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1. Definition

In 1883, over a region of more than 1
3 of the

Earth’s surface, people could hear the explosion of

the volcano Krakatau. Citizens of Bogota, Columbia

heard the explosion 7 times, as the sound focused

and defocused at two antipodal points. All of the
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geodesics leaving any point of a sphere minimize dis-

tance until they reach “all the way across” the sphere,

where they simultaneously collide; see [3] for appli-

cations. A point p of a compact metric space is a

Blaschke point if every geodesic (i.e. locally shortest

path) leaving p and of length less than the diameter

is the unique shortest path between any of its points.

A compact connected metric space is Blaschke if its

every point is Blaschke.

2. Examples

Clearly the round sphere is Blaschke. Each

geodesic of CP2 lies inside a unique totally geodesic

complex projective line CP1 ⊂ CP2. Our geodesic’s

competitors for minimizing distance also lie in the

same CP1, so our geodesic stops minimizing just

when it reaches the antipode in CP1 of its starting

point, a maximal distance. Therefore CP2 is Blaschke,

and likewise CPn, HPn and OP2 are Blaschke. Picture

RP2: each geodesic from the north pole travels to

the equator, where it disappears and reappears on

the opposite side of the equator, heading north. Each

geodesic minimizes distance up to the equator, which

is as far as you can go from the north pole. For the

same reason, RPn is Blaschke. The Blaschke conjec-

ture (as understood today) is the conjecture that the

only Blaschke manifolds are RPn,Sn,CPn,HPn and OP2

(i.e. the compact rank one symmetric spaces) with

their standard metrics, up to rescaling each metric

by a positive constant.

Imagine that you can see any star in the night sky,

as its light reaches you along a geodesic. But suppose

that if that geodesic travels further than the diameter

of your universe the light becomes too dim and so
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invisible. If your universe is S3, then you can see any

star as a single point of light in the sky, unless the

star sits at your antipode, when you see the star as if it

were a sphere of fire in the sky, surrounding you in all

directions. If your universe is RP3, you see each star

as single point of light, unless it lies on your cut locus

RP2, when you see the star as if it were two points of

light, in opposite directions in the night sky. If your

universe is CP2, you see each star as a single point of

light, unless it lies on your cut locusCP1, i.e. lies at the

antipode of a round CP1 through your location, when

you see the star as if it were a ring of fire circling you:

a fiber of the Hopf fibration. The same phenomena

arise in all Blaschke manifolds, as we will see, and

provide the only tool discovered so far to understand

their topology.

Picture a star at a point p0 ∈ CP2 exploding into a

burst of light; the burst evolves as the sphere of ra-

dius t about that point in the Riemannian metric. The

sphere starts off its life as a small, nearly Euclidean,

3-dimensional sphere. As the sphere evolves, the cir-

cles of the Hopf fibration (i.e. its intersections with

complex projective lines through p0) at first grow, and

then later shrink, while in perpendicular directions

the sphere grows steadily. The sphere collapses onto

a Euclidean 2-sphere, the cut locus of p0, consisting of

the points at maximal distance from p0, as each cir-

cle of the Hopf fibration contracts to a point. Similar

phenomena occur in the other projective spaces, and

in the Blaschke manifolds.

3. What We Know

As we will see below, any Blaschke manifold has

the integral cohomology ring of a unique compact

rank 1 symmetric space, called itsmodel [11, 40]. The

Blaschke conjecture is the claim that each Blaschke

manifold is isometric to its model, up to constant

metric rescaling. Today we know that, up to constant

metric rescaling, every Blaschke manifold M is adjec-

tive to its model:

model adjective proof

RPn isometric [6, 17, 48, 49]

Sn isometric [6, 17, 48, 49]

CPn diffeomorphic [28, 52, 53]

HP2 diffeomorphic [23, 36]

OP2 diffeomorphic [23, 36]

HPn homotopy equivalent [42]

As we can see in the table, the Blaschke conjecture is

solved just for homology spheres and homology real

projective spaces.

4. Equivalent Conditions

Each of the following is a necessary and suffi-

cient condition that a connected compact Riemannian

manifold M be Blaschke; see below and [6] chapter 5.

(1) The diameter of M equals the injectivity radius of

M.

(2) The distance of any point to its cut locus is the

same for all points.

(3) The cut locus of any point is a metric sphere, and

the radius of that sphere is the same for all points.

(4) All geodesics are simply closed loops and all cut

loci are metric spheres.

(5) If p and q are points of M and q lies in the cut lo-

cus of p, then the unit tangent vectors to minimal

geodesics heading from p to q form a great sphere

in the unit sphere in TpM.

(6) If D is the diameter of M then the exponential map

exp: TpM → M at any point p ∈ M is a diffeomor-

phism on the open ball of radius D and a fiber

bundle mapping on the sphere of radius D, with
fibers great spheres.

5. History

In the first edition of [8] (§86 p. 155 question 2),

Blaschke conjectured that any surface in R3 whose

every point has a unique conjugate point is isomet-

ric to a round sphere. In the second edition, Reide-

meister gave a proof in an appendix, trying to show

that a surface with the structure of a Blaschke metric

space is a Desargues projective plane [39]. The third

edition exposed an error in that proof; see [12] for

a simple construction of non-Desargues projective

planes with metrics so that the projective lines are

geodesics. Green [17] proved Blaschke’s conjecture

using elementary classical surface geometry. Besse [6]

expanded the Blaschke conjecture to the one stated

above, and (as will see) Berger, Kazdan, Weinstein and

Yang proved the conjecture for homology spheres

and homology real projective spaces. Subsequent au-

thors have only considered the diffeomorphism types

of Blaschke manifolds (as in our table), discovering

nothing about the metric geometry, about which lit-

tle is known.

6. Cut Locus Geometry

Proposition 1. Suppose that m0 ∈ M is a point in a

Blaschke manifold and m⊥0 is the cut locus of m0. Then

at every cut point c ∈ m⊥0 , every tangent vector to M is

uniquely expressed as a sum of a tangent vector to the

cut locus and a normal vector to the cut locus. Each

normal vector to the cut locus is the tangent vector to

a minimal geodesic from m0.
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Remark 1. A vector v∈ TmM is tangent to a set S⊂M if

v is the velocity of a continuously differentiable curve,
defined on an open interval, with image in S. The vec-
tors tangent to S at a point s∈ S form the tangent space

TsS. Reverse or reparameterize: TsS⊂ TsM is closed un-

der rescaling.

