
Geometry of space, physics and

analysis*

by Shing-Tung Yau†

We must admit with humility that, while number is purely
a product of our minds, space has a reality outside our minds,
so that we cannot completely prescribe its properties a priori.

C. F. Gauss (Letter to Bessel, 1830)

The concept of space has gone through many

stages of evolution. Many of them are related to the

advancement of our understanding of nature.

From Ancient to Modern Geometry

In the days of the Greek geometers, plane and

Euclidean geometry were reasonably adequate to de-

scribe most observations. The Greek scholars were

convinced that the earth is round and were able to

measure the diameter of the earth and its distance to

the sun based on plane geometry. The Chinese schol-

ars also measured the distance of the earth to the

heaven using similar ideas.

But even then, Archimedes had already started to

investigate infinite processes to understand geomet-

ric figures that could not be described by Euclidean

geometry alone. Calculations of volumes of many dif-

ferent geometric figures started the investigation of

integral calculus, as was also proposed by ancient

Chinese mathematicians.

Not long afterwards, in the process of measuring

the movement of celestial bodies, the ancient Indians
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and Chinese discovered the concept of differentiation

of trigonometric functions.

Copernicus proposed that the sun, instead of the

earth, is the center of the universe. The work of Kepler

and Galileo that supported Copernicanism appeared

a half century later. It was widely accepted only after

Newton formulated the universal law of gravitation.

When Isaac Newton merged the development of

differential and integral calculus together and veri-

fied Kepler’s laws of motion of planets, mathematics

reached a new plateau, largely because calculus gave

us a most powerful tool to understand and calculate

the geometry of curved objects that appear in nature.

Some historians said that Leibniz independently

discovered calculus. Many of the mathematical nota-

tions we used today are in fact due to him. However,

without Newton’s important application of calculus

to mechanics, few people would have paid much at-

tention to the development of calculus.

Soon afterwards, many great mathematicians de-

veloped new disciplines of mathematics based on this

new tool of calculus. The most notable was the devel-

opment of differential geometry and the introduction

of calculus of variations. Fermat, Euler and Monge are

among the most notable contributors. Some of their

works are still being investigated today. It is amazing

that even then, calculus of variations was used exten-

sively by differential geometers.

In his famous paper On the Hypotheses Which

Lie at the Foundation of Geometry (1854), Riemann

wrote: “The theorems of geometry cannot be deduced

from the general notion of magnitude alone, but

only from those properties which distinguished space

from other conceivable entities, and these properties

can only be found experimentally … This takes us

into the realm of another science – physics.”
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The discovery of the concept of the intrinsic

Gauss curvature is certainly a landmark for the mod-

ern development of differential geometry. It should

have been amajor inspiration for the birth of Rieman-

nian geometry.

In the beginning of his famous address in Göttin-

gen in 1854, Riemann says that the foundations had

already been laid by Gauss’ investigations of curved

surfaces. A couple of years later, when he introduced

the concept of Riemannian curvature tensor in an es-

say for a competition given by the French Academy of

Sciences, he mentioned that the calculation was sim-

ilar to the one given by Gauss.

It should be noted that Riemann was interested in

his geometry because of his strong desire to find an

adequate concept of space to understand the laws of

nature. He was interested in the laws of electromag-

netic field. In his collected works published posthu-

mously in 1876, he discusses electrodynamics and

apparently anticipates some of Maxwell’s work. Rie-

mann had originally submitted the paper in 1858, but

then withdrew it because of an error in a calculation.

Maxwell independently published his equations be-

tween 1861 and 1862.

In his famous address, Riemann asked how to

come up with a concept of geometry that can incorpo-

rate the space of the enormously large and the space

of the extremely small. He even raised the possibility

that a discrete space can play an important role.

