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1. The Work of Riemann

Riemann was one of the founders of complex

analysis, along with Cauchy. Riemann pioneered sev-

eral directions in the subject of holomorphic func-

tions:

1. The idea of using differential equations and vari-

ational principle. The major work here is the

Cauchy-Riemann equation, and the creation of

Dirichlet principle to solve the boundary value

problem for harmonic functions. (It took several

great mathematicians, such as David Hilbert, to

complete this work of Riemann.)

2. He gave the proof of the Riemann mapping the-

orem for simply connected domains. This theory

of uniformization theorems has been extremely

influential. There are methods based on various

approaches, including methods of partial differ-

ential equations, hypergeometric functions and

algebraic geometry. A natural generalization is

to understand the moduli space of Riemann sur-

faces where Riemann made an important contri-

bution by showing that it is a complex variety

with dimension 3g−3.
3. The idea of using geometry to understand multi-

valued holomorphic functions, where he looked

at the largest domain that a multivalued holo-

morphic function can define. He created the con-

cept of Riemann surfaces, where he studied their

topology and their moduli space. In fact, he in-

troduced the concept of connectivity of space

by cutting Riemann surface into pieces. The con-

cept of Betti number was introduced by him for

spaces in arbitrary dimension.

The idea of understanding analytic problems

through topology or geometry has far-reaching

consequences. It influenced the later works of

Poincaré, Picard, Lefstchetz, Hodge and others.
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Important examples of Riemann’s research is to

use monodromy groups to study analytic func-

tions. Such study has deep influence on the de-

velopment of discrete groups in the 20th cen-

tury. The Riemann-Hilbert problem was inspired

by this and up to now, is still an important sub-

ject in geometry and analysis. The study of ram-

ified covering and the Riemann-Hurwitz formula

gave an efficient technique in algebraic geometry

and number theory.

4. The discovery of Riemann-Roch formula over al-

gebraic curve. The generalizations by Kodaira,

Hirzebruch, Grothendieck, Atiyah-Singer have

led to tremendous progress in mathematics in

the twentieth century.

5. His study of period integrals related to Abel-

Jacobi map and the hypergeometric equations:

z(1− z)y′′+
[
c− (a+b+ c)z

]
y′−aby = 0.

6. The study of Riemann bilinear relations, the Rie-

mann forms and the theta functions. During his

study of the periods of Riemann surfaces, he

found that the period matrix must satisfy period

relations with a suitable invertible skew symmet-

ric integral matrix which is called Riemann ma-

trix later. Riemann realized that the period re-

lations give necessary and sufficient condition

for the existence of non-degenerate Abelian func-

tions.

(According to Siegel [68], his formulation was in-

complete and he did not supply a proof. Later,

Weierstrass also failed to establish a complete

proof despite his many efforts in this direction.

Complete proofs were finally attained by Appell

for the case g = 2 and by Poincaré for arbitrary g.)

It should be noted that Riemann spent most of

his last four years in Italy because he contracted Tu-

berculosis and needed to avoid the severe winter in

Germany. But as a result, he inspired a large group

of differential geometers and projective algebraic ge-

ometers in Italy. Their works influenced the develop-

ment of geometry and physics in the 20th century.

First of all, we should say that Riemann was the

mathematician that brought us a new concept of

space that was not perceived by any mathematician

before him. I believe that was the reason that Gauss

was so touched by his famous address on the foun-

dations of geometry in 1854. I could not read German

and was only able to read this address recently after

it was translated into English. I was rather surprised

that Riemann had rather liberal view about what ge-

ometry is supposed to be.

His guiding principle was nature itself (B. Rie-

mann, On the Hypotheses Which Lie at the Foundation

of Geometry, 1854.):

The theorems of geometry cannot be deduced from
the general notion of magnitude alone, but only
from those properties which distinguished space
from other conceivable entities, and these proper-
ties can only be found experimentally... . This takes
us into the realm of another science – physics.

He thinks a deep understanding of geometry

should be based on concepts of physics. And this is

indeed the case as we experienced in the past century,

especially in the past 50 years development of geom-

etry. Although he was the one who introduced the

concept of Riemann surface, which is the largest do-

main that a multivalued holomorphic function lives

in, the precise modern concept was developed much

later through the efforts of Klein, Poincaré and oth-

ers.

While Felix Klein [38] already used atlas to de-

scribe Riemann surface, it has to wait until Hermann

Weyl [80] who first gave the modern rigorous def-

inition of Riemann surface, in terms of coordinate

charts.

It was rather strange that a formal introduction of

the concept of complex manifold was quite a bit later.

Historically, generalization of one complex variable

to several complex variables began by the study of

functions on domains in Cn. There were fundamental

works of Levi, Oka, and Bergman.

The natural generalization of the concept of two

dimensional surfaces to higher dimensional mani-

folds was done by O. Veblen and J. H. C. Whitehead in

1931–32. H. Whitney (1936) clarified the concept by

proving that differentiable manifolds can be embed-

ded into Euclidean space.