Proof. First, we want to see that the tangent spaces

of the cut locus m⊥0 are perpendicular to the mini-

mal geodesics from m0. Since m⊥0 is the set of points

furthest from m0, every path heading “away” from

m⊥0 moves closer to m0. Take any minimal geodesic

p(t) heading from m0 to a point c ∈ m⊥0 ; suppose that

p(0) = m0. If D is the diameter of M, p(D) = c. Let
w = p′(D).

m⊥0

p w
m0 c

For any vector v ∈ TcM, if w ·v < 0 then travelling along

any path with velocity v will move us closer to m0. To

see this, let mε = p(ε), so that the distance between mε

and c is D− ε .

m⊥0

w
m0 c

mε

For ε with 0 < ε < D, the gradient of distance from mε

at c is w, so moving along a path with velocity v moves

us strictly closer to mε , at a rate w · v independent of

ε ; let ε → 0. Therefore if v is a tangent vector v ∈ Tcm⊥0
to the cut locus, then w · v ≥ 0, and since ±v ∈ Tcm⊥0 ,
w · v = 0.

Pick any vector u ∈ TcM not proportional to w so

that u ·w < 0; in particular u is not tangent to m⊥0 .

u
m0 c

Let q(t) ..= expc(tu).

m0 c

q(t)

Because u · w < 0, the distance to m0 along q(t) de-

creases for small t, and so q(t) stays away from the

cut locus m⊥0 for small t > 0. We travel along the unique

minimal geodesic from m0 out to q(t); as we vary t, we
spread out a family of minimal geodesics, forming a

surface in M.

m0

c

Along that surface, we let w be the unit velocity of the

geodesic rays, i.e. w = ∂s, with s the arclength along

each ray measured from m0. Let v be the projection

of ∂t to w⊥. For s < D, w is the gradient of distance

from m0, so v is tangent to each metric sphere around

m0. Since there are no conjugate points before the cut

locus, the metric sphere around m0 of radius s is a

smooth hypersurface. By continuity, the flow lines of

v preserve distance from m0 at every point of M, so v
is tangent to m⊥0 at every point where our surface hits

m⊥0 . At c, i.e. when (s, t) = (D,0), u = ∂t so v = u− (u ·w)w.
In particular, every vector u is a linear combination

u = v+aw of some v tangent to m⊥0 and some w normal

to m⊥0 .

v
u

w

m0

c

By the same reasoning, every tangent vector to m⊥0 is

a limit of a sequence of tangent vectors to smooth

metric sphere hypersurfaces, and vice versa, so the

tangent spaces to m⊥0 are vector spaces. Vectors in TcM
which are normal to m⊥0 , by our decomposition, are

tangent vectors to minimal geodesics from m0.

Corollary 1. In a Blaschke manifold, all geodesics are

periodic and all of the same length, equal to twice the

diameter.

Proof. If we follow a geodesic p(t) until it hits a cut

point c = p(D), then the vector p′(D) is normal to the

cut locus, and so −p′(D) is also normal to the cut lo-

cus, so −p′(D) is the velocity of a minimal geodesic

from m0.

7. Cohomology

Take a Blaschke manifold M and a point m0 ∈ M
and let P be the space of rectifiable paths in M issu-

ing from m0 and Pm ⊂ P the paths ending at a point

m ∈M. The energy function γ 7→
∫
|γ̇|2 is a Morse func-

tion on Pm, with critical points the geodesics from m0

to m, so Pm is homotopy equivalent to a CW -complex,

with cells added at each critical energy level, of di-

mension given by the index [35, 36]. Each geodesic

leaving m is a union of geodesic loops together with

a minimal geodesic “end”, so that the index of each

geodesic is determined by how many times it wraps

around. The end point map P→M is a fibration with

fibers Pm. The space P is contractible: suck spaghetti

into your mouth. So the exact sequence in homo-

topy ensures πi
(
Pm0

)
= πi+1 (M) and yields a Gysin se-

quence · · · → H i(P)→ H i−k(M)→ H i+1(M)→ H i+1(P)→
. . ., where k is the index of any of the minimal peri-

odic geodesics. The maps H i−k(M)→ H i+1(M) are cup

product maps with an element h ∈ Hk(M): [27] p. 143
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example 5.C. Contractibility of P makes the exact se-

quence a collection of isomorphisms, and computes

the low degree cohomology of M, showing that it is

generated by h, the “hyperplane class”. Duality and

connectivity of M computes the rest of the cohomol-

ogy groups of M. The cohomology ring structure is

a consequence purely of the cohomology group di-

mensions, using foundational results on cohomology

operations [1, 2, 11, 30, 40].

8. Volume and Symplectic Volume

To find the volume of a Blaschke manifold M of

given diameter, look at the circle bundle S1→UT M→
Geod(M) from the unit tangent bundle to the space of

oriented geodesics. For any principal circle bundle,

or associated complex line bundle, with connection

1-form ξ , on any manifold, the first Chern class is the

cohomology class of dξ/2π . So if we rescale the met-

ric so that the fibers of UT M→ Geod(M) have length

2π , then the contact form is the connection 1-form,

which has curvature the symplectic form on Geod(M).

So the cohomology class of the symplectic form is the

first Chern class, i.e. the Euler class, of the circle bun-

dle. Fubini’s theorem relates the symplectic volume

of Geod(M) to the volume of UT M and relates that to

the volume of M. For low dimensional Blaschke man-

ifolds and homology spheres, the Gysin sequences of

the two fibrations M ← UT M → Geod(M) give the co-

homology ring on Geod(M) [6] 2.C, [51]. More gener-

ally, Morse theory on the loop space computes the

equivariant loop space cohomology which computes

the cohomology ring on Geod(M) and ensures that it

matches the model cohomology ring [35, 36], giving

the symplectic volume, so M has the same volume as

the model.

9. Conjugate Locus Geometry

Suppose that M is a Blaschke manifold and m0 ∈
M a point. Each cut point of m0 lies on a periodic

geodesic made of two minimal geodesics. By mini-

mality, there are no conjugate points along either of

those geodesics. So a conjugate point doesn’t arise

except perhaps either at the cut point, or as the

geodesic returns to where it started. As the geodesic

returns, it acheives a conjugate point because all of

the geodesics simultaneously return to where they

started, all at length equal to twice the diameter. So

the conjugate points are all at either diameter or twice

diameter. By the smoothness of the cut locus, if one

geodesic hits a conjugate point at the diameter, then

they all do. Either way, the exponential map reaches

the conjugate locus along a sphere in each tangent

space. Inside that sphere, the exponential map is ei-

ther a diffeomorphism to the complement of the cut

locus, or wraps twice around M. Since all conjugate

points occur at a fixed distance (either D or 2D from

initial point, if D is the diameter), conjugate points

cannot “scatter” as we perturb a geodesic, i.e. the in-

dex of a conjugate point is constant in any family of

geodesics.

