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Abstract. We consider α ′-corrections to Calabi-Yau

compactifications of type II string theory. These were

discussed from the string worldsheet approach many

years ago in terms of supersymmetric non-linear

σ -models by Nemeschansky and Sen as well as

Gross and Witten. There it was shown that once

α ′-corrections are included, the internal manifold

solving the string equations of motion is still

Calabi-Yau though not Ricci flat. In this brief note we

review these results and compare with a space-time

effective field theory approach, in which we show that

SU(3)-holonomy manifolds become SU(3)-structure
manifolds once such corrections are included.

1. Introduction

Ever since the discovery of Calabi-Yau compact-

ifications of string theory [1], physicists have won-

dered, if corrections to these manifolds would spoil

the property, that Kähler manifolds with vanishing

first Chern class solve the string equations of motion

(1.1) dJ = 0, c1(M6) = 0.

Here M6 denotes the six-dimensional internal mani-

fold, J is the Kähler form and c1(M6) is the first Chern

class of M6. The vanishing of the first Chern class is

a topological condition that holds, in particular, if M6
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admits a Ricci-flat metric

(1.2) Rab = 0, with a,b = 1, · · · ,6.

Many years ago Calabi conjectured [2], that a com-

pact Kähler manifold with vanishing first Chern class

admits a Kähler metric with SU(3) holonomy in the

same Kähler class. This conjecture was subsequently

proven in the famous work by Yau [3].

By definition, it is always possible to find a covari-

antly constant spinor η on SU(3) holonomymanifolds

(1.3) ∇aη = 0.

This implies that M6 is Ricci-flat as can be shown in

two simple steps [1]. First, the commutator gives

(1.4) [∇a,∇b]η = 0 =⇒ RabcdΓ
cd

η = 0.

Here Rabcd is the 6D Riemann tensor and Γa are the 6D

gamma matrices. Second, contracting with Γb shows

Ricci flatness of M6

(1.5) Rab = 0.

How do string theory corrections influence this re-

sult? This is the subject of this note.

1.1 Wordsheet Versus Space-Time Approach

There are two approaches that can be followed to

describe the perturbatively corrected manifold:

1. Worldsheet approach in terms of an N = 2 su-

persymmetric nonlinear σ -model. This was used

by Nemeschansky and Sen and Gross and Witten

many years ago [4, 5] and is described in the next

section.
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2. The space-time effective field theory approach

for Calabi-Yau compactifications was used more

recently [6]. It is also the method used earlier

for G2 compactifications by K. Becker, D. Rob-

bins and E. Witten [7]. The N = 1 sigma model

approach for G2 manifolds is work in progress

[8].

We shall see that the mathematical techniques used

on the worldsheet and in space-time are very similar.

We begin with the worldsheet description of N = 2
models.

2. Worldsheet Approach:
Nemeschansky and Sen

Consider a (2,2) nonlinear σ -model in superspace

for which the target manifold is complex and Kähler,

(2.1)

∫
d2

ξ d2
θ d2

θ̄K(Φ,Φ̃).

Here Φ and Φ̃ areN = 2 superfields and K is the Kähler

potential of the target manifold. To construct a the-

ory of strings on a curved background it is necessary

that worldsheet conformal invariance be preserved.

This implies that the worldsheet energy-momentum

tensor is traceless

(2.2) T i
i = 0,

where i, j = 1,2 describe worldsheet indices. Equiva-

lently, this condition can be formulated in terms of

the target space metric β -function, see [4] and refer-

ences therein

(2.3) β
G
ab = Rab +α

′
∂a∂b∆β

K .

Here a,b denote again the six-dimensional real indices

of the target manifold and the first term on the right

hand side corresponds to the one-loop contribution,

while the second term is the contribution from higher

loops, which come in at order α ′ and higher. The form

of the latter term follows from N = 2 supersymmetry,

as the metric in this case can be expressed in terms

of a single function, the Kähler potential K.
Using complex coordinates m,n, · · · , m̄, n̄ = 1,2,3,

the one-loop contribution is

β
G
mn = Rmn = 0, β

G
m̄n̄ = Rm̄n̄ = 0,

β
G
mn̄ = Rmn̄ = c∂m∂n̄ Tr(lnG).(2.4)

Here G is a 3× 3 complex matrix describing the tar-

get space metric and c is a constant that is not rele-

vant for our purpose. The first two of the above equa-

tions vanish for Kähler manifolds. The third equation

says that the one-loop β -function vanishes for Ricci-

flat manifolds. Thus M6 is a Calabi-Yau manifold.

What happens once higher order corrections are

included? Define ∆β K as the contribution to the

β -function from loops `≥ 2 and δK = K − K̃ as well as

δGmn̄ = Gmn̄ − G̃mn̄ = ∂m∂n̄δK. Here the tilde denotes the
Ricci-flat metric.

