crucial step in their argument is a key lemma

showing that when two gradient flow lines intersect,

new lines attached with automorphisms can always

be added so that the composition around each inter-

section point is the identity. This is called a scattering

diagram, which ensures that the composition of au-

tomorphisms attached to lines crossed by a path is

independent of the path chosen, so that the modified

gluings are consistent.

At around the same time, Gross and Siebert

launched their spectacular program [84, 85, 86, 73,

87] aiming at an algebraic-geometric approach to the

SYZ conjecture. Motivated by the limiting version

of the SYZ conjecture we discussed in the previous

section and the observation by Kontsevich that the

Gromov-Hausdorff limit will be roughly the dual in-

tersection complex of the degeneration, they formu-

lated an algebraic-geometric SYZ procedure to con-

struct the mirror.

Starting with a toric degeneration of Calabi-Yau

manifolds, the first step is to construct the dual in-

tersection complex. Then one takes its (discrete) Leg-

endre transform, and tries to reconstruct the mirror

toric degeneration of Calabi-Yau manifolds from this

Legendre dual. In this way, they can completely forget

about SYZ fibrations. The claim is that all relevant in-

formation is encoded in the tropical geometry of the

dual intersection complex, which is an integral affine

manifold with singularities and plays the role of the

base of an SYZ fibration.

3 In a very recent work [25], Fukaya’s program has been re-
alized by making use of the relation between Witten-Morse
theory and de Rham theory developed in [31]. In particular,
this gives a new geometric interpretation of scattering dia-
grams.
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Using the above key lemma of Kontsevich and

Soibelman, together with many new ideas such as the

use of log structures and techniques from tropical

geometry, Gross and Siebert eventually succeeded in

giving a solution to the reconstruction problem in

any dimension [87]. Given an integral affine mani-

fold with singularities satisfying certain assumptions

and equipped with some additional structures like a

polyhedral decomposition, they constructed a toric

degeneration of Calabi-Yau manifolds which can be

described explicitly and canonically via tropical trees

in B. An important feature of their construction is

that the Calabi-Yau manifolds constructed are de-

fined over C, instead of being rigid analytic spaces.

Now the goal is to acquire a more conceptual un-

derstanding of mirror symmetry by passing through

the tropical world. On the B-side, Gross and Siebert

conjectured that the deformation parameter in their

construction is a canonical coordinate4 and period in-

tegrals of the family of Calabi-Yau manifolds can be

expressed in terms of tropical disks in B. Evidences
were first provided in the local cases, e.g. the local P2

example in [87, Remark 5.1].

On the A-side, one would like to understand the

Gromov-Witten theory of a smooth fiber in terms

of that of the central fiber of a toric degeneration.

The recent independent works of Abramovich-Chen

[34, 4] and Gross-Siebert [89] developed the theory of

log Gromov-Witten invariants, generalizing previous

works of Li-Ruan [123], Ionel-Parker [101, 102], and

Jun Li [124] on relative Gromov-Witten theory. This

constitutes a significant step towards the ultimate

goal. If one can further prove a general correspon-

dence theorem between tropical and holomorphic

curves/disks, in the same vein as works of Mikhalkin

[138, 139], Nishinou-Siebert [147] and Nishinou [146,

145], then we can connect the A-side (i.e. Gromov-

Witten theory) of a Calabi-Yau manifold to the tropi-

cal world.

Albeit much work needs to be done, this lays out

a promising and beautiful picture to explain the ge-

ometry of mirror symmetry via tropical geometry. We

refer the reader to the nice survey articles of the in-

ventors [88, 75] for an overview of the Gross-Siebert

program.

6. SYZ for Noncompact Calabi-Yau
Manifolds

The lack of examples of special Lagrangian torus

fibrations is one main obstacle in implementing the

original SYZ proposal for compact Calabi-Yau man-

ifolds (and perhaps one of the main reasons why

4 This was recently confirmed by Ruddat-Siebert [155].

Gross and Siebert attempted to develop an algebraic-

geometric version). But there are plenty of noncom-

pact examples where one can find explicit special La-

grangian torus fibrations, such as those constructed

by Goldstein [65] and Gross [71] in the case of toric

Calabi-Yau manifolds.

Moreover, open Gromov-Witten invariants which

count stable maps from open Riemann surfaces to

the manifold are well-defined in the toric case by

works of Fukaya-Oh-Ohta-Ono [57, 58, 59] (and more

generally in the S1-equivariant case by the work of

Liu [130]). So it makes perfect sense to carry out

the SYZ proposal directly for toric Calabi-Yau mani-

folds, without retreating to the tropical world and an

algebraic-geometric version.

This brings us to the realm of local mirror sym-

metry, which is derived from mirror symmetry for

compact Calabi-Yau manifolds by taking certain lim-

its in the Kähler and complex moduli spaces [107].

Since this mirror symmetry provides many interest-

ing examples and has numerous applications, it has

attracted a lot of attention from both physicists and

mathematicians [121, 38, 97, 71, 72, 109, 66, 99, 100,

50, 51, 110, 156].

Let X be an n-dimensional toric Calabi-Yau mani-

fold (which is necessarily noncompact). To carry out

the SYZ construction, we use a special Lagrangian

torus fibration µ : X →B constructed by Goldstein and

Gross; such a fibration is non-toric, meaning that it is

not the usual moment map associated to the Hamil-

tonian T n-action on X . The discriminant locus of this

SYZ fibration has been analyzed in details by Gross

and can be described explicitly.

Topologically, the base B is simply an upper half-

space in Rn, and it is an integral affine manifold with

both singularities and boundary. The pre-image of the

boundary ∂B ⊂ B is a non-toric smooth hypersurface

D ⊂ X (a smoothing of the union of toric prime di-

visors). The discriminant locus Γ ⊂ B is a real codi-

mension two tropical subvariety contained in a hyper-

plane H which we call the wall in B. By definition, the
wall(s) inside the base of an SYZ fibration is the loci of

Lagrangian torus fibers which bound Maslov index 0

holomorphic disks in X . It divides the base into differ-
ent chambers over which the Lagrangian torus fibers

behave differently in a Floer-theoretic sense. In the

case of the Gross fibration, the wall H ⊂ B, which is

parallel to the boundary hyperplane ∂B, divides the

base into two chambers B+ and B−.