However, it was only in 1932 at the Interna-

tional Congress of Mathematicians in Zurich, did

Caratheodory study “four dimensional Riemann sur-

face” for its own sake. In 1944, Teichmüller men-

tioned “komplexe analytische Mannigfaltigkeit” in his

work on “Veränderliche Riemannsce Flächen”.

Chern was perhaps the first to use the English

name “complex manifold” in his work [19].

The general abstract concept of almost complex

structure was introduced by Ehresmann and Hopf in

the 1940s. In 1948, Hopf [34] proved that the spheres

S4 and S8 cannot admit almost complex structures.

The concept of Kähler geometry was introduced

by Kähler [35] in 1933 where he demanded the Käh-

ler form (which was first constructed by E. Cartan) to

have a Kähler potential. Kähler had already observed

special properties of such metric. He knew that the

Ricci tensor associated to the metric tensor gi j̄ can be

written rather simply as

Rkl̄ =− ∂ 2

∂ zk∂ z̄l
(logdetgi j̄),

which gave a globally defined closed form on the

manifold.
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He knew that it defines a topological invariant

for the geometry. It defines a cohomology class in-

dependent of the metric. It was found later that, after

normalization, it represents the first chern class of

the manifold. The simplicity of the Ricci form allows

Kähler to define the concept of Kähler-Einstein met-

ric and he wrote down the equation locally in terms of

the Kähler potential. He gave examples of the Kähler

metric of the ball.

Slightly afterwards, Hodge developed Hodge the-

ory, without knowing the work of Kähler, based on

the induced metric from projective space to the alge-

braic manifolds. He studied the theory of harmonic

forms with special attention to algebraic manifolds.

The (p,q) decomposition of the differential forms

have tremendous influence on the global understand-

ing of Kähler manifolds. A very important observa-

tion is that the Hodge Laplacian commutes with the

projection operator to the (p,q)-forms and hence the

(p,q) decomposition descends to the de Rham coho-

mology. The theory was soon generalized to cohomol-

ogy with twisted coefficients.

A very important cohomology with twisted co-

efficient is cohomology with coefficient in the tan-

gent bundle or cotangent bundle, and their exterior

powers. For the first cohomology with coefficient

in tangent bundle, Kodaira and Spencer developed

the fundamental theory of deformation of geometric

structures, which gave far reaching generalization of

the works of Riemann, Klein, Teichmüller and others

on parametrization of complex structures over Rie-

mann surfaces. They realize that the first cohomol-

ogy with coefficient on tangent bundle, denoted by

H1(T ), parametrize the complex structure infinites-

imally and that the second cohomology with coef-

ficient on tangent bundle, denoted by H2(T ), gives
rise to obstruction to the deformation. The last state-

ment was made very precisely by Kurinishi using Har-

monic theory of Hodge-Kodaria. It describes the sin-

gular structure of the moduli space locally. Kodaira-

Spencer studied how elements in H1(T ) acts on other

cohomology, which leads to study of variation of

Hodge structures. The Hodge groups can be group

in an appropriate way to form a natural filtration of

the natural de Rham group. The Kodaira-Spencer map

plays a very important role in understanding the de-

formation of such filtrations. Cohomology with co-

efficient of cotangent bundle or wedge product of

cotangent bundle gives to hodge (p,q) forms. The du-

ality of tangent bundle and cotangent bundle gives

rise to something called mirror symmetry studied ex-

tensively in the last thirty years in relation to the the-

ory of Calabi-Yau manifolds.

A very important tool in complex geometry was

the introduction of Chern classes to complex bun-

dles over a manifold and the representation of such

classes by curvature of the bundle.

When Chern introduced the concept of Chern

classes, he was influenced by the works of Pontrya-

gin classes. In the course of defining Chern classes by

de Rham forms given by symmetric polynomial of the

curvature form, Chern defined the Chern connection

for holomorphic bundles. He also proved that Chern

classes of holomorphic bundles are represented by al-

gebraic cycles on algebraic manifolds. This has been

the major evidence of the Hodge conjecture: That ev-

ery (p, p) class can be represented by algebraic cycles.

Chern proved that three different ways to de-

fine Chern classes are equivalent. In particular, he

proved they are integral classes. Weil explained how

they are related to Lie algebra invariant polynomials.

Weil remarked that the integrality of Chern classes

should play a role in quantum theory. Chern-Weil the-

ory forms a bridge between topology, geometry, and

mathematical physics.