It is a curiosity whether Riemann would have dis-

covered general relativity if he had lived forty years

longer. (He died on July 20, 1866, less than forty years

old.) In any case, Einstein’s theory of general relativ-

ity was based on Riemannian geometry, as was in-

troduced to him by Grossmann in 1910. General rel-

ativity is one of the most spectacular achievement

of physics in the twentieth century. I shall comment

later on how the theory of general relativity influ-

enced the modern development of differential geom-

etry.

At the same time when Riemann introduced his

geometry, he was developing the geometric aspect

of complex analysis and in particular he studied the

concept of a Riemann surface – one of the most fun-

damental tool in modern mathematics and physics.

Not only did he give deep insights into complex anal-

ysis from the point of view of geometry, but also

he initiated the full development of modern topol-

ogy. He studied the connectivity of a space and in-

troduced several measurements of high connectiv-

ity. They were later called Betti numbers of those

spaces.

The concept of conformal geometry and confor-

mal invariance have been major tools for string the-

ory. And its higher dimensional generalizations to

complex geometry have been fundamental in under-

standing complex manifolds.

Geometry and Topology of Manifolds

While Newton proposed the space to be static,

Einstein demanded the space to be dynamic, integrat-

ing special relativity with Newtonian gravity. The idea

of Minkowski to interpret special relativity using ge-

ometry of four-dimensional spacetime was essential

for Einstein’s development of general relativity. This

led Einstein and Grossmann to use the work of Rie-

mann and Ricci.

When Einstein developed the theory of general

relativity, he consulted, besides Grossmann, Levi-

Civita and David Hilbert. It was clear that Hilbert had

given tremendous help to Einstein and Hilbert had

even derived the action for general relativity before

Einstein.

After the theory of general relativity was accom-

plished, a group of scientists were interested in gen-

eralizing the theory to incorporate other fields. Levi-

Civita was the one who developed the concept of dif-

ferentiation on a curved manifold, which he called

the theory of connections. In order for the connection

to behave like differentiation in Euclidean space, he

demands the connection to be symmetric. If parallel

transportation preserves the metric, the connection

would be uniquely determined by the metric. Such a

connection is called Levi-Civita connection.

Levi-Civita observed that if the connection is not

assumed to be symmetric, the skew-symmetric part

of the connection can be used as a free variable to be

a new field to be considered in physics. This inspired

both Élie Cartan and Hermann Weyl to develop the

theory much further.

Weyl studied connections on bundles and hence

initiated the fundamental concept of gauge theory

with abelian gauge groups, and this was later gen-

eralized by Yang and Mills in 1954 to include non-

abelian gauge groups. But it was Weyl who under-

stood Maxwell’s equations as a gauge theory and

hence gave topological meaning to the theory of elec-

tricity and magnetism. Later in 1970, ’t Hooft, us-

ing ideas of DeWitt and Faddeev-Popov, succeeded

in quantizing Yang-Mills gauge theory. This then led

to the current fundamental understanding of particle

physics based on nonabelian gauge theory in which

the Standard Model was built.

All these spectacular works in modern physics

are related to parallel developments from the strong

desire of topologists and geometers to understand

the structure of manifolds. The basic idea is to sim-

plify complicated spaces by cutting them into simple

building blocks.

The simplest building blocks are cells, con-

tractible spaces or handle bodies. In the process of

attaching simple spaces together, we often need to

twist before gluing them together. Hence, this led to

the notion of a fiber space.
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The concept of a fiber bundle was introduced in

early days, first by Whitney in 1935 for sphere bun-

dles over any spaces. (Seifert considered 3-manifolds

which can be written as circle bundles in 1932, but

the point of view is different.) The theory was stud-

ied by Stiefel, Hopf, Ehresmann, Pontryagin, Chern,

Steenrod, Leray and Serre.

The characteristic classes introduced by the

founders of the theory of fiber bundles had deep in-

fluences in modern geometry and physics. These are

cohomology classes with integer values. After Chern

introduced his Chern classes, A. Weil made a remark

that Chern classes should be used as a tool to quan-

tize fundamental physical quantities. This is indeed

the case and shows how remarkable the connection

is between geometry and physics.