We consider (virtual) counts of Maslov index 2

holomorphic disks in X bounded by fibers of µ over

B+ and B−; these are disks which intersect with the

hypersurface D at one point with multiplicity one. As

a point moves from B− to B+ by crossing the wall,

the virtual number of Maslov index 2 disks bounded

by the corresponding Lagrangian torus fiber, or more
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precisely, genus 0 open Gromov-Witten invariants,

jumps, exhibiting a wall-crossing phenomenon.

This has been analyzed by Auroux [8, 9] and

Chan-Lau-Leung [20] by applying the sophisticated

machinery developed by Fukaya-Oh-Ohta-Ono [56].

Note that there is no scattering phenomenon in this

case because there is only one wall. By taking fiber-

wise dual over each chamber in the base, and then

gluing the resulting pieces together according to

the wall-crossing formulas, we obtain the instanton-

corrected or SYZ mirror X̌ , which is a family of affine

hypersurfaces (which are also noncompact Calabi-

Yaumanifolds) over the (complexified) Kähler moduli

space of X [20, 3], and this agrees with predictions by

physicists [38, 97].

This SYZ construction is very precise in the sense

that it tells us exactly which complex structure on

the mirror X̌ is corresponding to any given symplectic

structure on X – the defining equation of the mirror X̌
is an explicit expression written entirely in terms of

the Kähler parameters and disk counting invariants

of X . For example, the SYZ mirror of X = KP2 is given

by5

(6.1)

X̌ =

{
(u,v,z1,z2) ∈ C2 × (C×)2 | uv = δ (q)+ z1 + z2 +

q
z1z2

}
,

where q is the Kähler parameter which measures the

symplectic area of a projective line inside the zero

section of KP2 over P2, and

(6.2) δ (q) =
∞

∑
k=0

nkqk

is a generating series of genus 0 open Gromov-Witten

invariants.

Furthermore, the SYZ construction naturally de-

fines the SYZ map, which is a map from the Kähler

moduli space of X to the complex moduli space of X̌ .
As conjectured by Gross and Siebert [87, Conjecture

0.2 and Remark 5.1], the SYZ mirror family should be

written in canonical coordinates. In the toric Calabi-

Yau case, this is equivalent to saying that the SYZmap

is inverse to a mirror map.

Evidences for this conjecture for toric Calabi-Yau

surfaces and 3-folds were given in [20, 117], and

Chan-Lau-Tseng [21] proved the conjecture in the

case when X is the total space of the canonical line

bundle over a compact toric Fano manifold. Recently,

by applying orbifold techniques, the conjecture was

proved for all toric Calabi-Yau manifolds (and orb-

ifolds) in [19]. We call this an open mirror theorem

because it provides an enumerative meaning to (in-

verses of) mirror maps, and gives an effective way to

5 More precisely, the SYZ mirror of KP2 is given by the
Landau-Ginzburg model (X̌ ,W = u); see the next section.

compute all the genus 0 open Gromov-Witten invari-

ants.6

The main challenge in proving these results is the

computation of the genus 0 open Gromov-Witten in-

variants defined by Fukaya-Oh-Ohta-Ono [57]. Since

the moduli spaces of holomorphic disks are usually

highly obstructed, these invariants are in general very

difficult to compute. Currently, there are only very

few techniques available (such as open/closed equal-

ities, toric mirror theorems, degeneration techniques,

etc). For example, the invariants in (6.2) can be com-

puted as:

nk = 1,−2,5,−32,286,−3038,35870, . . .

for k = 0,1,2,3,4,5,6, . . ., which agrees with period com-

putations in [66].

We should mention that the SYZ construction can

be carried out also in the reverse direction [3] (see

also [18, Section 5]). For example, starting with the

conic bundle (6.1), one can construct an SYZ fibration

using similar techniques as in [65, 71]. Although the

discriminant locus is of real codimension one in this

case, the SYZ mirror construction can still be carried

out which gives us back the toric Calabi-Yau 3-fold

KP2 , as expected.7

Nevertheless, outside the toric realm, it is not

clear how SYZ constructions can be performed in

an explicit way. One major problem is the well-

definedness of open Gromov-Witten invariants. Only

in a couple of non-toric cases (see Liu [130] and

Solomon [161]) do we have a well-defined theory of

open Gromov-Witten invariants.8

7. SYZ in the Non–Calabi-Yau Setting

Not long after its discovery, mirror symmetry has

been extended to the non–Calabi-Yau setting, notably

to Fano manifolds, through the works of Batyrev [10],

Givental [62, 63, 64], Kontsevich [112], Hori-Vafa [98]

and many others. Unlike the Calabi-Yau case, the mir-

ror is no longer given by a manifold; instead, it is pre-

dicted to be a pair (X̌ ,W ), where X̌ is a non-compact

Kähler manifold andW : X̌ →C is a holomorphic func-

tion. In the physics literature, such a pair (X̌ ,W ) is

6 In their ICM lecture [82], Gross and Siebert sketched
an alternative proof of this conjecture, using logarithmic
Gromov-Witten theory [34, 4, 89] and with holomorphic
disks replaced by tropical disks. Very recently, by apply-
ing the results in [19], Lau [116] showed that the generating
functions of open Gromov-Witten invariants (such as δ (q) in
the case of X = KP2 ) are slab functions in the sense of Gross
and Siebert.
7 More precisely, the SYZ mirror of (6.1) is the complement
of a smooth hypersurface in KP2 .
8 There are, however, recent works of Fukaya [54, 55] on
defining disk counting invariants for compact Calabi-Yau
3-folds.
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called a Landau-Ginzburg model, and W is called the

superpotential of the model [168, 176].

It is natural to ask whether the SYZ proposal can

be extended to this setting as well. Auroux [8] was the

first to consider this question and in fact he consid-

ered amuchmore general setting, namely, pairs (X ,D)

consisting of a compact Kähler manifold X together

with an effective anticanonical divisor D. The defin-

ing section of D defines a meromorphic volume form

on X with simple poles only along D (and nowhere

vanishing on X \D), thus making it possible to speak

about special Lagrangian torus fibrations on the com-

plement X \D.
Suppose that we are given such a fibration µ :

X \D → B. Then we can try to run the SYZ construc-

tion to produce the SYZ mirror X̌ , i.e. considering
the moduli space of pairs (L,∇), where L is a fiber

of µ and ∇ is a flat U(1)-connection over L, and

then modifying by instanton corrections. Moreover,

the superpotential W will naturally appears as the

object mirror to Fukaya-Oh-Ohta-Ono’s obstruction

chain m0 for the Floer complexes of Lagrangian fibers

of µ .