The desire to generalize Riemann-Roch formula

to higher dimensional algebraic manifolds has been

relative slow, until the very powerful methods of

sheaf theory was introduced by Leray, and important

inputs were given by Weil, Borel and Serre. These ba-

sic techniques enabled Hirzebruch to arrive at the

important Hirzebruch-Riemann-Roch formula in his

1954 paper [32], which can be stated in the following

way:

χ(V,E) =
∫

V
ch(E)td(V ),

where E is a holomorphic vector bundle over a pro-

jective variety V .
The formulation of this formula by itself is re-

markable. Hirzebruch developed the splitting princi-

ple and the theory of multiplicative sequences to find

important power series of Chern classes. The Todd

class is such a power series which is found by Hirze-

bruch to represent the arithmetic genus of the alge-

braic manifold, generalizing some old works of Todd

in lower dimension. The Chern character ch(E) was
invented by him to be a homomorphism from space

of holomorphic vector bundles to even dimensional

cohomology. The left-hand side of the formula is the

Euler characteristic of cohomology with coefficient in

E. This beautiful formula was observed by Serre when

the algebraic manifold is two dimensional.

In the other direction, Kodaira was the first major

mathematician who developed Hodge theory of har-

monic forms right after its announcement by Hodge,

and he generalized the theory of harmonic forms to

manifolds with boundaries, where various boundary

conditions have to be imposed.

Perhaps his most important work was his deep

understanding that the Bochner argument in Rieman-

nian geometry can be used to prove a vanishing the-

orem for cohomology classes under curvature con-

dition of the manifold. He realized that the natural
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place for such vanishing theorem is to deal with co-

homology with coefficient on bundle or sheaf. The

vanishing theorem of Kodaira says that for positive

line bundle L on a compact complex manifold M:

Hq(M,KM ⊗L) = 0

for q > 0.
Coupled with the following theorem of Serre du-

ality:

Hq(M,E)∼= Hn−q(M,K ⊗E∗),

Kodaira vanishing theorem implies that the Euler

characteristic of cohomology with coefficients in a

holomorphic vector bundle E with E ⊗K∗ positive, is

simply the dimension of the group of holomorphic

sections of E.
The above mentioned Hirzebruch-Riemann-Roch

theorem then gives a formula to compute the dimen-

sion of the sections of the holomorphic bundle in

terms of Chern numbers defined by Chern classes of

the manifold and the bundle. This creates the most

basic tool to understand algebraic manifolds.

Kodaira also showed that by blowing up points on

the manifold, one can find enough holomorphic sec-

tions to separate points of the original manifolds and

in fact gives an embedding of the manifold into com-

plex projective space by using holomorphic sections

of the bundle.

In particular, he proved that any Kähler manifold,

whose Kähler class is defined by the Chern class of a

holomorphic line bundle, can be holomorphically em-

bedded into the complex projective space. The theo-

rem of Chow then implies the manifold is in fact de-

fined by an ideal of homogeneous polynomials, and

hence an algebraic manifold.

What Kodaira has proved is one of the most spec-

tacular theorems in geometry, and a glorious gener-

alization of the work of Riemann on the condition

of a complex torus to be abelian. More importantly

themethod of proving the Kodaira vanishing theorem

has far reaching consequences in complex geometry.

It was generalized to noncompact complex manifold,

by various mathematicians including C. Morrey, Hör-

mander, Kohn, Vessintini, and others.

The Kodaira embedding theorem requires a high

enough power of the ample line bundle to accomplish

the embedding into projective space. An upper bound

of this power of the line bundle is not clear from his

argument.

Later on, Matsusaka [58, 59] (improved by Kollár-

Matsusaka [39]) proved the very-ampleness of mL for

an ample line bundle L on an n-dimensional projective

variety X , when m is no less than a bound, depending

only on the intersection numbers Ln and KX ·Ln−1 on

X .

In 1980s, Kawamata proved his famous basepoint

freeness theorem about the pluricanonical systems of

minimal models in [36, 37]. This is very important in

the study of abundance conjecture. He proved that

under the assumption that the numerical Kodaira di-

mension of a minimal variety X is equal to its Ko-

daira dimension, the pluricanonical system |mKX | is
basepoint free for large m. This implies the basepoint

freeness for minimal models of general type varieties.

Later on, in a series paper of Miyaoka and Kawamata,

they settled the proof of abundance conjecture for

threefolds.

An important unsolved conjecture was proposed

by Fujita in 1985, mL+KX is base-point free for m≥ n+
1 and is very ample for m≥ n+2. Manymathematicians

did important work on Fujita’s conjecture, including

Reider, Ein-Lazarsfeld, Kawamata, and many others.

Demailly proved an effective formula for the bound

on very ampleness [21]. Angehrn and Siu proved a

quadratic bound for basepoint freeness [4].

There are many other contributioins to algebraic

geometry made by Japanese algebraic geometers.

Mori first introduced the ingenious idea of “bend and

break” argument in his proof of Hartshorne conjec-

ture [64]. This leads to his proof of cone theorem in

birational geometry and had deep influences in min-

imal model program. Mukai introduced the Fourier-

Mukai transform in 1981 [65]. This became an impor-

tant tool in the study of derived categories.