Rescale M so that conjugate points arise along

geodesics of length 1. So

expm0
: Tm0 M→M

has constant rank, say k, along the unit sphere S =

Sn−1 ⊂ Tm0 M. By constant rank, the exponential map

takes S into an immersed submanifold S̄ ⊂ M of di-

mension k−1 (perhaps not embedded), a cover of the

conjugate locus.

S

expm0

S̄

All of the geodesics from m0 reach the conjugate locus

at the same time and perpendicularly by the equation

of first variation. So time 1 geodesic flow maps S to

the unit normal bundle of S̄.

time 1 flow

The time 1 geodesic flow is a diffeomorphism lying

“above” the exponential map. The unit normal bun-

dle of S̄ has the same dimension as S. By compact-

ness of S, time 1 flow takes S diffeomorphically to the

unit normal bundle of S̄. Either the conjugate locus

is the cut locus or else conjugate points arise when

a geodesic reaches a first period. In either case, the

geodesics (minimal or periodic) have tangents con-

sisting of the normal space to the conjugate locus

metric sphere by Proposition 1 on page 34. So the

fibers of expm0
: S→M are great spheres. Themap S→ S̄

is a fiber bundle, fibering the unit sphere S ⊂ Tm0 M in

any tangent space of M, with great spheres as fibers.

Theorem 1. Suppose that M is a Blaschke manifold

of dimension n. The universal covering space M′ → M
is either equal to M or a 2-1 covering of M, and is a

Blaschkemanifold in the pullbackmetric. The cut locus

of any point of M′ is a smooth embedded submanifold

equal to the conjugate locus. For a 2-1 covering, the

cut locus and conjugate locus of any point of M′ is a
point. Rescale M so that M′ has unit diameter. For any

point m0 ∈ M, there is smooth fiber bundle mapping

S→ S̄ of the unit sphere S⊂ Tm0 M, each of whose fibers
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is a great sphere, so that M′ is diffeomorphic to the

quotient B̄/∼ of the closed unit ball B̄ ⊂ Tm0 M by the

equivalence x ∼ y if either x = y or x,y ∈ S and x and y
are mapped to the same point in S̄.

Proof. Suppose that the cut locus of M is not the con-

jugate locus. As above, the conjugate locus of any

point is just that point. All geodesics from a point be-

come conjugate just when they return to that point.

The cut locus is half-way along each geodesic, so a

hypersurface. From our study of the cohomology, M
is a cohomology real projective space, so its univer-

sal covering M′, i.e. its set of oriented tangent planes,

is a 2-1 covering, with a pullback metric with conju-

gate locus of each point exactly the antipodal point.

The distance between antipodal points on M′ is ex-

actly twice the diameter of M, because a path from

one to another projects to a loop of nontrivial ho-

mology in M. On the other hand, one easily arrives

at a shorter path for nonantipodal points. Hence M′

has diameter double that of M, with cut locus of each

point just its antipodal point.

So we can assume that M′ = M has conjugate lo-

cus equal to cut locus. Scale to have unit diameter.

The exponential map on the closed unit ball in any

tangent space of M identifies M = B̄/ ∼ as topologi-

cal spaces, and the smooth functions on M are the

smooth functions on B̄ constant on fibers of the great

sphere fibration along the boundary S = ∂ B̄.

Corollary 2. If the great sphere fiber bundles on unit

spheres of two Blaschke manifolds are smoothly iso-

morphic as fiber bundles then the Blaschke manifolds

are diffeomorphic.

Corollary 3. Suppose that M is a Blaschke manifold

and that the cut locus of some (hence any) point is (1)

a hypersurface or (2) is discrete. Then M is diffeomor-

phic to (1) real projective space or (2) a sphere.

Proof. For (1), the cut point occurs halfway along each

periodic geodesic; the sphere bundle identifies oppo-

site points, and only those because the fiber of the

sphere fibration has dimension zero. For (2), the en-

tire sphere S is mapped to a single point, because it

is connected and the dimension of the cut locus is

zero.

10. Cut Locus Topology

Let m⊥ be the cut locus of each point m ∈ M.

As above, M−m⊥ is diffeomorphic to an open ball,

so its cohomology is trivial. For two distinct points

m0,m1 ∈ M, if the intersection m⊥0 ∩m⊥1 is empty, then

m⊥0 ⊂ M−m⊥1 lies in a contractible open subset of M,

so the inclusion m⊥0 → M gives a trivial morphism in

cohomology H∗(M)→ H∗
(
m⊥0

)
. As a CW complex, M is

a ball glued to m⊥0 , so all cohomology of M except in

top dimension injects via H∗(M)→H∗
(
m⊥0

)
, making M

a cohomology sphere. So if M is a Blaschke manifold

not modelled on a sphere, then any two points have

intersecting cut loci. Take a point m ∈ m⊥0 ∩m⊥1 . The
normal space to m⊥0 at m is the collection of tangents

of geodesics from m0 to m. So the normal spaces to

m⊥0 and m⊥1 at m are disjoint linear subspaces. There-

fore the intersection m⊥0 ∩m⊥1 is a smooth submani-

fold. It is not known if the intersection of 3 cut loci

is a smooth submanifold. At a point m ∈ m⊥0 −m⊥1 , the
unique geodesic from m to m1 is not normal to m⊥0 , so
has nonzero projection to the tangent space to m⊥0 . So
if m1 ∈ m⊥0 then the function m 7→ d(m1,m)2 on m⊥0 −m⊥1
has a unique critical point at m1, and its reverse gra-

dient flow identifies m⊥0 −m⊥1 with a ball. So as a CW

complex, m⊥1 is a ball glued to some lower dimensional

manifold. The dual of the hyperplane class, having

the same dimension as the cut locus of any point, is a

multiple of the homology class of that cut locus, and

vice versa. As a CW complex, m⊥0 only has one cell of

the dimension of the cut locus, the open cell, so the

homology classes agree (up to sign, but the hyper-

plane class was only defined up to a sign).

11. Quotienting by an Involution

Proposition 2. Suppose that M is a Blaschke manifold

and each point of M has discrete cut locus. Then each

point m ∈ M has cut locus a point s(m) and the map

s : M→M is an isometry with s−1 = s. The quotient M̄ =

M/s is also a Blaschke manifold, diffeomorphic to real

projective space, with cut locus a hypersurface.