When X is a compact toric Kähler manifold, a

canonical choice of D is the union of all toric prime

divisors. The moment map then provides a conve-

nient Lagrangian torus fibration on X , which has the

nice property that it restricts to a torus bundle on the

open dense torus orbit X \D. In this case, the SYZ mir-

ror manifold X̌ is simply given by the algebraic torus

(C×)n, because we have a torus bundle and there are

no instanton corrections in the construction of the

mirror manifold.

All the essential information is encoded in the su-

perpotential W . Prior to the work of Auroux, it was

Cho and Oh [39, 41] who first noticed that W can

be expressed in terms disk counting invariants (or

genus 0 open Gromov-Witten invariants). By classify-

ing all holomorphic disks in X bounded by moment

map fibers, they got an explicit formula for W in the

case when X is Fano, and this agrees with earlier pre-

dictions obtained using physical arguments by Hori-

Vafa [98]. This was later vastly generalized by works

of Fukaya-Oh-Ohta-Ono [57, 58, 59] to all compact

toric manifolds.

In [22], mirror symmetry for toric Fano mani-

folds was used as a testing ground to see how useful

Fourier–type transforms, or what we call SYZ trans-

forms, could be in the study of the geometry of mirror

symmetry. For a toric Fano manifold X , we consider

the open dense torus orbit U0 := X \D ⊂ X , which is

also the union of Lagrangian torus fibers of the mo-

ment map. Symplectically, we can write U0 = T ∗B0/Λ∨,

where B is the moment polytope and B0 denotes its

interior. Then the SYZ mirror is X̌ := T B0/Λ which is a

bounded domain in (C×)n. To obtain the superpoten-

tial W , we consider the space

X̃ :=U0 ×Λ ⊂ LX

of fiberwise geodesic/affine loops in X . On X̃ , we
have an instanton-corrected symplectic structure ω̃ =

ω +Φ, where Φ is a generating function of genus 0

open Gromov-Witten invariants which count (virtu-

ally) holomorphic disks bounded by moment map

fibers.

An explicit SYZ transformF was then constructed

by combining the semi-flat SYZ transform F semi-flat

with fiberwise Fourier series, and it was shown that

F transforms the corrected symplectic structure ω̃ on

X precisely to the holomorphic volume form eW Ω̌ of

the mirror Landau-Ginzburg model (X̌ ,W ), where W
was obtained by taking fiberwise Fourier transform

of Φ.

Moreover, F induces an isomorphism between

the (small) quantum cohomology ring QH∗(X) of X
and the Jacobian ring Jac(W ) of W . The proof was

by passing to the tropical limit, and observing that a

tropical curve whose holomorphic counterpart con-

tributes to the quantum product can be obtained

as a gluing of tropical disks; see [22] for details.

This observation was later generalized and used by

Gross [74] in his study of mirror symmetry for the

big quantum cohomology of P2 via tropical geome-

try.

As for manifolds of general type, there are cur-

rently two main approaches to their mirror symme-

try along the SYZ perspective. One is by Abouzaid-

Auroux-Katzarkov [3] in which they considered a hy-

persurface H in a toric variety V and constructed

a Landau-Ginzburg model that is SYZ mirror to the

blowup of V ×C along H ×{0}. In particular, when H
is the zero set of a bidegree (3,2) polynomial in V =

P1 ×P1, their construction produces a mirror of the

genus 2 Riemann surface, which is in agreement with

a previous proposal by Katzarkov [108, 106, 157].

Another approach, which is more in line with

the Gross-Siebert program, is the work by Gross-

Katzarkov-Ruddat [80], where they proposed that the

mirror to a variety of general type is a reducible vari-

ety equipped with a certain sheaf of vanishing cycles.

Presumably, the mirror produced in this approach

should give the same data as the one produced by

[3]. For example, the reducible variety should be the

critical locus of the superpotential of the SYZ mirror

Landau-Ginzburg model. But the precise relations be-

tween these two approaches are still under investiga-

tion.

8. Beyond SYZ

Besides providing a beautiful geometric explana-

tion ofmirror symmetry, the SYZ conjecture [163] has

been exerting its profound influence on many related
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areas of mathematics as well. We are going to briefly

describe several examples of applications in this re-

gard.

HMS via SYZ. As we have seen, the SYZ conjecture

is based upon the idea of D-branes in string theory.

Recall that B-branes (i.e. D-branes in the B-model) are

coherent sheaves over complex subvarieties while A-

branes (i.e. D-branes in the A-model) are special La-

grangian submanifolds equipped with flat U(1) con-
nections. Therefore we may regard Kontsevich’s Ho-

mological Mirror Symmetry (HMS) conjecture [111],

which asserts that the (derived) Fukaya category of

a Calabi-Yau manifold X is equivalent to the derived

category of coherent sheaves on the mirror X̌ , as a

manifestation of the isomorphism between the A-

model on X and the B-model on X̌ . Hence, rather nat-
urally, one may expect that the SYZ proposal, and in

particular SYZ transforms, can be employed to con-

struct geometric functors which realize the categorial

equivalences asserted by the HMS conjecture.

For example, given a Lagrangian section of an

SYZ fibration µ : X → B, its intersection point with a

fiber L of µ determines a flat U(1)-connection on the

dual torus L∨. Patching these flatU(1)-connections to-
gether give a holomorphic line bundle over the to-

tal space of the dual fibration, which is the mirror

X̌ modulo quantum corrections. This simple idea,

first envisioned by Gross [69, 70], was explored by

Arinkin-Polishchuk [7] and Leung-Yau-Zaslow [122]

to construct SYZ transforms which were then applied

to prove and understand the HMS conjecture in the

semi-flat Calabi-Yau case. Later, the same idea was

also exploited to study the HMS conjecture for toric

varieties [1, 2, 46, 48, 47, 16, 24, 40].

In some more recent works [18, 28, 27, 26, 81],

SYZ transforms were used to construct geometric

Fourier–type functors (on the objects level) which re-

alize the HMS categorial equivalences for certain ex-

amples of toric Calabi-Yau manifolds such as resolu-

tions of An-singularities and the smoothed conifold,

where one encounters SYZ fibrations with singular

fibers and hence nontrivial quantum corrections.

On the other hand, work in progress by

K.-L. Chan, Leung and Ma [29, 30] have shown that

SYZ transforms can also be applied to construct the

HMS equivalences on the morphism level, at least in

the semi-flat case. The ultimate goal is to construct a

canonical geometric Fourier-type functor associated

to any given SYZ fibration, which realizes the equiva-

lences of categories asserted by the HMS conjecture,

thereby enriching our understanding of the geometry

of the HMS conjecture, and also mirror symmetry as

a whole.