2. Calabi Conjecture and
Kähler-Einstein Metrics

The theorems by Kodaira, Matsusaka, Kawamata

provide abundance of holomorphic sections for the

holomorphic line bundle to embed the manifold into

complex projective with higher dimension. An inter-

esting important problem is the zero codimension

case where we want to embed X to complex projec-

tive space with the same dimension. Hirzebruch and

Kodaira [33] conjectured that every algebraic mani-

fold that is homeomorphic to CPn is actually biholo-

morphic to it. They used Hirzebruch-Riemann-Roch

formula, but they could only treat the case of odd di-

mensional manifolds due to the indeterminacy of the

sign of the first Chern class. The even dimensional

case was finally settled by me [84] in 1976. While the

arguments of Kodaria are based on Hilbert space the-

ory, which depends on linear analysis, the argument

that I used was nonlinear in nature. It has became an

important new tool in complex geometry in the past

forty years.

My argument depends on the existence of Kähler-

Einstein metrics assuming the first Chern class is ei-

ther positive, zero or negative. Although the Kähler-

Einsteinmetric was already discussed by Kähler in his
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1933 paper [35], where he wrote the equation explic-

itly, it wasn’t until 1954 when Calabi [11] made a for-

mal proposal to prove the existence of Kähler metric

with prescribed volume form.

This could be used to proved the existence of

Ricci-flat Kählermetric for any polarization if the first

Chern class of themanifold is zero. Then Calabi asked

the question when the first Chern class of the man-

ifold is either negative or positive. The questions of

Calabi were believed to be too good to be true in the

old days, as nobody was able to construct an explicit

Kähler-Einstein metric on any compact Kähler mani-

folds with no symmetries.

On 1976, I settled the cases when the first Chern

class is either trivial or negative. (Aubin did the work

independently for negative first Chern class.) I also

considered the case when the manifold can have sin-

gularities, as was announced in my talk [87] at 1978

ICM in Helsinki.

2.1 Kähler-Einstein Metrics on Fano Manifolds

When the first Chern class is positive, it is called a

Fano manifold. There are many interesting properties

about Fano manifolds. Kollár, Mori and Miyaoka in

[40] showed that smooth Fano varieties are rationally

connected, in the sense that any two points are con-

nected by a rational curve with (effectively) bounded

degree. This implies an effective bound for the degree

of the Fano n-fold, with respect to its anti-canonical

bundle. Based on the work of Kollár and Matsusaka, it

also implies that Fano n-folds form a bounded family.

In this case, there is an obstruction for the ex-

istence of Kähler-Einstein metric due to Matsushima

[60]: the Lie algebra of the automorphism group of

the manifold must be reductive. On [28], Futaki in-

troduced his beautiful invariant defined on this Lie

algebra. The Futaki invariant soon became a funda-

mental tool to study Kähler-Einstein metric on Fano

manifolds. On the other hand, It took a long while to

find a necessary and sufficient condition for the ex-

istence of Kähler-Einstein metric on Fano manifolds.

Many people, including Calabi, was misled to be-

lieve that the non-existence of nonzero holomorphic

vector fields is enough for the existence of Kähler-

Einstein metric on Fano manifolds.

Right after I proved the Calabi conjecture on the

existence of Kähler metric with prescribed volume

form, I tried to work on the problem of the existence

of Kähler-Einstein metric on Fano manifolds.

It is clear that based on the (nontrivial) higher or-

der estimates that I had (independently due to Aubin

for second order estimate) in the proof of the Cal-

abi conjecture [86], the only missing point is some

integral estimate of the Kähler potential. I found it is

useful to set up the continuity argument

det
(

gi j̄ +
∂ 2u

∂ zi∂ z̄ j

)
= exp(h− tu)det(gi j̄),

where t = 0 correspond to a Kähler metric with posi-

tive Ricci curvature, as was given by the Calabi con-

jecture.

A simple calculation shows that the Ricci curva-

ture of all members in the family have positive lower

bound. This simplifies the analysis quite a bit as we

have experiences with compact manifolds with Ricci

curvature bounded from below by positive constant.

In 1978, I returned to Stanford frommy visit of Berke-

ley. At that time, I succeeded to convince Stanford

mathematics department to hire Y.-T. Siu to come to

Stanford from Yale.

We started to think about a proof of the existence

of Kähler-Einstein metric by finding some integral es-

timate of the Kähler potential. Many estimates were

found, but they are short of proving the existence

of the metric. Some of those estimates can be sharp-

ened if there are symmetries on the manifold, a pro-

cedure similar to the way that Moser sharpened the

Trudinger inequality on the sphere when there is an-

tipodal symmetry.