Conversely, if M̄ is a Blaschke manifold diffeomor-

phic to real projective space, then the universal cover-

ing space M of M̄ is a Blaschke manifold diffeomorphic

to a sphere and each point of M has cut locus a point.

Proof. As in Corollary 3, M is diffeomorphic to a Eu-

clidean sphere. Sliding a point m along a geodesic, we

slide its antipodal point s(m). Take two points m and

n, not conjugate, and take the minimal geodesic be-

tween them, and then slide along it until we get m and

n to slide into s(m) and s(n) simultaneously, with the

minimal geodesic sliding into place between them, so

s preserves distance. Therefore s is smooth and the

quotient M̄ is a Riemannian manifold. There are no

conjugate points along a minimal geodesic on M̄ be-

cause a conjugate point lifts up to M. Imagine that

there are two distinct minimal geodesics between two

points of M̄. Upstairs on M, each point has two preim-

ages, and a unique minimal geodesic between each

of the pairs, which must map to these two minimal

geodesics on M̄; these two minimal geodesics must

therefore fit into one periodic geodesic. Therefore

there is a unique minimal geodesic connecting any

two points of M̄ unless the points lie at a distance
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equal to diameter, in which case there are two mini-

mal geodesics. So M̄ is Blaschke and has index zero,

i.e. a hypersurface as cut locus.

On the other hand, if M̄ is a Blaschke manifold

with cut locus a hypersurface, our cohomology cal-

culation says that M̄ has the homology and homo-

topy groups of real projective space, and the index

of our minimal geodesic at each cut point is zero, so

the sphere fibration is that of real projective space,

i.e. M̄ is diffeomorphic to real projective space. Theo-

rem 1 on page 36 says that there is a finite covering

Blaschke manifold M with cut locus equal to conju-

gate locus, so not isometric to M̄. So the covering is

2-1, M has discrete cut loci, and is diffeomorphic to a

Euclidean sphere.

12. Volume and Jacobi Vector Fields

Suppose that M is a Blaschke manifold of diam-

eter D. The exponential map takes a ball B = BD(0) ⊂
TpM onto a dense open ball in M, so VolM =

∫
B detexp′.

But detexp′(v) is the wedge product of a basis of Ja-

cobi vector fields, orthonormal at the origin, along

the geodesic with velocity v. The Jacobi vector field

equation contains the curvature. Berger ([6] appendix

D) proved that the volume of a Blaschke manifold ex-

ceeds that of the sphere of the same diameter unless

the Blaschke manifold is isometric to the sphere [6]

appendix E. More generally, the injectivity radius injM
of any compact Riemannian manifold M satisfies

(1)
injnM
VolM

≤ injnSn

VolSn

where Sn is an n-dimensional round sphere in Eu-

clidean space, with equality just when M is isomet-

ric to such a sphere; see [14] pp. 319–331 for a com-

plete proof. The proof is a subtle analysis of the Ja-

cobi vector field equation along each geodesic, mak-

ing use of periodicity and reversibility of geodesics,

and a complicated integral inequality proved by Kaz-

dan [22]. Combined with the results on volume above,

this proves the Blaschke conjecture for homology

spheres. The Blaschke conjecture for homology real

projective spaces follows by taking a double cover.

13. Green’s Proof for Surfaces

To give a taste for Berger’s arguments for

Blaschke manifolds modelled on spheres, we give

Green’s proof of the Blaschke conjecture for surfaces.

Lemma 1. Along any minimal geodesic of length ` on

any surface of Gauss curvature K,

∫ `

0
K(s)sin2

(
πs
`

)
≤ π2

2`
,

with equality just when

K(s) =
(

π

`

)2

is the same constant curvature as along a geodesic on

a Euclidean sphere of Riemannian diameter `.

Proof. Take geodesic normal coordinates ds2 = dr2 +

h(r,θ)2 dθ 2. The Sturm–Liouville operator

− d2

ds2 −K(s)

along a geodesic is self-adjoint on square integrable

functions vanishing on endpoints. The function h is

null for this operator and vanishes at the origin, and

vanishes next just when we hit a conjugate point. By

the Sturm comparison theorem, the eigenvalues of

this operator are positive or zero. Plug the function

sin(πs/`) into the operator.

Lemma 2. Suppose that M0 is a 2-sphere or real projec-

tive plane, with standard round metric. The injectivity

radius injM of any Riemannian metric on a compact

surface M diffeomorphic to M0 satisfies

inj2M
AreaM

≤ inj2M0

AreaM0

with equality just when M is isometric to M0 up to con-

stant positive rescaling.

Proof. Let `= injM, A = AreaM and χ be the Euler char-

acteristic of M. Consider the bundle B→M consisting

of tuples (p,q,u,s) so that p,q∈M, 0≤ s≤ ` and u∈ TpM
is a unit vector with q = expp(su). Clearly p : (p,q,u,s) ∈
B 7→ p∈M is a fiber bundle, with fibers UTpM× [0, `], so
B is a compact 4-manifold with boundary. Note that

there is another bundle map: q : (p,q,u,s) ∈ B 7→ q ∈M.

Let ξ be the connection 1-form on UT M, which we

pullback to B by a third bundle map u : (p,q,u,s) ∈
B 7→ u ∈UT M. Recall that along any curve of the form

u ..= eiθ u0 in UT M, ω = dθ . On B, take the differential

form

Ω ..=

(
π2

2`2 p∗dA−q∗ (KdA)sin2
(

πs
`

))
∧ds∧ξ .

Pushing down (integrating over the fibers), u∗Ω =

f dA∧ξ where

f (u) ..=
∫ `

0

(
π2

2`2 −K
(
expp(su)

)
sin2

(
πs
`

))
ds.

Lemma 1 says that f ≥ 0 so
∫

B Ω =
∫

UT M u∗Ω≥ 0. More-

over,
∫

B Ω = 0 just when the curvature is constant and

equal to the curvature of the model M0. On the other

hand,∫
B

q∗ (KdA)∧ sin2
(

πs
`

)
ds∧ξ = 2π

∫
M

K dA
∫ `

0
sin2

(
πs
`

)
ds,

= πχ`,
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while ∫
B

π2

2`2 p∗dA∧ds∧ξ =
π3A
`

,

so that

0≤
∫

B
Ω = π

4`

(
A
`2 −

2χ

π

)
with equality just for M of constant curvature equal

to that of M0, so isometric to M0.

The same trick gives some information in all di-

mensions:

Theorem 2. Take a compact Riemannian manifold M.