Ricci-flat metrics and disk counting. A remarkable

observation in the SYZ paper [163] is that a Ricci-

flat metric on the mirror can be decomposed as the

sum of a semi-flat part (which was written down ex-

plicitly earlier in Greene-Shapere-Vafa-Yau [68]) and

an instanton-corrected part which should come from

contributions by holomorphic disks in the original

Calabi-Yau manifold bounded by Lagrangian torus

fibers of an SYZ fibration. This suggests a con-

crete and qualitative description of Ricci-flat metrics,

which are almost never explicit.

In general, such a qualitative description is still

extremely difficult to obtain because nontrivial exam-

ples of SYZ fibrations on compact Calabi-Yau mani-

folds are hard to find and open Gromov-Witten theory

is not well-understood yet. However, recent works of

Gaiotto-Moore-Neitzke [60, 61] have shed new light

on the hyperkähler case. They proposed a new con-

jectural relation between hyperkähler metrics on the

total spaces of complex integrable systems (the sim-

plest example of which is the well-known Ooguri-

Vafa metric [148]) and Kontsevich-Soibelman’s wall-

crossing formulas.

To describe their proposal in a bit more details,

let us consider a complex integrable system ψ : M →B,
i.e. M is holomorphic symplectic and the fibers of

ψ are complex Lagrangian submanifolds. More pre-

cisely, what Gaiotto, Moore and Neitzke were look-

ing at in [60, 61] were all meromorphic Hitchin sys-

tems, in which case complete hyperkähler metrics

were first constructed by Biquard-Boalch [11]; see e.g.

[61, Section 4.1]. They made use of the fact that any

hyperkähler metric is characterized by the associated

twistor space, so they tried to construct a C×-family

of holomorphic Darboux charts on M which satisfy

the hypotheses of the theorem of Hitchin et al. [96].

In particular, they required the coordinates to satisfy

certain wall-crossing formulas which describe the dis-

continuity of the coordinates across the so-called BPS

rays, where the (virtual) counts of BPS states jump.

These wall-crossing formulas turn out to be

equivalent to those used by Kontsevich-Soibelman

[115] and Gross-Siebert [87] in their constructions

of toric degenerations of Calabi-Yau manifolds (and

on the other hand they are the same as the wall-

crossing formulas in motivic Donaldson-Thomas the-

ory [105, 113]). In view of this and the SYZ conjec-

ture, and also the fact that a vast family of exam-

ples of noncompact SYZ fibrations on meromorphic

Hitchin systems, including many in complex dimen-

sion two (e.g. gravitational instantons, log-Calabi-Yau

surfaces) have been constructed via hyperkähler rota-

tion in [11], it is natural to expect that the hyperkähler

metrics on those examples of complex integrable sys-

tems considered by Gaiotto, Moore and Neitzke can

be expressed in terms of (virtual) counting of holo-

morphic disks.

This was done for the simplest example – the

Ooguri-Vafa metric in [17]. More recent works of
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W. Lu [134, 135] have demonstrated that in general

the twistor spaces and holomorphic Darboux coor-

dinates on meromorphic Hitchin systems studied in

[60, 61] produced the same data as those required to

run the Gross-Siebert program [87], hence showing

that there must be some (perhaps implicit) relations

between the hyperkähler metrics and tropical disks

counting. In his PhD thesis [129], Y.-S. Lin considered

elliptic K3 surfaces and tropical disk counting invari-

ants. He proved that his invariants satisfy the same

wall-crossing formulas as those appeared in [60, 61].

Evidently, the hyperkähler metrics on those K3 sur-

faces are closely related to disk counting as well. More

recent works of Stoppa and his collaborators [162, 49]

have also shown the intimate relations between wall-

crossing formulas in motivic Donaldson-Thomas the-

ory and the constructions of Gaiotto-Moore-Neitzke.

Other applications of SYZ. Let us also mention two

recent unexpected applications of SYZ constructions,

without going into the details.

In their recent joint project [77], Gross-Hacking-

Keel constructed SYZ mirror families to log Calabi-

Yau surfaces, i.e. pairs (Y,D) where Y is a nonsingular

projective rational surface and D ∈ |−KY | is a cycle of
rational curves, by extending the construction in [87]

to allow integral affine manifolds with more general

(i.e. worse) singularity types. Amazingly, their results

could be applied to give a proof of a 30-year-old con-

jecture of Looijenga [133] concerning smoothability

of cusp singularities.

In a more recent paper [78], they applied their

construction to prove a Torelli theorem for log Calabi-

Yau surfaces, which was originally conjectured in

1984 by Friedman [52]. On the other hand, their con-

struction is also closely connected with the theory of

cluster varieties, and they have suggested a vast gen-

eralization of the Fock-Goncharov dual bases [76, 79].

For a nice exposition of these exciting new results and

developments, we refer the reader to the nice survey

article by Gross and Siebert [83].

In another direction, the SYZ construction has

been unexpectedly applied to construct new knot in-

variants. For a knot K in S3, its conormal bundle

N∗K is canonically a Lagrangian cycle in the cotan-

gent bundle T ∗S3. In [43], Diaconescu-Shende-Vafa

constructed a corresponding Lagrangian cycle LK in

the resolved conifold X :=OP1(−1)⊕OP1(−1), which is

roughly speaking done by lifting the conormal bundle

N∗K off the zero section and letting T ∗S3 undergo the

conifold transition. Their construction was motivated

by amysterious phenomenon called large N duality in

physics.

In [6], Aganagic-Vafa defined a new knot invariant

by a generalized SYZ construction applied to the pair

(X ,LK). More precisely, their invariant is a generating

function of genus 0 open Gromov-Witten invariants

for the pair (X ,LK). It turned out that the resulting

function is always a polynomial and they conjectured

that it is nothing but a deformation of the classical

A-polynomial in knot theory [42]. Furthermore, an in-

teresting relation between their invariant and aug-

mentations of the contact homology algebra of K
[144] was suggested. Substantial evidences for this

relation was obtained in a recent paper [5].