When topologists and algebraic geometers were

working hard to understand homology and cohomol-

ogy of manifolds, Poincaré, E. Cartan, Weyl, de Rham,

Hodge, Kodaira and Morse realized the importance of

analysis on manifolds.

Analysis is a subject that studies how functions

and their derivatives behave. Most laws of physics are

expressed in terms of differential equations. One of

the goals of analysis is to describe solutions of these

equations, both qualitatively and quantitatively.

Differential geometers soon found that con-

versely we can use the solutions of the equations

to understand the geometry of the underlying man-

ifolds. In the case of Morse, he can use any reason-

able good function to study the topology of a man-

ifold. Take an example, look at the donut as a two-

dimensional surface. A natural function is the height

of each point above the plane.

The gradient of this function on the surface de-

fines a vector field tangential to the surface. There are

some special points on the surface: the points where

the gradient vector field vanish. In the present case,

there are four such points shown in the picture. They

are called critical points.

There is a neighborhood at each critical point

where the gradient vector field has well defined direc-

tions of pointing upward or downward. Such neigh-

borhoods allow Morse to decompose the manifold

into pieces according to the distribution of these crit-

ical points. He also showed how to build the manifold

by gluing these pieces together.

The work of Morse had deep influence on the

works of Smale and Bott on handle body decom-

position of manifolds and homotopy groups of Lie

groups. It also led to the work of Witten in quantum

field theory.

An entity called differential form is used very fre-

quently in modern geometry. They can be considered

as dual objects of vector fields. A very important op-

eration in the theory of differential form is called ex-

terior differentiation. This is a concept which general-

izes the divergence and curl in multivariable calculus.

In the early twentieth century, Poincaré, Cartan

and de Rham uncovered the topological meaning of

the differential forms and their exterior derivatives,

which inspired Hodge and Kodaira to develop the the-

ory of harmonic forms; some of their ideas can be

traced back to the classical theory of fluid dynamics

and electricity and magnetism.

Hodge theory was soon generalized to handle

twisted differential forms, namely forms with coeffi-

cients in a bundle. A fundamental breakthrough was

the vanishing theorem of Bochner-Kodaira based on

the positivity of the bundle which can be described

by the curvature of the bundle. The vanishing the-

orem allows us to compute the dimension of solu-

tions of linear differential operators and prove the

existence of power series solutions (the unobstruct-

edness theorem). The Riemann-Roch formula and the

Atiyah-Singer index theorem play fundamental roles

in such calculations.

As a result, Hodge theory is also an important tool

to study the moduli space of geometric structures.

The first important geometric structure was due to

Riemann who studied conformal structures on two

dimensional surfaces where he counted the dimen-

sion of the moduli space to be 6g− 6. Here g is the

number of handles on the two dimensional surface

and the dimension of the moduli space can be inter-

preted as the degree of freedom to change the con-

formal structures.

Riemann’s famous work was extended by

Poincaré, Schottky, Teichmüller and others in the

early 20th century.

After Riemann, a very important concept was in-

troduced by Felix Klein. His famous Erlangen Program

proposed to study geometry according to the group

of symmetries. Many important branches of geome-

try were studied. For example, affine geometry stud-

ies quantities on a surface that are invariant when

we move the surface by a linear transformation in

the ambient Euclidean space. In contrast to Euclidean

geometry, the length is no more invariant in affine

geometry. Similarly, projective differential geometry

studies quantities invariant under projective trans-

formations.

Sophus Lie (who is a close friend of Klein) cre-

ated the theory of continuous groups and observed

that they could be better understood through their

linearized version – Lie algebra.

While Klein used global symmetries to create and

classify new types of geometries, the concept of in-

ternal symmetry took over in the 20th century. Clas-

sification of geometries was dictated by the holon-

omy group associated to the connections. Holonomy

group is a group that describes the behavior of par-
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allel transports of vectors along closed loops in the

manifold that is governed by the connection.