In the meanwhile, in 1977, I realized that Bo-

gomolov [8] used the concept of stability of bun-

dles to prove Chern number inequalities for algebraic

surfaces which were sharpened by Miyaoka [61] and

myself [84] independently. I started to believe there

has to be links between the concept of stability with

the existence of Hermitian Yang-Mills connections on

bundles. When I proved the Calabi conjecture in 1976,

I was at UCLA, and had had a fruitful discussion with

David Giesecker, who is a great expert on the stabil-

ity of bundle theory. He re-proved the Chern number

inequality of Bogomolov over characteristic p.
The fact that a holomorphic bundle admits a

Hermitian Yang-Mills connection if the bundle is

polystable was proved by Uhlenbeck-Yau on arbitrary

compact Kähler manifolds, and by Simon Donald-

son for algebraic surfaces. Simpson observed that

the proof of Uhlenbeck-Yau can be used to settle the

case when there is a Higg’s field. (Up to now, the ar-

gument of Uhlenbeck-Yau has been the only argu-

ment to prove existence of the Yang-Mills-Higgs equa-

tion.)

The Bogomolov inequality is optimal for general

stable bundles. But it is not as sharp as the Miyaoka-

Yau inequality when applied to the tangent bundle

of the manifold. Hence I suspected that existence of

Kähler-Einstein metric should be considered as a non-

linear version of the existence of Hermitian Yang-

Mills connection, and the stability of bundle should

be replaced by manifold stability. Therefore, only in

1980, I realized that the right condition for existence

of Kähler-Einstein metric is the stability of the alge-

braic manifold.
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I made the conjecture that the existence of

Kähler-Einstein metric is equivalent to stability of

manifold. I told all my graduate students about this

conjecture, especially to Gang Tian who showed in-

terest in the problem of Kähler-Einstein metric. But it

took a long time to convince him of the validity of my

conjecture.

There are many ways to define stability of man-

ifolds including the concepts of Chow stability or

Hilbert stability. I was not sure which one is correct.

But I started to explore it with my students in my

seminars. First of all, one had to make sure that alge-

braic stability, which is defined by embeddings of al-

gebraic manifolds into complex projective space, can

be linked to existence of Kähler-Einstein metric.

In fact, in order to link stability condition to alge-

braic geometry, I [88, p. 139] proposed to prove any

Hodgemetric on an algebraicmanifold can be approx-

imated by normalized Fubini-Study metric induced

on the manifold through embedding of the manifold

into complex projective space by high powers of an

ample line bundle.

I asked Tian to follow this line of argument to fin-

ish the first step of my conjecture on the equivalence

of stability of Fano manifolds with the existence of

Kähler-Einstein metrics.

I suggested Tian to use my method with Siu [70]

on the uniformization of Kählermanifolds to produce

peak functions to achieve such a goal. (The purpose

of that paper with Siu was also embedding of Kähler

manifolds.)

The proof was reasonably transparent using tech-

nology from my paper with Siu. This became Tian’s

thesis at Harvard.

Themethod can be said to be an understanding of

the works of Kodaira in the analytic setting. The work

was carried out as I expected and it was strengthened

by Catlin [13], Zelditch [92] and by Lu [53].

So, we know that we can approximate any Hodge

metric by the inducedmetric of the projective embed-

ding of the manifold into some complex projective

spaces. However, there is an ambiguity due to the ac-

tion of complex projective group. This is of course

what geometric invariant theory studies.

It turns out that when I studied first eigenvalue of

the Laplacian with Bourguignon and Peter Li [10], we

need to find a good position for the embedding upon

action by the projective group, which we called the

balanced condition. It can be written in the following

form: ∫
σ(M)

ziz̄ j

|z0|2 + · · ·+ |zN |2
ω

n =
vol(M)

N +1
δi j

for some σ ∈ SL(N +1,C).
With such a condition, we can use the embedding

to give a good estimate of the first eigenvalue in terms

of the total volume and the degree defined by the

Chern form wedge with the Kähler classes.

I suggested this condition as a starting point to

my former student Luo to understand the concept of

stability required to prove my conjecture on the exis-

tence of Kähler-Einstein metric based on stability.

Luo [54] found it effective to change the measure

in the above formula defined by the induced measure

of the ambient projective space. And it turns out that

for a polarized manifold (M,L) if there exists a metric

on L such that the Bergman function of Lk is constant

for some k, then it is Chow stable.

A theorem of Shouwu Zhang [93] says that the ex-

istence of a unique balanced embedding is equivalent

to the manifold being Chow-Mumford stable.

My conjecture that the existence of Kähler-

Einstein metric is equivalent to stability was an-

nounced several times in several conferences and was

explicitly written in my article [89] for the proceed-

ings of UCLA conference on differential geometry in

1990.

I also communicated to Tian in detail on how to

understand the Futaki invariant in this setting. The

final conjecture of mine was solved recently by Chen-

Donaldson-Sun [16, 17, 18] based on earlier works of

Donaldson including the right algebro-geometric def-

inition of K-stability.

According to Donaldson [23], a Fano manifold is

called K-stable if all its non-trivial test configurations

(which describe certain degeneration of Kähler mani-

folds by flat families) have positive Futaki invariants.