The goal is to solve the equation of vanishing

β -function to all orders in α ′

(2.5) c∂m∂n̄ Tr(lnG)+α
′
∂m∂n̄∆β

K(G) = 0.

If the metric satisfies the condition

(2.6) cTr(lnG)+α
′
∆β

K(G) = cTr(ln G̃),

it certainly solves the former equation. Equivalently

this can be written as

G̃mn̄
∂m∂n̄δK =−α

′c−1
∆β

K(G)+
∞

∑
k=2

(−1)k

k
Tr

(
G̃−1

δG
)k

,

(2.7)

as can be easily verified. Equation (2.7) can be solved

iteratively for δK. Since δK is of order α ′, the leading

equation is

(2.8) �̃δK =−α
′c−1

∆β
K(G̃).

∆β K(G̃) is a globally defined scalar (see [4] for a very

detailed discussion on this non-trivial point, which

holds beyond one-loop; at one-loop the correspond-

ing Tr(lnG) is not globally defined). Thus, a simple ar-

gument involving the Hodge decomposition theorem

says one can separate it into a globally defined har-

monic zero form a0, that on a compact manifold is

constant and a piece orthogonal to this zero mode,

b0, that is a globally defined zero form

(2.9) ∆β
K(G̃) = a0 + �̃b0.

Taking into account

(2.10) �̃K̃ = G̃mn̄
∂m∂n̄K̃ = G̃mn̄G̃mn̄ = 3,

the solution to (2.8) is

(2.11) δK =−α
′c−1

(a0

3
K̃ +b0

)
.

The resulting metric

(2.12) Gmn̄ = G̃mn̄ −α
′c−1

(a0

3
G̃mn̄ +∂m∂n̄b0

)
,

is again Kähler but not Ricci-flat. Note that the met-

ric belongs to the same Kähler class as a Ricci flat

metric (which is the leading order Ricci-flat metric

rescaled by the constant factor (1 − α ′c−1a0/3)) and
that c1(M6) = 0. The corrected manifold M′

6 is Calabi-

Yau in the topological sense with a representative

that is Ricci-flat in the same Kähler class.
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Note that

(2.13) δGmn̄ =−α
′c−1

(a0

3
G̃mn̄ +∂m∂n̄b0

)
,

is a globally defined tensor field, as b0 is a globally

defined scalar field. Thus the new metric

(2.14) Gmn̄ = G̃mn̄ +δGmn̄,

is an admissible metric on the Calabi-Yau manifold.

This process can be performed iteratively by inserting

(2.15) δGmn̄ = ∂m∂n̄δK,

into the right hand side of (2.7). The resulting ex-

pression is a globally defined scalar field because we

had just seen, that δGmn̄ is a globally defined tensor.

This is the only input used to arrive at the solution

(2.13), so the new equations may be solved as before

to find an all orders solution. At each step we will get

an equation like (2.12), showing that the new metric

which will be in the same Kähler class as a Ricci-flat

metric (which is a constant rescaling of the original

metric).

3. Space-Time Approach

In this framework we can make contact with the

beautiful mathematics of G structures, so it puts the

previous worldsheet approach into a slightly differ-

ent perspective. Of course, all features of the cor-

rected target manifold M′
6 emerge in this approach as

well

1. M′
6 is Kähler.

2. c1(M′
6) = 0.

3. Rab 6= 0 with a,b = 1, · · · ,6, so M′
6 is no longer Ricci-

flat.

As an additional bonus, we show that M′
6 has SU(3)

structure rather than SU(3) holonomy.

3.1 The SU(3) Structure

There is an excellent mathematical literature

defining rigorously the concept of (the more general)

G structure (see e.g. [9]). For our purpose we define

an SU(3) structure as a collection of SU(3) invariant
globally defined (real) forms J, Ω1, Ω2,

(3.1) (J,Ω1,Ω2) .

Here J is a two-form and Ω1, Ω2 are three-forms. In

the Calabi-Yau case these forms are closed, but this is

no longer (necessarily) true for SU(3) structure man-

ifolds. Failure of the structure group SU(3) to be the

holonomy group SU(3) is characterized by the com-

ponents of the intrinsic torsion

dJ =−3
2

Im(W1Ω̄)+W4 ∧ J+W3,

dΩ =W1J2 +W2 ∧ J+W̄5 ∧Ω,
(3.2)

see e.g. [10] or one of the many other references

on SU(3) structure manifolds. The explicit form of

the torsion classes Wi is not needed in the following

though.

An SU(3) structure singles out a basis of (real and
commuting) spinors on M6,

(3.3) (η , iΓη , iΓaη) ,

and a dual basis

(3.4)
(
η

T ,−iηT
Γ,−iηT

Γa
)
.

Here Γa are the 6D gamma matrices previously intro-

duced, that can be chosen to be imaginary and anti-

symmetric and Γ = i
6 ε

abcde f Γabcde f is the 6D chirality

operator.

