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The 2015 Lin Lectures

by Gilbert Strang*

Lin Chia-Chiao was a remarkable man. He was

very kind to this young assistant professor at MIT. All

the faculty knew that he had come from China’s fa-

mous university Tsinghua (and we were told that Ts-

inghua was the “MIT of China”). But I never expected

to have this chance for lectures in his memory right

here.

Everyone was permitted to call him C. C. His

specialties were fluid mechanics and astrophysics.

He was promoted to the rank of Institute Professor,

which is an enormous honor at MIT. (The one and

only Institute Professor in our department right now

is Isadore Singer, winner of the Abel Prize jointly with

Michael Atiyah.) After retirement C. C. and his wife

eventually moved to a home provided for them here

on the Tsinghua campus. On my previous visit I had

the good fortune to talk to him—we enjoyed remem-

bering the MIT Math Department of Wiener and Levin-

son and Lin. He passed away at the age of 96.

I was always grateful to him, and now it is a spe-

cial honor to visit Tsinghua. I chose to speak partly

about my experience of preparing video lectures on

linear algebra. I want to encourage others to think

(and to act!) in this direction too—it can change your

life. I will also describe a sequence of ideas that could

help to complete large matrices when data is missing,

and to compute with those matrices when the size of

the data is overwhelming.

OpenCourseWare and Online Teaching

My principal courses at MIT are 18.06 Linear Alge-

bra and 18.085 Computational Science and Engineer-
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ing. One is for undergraduates, with 250 students in

Spring 2015. The other is for graduate students, with

125 students in Fall 2014. At some time in the 20th

century I was asked to reorganize these subjects. At

that time linear algebra was studied by a small group

of math majors (which once included me—I liked it

but we almost never saw a matrix). And the equiv-

alent to 18.085 never saw a computer. This had to

change—without losing the mathematical content.

The new courses needed new textbooks: Linear

Algebra and Its Applications (1976 … 2006) was fol-

lowed by Introduction to Linear Algebra (Wellesley-

Cambridge Press, 1993 … 2009). A Chinese transla-

tion of that second book is just completed. For the

graduate course, Introduction to Applied Mathemat-

ics (1986) was followed by Computational Science and

Engineering (2007). And now there are video lectures;

those are my subject today.

MIT’s OpenCourseWare was a new answer to an

old question: How to help students outside the class-

room? It was the right answer—to make the lectures

free for everyone. There are 2000 MIT courses on

ocw.mit.edu, many with videos. They show MIT as it

is.

The new problem in 2015 is to go further. OCW

led to MITx (on campus) and edX (worldwide) with

homeworks and exams and grades and certificates.

The 18.06 homeworks are now graded by computer,

with instant response that students like. We have not

yet offered an edX course on linear algebra (a MOOC=

Massive Open Online Course).

The linear algebra course was filmed in my nor-

mal class with normal mistakes; you could look at

Lecture 10. Probably 4,000,000 viewers have watched,

and quite a large subset has sent email! I especially

wanted to provide a version with Chinese subtitles.
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I searched for the right person to help, then I was

happy to learn that the subtitles already existed (pos-

sibly now on 163.com).
Perhaps my main message here at Tsinghua is

to say that the technical part, the recording itself,

is not difficult. I think we will soon have full-scale

successful efforts starting with high school algebra—

and why not all the way back to ordinary multiplica-

tion? I just completed a series on Differential Equa-

tions using my own camera (planned for my YouTube

channel as well as ocw.mit.edu and mathworks.com).
The Khan Academy shows that one person can make

thousands of videos. Those are not highly developed

but Khan has a relaxed style that students appreci-

ate.

Matrix Completion with Maximum
Determinant and Banded Inverse

These pages will outline a series of steps in the

“linear algebra of banded matrices”. These matrices

have zero entries outside a band of width w on each

side of the main diagonal: ai j = 0 for |i− j|> w. A tridi-

agonal matrix (bandwidth w = 1) is the simplest and

most important example.

The nonzero entries in A might correspond to

edges in a graph or a network, when the nodes lie

along a line—and connections can only reach w nodes

to the left and right.

We will outline without proofs a series of ideas

in the literature that potentially lead to fast comple-

tions and computations with large banded matrices.

Ordinary elimination solves a linear system Ax = b in

O(Nw2) steps, but that is not our problem. Here are

the main ideas:

1. The Nullity Theorem

2. Inverses of banded matrices

3. Positive definite completion with maximum de-

terminant

4. Fast inverse of the completed (full) matrix

We see possible future applications for genetic data.

1. The Nullity Theorem applies to any invertible

matrix A and its inverse, partitioned into four (possi-

bly rectangular) blocks:

A−1 =

[
P Q
R S

]−1

=

[
T U
V W

]
.

The theorem says that each block T,U,V,W in A−1

has the same nullity (dimension of nullspace) as the

complementary block S,Q,R,P in A. For a 2 by 2 ma-

trix with 1 by 1 blocks, the entries t,u,v,w are exactly

s,−q,−r, p divided by detA 6= 0.
The proof reproduced in [10] starts from the

block equations that are given by AA−1 = I and

A−1A = I.