These two new applications of the SYZ conjec-

ture, together with many more yet to come, open up

new directions in mirror symmetry and many other

branches of mathematics and physics,9 and they are

all pointing towards further beautiful and exciting re-

search works in the future.
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Hyper-Kähler metrics and supersymmetry, Comm.
Math. Phys. 108 (1987), no. 4, 535–589. MR877637
(88g:53048)

[97] K. Hori, A. Iqbal, and C. Vafa, D-branes and mirror
symmetry, preprint (2000), arXiv:hep-th/0005247.

[98] K. Hori and C. Vafa,Mirror symmetry, preprint (2000),
arXiv:hep-th/0002222.

[99] S. Hosono, Local mirror symmetry and type IIA
monodromy of Calabi-Yau manifolds, Adv. Theor.
Math. Phys. 4 (2000), no. 2, 335–376. MR1838444
(2002k:81206)

[100] S. Hosono, Central charges, symplectic forms, and hy-
pergeometric series in local mirror symmetry, Mir-
ror symmetry. V, AMS/IP Stud. Adv. Math., vol. 38,
Amer. Math. Soc., Providence, RI, 2006, pp. 405–439.
MR2282969 (2008d:14061)

[101] E. Ionel and T. Parker, Relative Gromov-Witten in-
variants, Ann. of Math. (2) 157 (2003), no. 1, 45–96.
MR1954264 (2004a:53112)

[102] E. Ionel and T. Parker, The symplectic sum for-
mula for Gromov-Witten invariants, Ann. of Math.
(2) 159 (2004), no. 3, 935–1025. MR2113018
(2006b:53110)

[103] D. Joyce, Singularities of special Lagrangian fibrations
and the SYZ conjecture, Comm. Anal. Geom. 11 (2003),
no. 5, 859–907. MR2032503 (2004m:53094)

[104] D. Joyce, Y.-I. Lee, and M.-P. Tsui, Self-similar solu-
tions and translating solitons for Lagrangian mean
curvature flow, J. Differential Geom. 84 (2010), no. 1,
127–161. MR2629511 (2011f:53151)

[105] D. Joyce and Y. Song, A theory of generalized
Donaldson-Thomas invariants, Mem. Amer. Math. Soc.
217 (2012), no. 1020, iv+199. MR2951762

[106] A. Kapustin, L. Katzarkov, D. Orlov, and M. Yotov,
Homological mirror symmetry for manifolds of gen-
eral type, Cent. Eur. J. Math. 7 (2009), no. 4, 571–605.
MR2563433 (2010j:53184)

[107] S. Katz, A. Klemm, and C. Vafa, Geometric engineering
of quantum field theories, Nuclear Phys. B 497 (1997),
no. 1–2, 173–195. MR1467889 (98h:81097)

[108] L. Katzarkov, Birational geometry and homological
mirror symmetry, Real and complex singularities,
World Sci. Publ., Hackensack, NJ, 2007, pp. 176–206.
MR2336686 (2008g:14062)

[109] A. Klemm and E. Zaslow, Local mirror symmetry at
higher genus, Winter School on Mirror Symmetry,
Vector Bundles and Lagrangian Submanifolds (Cam-
bridge, MA, 1999), AMS/IP Stud. Adv. Math., vol. 23,
Amer. Math. Soc., Providence, RI, 2001, pp. 183–207.
MR1876069 (2003a:14082)

[110] Y. Konishi and S. Minabe, Local B-model and mixed
Hodge structure, Adv. Theor. Math. Phys. 14 (2010),
no. 4, 1089–1145. MR2821394 (2012h:14106)

[111] M. Kontsevich, Homological algebra of mirror sym-
metry, Proceedings of the International Congress of
Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birk-
häuser, 1995, pp. 120–139. MR1403918 (97f:32040)

[112] M. Kontsevich, Lectures at ENS Paris, spring 1998, set
of notes taken by J. Bellaiche, J.-F. Dat, I. Martin, G.
Rachinet and H. Randriambololona, 1998.

[113] M. Kontsevich and Y. Soibelman, Stability struc-
tures, motivic Donaldson-Thomas invariants and clus-
ter transformations, preprint (2008), arXiv:0811.2435.

[114] M. Kontsevich and Y. Soibelman, Homological mir-
ror symmetry and torus fibrations, Symplectic geom-
etry and mirror symmetry (Seoul, 2000), World Sci.
Publ., River Edge, NJ, 2001, pp. 203–263. MR1882331
(2003c:32025)

[115] M. Kontsevich and Y. Soibelman, Affine structures
and non-Archimedean analytic spaces, The unity
of mathematics, Progr. Math., vol. 244, Birkhäuser
Boston, Boston, MA, 2006, pp. 321–385. MR2181810
(2006j:14054)

[116] S.-C. Lau, Gross-Siebert’s slab functions and open GW
invariants for toric Calabi-Yau manifolds, Math. Res.
Lett. 22 (2015), no. 3, 881–898. MR3350109

[117] S.-C. Lau, N. C. Leung, and B. Wu, Mirror maps equal
SYZ maps for toric Calabi-Yau surfaces, Bull. Lond.
Math. Soc. 44 (2012), no. 2, 255–270. MR2914605

[118] Y.-I. Lee and M.-T. Wang, Hamiltonian stationary
shrinkers and expanders for Lagrangian mean cur-
vature flows, J. Differential Geom. 83 (2009), no. 1,
27–42. MR2545029 (2011a:53128)

[119] W. Lerche, C. Vafa, and N. Warner, Chiral rings in N = 2
superconformal theories, Nuclear Phys. B 324 (1989),
no. 2, 427–474. MR1025424 (91d:81132)

[120] N. C. Leung, Mirror symmetry without corrections,
Comm. Anal. Geom. 13 (2005), no. 2, 287–331.
MR2154821 (2006c:32028)

[121] N. C. Leung and C. Vafa, Branes and toric geome-
try, Adv. Theor. Math. Phys. 2 (1998), no. 1, 91–118.
MR1635926 (99f:81170)

[122] N. C. Leung, S.-T. Yau, and E. Zaslow, From special
Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai
transform, Adv. Theor. Math. Phys. 4 (2000), no. 6,
1319–1341. MR1894858 (2003b:53053)

[123] A.-M. Li and Y. Ruan, Symplectic surgery and
Gromov-Witten invariants of Calabi-Yau 3-folds, In-
vent. Math. 145 (2001), no. 1, 151–218. MR1839289
(2002g:53158)

[124] J. Li, A degeneration formula of GW-invariants, J. Dif-
ferential Geom. 60 (2002), no. 2, 199–293. MR1938113
(2004k:14096)