Let δM be the conjugate radius: the shortest distance

along any geodesic between a point and its first conju-

gate point. Denote the scalar curvature of M as scalM .
Let M0 be a positively curved space form (i.e. com-

pact Riemannian manifold of constant sectional cur-

vature) of the same dimension as M, for example a

Euclidean sphere, of any radius, or a real projective

space. Then

δ 2
M
∫

M scalM
VolM

≤
δ 2

M0

∫
M0

scalM0

VolM0
,

with equality just when M is also a positively curved

space form, with constant positive scalar curvature

equal to π2/δ 2
M .

Note that both sides of the inequality are in-

variant under rescaling the metrics by positive con-

stants.

Proof. Rescale to arrange δM = δM0 = π and let n be

the dimension of M. Take a unit speed geodesic

γ : [0,π] → M. Let ν = ν(s) be a parallel unit normal

vector field along γ . The geodesic γ has no conju-

gate points except perhaps its end points. The vector

field X = sin(s)ν gives nonnegative second variation

of energy as we vary the geodesic [14] p. 82 theorem

II.5.4:

0≤
∫

π

0

(
|∇sX |2−〈R(X , γ̇)γ̇,X〉

)
ds

with equality just for Jacobi vector fields. Applied to

our vector field X = sin(s)ν ,∫
π

0
sin2(s)〈R(ν , γ̇)γ̇,ν〉 ds≤ π

2

with equality just when X is a Jacobi vector field, that

is, just when the sectional curvature is K(ν , γ̇) = 1. In-
tegrate this inequality over all choices of parallel unit

normal vector fields ν , each given an arbitrary choice

of initial vector ν(γ(0)):∫
π

0
sin2(t)Ric(γ̇) dt ≤ (n−1)

π

2
.

Equality occurs just when any 2-plane containing the

tangent line to γ has unit sectional curvature. For any

tangent vector v, let gtv be the geodesic flow of v at

time t, i.e. the tangent vector at time t to the con-

stant speed geodesic with initial velocity v. The Liou-
ville measure dL is gt -invariant. Integrate over the unit

tangent bundle UT M, integrating over all points of all

unit speed geodesics:∫
UT M

∫
π

0
sin2(t)Ric

(
gtv

)
dt dL

=
∫

π

0
sin2(t)

∫
UT M

Ric
(
gtv

)
dLdt,

=
∫

π

0
sin2(t)

∫
UT M

Ric(v) dLdt,

=
∫

π

0
sin2(t)dt

∫
UT M

Ric(v) dL,

=
π

2

∫
UT M

Ric(v) dL,

=
π

2

∫
m∈M

∫
v∈UTmM

Ric(v) dvdm,

=
π

2n
VolSn−1

∫
M

scal dm.

14. Sphere Fibrations of Spheres

As we have seen, the diffeomorphism type of any

Blaschke manifold M is encoded in a fibration of a Eu-

clidean sphere UTmM ⊂ TmM by great spheres. For ex-

ample, if M =CPn then the unit sphere S2n−1⊂ TpM =Cn

is fibered over the cut locus of p by the Hopf fibration:
S1 → S2n−1 → CPn−1. Each row in the table on page 34

(except the first two) arose by proving that any great

sphere fibration of a sphere is isomorphic to a Hopf

fibration, with various notions of isomorphism. The

generic great sphere fibration does not arise from a

Blaschke metric. Great sphere fibrations are of inde-

pendent interest in the theory of nonlinear elliptic

systems of partial differential equations [28]. The ho-

motopy theory of great sphere fibrations remains a

basic question, related both to the Blaschke conjec-

ture and to the homotopy theory of elliptic systems,

and thus to continuity methods for solving elliptic

systems.

Take a great sphere fibration Sk−1 → Sn+k−1 → Xn.

Identify each great sphere with the linear subspace it

spans in Rn+k: the sphere fibration embeds the base X
into a Grassmannian X ⊂ GrR(k,n+ k). So great sphere

fibrations are identified with certain submanifolds of

Grassmannians.

For each k-plane P ⊂ Rn+k, the bad set of P, de-
noted BP ⊂ GrR(k,n+ k) is the set of all k-planes with

nontrivial intersection with P; call P the vertex of its

bad set: [16] p. 1047. Split Rn+k = P⊕ P⊥, say, and
write every linear subspace Q close enough to P as

the graph of a linear map in P∗⊗P⊥. The bad set is

DECEMBER 2015 NOTICES OF THE ICCM 39



the set of linear maps in P∗⊗P⊥ which are not injec-

tive, so the bad set is a cone, at least near P. Take
a great sphere fibration Sk−1 → Sn+k−1 → Xn with as-

sociated image Xn ⊂ GrR(k,n+ k). Because X is a great

sphere fibration, each point of Sn+k−1 can only lie in

one fiber of X , i.e. each unit vector v ∈Rn+k which lies

in a plane P ∈ X can not lie in any other plane Q ∈ X ,
so Q /∈ BP. In other words, X intersects each bad set

only at its vertex.

A bad cone is the tangent cone of a bad set at its

vertex. The fiber bundle mapping f ∈ Epi
(
Rn+k,Rk

)
7→

ker( f ) ∈ GrR(k,n+ k) has a local section, say P 7→ s(P),
unique up to replacing s(P) by g(P)s(P) for a map g
valued in GL(k,R). For each v ∈ TP GrR(k,n+ k), the lin-

ear map s(P)−1 s′(P)v|P : P→ Rn+k/P is invariantly de-

fined, giving a linear isomorphism TP GrR(k,n+ k) =
P∗ ⊗

(
Rn+k/P

)
. This isomorphism identifies the bad

cone with the set of all noninjective linear maps

P∗⊗
(
Rn+k/P

)
.

A compact connected submanifold Xn ⊂
GrR(k,n+ k) arises from a great sphere fibration

just when X intersects each bad set either nowhere

or only at its vertex transversely [28]. Transversality

with bad sets is an open condition on a submani-

fold of the Grassmannian, so if X ⊂ GrR(k,n+ k) is a

submanifold arising from a great sphere fibration,

then every C1-small perturbation of X also arises

from a unique great sphere fibration. We can express

transversality with bad sets in a simple intrinsic

description. Once again every tangent vector to a

Grassmannian is intrinsically identified with a linear

map: TP GrR(k,n+ k) = P∗⊗
(
Rn+k/P

)
. Take a submani-

fold X ⊂ GrR(k,n+ k). Each tangent space T ..= TPX is a

linear subspace T ⊂ TP GrR(k,n+ k), so a linear space

of linear maps, T ⊂ P∗⊗
(
Rn+k/P

)
or alternatively is a

bilinear map T ∗⊗P∗⊗
(
Rn+k/P

)
. Each vector v ∈ P is a

linear map T →Rn+k/P. A submanifold X ⊂GrR(k,n+ k)
intersects a bad cone BP at its vertex transversely

just when this linear map is a linear isomorphism for

every v 6= 0: [16] p. 1047.
The simplest choice of dimensions:

Lemma 3 ([16] p. 1046). Any great sphere fibration

Sk−1→ S2k−1→ Xk has base X homeomorphic to Sk.