For a test configuration X →C with C∗ action, the Fu-

taki invariant F1 can be found from the total weight

wk of C∗ acting on H0(X0,Lk), using

wk

kdk
= F0 +F1k−1 +O

(
k−2)

where dk is the dimension of H0(X0,Lk).

But the condition of K-stability is not easy to

check, even in the case of surfaces. It would there-

fore be interesting to prove the existence of balanced

condition for high power embeddings of a Fano mani-

fold implies existence of Kähler-Einstein metrics. It is

highly desirable to clarify the condition of K-stability

so that it can be checked effectively.

2.2 Balanced Metric and Strominger System

Kähler-Einstein metrics are very useful in bireg-

ular geometry. We shall discuss it later. However, it

cannot answer the important question whether an al-

gebraic manifold is rational or not. The existence of

Kähler metric is not a concept that is invariant un-

der birational transformations, while the existence of

balanced metric is. The concept of balanced metric

was introduced by Michelson [56]. A Hermitian met-
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ric is called balanced if its Kähler form satisfied the

following equation:

d
(
ω

n−1)= 0

and it was proved by Alessandrini and Bassanelli [1]

that its existence is invariant under birational trans-

formations. However, there is much more freedom to

deform a balanced metric than a Kähler metric. Just

demanding that Ricci curvature equal to zero is not

enough to determine a unique Balanced metric within

the (n−1,n−1) class.
On the other hand, balancedmetric comes up nat-

urally in the theory of Heterotic string theory in com-

plex 3-dimension. And (this) balanced condition is re-

lated to the concept of supersymmetry. When there is

a nonwhere vanishing top dimensional holomorphic

3-form, we look for an Hermitian metric which is bal-

anced, and a stable holomorphic bundle (stable with

respect to the balanced metric) whose second Chern

Class is equal to the second Chern Class given by the

Hermitianmetric. Altogether, the following equations

of the Strominger system need to be satisfied:

(1) d(‖Ω‖ω Ω2) = 0
(2) F2,0

h = F0,2
h = 0, Fh ∧ω2 = 0

(3)
√
−1∂ ∂̄ω = α ′

4 (tr(Rω ∧Rω)− tr(Fh ∧Fh))

It provides a natural generalization of the Calabi-

Yau geometry, which couples Hermitian metrics with

Hermitian Yang-Mills theory. my belief is that the

above system of equations can be solved when the

obvious conditions hold. Jun Li and I [45] solved this

system on any Calab-Yau manifold by making a de-

formation from the original Calabi-Yau metric.

For some intrinsically non-Kähler manifold, Fu

and I [27] solved the Strominger system based on

some ansätz for a 3-dimensional complex manifolds

obtained from the Calabi-Eckmann construction. (The

construction of the non-Kähler manifolds based on

Calabi-Eckmann construction was also observed by

Goldstein and Prokushkin [31].) It is a nonsingu-

lar complex torus bundle over the K3 surface. The

proof of existence of nonsingular solution to the Stro-

minger system given by Fu-Yau [27] is based on non-

trivial estimates related to complex Monge-Ampère

equations. In order to understand the significance of

Strominger system, Tseng and I [76, 77], and later

with Tsai [75], developed a new theory of symplectic

cohomology which we expect to be dual to this kind

of geometry.

Note that the existence of Ricci-flat Kähler met-

ric provides a reduction of holonomic group to a

subgroup of SU(n), and according to the work of

Candelas-Horowitz-Strominger-Witten [12], provides

a supersymmetric model for vacuum solutions for

Type II string theory. They called such manifolds to

be Calabi-Yau manifolds. The Strominger system was

introduced by Strominger to study Heterotic string

where the vacuum is a warped product instead of a

direct product.

2.3 Questions of Kähler-Einstein Metrics in

Algebraic Geometry

There are several interesting consequences of the

existence of Kähler-Einstein metric.

2.3.1 Understanding of Kähler-Einstein Metrics near
Singularities

A corollary of the above mentioned theorem of

Chen-Donaldson-Sun is that the K-stability of such

manifold implies that the tangent bundle is stable

with respect to the polarization given by the anti-

canoncial line bundle. This is an interesting statement

that is purely algebraic geometric, for which it would

be nice to have a proof based only on algebraic geom-

etry.

Also it implies that a K-stable Fano manifold is

biregular to CPn if the ratio of its two Chern numbers

c2cn−2
1 and cn

1 is the same as CPn.

Another interesting question is the following: If

a smooth algebraic manifold has Kodaira dimension

either equal to the dimension of the manifold or −∞,

and if it is minimal in the sense in birational geometry

and the ratio of two chern numbers c2cn−2
1 and cn

1 is

the same as CPn, then the manifold is either CPn or

complex ball quotient.

For the case of general type, this is likely to be

true. But it will be good to allow singular minimal

models and in the case of singular algebraic mani-

folds, we need to define the Chern numbers suitably.