[125] B. Lian, K. Liu, and S.-T. Yau, Mirror principle. I,
Asian J. Math. 1 (1997), no. 4, 729–763. MR1621573
(99e:14062)

[126] B. Lian, K. Liu, and S.-T. Yau, Mirror principle. II,
Asian J. Math. 3 (1999), no. 1, 109–146, Sir Michael
Atiyah: a great mathematician of the twentieth cen-
tury. MR1701925 (2001a:14057)

[127] B. Lian, K. Liu, and S.-T. Yau, Mirror principle. III,
Asian J. Math. 3 (1999), no. 4, 771–800. MR1797578
(2002g:14080)

26 NOTICES OF THE ICCM VOLUME 4, NUMBER 1

http://www.ams.org/mathscinet-getitem?mr=2893676
http://www.ams.org/mathscinet-getitem?mr=3011419
http://arxiv.org/abs/1304.1820
http://www.ams.org/mathscinet-getitem?mr=1863732
http://www.ams.org/mathscinet-getitem?mr=1975332
http://www.ams.org/mathscinet-getitem?mr=666108
http://www.ams.org/mathscinet-getitem?mr=1655530
http://www.ams.org/mathscinet-getitem?mr=877637
http://www.ams.org/mathscinet-getitem?mr=877637
http://arxiv.org/abs/hep-th/0005247
http://arxiv.org/abs/hep-th/0002222
http://www.ams.org/mathscinet-getitem?mr=1838444
http://www.ams.org/mathscinet-getitem?mr=1838444
http://www.ams.org/mathscinet-getitem?mr=2282969
http://www.ams.org/mathscinet-getitem?mr=1954264
http://www.ams.org/mathscinet-getitem?mr=2113018\penalty -\@M (2006b:53110)
http://www.ams.org/mathscinet-getitem?mr=2113018\penalty -\@M (2006b:53110)
http://www.ams.org/mathscinet-getitem?mr=2032503
http://www.ams.org/mathscinet-getitem?mr=2629511
http://www.ams.org/mathscinet-getitem?mr=2951762
http://www.ams.org/mathscinet-getitem?mr=2563433
http://www.ams.org/mathscinet-getitem?mr=1467889
http://www.ams.org/mathscinet-getitem?mr=2336686
http://www.ams.org/mathscinet-getitem?mr=1876069
http://www.ams.org/mathscinet-getitem?mr=2821394
http://www.ams.org/mathscinet-getitem?mr=1403918
http://arxiv.org/abs/0811.2435
http://www.ams.org/mathscinet-getitem?mr=1882331
http://www.ams.org/mathscinet-getitem?mr=1882331
http://www.ams.org/mathscinet-getitem?mr=2181810
http://www.ams.org/mathscinet-getitem?mr=2181810
http://www.ams.org/mathscinet-getitem?mr=3350109
http://www.ams.org/mathscinet-getitem?mr=2914605
http://www.ams.org/mathscinet-getitem?mr=2545029
http://www.ams.org/mathscinet-getitem?mr=1025424
http://www.ams.org/mathscinet-getitem?mr=2154821
http://www.ams.org/mathscinet-getitem?mr=1635926
http://www.ams.org/mathscinet-getitem?mr=1894858
http://www.ams.org/mathscinet-getitem?mr=1839289
http://www.ams.org/mathscinet-getitem?mr=1839289
http://www.ams.org/mathscinet-getitem?mr=1938113
http://www.ams.org/mathscinet-getitem?mr=1938113
http://www.ams.org/mathscinet-getitem?mr=1621573
http://www.ams.org/mathscinet-getitem?mr=1621573
http://www.ams.org/mathscinet-getitem?mr=1701925
http://www.ams.org/mathscinet-getitem?mr=1797578
http://www.ams.org/mathscinet-getitem?mr=1797578


[128] B. Lian, K. Liu, and S.-T. Yau, Mirror principle. IV,
Surveys in differential geometry, Surv. Differ. Geom.,
VII, Int. Press, Somerville, MA, 2000, pp. 475–496.
MR1919434 (2003g:14073)

[129] Y.-S. Lin, Open Gromov-Witten invariants on elliptic K3
surfaces and wall-crossing, Ph.D. thesis, Harvard Uni-
versity, May 2013.

[130] C.-C. M. Liu, Moduli of J-holomorphic curves with
Lagrangian boundary conditions and open Gromov-
Witten invariants for an S1-equivariant pair, Ph.D. the-
sis, Harvard University, 2002, arXiv:math/0210257.

[131] J. Loftin, Singular semi-flat Calabi-Yau metrics on
S2, Comm. Anal. Geom. 13 (2005), no. 2, 333–361.
MR2154822 (2006d:32035)

[132] J. Loftin, S.-T. Yau, and E. Zaslow, Affine mani-
folds, SYZ geometry and the “Y” vertex, J. Differen-
tial Geom. 71 (2005), no. 1, 129–158. MR2191770
(2006j:53062)

[133] E. Looijenga, Rational surfaces with an anticanonical
cycle, Ann. of Math. (2) 114 (1981), no. 2, 267–322.
MR632841 (83j:14030)

[134] W. Lu, Instanton correction, wall crossing and mirror
symmetry of Hitchin’s moduli spaces, preprint (2010),
arXiv:1010.3388.

[135] W. Lu, SYZ mirror symmetry of Hitchin’s mod-
uli spaces near singular fibers I, preprint (2012),
arXiv:1208.3714.

[136] R. McLean, Deformations of calibrated submani-
folds, Comm. Anal. Geom. 6 (1998), no. 4, 705–747.
MR1664890 (99j:53083)

[137] G. Mikhalkin, Decomposition into pairs-of-pants for
complex algebraic hypersurfaces, Topology 43 (2004),
no. 5, 1035–1065. MR2079993 (2005i:14055)

[138] G. Mikhalkin, Enumerative tropical algebraic geometry
in R2, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377.
MR2137980 (2006b:14097)

[139] G. Mikhalkin, Tropical geometry and its applications,
International Congress of Mathematicians. Vol. II, Eur.
Math. Soc., Zürich, 2006, pp. 827–852. MR2275625
(2008c:14077)

[140] A. Neves, Singularities of Lagrangian mean curvature
flow: zero-Maslov class case, Invent. Math. 168 (2007),
no. 3, 449–484. MR2299559 (2008d:53092)

[141] A. Neves, Singularities of Lagrangian mean curvature
flow: monotone case, Math. Res. Lett. 17 (2010), no. 1,
109–126. MR2592731 (2011f:53152)

[142] A. Neves, Recent progress on singularities of La-
grangian mean curvature flow, Surveys in geomet-
ric analysis and relativity, Adv. Lect. Math. (ALM),
vol. 20, Int. Press, Somerville, MA, 2011, pp. 413–438.
MR2906935

[143] A. Neves, Finite time singularities for Lagrangianmean
curvature flow, Ann. of Math. (2) 177 (2013), no. 3,
1029–1076.