The Italian algebraic geometers, most of them

were followers of Riemann, had studied the subject of

classification of algebraic varieties. Many of the con-

cepts they introduced were later understood to be ex-

pressible in terms of the cohomology of forms with

coefficients in bundles. Kähler geometry and the the-

ory of complex structures became popular after the

works of Hirzebruch, Chern, Kodaira and Spencer.

Note that while algebraic varieties are the zero lo-

cus of a set of polynomials, complex manifolds are

more general and may be considered as a generaliza-

tion of conformal structures on surfaces to higher di-

mensional spaces modeled after complex Euclidean

spaces.

Kähler geometry was introduced by Erich Käh-

ler. It includes algebraic manifolds as special case. It

gives the most coherent way to put complex struc-

ture and Riemannian geometry together. An impor-

tant feature of Kähler manifold is that it has inter-

nal symmetry associated to the unitary group. A very

fundamental structure in Kähler geometry was intro-

duced by Hodge. He observed that the complex co-

ordinates give rise in a natural way to write differen-

tial k-forms as a sum of forms with p holomorphic

part and q anti-holomorphic part where k = p+q. As-
suming the manifold is Kähler, he was able to decom-

pose the de Rham cohomology into a sum of coho-

mologies of (p,q)-type. This decomposition gives rise

to the Hodge structure in the cohomology of Kähler

manifolds. This is remarkable as it imposes beautiful

constraints on the topology of such manifolds.

The way that the cohomology of a manifold is

split into a sum of (p,q)-types gives rise to the con-

cept of Hodge structure. It is believed that this struc-

ture determines the complex structure of the com-

plex manifold. It provides therefore a fundamental

tool to study the moduli space of Kähler manifolds.

In the other direction, Hodge was very interested

in knowing which homology class (over real number)

can be represented by algebraic sums of cycles de-

fined by algebraic subvarieties. The famous conjec-

ture of Hodge says that the only condition is that the

homology class is (p, p)-type.
The Hodge conjecture remained to be one of the

most important questions relating topology, geome-

try to algebraic and arithmetic geometry.

The only major contributions to the Hodge con-

jecture so far are the case of p = 1 due to Lefschetz

and the theorem of Chern that Chern classes of any

holomorphic bundle over a compact algebraic mani-

fold are represented by algebraic cycles.

Chern’s theorem gives a strong link between the

Hodge conjecture and the subject of K-theory, which

is about the space of vector bundles over a manifold.

It provides important information on the manifold.

The strong desire to unify several fields of

physics with gravity brought about many important

advances in both physics and geometry. A very impor-

tant development was due to Kaluza and Klein. It was

proposed in 1919 by Kaluza, who was a mathemati-

cian. They found that if we reduce a five-dimensional

vacuum Einstein equation by a circle of isometry, one

finds a unification of Einstein gravity with Maxwell

equation.

Einstein was excited by this beautiful theory. It

was abandoned later as it contains a scalar field

which was not observed in nature. The Kaluza-Klein

idea was introduced again several times later in

physics, with its most notable accomplishment being

the introduction of compactification in string theory,

where the circle is replaced by the Calabi-Yau mani-

fold.

Calabi-Yau Manifolds

Calabi-Yau manifolds are those Kähler manifolds

whose Ricci curvature is identically zero. In particu-

lar, they are Riemannian manifolds that satisfy the

vacuum Einstein equation. The important point here

is that it has a parallel spinor which makes the

Kaluza-Klein model “supersymmetric.”

The spinor is a concept introduced by E. Cartan,

but was used by physicists to describe particles. It

continues to play a mysterious but fundamental role

in geometry.

Supersymmetry is a concept introduced by parti-

cle physicists who believe that there is a correspon-

dence between Bosons and Fermions. In order to de-

fine such an operation on a curved spacetime, one

needs to use a spinor to make the transformation.