Proof. Take a fiber of X , a great (k−1)-sphere S⊂ S2k−1.

Pick any great k-sphere S+ containing S, so S ⊂ S+

divides S+ into two hemispheres; choose one. Every

point of X−S represents a great (k−1)-sphere, and in-

tersects S+ in two antipodal points, one in our chosen

hemisphere, a bijection of X−S with that hemisphere.

Identify X with the one-point compactification of that

hemisphere.

Lemma 4. Any two great sphere fibrations Sk−1 →
S2k−1 → Xk and Sk−1 → S2k−1 → Xk

0 admit a topological

bundle isomorphism

S2k−1 S2k−1

Xk Xk
0 .

Proof. Take any distinct points P0,P1 ∈ X , correspond-
ing to some linear subspaces. With elementary linear

algebra, arrange that P0 = Rk⊕ 0,P1 = 0⊕Rk ⊂ R2k and

{ y = x} ∈ X , and the same for X0, so that X intersects

X0 at the points P0,P1 and { y = x}. Pick a unit vector

v ∈ P1.

For any vector x0 ∈ Rk − 0, if P = { y = Ax}, let

evx0(P)
..= Ax0 ∈Rk. No two k-planes in X intersect away

from the origin, so evx0 : X−P1→Rk is 1-1. Every vector

in R2k lies in one of the k-planes in X , so evx0 is onto.

Clearly

ev′x0
(P)A0 = A0x0

is 1-1, so evx0 is a diffeomorphism. The equation

evx0,X (P) = evx0,X0(Q) has a unique solution Q = φ(P),
a diffeomorphism φ : X − P1 → X0 − P1, extending to

a bijection φ : X → X0 by φ(P1) ..= P1. In other words

φ { y = Ax}= { y = Bx} just when Ax0 = Bx0.

Wewant to show that φ is continuous at P1. Clearly

φ−1 is given by the same construction, swapping X
and X0; if we prove that φ is continuous then φ is a

homeomorphism. Take some P(t)→ P1 in X , say P(t) =
{ y = A(t)x}. We can assume that A(t)−1 = tA0 + O(t)2,

with A0 6= 0. Because X is not tangent to the bad cone,

A0 is also invertible. Write Q(t) = φ(P(t)) = { y = B(t)x}.
We have A(t)x0 = B(t)x0, so that

B(t)−1 (tA0 +O(t)2)−1
x0 = x0,

so that

B(t)−1A−1
0 x0 = O(t).

Again by transversality to the bad cone, the map

{ x =Cy} ∈ X 7→CA−1
0 x0 ∈ Rk

is a diffeomorphism, so B(t)−1 = O(t). By transversal-

ity to the bad cone, we can solve the linear equation

B0A−1
0 x0 = x0 uniquely for B0 ∈ TP1 X0. Expand(

B(t)−1− tB0
)

A−1
0 x0 = B(t)−1A−1

0 x0− tx0,

= B(t)−1 (tA−1 +O(t)
)

x0− tx0,

= O(t)2

so that B(t)−1 = tB0 +O(t)2. Therefore φ is a homeo-

morphism. We leave the reader to check that φ is a

diffeomorphism just when X and X0 are tangent at P1.

Take any smooth function g : X → R so that 0 ≤
g ≤ 1 and g(P0) = 0 and g(P1) = 1 with nondegenerate

minimum and maximum, i.e. g′′(P0)> 0 and g′′(P1)< 0.
At each P = { y = Ax} ∈ X −{P1 }, let E = (1− g)I + gA−1

and F = AE. Since A has no negative eigenvalues, E
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and F are invertible linear maps. The standard Hopf

fibration X0 is the set of real, complex, quaternionic or

octave lines, determined by some algebra K= R,C,H
or O of linear maps J : R2k → R2k. For each J ∈ K and

point P ∈ X , let

JP : (x,y) 7→
(
EJE−1x,FJF−1y

)
.

For each P ∈ X , these linear maps JP form an algebra

isomorphic to K, and P is a JP-invariant linear sub-

space. Check (again using transversality with the bad

cone) that JP extends continuously to all of X , giving a
real, complex, quaternionic or octave linear structure

to each subspace P ∈ X , agreeing with J on P0 and P1.

Take the tautogical vector bundle UX → X with

fiber UX ,P = P. Define a bundle isomorphism Φ : UX →
UX0 above φ on the tautological bundles as follows.

For each point P ∈ X−{P1 }, say P = { y = Ax} and with

Q = φ(P) = { y = Bx}, take the vector v = (x0,Ax0) ∈ P
and let Φ(v) = v. Extend Φ by real, complex, quater-

nionic or octave linearity by requiring Φ ◦ JP = J ◦Φ

for J ∈ K. This defines Φ away from P1; on v ∈ P1, let

Φ(v) = v. Since S2k−1 is the set of unit vectors in UX ,

Φ : S2k−1→ S2k−1.

Corollary 4. Any Blaschke manifold modelled on a

real, complex, quaternionic or octave projective plane

is homeomorphic to its model.

For a great sphere fibration S3 → S7 → X4, the

homotopy class of the associated inclusion X4 ⊂
GrR

(
4,R8

)
is the same as that of the associated in-

clusion arising from the Hopf fibration [43], so that

the Pontryagin number is equal to that arising in the

Hopf fibration. Heavy differential topology ensures

PL-isomorphism with the Hopf fibration.

For a great sphere fibration S1 → S2n+1 → X2n, the

embedded submanifold X ⊂ GrR
(
2,R2n

)
has tangent

spaces T ⊂ P∗⊗
(
R2n+2/P

)
. We can always lift X to the

oriented Grassmannian, so assume that each P ∈ X is

an oriented 2-plane. Using a little linear algebra, there

are canonically determined complex structures on T
and R2n+2 so that P ⊂ R2n+2 is a complex linear sub-

space and the inclusion T ⊂P∗⊗
(
R2n+2/P

)
is has image

in the complex linear tensor product and is complex

linear [28]. So at each point P ∈ X , we have a chosen

complex structure JP : R2n+2 → R2n+2. Map X → CP2n−1

by P 7→
[
x−
√
−1JPx

]
for P = [x∧ JPx]. Let Z0 be a gener-

ically chosen linear subspace Z0 = CPn ⊂ CP2n−1. Each

linear CPn+1 ⊂ CP2n−1 containing Z0 intersects the im-

age of X at a unique point transversally, so that X is

identified with the set of all linear subspaces CPn+1 ⊂
CP2n−1 containing Z0, a space diffeomorphic to CPn

[28], and it is easy to extend this diffeomorphism to

identify the fibration S2n+1→ X2n with the Hopf fibra-

tion. (Yang [52] correctly criticized the argument of

Sato [41] but the map X→CP2n−1 is essentially Sato’s.)