[144] L. Ng, A topological introduction to knot contact ho-
mology, Contact and symplectic topology, Bolyai Soc.
Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest,
2014, pp. 485–530. MR3220948

[145] T. Nishinou, Correspondence theorems for tropical
curves, preprint (2009), arXiv:0912.5090.

[146] T. Nishinou, Disk counting on toric varieties via
tropical curves, Amer. J. Math. 134 (2012), no. 6,
1423–1472. MR2999284

[147] T. Nishinou and B. Siebert, Toric degenerations of toric
varieties and tropical curves, Duke Math. J. 135 (2006),
no. 1, 1–51. MR2259922 (2007h:14083)

[148] H. Ooguri and C. Vafa, Summing up Dirichlet instan-
tons, Phys. Rev. Lett. 77 (1996), no. 16, 3296–3298.
MR1411842 (97i:81117)

[149] X. Rong and Y. Zhang, Continuity of extremal transi-
tions and flops for Calabi-Yau manifolds, J. Differen-
tial Geom. 89 (2011), no. 2, 233–269, Appendix B by
Mark Gross. MR2863918

[150] X. Rong and Y. Zhang, Degenerations of Ricci-flat
Calabi-Yau manifolds, Commun. Contemp. Math. 15
(2013), no. 4, 1250057, 8. MR3073445

[151] W.-D. Ruan, Lagrangian torus fibration of quintic hy-
persurfaces. I. Fermat quintic case, Winter School on
Mirror Symmetry, Vector Bundles and Lagrangian Sub-
manifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv.
Math., vol. 23, Amer. Math. Soc., Providence, RI, 2001,
pp. 297–332. MR1876075 (2002m:32041)

[152] W.-D. Ruan, Lagrangian torus fibration of quintic
Calabi-Yau hypersurfaces. II. Technical results on gra-
dient flow construction, J. Symplectic Geom. 1 (2002),
no. 3, 435–521. MR1959057 (2004b:32040)

[153] W.-D. Ruan, Lagrangian torus fibration of quintic
Calabi-Yau hypersurfaces. III. Symplectic topological
SYZ mirror construction for general quintics, J. Differ-
ential Geom. 63 (2003), no. 2, 171–229. MR2015547
(2004k:32043)

[154] W.-D. Ruan and Y. Zhang, Convergence of Calabi-Yau
manifolds, Adv. Math. 228 (2011), no. 3, 1543–1589.
MR2824563 (2012f:32033)

[155] H. Ruddat and B. Siebert,Canonical coordinates in toric
degenerations, preprint (2014), arXiv:1409.4750.

[156] P. Seidel, Suspending Lefschetz fibrations, with an
application to local mirror symmetry, Comm. Math.
Phys. 297 (2010), no. 2, 515–528. MR2651908
(2011g:53189)

[157] P. Seidel, Homological mirror symmetry for the genus
two curve, J. Algebraic Geom. 20 (2011), no. 4,
727–769. MR2819674 (2012f:53186)

[158] K. Smoczyk, Angle theorems for the Lagrangian mean
curvature flow, Math. Z. 240 (2002), no. 4, 849–883.
MR1922733 (2003g:53120)

[159] K. Smoczyk, Longtime existence of the Lagrangian
mean curvature flow, Calc. Var. Partial Differen-
tial Equations 20 (2004), no. 1, 25–46. MR2047144
(2004m:53119)

[160] K. Smoczyk and M.-T. Wang, Mean curvature flows
of Lagrangians submanifolds with convex potentials,
J. Differential Geom. 62 (2002), no. 2, 243–257.
MR1988504 (2004d:53086)

[161] J. Solomon, Intersection theory on the moduli space of
holomorphic curves with Lagrangian boundary condi-
tions, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, 2006, arXiv:math/0606429.

[162] J. Stoppa, Joyce-Song wall crossing as an asymptotic
expansion, Kyoto J. Math. 54 (2014), no. 1, 103–156.
MR3178548

[163] A. Strominger, S.-T. Yau, and E. Zaslow,Mirror symme-
try is T -duality, Nuclear Phys. B 479 (1996), no. 1–2,
243–259. MR1429831 (97j:32022)

[164] R. P. Thomas, Moment maps, monodromy and mirror
manifolds, Symplectic geometry and mirror symmetry
(Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001,
pp. 467–498. MR1882337 (2003e:53123)

[165] R. P. Thomas and S.-T. Yau, Special Lagrangians, sta-
ble bundles and mean curvature flow, Comm. Anal.
Geom. 10 (2002), no. 5, 1075–1113. MR1957663
(2004c:53073)

[166] V. Tosatti, Limits of Calabi-Yau metrics when the Käh-
ler class degenerates, J. Eur. Math. Soc. (JEMS) 11
(2009), no. 4, 755–776. MR2538503 (2010j:32039)

[167] V. Tosatti, Adiabatic limits of Ricci-flat Kähler met-
rics, J. Differential Geom. 84 (2010), no. 2, 427–453.
MR2652468 (2011m:32039)