But in order for the transformation to be consistent,

the spinor has to be constant. (This means that the

spinor is independent of the choice of the path if we

parallel transport it along different paths.)

String theory is built on the idea that particles are

strings vibrating in spacetime that is supersymmet-

ric. In order for the theory to be consistent, the space-

time has to be ten-dimensional. The idea of Candelas,

Horowitz, Strominger, and Witten [3] was to consider

the ten-dimensional spacetime to be the product of

the standard flat Minkowski spacetime and another

six-dimensional compact space.

In order for the ten-dimensional spacetime to

be supersymmetric and vacuum, this six-dimensional

space must be a Calabi-Yau, which are Kähler mani-

folds with vanishing first Chern class.

Particles are described by the spectrum of Dirac

operators over the ten-dimensional manifold. The
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eigenfucntions come from the product of eigenfuc-

ntions. From here, one derives that when the Calabi-

Yau space is small, the light particles will be created

by the harmonic spinors on the Calabi-Yaumanifolds.

They can be described by harmonic forms and hence

topology of the Calabi-Yau manifolds.

There are other models of string vacua, and other

types of string theories. Amost notable one is the het-

erotic string theory where Hermitian Yang-Mills equa-

tion play an important role. We shall focus on the de-

velopment of Calabi-Yau space and Hermitian Yang-

Mills equations. Both of them are building blocks of

string theory – Susskind referred to the Calabi-Yau

manifold as the DNA of the multiverse.

Let me now describe how to construct those

structures that physicists want to use:

The basic question in geometry is to build and

classify geometric structures over a manifold. In the

case of Calabi-Yau manifolds, we fix the topology of

a manifold and want to know whether it supports

a complex structure which admits a Kähler metric.

Then we would like to know whether such a Kähler

metric can be deformed to one with zero Ricci curva-

ture. Hence, there are two important steps we need to

investigate.

The first step is to find out which manifolds can

be made into complex manifolds. This is a very tough

question. Geometers try an easier problem. If we lin-

earize the concept of complex structure, we find a

linear operator J with J2 =−1 which acts as endomor-

phism on the tangent space of each point of the even

dimensional manifold. We call it an almost complex

structure.

Any complex manifold admits an almost complex

structure. So it is natural to ask which smooth man-

ifolds admit almost complex structures. This turns

out to be manageable and is reducible to a question

in homotopy theory in algebraic topology. However,

whether an almost complexmanifold admits complex

structure is a very difficult problem.

We can derive from the Hirzebruch-Riemann-

Roch formula that for four-dimensional manifolds,

there are many almost complex manifolds that can-

not admit an integrable complex structure. However,

the formula is not powerful enough to give topologi-

cal constraints for manifolds with dimension greater

than 4.
Many years ago, I conjectured that there is in fact

no obstructions in higher dimensions. And there is no

contradiction to my conjecture so far. Once we know

the existence of a complex structure, it is a deep ques-

tion to know whether it also admits a Kähler struc-

ture.

It is well known that the existence of Kähler met-

rics gives a lot of constraints in the homology (as was

provided by Hodge theory) and the homotopy type

of the complex manifold (the rational homotopy type

is determined by the minimal model of the de Rham

complex). However, there is no known criterion for a

complex manifold to admit a Kähler structure.

At one point, there was a conjecture that every

Kähler manifold can be deformed to an algebraic

manifold. But this was proven to be wrong by Voisin

[9].

A very important feature of Kähler manifold is

that the differential forms are very special relative to

the fundamental ∂̄ operator. There is the ∂ ∂̄ -Lemma

which plays a very powerful tool: Any (p, p)-form that

is exact can be written as ∂ ∂̄ of some (p−1, p−1)-form.

The ∂ ∂̄ -Lemma is equivalent to that Fröhlicher

spectral sequence degenerates at E1 and a Hodge

structure exists on the cohomology groups. It was

used by Deligne, Griffiths, Morgan and Sullivan [4] to

give constraints on homotopy type of Kähler mani-

folds.