In the same way, we see that any two great circle fi-

brations, considered as submanifolds of the Grass-

mannian, can be deformed one to another, through a

smooth family of great circle fibrations.

Any great sphere fibration S3→ S4n+3→X4n admits

a reduction of structure group to Sp(1), by examining

maps between classifying spaces [42]. The classifying

map for this bundle factors through a map X → HPn,

which consequently is an isomorphism on homotopy

groups, so a homotopy equivalence by Whitehead’s

theorem [20] p. 346 theorem 4.5. Sato states without

proof that, from the K-theory of HPn, this homotopy

equivalence should ensure the existence of a homeo-

morphism X ∼=HPn.

15. The Radon Transform

If M is a Blaschke manifold of diameter D with

metric d, let

F = { (p,q) | p,q ∈M,d(p,q) = D} .

We have obvious surjective maps

F2n−k

Mn Mn

pq

p(p,q) = p, q(p,q) = q. The Radon transform of a vol-

ume form Ω on M is Ω′ = q∗p∗Ω, where q∗ is the

pushforward, i.e. integration over the fibers. Since d
commutes with pullback and pushforward, 0 = dΩ′.

Reznikov [35] states without proof that Ω′ > 0 on the

cut locus of any point, i.e. the pullback of Ω′ to any cut

locus is nowhere vanishing with positive integral; for

elementary proofs too long to include here see [29]

p. 9 lemma 9.

Theorem 3 ([29]). Every Blaschke manifold modelled

on CP2 is diffeomorphic to CP2.

Proof. The Radon transform of any volume form

is a symplectic form, so our Blaschke manifold M
is a symplectic 4-manifold containing a symplectic

2-sphere (any cut locus). Using Seiberg–Witten the-

ory, one sees that M is symplectomorphic to CP2, up

to a nonzero constant factor in the symplectic form

[24].

16. Smooth Projective Planes

An incidence plane is a pair of sets P,L and a set

F ⊂ P× L. Elements of P,L,F are respectively called

points, lines and pointed lines. A point p ∈ P is on a

line `∈ L if (p, l)∈ F . An incidence plane is a projective

plane if
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(1) any two distinct points p,q lie on a unique line pq,
(2) any two distinct lines `,m have a unique point `m

lying on both of them,

(3) there are 4 points, no 3 on the same line.

Swapping P with L gives the dual projective plane. A

smooth projective plane is one where P and L are com-

pact manifolds of positive dimension and the maps

p,q 7→ pq and `,m 7→ `m are smooth. The standard pro-

jective planes are P = RP2,CP2,HP2 and OP2 with ob-

vious L and F . The space of smooth projective planes

modulo diffeomorphism is infinite dimensional, as

anyC2 small perturbation of F ⊂P×L is also a smooth

projective plane. Using heavy differential topology:

Theorem 4 ([23, 29]). The space of points of any

smooth projective plane is diffeomorphic to a standard

projective plane.

Lemma 5 ([16, 34, 39]). If a Blaschke manifold is mod-

elled on a standard projective plane, then it is a smooth

projective plane.

By Theorem 4, it is therefore diffeomorphic to its

model.

Proof. Cut loci intersect transversely, and by our co-

homology calculation they do so at a unique point, so

they are the lines of a unique smooth projective plane

structure.

17. Projective Spaces

There is a more general concept of projective

space [7]: an incidence geometry (P,L,F) so that

(1) Any two points lie on a unique line.

(2) (Veblen–Young): any line passing through two

sides of a triangle passes through the third as

well.

(3) Any line contains at least three points.

(4) There are at least two lines.

A subspace S⊂ P is a set of points so that for any two

points p,q ∈ S, all points of the line pq lie in S. The
span of a set of points is the smallest subspace con-

taining it. The dimension of a projective space is n if P
is the span of n+1 points, but not of n points. Projec-

tive spaces of dimension n≥ 3 are isomorphic to their

models RPn,CPn,HPn [7] p. 78 theorem 2.7.1, p. 117

theorem 3.4.2. It is not clear how to define smooth

projective spaces.

There are two natural definitions of lines on a

Blaschke manifold: in the first natural definition, a

line in a Blaschke manifold is the set of points of

maximal distance from the set of points of maxi-

mal distance from two distinct points. Axioms (1), (3)

and (4) are satisfied. Looking at tangent and normal

spaces, we see that lines are smooth submanifolds.

It is not known whether Blaschke manifolds are pro-

jective spaces, i.e. whether lines satisfy the Veblen–

Young axiom.

In the second natural definition, a line in a

Blaschke manifold is the union of all geodesics be-

tween two maximally distant points. Axioms (2) and

(3) are satisfied, but the other axioms are unknown.

18. Total Geodesy

Any compact connected totally geodesic subman-

ifold of a Blaschke manifold is obviously itself a

Blaschke manifold of the same diameter. The cut loci

of points of a Blaschke manifold are compact con-

nected submanifolds. Any totally geodesic subman-

ifold is determined by its tangent planes, and inter-

sections of such submanifolds are submanifolds of

“expected” dimension, i.e. with dimension equal to

the dimension of the intersections of their tangent

planes. If all cut loci are totally geodesic, then the cut

loci of the cut loci are given by intersecting, i.e. if the

diameter of M is D, and we let pM be the cut locus of

p in M, then q(pM) = p(qM) = (pM)∩ (qM) for any two

points p,q ∈M with q ∈ pM. In particular, the cut loci

of the cut loci are totally geodesic too. So we have an

induction strategy for proving the Blaschke conjec-

ture for Blaschke manifolds whose cut loci are totally

geodesic.