JULY 2016 NOTICES OF THE ICCM 27

http://www.ams.org/mathscinet-getitem?mr=1919434
http://arxiv.org/abs/math/0210257
http://www.ams.org/mathscinet-getitem?mr=2154822
http://www.ams.org/mathscinet-getitem?mr=2191770\penalty -\@M (2006j:53062)
http://www.ams.org/mathscinet-getitem?mr=2191770\penalty -\@M (2006j:53062)
http://www.ams.org/mathscinet-getitem?mr=632841
http://arxiv.org/abs/1010.3388
http://arxiv.org/abs/1208.3714
http://www.ams.org/mathscinet-getitem?mr=1664890
http://www.ams.org/mathscinet-getitem?mr=2079993
http://www.ams.org/mathscinet-getitem?mr=2137980
http://www.ams.org/mathscinet-getitem?mr=2275625
http://www.ams.org/mathscinet-getitem?mr=2275625
http://www.ams.org/mathscinet-getitem?mr=2299559
http://www.ams.org/mathscinet-getitem?mr=2592731
http://www.ams.org/mathscinet-getitem?mr=2906935
http://www.ams.org/mathscinet-getitem?mr=3220948
http://arxiv.org/abs/0912.5090
http://www.ams.org/mathscinet-getitem?mr=2999284
http://www.ams.org/mathscinet-getitem?mr=2259922
http://www.ams.org/mathscinet-getitem?mr=1411842
http://www.ams.org/mathscinet-getitem?mr=2863918
http://www.ams.org/mathscinet-getitem?mr=3073445
http://www.ams.org/mathscinet-getitem?mr=1876075
http://www.ams.org/mathscinet-getitem?mr=1959057
http://www.ams.org/mathscinet-getitem?mr=2015547
http://www.ams.org/mathscinet-getitem?mr=2015547
http://www.ams.org/mathscinet-getitem?mr=2824563
http://arxiv.org/abs/1409.4750
http://www.ams.org/mathscinet-getitem?mr=2651908
http://www.ams.org/mathscinet-getitem?mr=2651908
http://www.ams.org/mathscinet-getitem?mr=2819674
http://www.ams.org/mathscinet-getitem?mr=1922733
http://www.ams.org/mathscinet-getitem?mr=2047144
http://www.ams.org/mathscinet-getitem?mr=2047144
http://www.ams.org/mathscinet-getitem?mr=1988504
http://arxiv.org/abs/math/0606429
http://www.ams.org/mathscinet-getitem?mr=3178548
http://www.ams.org/mathscinet-getitem?mr=1429831
http://www.ams.org/mathscinet-getitem?mr=1882337
http://www.ams.org/mathscinet-getitem?mr=1957663
http://www.ams.org/mathscinet-getitem?mr=1957663
http://www.ams.org/mathscinet-getitem?mr=2538503
http://www.ams.org/mathscinet-getitem?mr=2652468


[168] C. Vafa, Topological Landau-Ginzburg models, Mod-
ern Phys. Lett. A 6 (1991), no. 4, 337–346. MR1093562
(92f:81193)

[169] C. Vafa, Topological mirrors and quantum rings, Es-
says onmirror manifolds, Int. Press, Hong Kong, 1992,
pp. 96–119. MR1191421 (94c:81193)

[170] M.-T. Wang,Mean curvature flow of surfaces in Einstein
four-manifolds, J. Differential Geom. 57 (2001), no. 2,
301–338. MR1879229 (2003j:53108)

[171] M.-T. Wang, Long-time existence and convergence
of graphic mean curvature flow in arbitrary codi-
mension, Invent. Math. 148 (2002), no. 3, 525–543.
MR1908059 (2003b:53073)

[172] M.-T. Wang, Gauss maps of the mean curvature
flow, Math. Res. Lett. 10 (2003), no. 2–3, 287–299.
MR1981905 (2004m:53121)

[173] M.-T. Wang, A convergence result of the Lagrangian
mean curvature flow, Third International Congress of
Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv.
Math., 42, pt. 1, vol. 2, Amer. Math. Soc., Providence,
RI, 2008, pp. 291–295. MR2409639 (2009m:53180)

[174] M.-T. Wang, Some recent developments in Lagrangian
mean curvature flows, Surveys in differential geom-
etry. Vol. XII. Geometric flows, Surv. Differ. Geom.,
vol. 12, Int. Press, Somerville, MA, 2008, pp. 333–347.
MR2488942 (2009m:53181)

[175] E. Witten, Mirror manifolds and topological field the-
ory, Essays on mirror manifolds, Int. Press, Hong
Kong, 1992, pp. 120–158. MR1191422 (94c:81194)

[176] E. Witten, Phases of N = 2 theories in two dimen-
sions, Nuclear Phys. B 403 (1993), no. 1–2, 159–222.
MR1232617 (95a:81261)

[177] S.-T. Yau, Calabi’s conjecture and some new results
in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74
(1977), no. 5, 1798–1799. MR0451180 (56 #9467)

[178] S.-T. Yau, On the Ricci curvature of a compact Kähler
manifold and the complex Monge-Ampère equation. I,
Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.
MR480350 (81d:53045)

[179] S.-T. Yau, Problem section, Seminar on Differential Ge-
ometry, Ann. of Math. Stud., vol. 102, Princeton Univ.
Press, Princeton, N.J., 1982, pp. 669–706. MR645762
(83e:53029)

[180] S.-T. Yau, Open problems in geometry, Differential
geometry: partial differential equations on mani-
folds (Los Angeles, CA, 1990), Proc. Sympos. Pure
Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993,
pp. 1–28. MR1216573 (94k:53001)

[181] Y. Zhang, Collapsing of Calabi-Yau manifolds and
special Lagrangian submanifolds, preprint (2009),
arXiv:0911.1028.

[182] I. Zharkov, Torus fibrations of Calabi-Yau hypersur-
faces in toric varieties, Duke Math. J. 101 (2000), no. 2,
237–257. MR1738179 (2001b:14070)

28 NOTICES OF THE ICCM VOLUME 4, NUMBER 1

http://www.ams.org/mathscinet-getitem?mr=1093562
http://www.ams.org/mathscinet-getitem?mr=1093562
http://www.ams.org/mathscinet-getitem?mr=1191421
http://www.ams.org/mathscinet-getitem?mr=1879229
http://www.ams.org/mathscinet-getitem?mr=1908059
http://www.ams.org/mathscinet-getitem?mr=1981905
http://www.ams.org/mathscinet-getitem?mr=2409639
http://www.ams.org/mathscinet-getitem?mr=2488942
http://www.ams.org/mathscinet-getitem?mr=1191422
http://www.ams.org/mathscinet-getitem?mr=1232617
http://www.ams.org/mathscinet-getitem?mr=0451180
http://www.ams.org/mathscinet-getitem?mr=480350
http://www.ams.org/mathscinet-getitem?mr=645762
http://www.ams.org/mathscinet-getitem?mr=645762
http://www.ams.org/mathscinet-getitem?mr=1216573
http://arxiv.org/abs/0911.1028
http://www.ams.org/mathscinet-getitem?mr=1738179

	Mirror Symmetry Before SYZ
	Formulation of the SYZ Conjecture
	Semi-Flat SYZ
	Constructing SYZ Fibrations
	SYZ for Compact Calabi-Yau Manifolds
	SYZ for Noncompact Calabi-Yau Manifolds
	SYZ in the Non–Calabi-Yau Setting
	Beyond SYZ
	References