Being a basis on M6 these spinors satisfy the com-

pleteness relation or Fierz identity

(3.5) 1 = ηη
T +Γηη

T
Γ+Γ

a
ηη

T
Γa,

as can be easily verified.

The SU(3) structure on M6 can be constructed as

spinor bilinears

Jab = −iηT
ΓabΓη ,

Ω1 abc = −iηT
Γabcη ,(3.6)

Ω2 abc = −η
T

ΓabcΓη .

These forms are not independent but satisfy some re-

lations which follow from the Fierz identity (3.5),

(3.7) J∧Ω1 = J∧Ω2 = 0, J∧ J∧ J =
3
2

Ω1 ∧Ω2.

There are more identities for the dual forms

?Ω1 =−Ω2,

?J = J∧ J,
(3.8)

see [6] for a complete list of equivalences.

Further, Ω2 can be expressed in terms of the triple

(J,Ω1,gab) as can be verified using again the Fierz iden-

tity

(3.9) Ω2 abc =−JadΩ1 bcegde.

Finally, the metric follows from the pair (J,Ω1)

(3.10) gab = gab[J,Ω1],

as has been shown in [6], where it was verified that

the proposed metric satisfies all the duality-, contrac-

tion-, and normalization-identities. Such a relation
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between the metric and the SU(3) structure appears

for the G2 case in e.g. the review [11]. The identity for

the SU(3) case is new, as far as we know.
In conclusion, we can solve the constraints (3.7)

along with the SUSY constraints (which follow next)

for the pair (J,Ω1), while Ω2 and the metric gab follow

by the previous relations.

3.2 Supersymmetry Constraints

The covariant derivative of a normalized spinor

η can be expressed (very generally) in terms of the

spinor basis

(3.11) ∇aη = iAaΓη + iB b
a Γbη .

Here Aa and B b
a are matrices encoding the α ′-correc-

tions to the gravitino SUSY transformation. We do not

need the explicit form of these corrections except for

some of their properties. To leading order in α ′ we

have Aa =B b
a = 0 (as previously discussed), while to or-

der α ′3 the corrections are explicitly known (see refs.

in [6]).

Taking covariant derivatives of the SU(3) struc-

ture,

(3.12) ∇aJbc =−2iηT
ΓbcΓ∇aη = 2B b

a Ω2 bcd ,

we observe that B b
a = 0 for the manifold M6 to remain

Kähler. Non-Kähler manifolds lead to time dependent

solutions once the space-time fields are taken into ac-

count, as pointed out by Gross and Witten [5]. The

covariant derivative of Ω1 is

(3.13) ∇aΩ1 bcd =−2iηT
Γbcd∇aη =−2AaΩ2 bcd .

The antisymmetrized equations take the form

(3.14) dJ′ = 0 & dΩ
′
1 =−2A∧Ω

′
2.

If the right hand side of the second equation is non-

vanishing, we observe that Ω′
1 is no longer closed.

The manifold then fails to have SU(3) holonomy, but

rather has SU(3) structure. The goal is to solve the

previous equations along with the constraints

(3.15) J′∧Ω
′
1 = 0 & J′∧ J′∧ J′ =

3
2

Ω
′
1 ∧Ω

′
2.

Here the prime denotes the α ′-corrected forms

(3.16) J′ = J+δJ & Ω
′
1 = Ω1 +δΩ1,

and Ω′
2 is constructed from J′ and Ω′

1 as in (3.9).

These equations can be solved iteratively in α ′. A

convenient ansatz for the first order corrected SU(3)
structure, that uses input from group theory (see [6]

for details) is

(3.17) J′ = J+da & Ω
′
1 = Ω1 −2λΩ2 +2xΩ1 +db.

Here λ and x describe one forms encoding the

α ′-corrections, that are assumed to be known

(3.18) Aa = ∇aλ + Ja
b
∇bx.

Further, a and b denote a one form and a two form

respectively. The leading order result to the equations

(3.14) satisfying the constraints (3.15) is

(3.19) aa = J b
a ∇bρ & bab = 0,

Here ρ satisfies the Poisson equation

(3.20) ∇
2
ρ +4x = 0.

This can always be solved, because x is determined

only up to a constant c

(3.21) 0 =
∫

M′
6

∇
2
ρ =−4

∫
M′

6

x+ c.

The equations (3.14) and (3.15) can then be evalu-

ated to the next order and beyond to find an all orders

solution.

4. Conclusion

To summarize: the space-time approach leads to

the same conclusions about M′
6 as the worldsheet ap-

proach, just from a different perspective.

1. M′
6 remains Kähler but is no longer Ricci-flat.

2. The corrected manifold M′
6 has a vanishing first

Chern class, c1(M′
6) = 0,

so M′
6 is Calabi-Yau in the topological sense, but not in

the metric sense. The space-time approach showed,

that M′
6 has no longer SU(3) holonomy but rather

SU(3)structure, because the holomorphic three-form

is no longer closed.
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