I propose the following conjecture: Every complex

manifold that satisfies the ∂ ∂̄ -Lemma can be deformed

to a complex variety that is birational to a Kähler man-

ifold.

Hopefully, this may get us closer to determin-

ing whether a complex manifold can admit a Kähler

structure or not.

Calabi Conjecture

Once we know the manifold is Kähler, we may ask

when will the manifold admit some canonical Käh-

ler metric. The most natural canonical metric is the

Kähler-Einstein metric. A necessary condition for its

existence is the first Chern class must either be posi-

tive, zero or negative. Calabi-Yau manifolds are those

with zero first Chern class. This was the center of a

conjecture made by Calabi [2] forty years ago.

Calabi actually posted the problem in a more gen-

eral form: Given a smooth volume element on a Käh-

ler manifold, can we deform a Kähler metric within

its Kähler class so that, up to a new constant, the new

Kähler metric has the same volume element as the

given one.

This problem can be reduced to a complexMonge-

Ampère equation:

det
(

gi j̄ +
∂ 2ϕ

∂ zi∂ z̄ j

)
= exp(F)det(gi j̄)

Recently I looked up the paper by Kähler in 1932.

It was the first paper in Kähler geometry. It turns out

that this equation was already constructed by him

in the process of understanding Kähler-Einstein met-

rics.

The simplicity of this equation comes from the

fact that the Ricci tensor for a Kähler metric can be ex-

pressed as a complex Hessian of the logarithm of the
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volume element of the Kähler metric. Since the Käh-

ler metric, when we fix the cohomology class that the

metric represents, is determined by the complex Hes-

sian of a real valued function, the Einstein equation

of Ricci flatness can be expressed in terms of some

form of complex Monge-Ampère equation mentioned

above.

Calabi told me that when he wrote this equation,

he thought that the existence is straightforward. He

showed to André Weil who expressed great interest in

the canonical Ricci-flat metric. However, Weil warned

Calabi that the theory of nonlinear elliptic equations

may not be mature enough to settle this question. De-

spite that, Calabi was able to prove uniqueness of the

solution if it exists.

Indeed, when I was a graduate student in 1970,

I was extremely excited by the potential importance

of this equation. However, I found that no literature

was devoted to the study of fully nonlinear elliptic

equations on manifolds with dimension greater than

three. I considered my major task is to build a foun-

dation to solve this equation.

As a first step, I spent quite a bit of my efforts on

understanding the real Monge-Ampère equation with

my friend S.-Y. Cheng. I learned a lot about the theory

of nonlinear elliptic equations from Charles Morrey

during my graduate study, and later from Leon Simon

and Rick Schoen at Stanford.

When a complex Monge-Ampère equation is in-

variant under the group of translation on the imagi-

nary components, it becomes a real Monge-Ampère

equation. Hence, my first step was to understand

the real Monge-Ampère equation. Such equation ap-

peared in classical differential geometry when one

wants to solve the famous Minkowski problem. The

two-dimensional Minkowski problem was solved by

Pogorelov and Nirenberg in the early 1950s, complet-

ing the work of Hans Lewy in the real analytic case.

The n-dimensional version was solved in the early

1970s independently by Pogorelov and Cheng-Yau.

While the methods of real Monge-Ampère equa-

tions inspired the way to analyze the complex Monge-

Ampère equation, it takes many nontrivial steps to

find third order estimate for the complex Monge-

Ampère equation. And it takes much more nontrivial

efforts to find second and zero order estimates. Once

the Calabi conjecture was proved, we have an effec-

tive way, based on algebraic geometry, to parametrize

all Kähler Ricci-flat metrics on a compact Kähler man-

ifold.

I published this paper [10] entitled “On the Ricci

curvature of a compact Kähler manifold and the com-

plex Monge-Ampère equation. I.” Many people asked

me where is II. Well, II is supposed to cover the case

when themanifold is singular and noncompact. I pub-

lished them with S.-Y. Cheng and Tian in later years.