Theorem 5 (Rovenskii and Toponogov [37, 38]). Sup-

pose that M is a compact connected Riemannian man-

ifold of dimension kn, where k = 2,4 or 8. If k = 8, we
also suppose that M is 16-dimensional. Suppose fur-

ther that

(1) for every point m ∈M and tangent vector v ∈ TmM,

there is a k-dimensional totally geodesic submani-

fold Sv ⊂ M isometric to the unit Euclidean sphere

tangent to v at m and

(2) for any v1,v2 ∈ TmM, the submanifolds Sv1 ,Sv2 are

either equal or intersect only at m.

Let M0 be the compact rank 1 symmetric space of the

dimension as M and with lines of dimension k, scaled
so that the lines of M0 are isometric to unit Euclidean

spheres. Then M has volume at least that of M0, and

equality occurs just when M is isometric to M0.

The proof is again by use of Jacobi vector fields

along radial geodesics, in geodesic normal coor-

dinates, and has much in common with [14] pp.

319–331, but splitting the Jacobi fields into those tan-

gent and those normal to the totally geodesic sub-

manifolds, and using the appearance of the known

curvature tensor in the Jacobi equation for the tan-

gent Jacobi fields, so that these Jacobi fields are also

explicitly known.
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Corollary 5. If all lines (in either sense; see page 42)

of a Blaschke manifold are totally geodesic, then the

Blaschke manifold is isometric to its model.

Proof. Theorem 5 on the facing page proves that the

volume of the Blaschke manifold agrees with that of

its model just when they are isometric. In Section 8

on page 36, we saw that the volume of any Blaschke

manifold is the same as that of its model.

A geodesic on a Riemannian manifold is taut if,

for almost every point m0 of the manifold, the dis-

tance function m 7→ d(m,m0) restricts to the geodesic

to have two critical points.

Theorem 6 (Hebda [21]). If all geodesics of a Blaschke

manifold are taut, then the cut loci of the Blaschke

manifold are totally geodesic.

Proof. Take two points q,r in the same cut locus, the

cut locus of some point p. The distance from p is

maximal at q and r, and minimal somewhere along

a geodesic γ through q and r. Since our Blaschke man-

ifold M is taut, a segment of γ containing both q and

r lies at maximal distance from p. So the shape oper-

ator at q of the cut locus of p is null in the direction

tangent to γ . Since this occurs for every point r in the

cut locus of p, taking all r close to q in that cut locus,

we find that the shape operator is null in all directions

through q, so the cut locus is totally geodesic.

Corollary 6 (Hebda [21]). If all cut loci of a Blaschke

manifold are totally geodesic, then the Blaschke man-

ifold is isometric to its model. In particular, any

Blaschke manifold whose geodesics are taut is isomet-

ric to its model.

Proof. Recall that the lines in the first sense are the

intersections of cut loci, so totally geodesic, so we ap-

ply Corollary 5.

19. Exotic Spheres and Projective
Spaces

The proof that Blaschke homology spheres are

isometric to their models, as described in Section 12

on page 38, uses curvature estimates. The curvature

of the sphere is very peculiar, so it is not surprising

that there are no exotic Blaschke homology spheres.

On the other hand, the proof above that a Blaschke

manifold is a cohomology sphere or cohomology pro-

jective space works identically for any compact Rie-

mannianmanifold M with point p so that all geodesics
through p are embedded circles of equal length; these

are known as SCm manifolds [6] p. 1. There is an ex-

otic smooth structure on the 10-dimensional sphere

bearing an SCm metric [6] appendix C; there is even

one bearing a metric which is SCm at two points,

with a foliation by isoparametric hypersurfaces [32]

p. 626 theorem 5.1. Cohomology projective spaces

are classified up to diffeomorphism [23]. In particu-

lar, the Eells–Kuiper cohomology quaternionic projec-

tive spaces [15] admit SCm metrics [47]. It is not known

whether any other cohomology projective spaces or

cohomology spheres admit SCm metrics.

Theorem 7 (Weinstein [6] appendix C). A compact

connected manifold M is the union of the standard Eu-

clidean closed ball and of a fiber bundle of Euclidean

closed balls, glued together by a diffeomorphism of

their boundaries, just when there is a Riemannian

metric on M and a point p ∈M so that, for every point

q ∈ M, the set of unit vectors u ∈ TqM tangent to mini-

mal geodesics from q to p is a great sphere in the unit

sphere in TqM.

20. Tools We Might Hope to Use

It is unlikely that the tricks above that pro-

duce diffeomorphism, homeomorphism or homo-

topy equivalence with the model can yield isome-

try; they forget too much geometry. A compact con-

nected Riemannian manifold (or length space) with

a large number of Blaschke points seems likely to

be a Blaschke manifold. In a Blaschke manifold, the

cut locus of any point is a submanifold generating

the cohomology ring, with intersections governed by

the cohomology ring as in the model, so we might

use integral geometry. The spectra of compact rank

1 symmetric spaces are peculiar, and related to their

peculiar geodesic behaviour: we might use spectral

geometry. The compact rank 1 symmetric spaces are

characterized by their diameter, upper bound on sec-

tional curvature and lower bound on either injectiv-

ity radius [37] or distance to conjugate points [44]. A

Blaschke manifold, rescaled to have the same diam-

eter as its model, with sectional curvature bounded

from below by theminimum sectional curvature of its

model, is isometric to its model [45]. Blaschke man-

ifolds are not known to have bounds on any type of

curvature, besides the total scalar curvature; see The-

orem 2 on page 39.

A projective connection on a manifold is an equiv-

alence class of affine connection, with two being

equivalent when they have the same geodesics as

unparameterized curves. Lebrun and Mason [25, 26]

gave an explicit description of the projective connec-

tions on S2 whose geodesics are closed. It is unclear

how to state an analogue of the Blaschke conjecture

for projective connections in all dimensions. An ana-

logue of the sphere: find the projective connections

so that all of the geodesics travelling out of any one

point intersect at some other point. We might also in-

sist that all geodesics be periodic. More generally, we

might like to find the projective connections so that
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the geodesics travelling out of any one point meet

only along a smooth submanifold of some particular

codimension, and perhaps also be periodic.

A Riemannian manifold is harmonic if near each

point there is a nonconstant harmonic function de-

pending only on the distance from that point. Every

compact simply connected harmonic manifold is a

compact rank 1 symmetric space [4, 33, 46], so we

might try to construct some harmonic functions. Ev-

ery harmonic manifold M is isometrically immersed

into a Euclidean sphere by mapping each point m ∈M
to the values ( f1(m), f2(m), . . . , fs(m)) of an orthonormal

basis of λ -eigenfunctions f1, f2, . . . , fs of the Laplacian

of M, for any choice of nonzero eigenvalue λ [4] p. 30

theorem 6.2; we might look for an analoguous map

on a Blaschke manifold.
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