2. The inverses of banded matrices have a special

structure: Low rank above and below the diagonal. If

A is a tridiagonal matrix, all submatrices of A−1 that

do not cross the main diagonal have rank ≤ 1. If A
has bandwidth w, then all submatrices above the wth

subdiagonal of A−1 and all submatrices below the wth

superdiagonal of A−1 have rank ≤ w [2, 9] Then A−1 is

“semiseparable of rank w.”
Here is a typical step in the proof. When A is tridi-

agonal, the submatrix Q in rows 1, 2 and columns 4 to

n is zero. Its nullity is n−3 (the number of columns).

The complementary submatrix U includes rows 1,2,3
and columns 3 to n of A−1. Its nullity is n− 3 by the

Nullity Theorem. Since it has n− 2 columns, its rank

is 1.

The rank of any matrix equals the size of its

largest invertible square submatrix. Thus if A is tridi-

agonal, every 2 by 2 submatrix of A−1 (rows i, i + 1
and columns j, j+1) is singular—zero determinant—

except if i = j.

A−1 =

 a b 0
c d e
0 f g

−1

=

 . x xy−1z
. y z
. . .


In this case the zero entries in two corners of A match

the zero cofactors in two corners of A−1.

Important. That example shows how the entries

of A−1 can be systematically constructed—building

outward from its tridiagonal part B that contains x,y,z.
The construction multiplies the column [x y]T times

the row [1 y−1z] to produce that 2 by 2matrix of rank 1.

This step also applies when B is block tridiago-

nal, including blocks x,y,z. The completed block in

A−1 is still [x y]T [I y−1x]. Our whole analysis extends

to “block-banded” matrices A and to low rank off-

diagonal blocks in A−1. These are dual properties.

3. To explain matrix completion, we reverse di-

rection. Begin with the tridiagonal part B of an in-

complete matrix C. All other entries of C are to be

determined. In applications C might represent a co-

variance matrix in which we only know the variances

bii = cii = σ2
i and the covariances σi i+1 between neigh-

boring pairs i and i + 1. We do not know the other

covariances—only thatC should be a positive definite

matrix. Starting with that tridiagonal part B, is there
a better way to complete the matrix C than simply

padding it with zeros?

Yes, there is. This is a widely discussed problem,

to fill in missing data in an optimal way. One popu-

lar principle is “maximum entropy”. The probability

distribution p(x) = e−xT C−1x/2/(2π)n/2
√

detC is multivari-

ate Gaussian. Its entropy
∫

p(x) log p(x) dx turns out to
depend directly on the determinant of C.

Maximizing the entropy reduces to maximizing

the determinant of C, when the tridiagonal part is
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known. See Dempster [3] for an early and convincing

analysis of the statistical reasoning.

Now comes the happy fact about maximum de-

terminant. It is achiev-ed by that same step by step

construction from B to C, maintaining low rank off

the diagonal. In other words, the inverse of the opti-

mally completed matrix C is a banded matrix A [5]:

Every entry that is completed in C corresponds

to a zero entry in the inverse matrix A.

We can connect this fact to the cofactor formula for

the determinant of C. Each new entry is multiplied by

its cofactor, so calculus (zero derivative at the max-

imum point) asks for cofactor = zero. This result

extends to every incomplete matrix B (including all

block-banded matrices) provided its entries produce

a chordal graph: Every cycle of length ≥ 4 has a chord
that cuts across to produce a shorter cycle.

B will be outside this completion theory if its tridi-

agonal part and also b1n and bn1 are specified. And a

square grid in the plane is not chordal. Its minimal

cycles have length 4.

Another way to recognize the optimal completion

c13 = c31 of a 3 by 3 symmetric tridiagonal matrix B is

the determinant formula

b22 detC =

∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ ∣∣∣∣ b22 b23

b32 b33

∣∣∣∣− ∣∣∣∣ b12 c13

b22 b23

∣∣∣∣2
detC is amaximumwhen that last determinant is zero.

4. Here is a remarkable local inverse formula

for the optimal C−1 = A. The formula uses only the

specified part B of C (this is possible because C is

constructed from B). We know that the unspecififed

part of C (the completed part) corresponds to zeros

in C−1 = A. In our example, the local inverse formula

gives the tridiagonal part of C−1 directly from the tri-

diagonal part B of C.
Statistical computations usually involveC−1 more

than the actual covariance matrixC. So this formula is

potentially useful. It computes C−1 by adding the in-

verses of the 2 by 2 submatrices of B and subtracting

the inverses of their 1 by 1 overlaps:

C−1 =


[

b11 b12

b21 b22

]−1

+
[

b22 b23

b32 b33

]−1 − [b22]
−1


The extension to wider bands remains correct: Add

the inverses of principal submatrices of size w+1 and
subtract the inverses of size w.

I believe that this remarkable formula was first

found by statisticians; it is implicit in [8, page 145].

Johnson and Lundquist [6] establish the formula for

block-banded matrices and all chordal matrices. And

the signal processing literature [1, 7] offers a fast in-

verse that begins with the Cholesky factorization B =

LLT . This comes from ordinary Gaussian elimination.

Altogether a fascinating series of ideas about

bandedmatrices. I want to thankmany friends (above

all Shev MacNamara) for joining me in this continuing

adventure.
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