(I gave a survey on those works in my talk [11] in the

ICM 1978, Helsinki.) While a great deal is now known

in classifying complete noncompact Kähler-Einstein

manifolds, the task has not been accomplished. I be-

lieve a complete classification would be important for

both algebraic geometry and math physics.

Mirror Symmetry in String Theory

The theory of Calabi-Yau manifolds has been use-

ful in algebraic geometry: giving structure theorem

for algebraic manifolds with zero first Chern class,

positivity of second chern form, Torelli type theo-

rems, etc.

But the impact is much greater after the arrival

of the theory of superstring in physics. Some of the

ideas initiated by physical considerations are rather

spectacular. The concept of mirror symmetry intro-

duced in the late 1980s was totally unexpected. Physi-

cists also introduced the concept of quantum coho-

mology, Gromov-Witten invariants and studied their

properties. Candelas et al. were able to calculate such

invariants. It opened a new horizon for mathemati-

cians to study such manifolds.

We started to realize that in order to study such

manifolds, it is more effective to study a pair of them.

Based on the duality between two different string the-

ories on these twomanifolds, one can study the prop-

erties of one manifold by looking at the dual theory

of another manifold. This is very similar to the uncer-

tainty principle where position and momentum are

dual to each other.

Kontsevich [7] was the first one to interpret mir-

ror symmetry in terms of the theory of derived cat-

egory (called homological mirror symmetry). At the

same time, Fukaya also developed a theory in sym-

plectic geometry which may be recognized as a the-

ory dual to the works of Kontsevich. The geometric

explanation based on brane theory was introduced by

Strominger-Yau-Zaslow [8] in 1996.

SYZ interpretedmirror symmetry in the following

way: A Calabi-Yau manifold (that has a mirror part-

ner) should have a singular foliation by a special La-

grangian torus whose quotient space is a real three-

dimensional manifold where outside a codimension-

two set, the leaves are nonsingular. The mirror mani-

fold is supposed to be constructed by replacing each

real torus by its dual. Special Lagrangian tori are

those submanifolds where the restriction of the Käh-

ler form is zero and the restriction of the holomor-

phic three-form is constant.

The picture described in this way has been accu-

rate so far. And it has inspired many important works

such as the algebraic approach by Gross-Seibert and

Conan Leung, Chan and Lau. Despite its successes,
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there is no concrete example of the SYZ picture ex-

cept in the case of the K3 surface. In that case, Greene-

Shapere-Vafa-Yau [6] wrote down an explicit Ricci-flat

Kähler metric on K3 surface which has an elliptic fi-

bration over a sphere, but the metric is singular along

singular fibers.

It is argued that a nonsingular Calabi-Yau met-

ric is obtained by perturbing this GSVY metric by

using information from open strings (holomorphic

disks whose boundary are topologically nontrivial

curves on the Lagrangian torus). This approach was

attempted by Gross-Wilson. But unfortunately, their

argument depends on my proof of the Calabi conjec-

ture and the perturbation is not refined enough to

read out the instanton corrections.

Up to now, an explicit perturbation series of

Calabi-Yau metric from the GSVY metric with instan-

ton sum has not been found, despite claims by many

authors that it can be done.

For three-dimensional Calabi-Yau manifolds, it

will be highly desirable to find a similar GSVY met-

ric and a perturbation series of CY metric based on

this GSVY metric. The theory of Calabi-Yau manifolds

has been extremely rich and there are still much to be

learned about them. But in the string equations, there

are also fields such as Yang-Mills field and scalar

fields. They are all interesting to be studied in con-

nection with geometry.

Yang-Mills Field

As was mentioned earlier, gauge theory played a

fundamental role in both modern geometry and par-

ticle physics. For four-dimensional manifolds, there

is a concept of self-dual or anti-self-dual connections

first studied by particle physicists. They were finally

classified by Atiyah-Drinfeld-Hitchin-Manin [1]. They

are important for four-dimensional topology and par-

ticle physics.