This is related to the question of what is the best

Kähler-Einstein metric on an algebraic manifold with

singularity.

Let us look at the simplest case when the singu-

larity is isolated. If the Kähler metric is complete at

the singularity, it is not hard to prove that the Kähler-

Einstein metric is unique. However, when it is not

complete, it is not necessarily unique. It depends on

the behavior of the volume form near the singularity.

What kind of volume forms are allowed? We need

to know that the Ricci form of this volume form is

positive definite and that the n-fold product of the

Ricci form is asymptotic to this volume form near the

singularity. (We may require that the metric defined

by the Ricci form should have lower bound on its bi-

sectional curvature.) It would be interesting to clas-

sify the asymptotic models of such volume forms. In

principe, each of them will give rise to a canonical

Kähler-Einstein metric with the given asymptotic be-

havior of the volume form.

It would be interesting to calculate the contribu-

tion of the singularity towards the Chern numbers.

An important case is the canonical singularity appear-
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ing in the minimal model theory, which we recall be-

low.

Suppose that Y is a normal variety and f : X → Y
be a resolution of the singularities. Then

KX = f ∗(KY )+∑
i

aiEi

where the sum is over the irreducible exceptional di-

visors and the rational numbers ai are called the dis-

crepancies.

Then the singularities of Y are called canonical if

ai ≥ 0 for all i and called terminal if ai > 0 for all i.
A 3-dimensional singularity is terminal of index 1

if and only if it is an isolated composite DuVal (cDV)

point in C4. A 3-dimensional terminal singularity of

index r ≥ 2 is a quotient of an isolated cDV point in

C4.

The important question is to find a good Kähler-

Einstein metric in a neighborhood of the cDV singu-

larity which is invariant under the group action. For

orbifold singularities, one can use those metrics ob-

tained by pushing down from the nonsingular model

before quotient by the group. On the other hand,

there may be some other volume form that satisfies

the above properties that is distinct from the orbifold

construction. The complicated situation is the case

that the Ricci form of the volume form may define a

metric that is partially going to complete and partially

degenerate at the singular point.

It will be important to construct nice model vol-

ume form in a neighborhood of the canonical sin-

gularities of the manifold whose Ricci form can give

rise to a nice metric which is asymptotically Kähler-

Einstein.

2.3.2 Kähler-Einstein Metrics on Quasiprojective Varieties
and Sasakian-Einstein Metrics

In my first paper on the Calabi conjecture, we

know that given any Kähler class, we can find a Kähler

metric which may degenerate along a divisor whose

volume is given by the unique volume defined by the

divisor of the pluricanonical sections. How to cal-

culate the second Chern class related to this divi-

sor would be important. The Chern numbers calcu-

lated by the degenerate Ricci flat metrics should have

residue from the divisor. It would be important to cal-

culate this contribution.

The noncompact version of complete Ricci-flat

metric is more complicated, partially because we lack

of a goodmodel space to build a good ansatz. At 1978

ICM in Helsinki, I [87] announced the way to build

complete noncompact Ricci-flat manifolds.

I conjectured that the manifold can be written as

the complement of a divisor D of a compact Kähler

manifold M. (It was pointed out by Michael Anderson

et al. [3] that we should assume the finiteness of the

topology of the manifold, otherwise Taub-NUT mani-

folds can provide counterexamples.)

My program was to take D to be an anticanon-

ical divisor of M which cannot be contracted to a

codimension two subvarity. There will be a holomor-

phic volume form on M which has poles along D. I
expect that this is close enough to provide a neces-

sary and sufficient condition for M\D to admit com-

plete Kähler metric with zero Ricci curvature. When

D is nonsingular, I have worked out the program.

The details were written up with Tian in two papers

[72, 73].

However, when D has normal crossing singulari-

ties, the problem is unsolved, largely because we do

not have a good model of complete Ricci-flat metric

in a neighborhood of D when D has singularity. An

important and interesting case is to allow the com-

plete Kähler metric to have certain type of singular-

ities. Besides quotient singularity, we can allow cone

singularity.

In the last case, the interesting examples are met-

ric cones over a Sasakian-Einstein manifold. Impor-

tant progress was made by Gauntlett, Martelli, Sparks

and myself starting with [29] on the existence of

Sasakian-Einstein metrics. In [29, 55] we gave sev-

eral obstructions to their existence by studying the

Einstein-Hilbert functional restricted to the space of

Sasakian-Einstein metrics where it becomes essen-

tially the volume functional. It can further be shown

to be a functional of the Reeb vector field associated

to the Sasakian structure alone.