They correspond to Yang-Mills fields that sat-

urate some topological bounds and are sometimes

called BPS states. Because of this, they are considered

to be stable configurations.

One of the most natural generalization of this

BPS state to higher-dimensional manifolds are Her-

mitian Yang-Mills connections over Kähler manifolds.

These connections can be proved to be supersymmet-

ric. I proposed to Witten to use it to build models for

heterotic string theory.

In fact, Strominger observed that the ten-

dimensional spacetime can be a warped product

of a compact six-dimensional manifold with the

Minkowski spacetime. The six-dimensional manifold

is required to admit a complex structure and a Her-

mitian Yang-Mills connection coupled with some Her-

mitian metric.

The Hermitian metric is not necessarily Kähler in

general, but satisfies some anomaly equations linked

with the Hermitian Yang-Mills field. In this case, there

is a scalar field coming from the warped factor and is

related to the flux of the theory. Fu and I [5] were able

to find nontrivial solutions for this complicated sys-

tem of equations. But a lot more study is still needed.

Calabi-Yau manifolds and Hermitian Yang-Mills

equations provide candidates to build ground states

for string theory. The known number of such config-

urations are huge, but so far only a finite number of

moduli spaces of them have been found. Thirty years

ago, I proposed that they are indeed finite [12, p. 621].

But this question has not been settled.

Parallel to string theory, there is M-theory which

requires the spacetime to be 11-dimensional and so

the compactified manifold is seven-dimensional with

holonomy group equal to G2. While special construc-

tion modeled after the Kummer construction was

done by Joyce, it is far from enough to understand

the moduli space of such manifolds. This may be a

key problem to apply geometry to study M-theory. We

really have no idea how large is the class of G2 man-

ifolds and the duality theory of these manifolds are

much less understood, especially those with isolated

conical singularities.

So far, we have been talking about spacetime

with dimension greater than four. The classical four-

dimensional spacetime is of course equally rich. How-

ever, the tools to study classical general relativity are

largely based on geometric analysis and less alge-

braic.

Singularities in General Relativity

One major difficulty is the natural appearance of

singularities in classical GR. The most notable singu-

larity appears in the classical Schwarzschild and Kerr

solutions. When Penrose and Hawking proved that

such singularities cannot be perturbed away, we have

to accept singularities as part of the fate of GR unless

quantum effects can cure such problems. It is a fun-

damental question in classical GR on classifying the

structure of singularities of spacetime that satisfy the

dominant energy condition. If naked singularity is al-

lowed, we shall have difficulty to predict the future

based on the original initial data set.

The subject of general relativity has been recog-

nized to be correct by experiments, largely based on

several exact solutions of the Einstein equation.

On the other hand, it is amazing that global solu-

tions that describe the dynamical nature of spacetime

are still not well understood. This is indeed trouble-

some as the most important test on general relativity

is based on finding gravitational radiation.
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Many physicists think that classical relativity is

well understood and the only interesting theory is

quantum gravity. This is really far from the case. The

dynamics governed by Einstein equation seems to

lead to singularities of black hole types. But this is

far from being proven. Roger Penrose called the prin-

ciple (that generic spacetime can have only black hole

singularities) as cosmic censorship.

This is probably the most challenging problem

in nonlinear evolution equation. While spacetime at

large distances is not that well understood, it is even

more tough when the distances are very tiny. Whether

quantum effects can cure singularities is a major

question. But I believe string theory will be part of

a grand theory that will help us build a geometry that

can describe nature more accurately. Such a geometry

should be some form of quantum geometry. It would

demand close collaborations between physicists and

geometers.

Modern geometers and physicists are still strug-

gling to learn how to build a good quantum geometry

to explain the physics of very large and very small. It

may take next fifty years to accomplish such a goal.
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