We obtain a useful obstruction from the Lich-

nerowicz bound on the Laplacian [49] which we could

identify preicsely as the physics criterion of a uni-

tarity bound in the conformal field theory associ-

ated to the hypersurface singularity. We also show

that the first variation of the volume functional is re-

lated to the Futaki invariant on the Kähler orbifold,

hence volume minimization (and a-maximization in

the physics language) implies vanishing of Futaki in-

variant. This includes the cases of regular and quasi-

regular Sasakian structures as classified by Reeb vec-

tor orbits. In the irregular case, Collins and Széke-

lyhidi [15] extended the notion of K-semistability to

Sasakian structures, showing constant scalar curva-

ture Sasakian metric implies K-semistability and also

recovered our results based on the volume functional.

The complete classification is still not known, even

for complex hypersurfaces with isolated singularity

which admits C∗-action.

2.3.3 Compatification of Shimura Varieties

Another very important class of Kähler-Einstein

metrics on quasi-projective varieties appears on the

compactification of Shimura varieties of noncom-

pact type. There is the work of Mumford on giving
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a toroidal compactification which is nonsingular. In

terms of the divisor at infinity, Yi Zhang and I [90]

wrote down the behavior of the volume form of the

Hermitian symmetric metric in a neighborhood of the

divisor.

Here is a summary of my work with Yi Zhang: The

positive cone C(F0) of the standard minimal cusp F0

of the Siegel space Hg can be regarded as the set of all

symmetric postive g× g real matrices. Let ΣF0 be any

decomposition of C(F0) such that the corresponding

Mumford toroidal compactification Ag,Γ of Ag,Γ has

normal crossing boundary divisor D∞ =Ag,Γ \Ag,Γ. Let

σ be an arbitrary top-dimensional polyhedral cone in

ΣF0 and Let D1, · · · ,DN (N = dimCAg,Γ) be some different

irreducible components of D∞ corresponding to edges

of σ .

Then the volume Φg,Γ on Ag,Γ can be represented

by

Φg,Γ =
dVg

(∏N
j=1 ||si||2i )F

g+1
σ (log ||s1||1, · · · , log ||sN ||N)

,

where

• where dVg is a continuous volume form on a

partial compactification Uσmax of Ag,Γ with Ag,Γ ⊂
Uσmax ⊂Ag,Γ,

• the || · ||i is a suitable Hermitian metric of the line

bundle [Di] on Ag,n for every integer i ∈ [1,N],

• the si is global section of OAg,Γ
(Di) such that Di =

{si = 0},
• the Fσ ∈ Z[x1, · · · ,xN ] is a homogenous polynomial

of degree g, and the coefficients of Fσ are integers

dependent only on Γ and σ together withmarking

order of edges.

In fact, Yi Zhang and I computed the volume form

of the Hermitian symmetric metric as is represented

on the coordinate given by the Toroidal compactifica-

tion. It shows that K +D is nonnegative and positive

on M\D.
Whether D∞ :=Ag,Γ\Ag,Γ is normal crossing or not,

Yi Zhang and I showed that there is always a local

model of partial compactification associated to each

maximal regular cone σ in the cusp F0.

The quotient manifold Hg/(Γ ∩UF0(Q)) gives an

étale map of the Siegel variety. For eachmaximal cone

σ in the cusp F0, we have associate exponential maps

of the inclusion Hg ⊂UF0(C)∼= Cn, so that these maps

endow a local model of partial compactification

Hg/
(
Γ∩UF0(Q)

)
⊂ (C∗)n.

The exponential map Cn → (C∗)n is given by

z 7→ w = (w1, · · · ,wn) where wi = exp
(
2π

√
−1li(z)

)
∀i,

where {li}n
i=1 is the dual base of edges of the cone σ .

The (w1, · · · ,wn) gives a local coordinate system of

the partial compactification, but it can not be a lo-

cal coordinate system of Ag,Γ if the D∞ is not normal

crossing.

The quotient manifold Hg/(Γ∩UF(Q)) also has an

induced Kähler-Einstein metric with volume form

Φσ =
(
√
−1
2 )n2

g(g−1)
2 volΓ(σ)2 ∧

1≤i≤n dwi ∧dwi

(∏1≤i≤n |wi|2)(Fσ (log |w1|, · · · , log |wn|))g+1 .

The coefficients of the polynomial Fσ are integers

dependent only on Γ and σ , and the function H :=
− logFσ must satisfy the following elliptic Monge-

Ampére equation

det
(

∂ 2H
∂xi∂x j

)
i, j

= 2
g(g−1)

2 volΓ(σ)2 exp
(
(g+1)H

)
on the domain {(x1, · · · ,xn) ∈ Rn | xi ≤−C < 0∀i}.

Note that it was known to me [85] that for a Di-

visor D in an algebraic manifold M, if K +D is strictly

positive, then there is a canonical complete Kähler-

Einstein metric on M\D whose volume form behaves

like:

Φ ∼ dV

∏
k
j=1 ||s j||2(− log ||s j||)2

for some integer k > 0, where si is a section of the line

bundle [Di] if D = ∑Di, dV is a global smooth volume

form on M, and the norm is defined such that its zero

set is D and the minus Ricci tensor of M plus the Ricci

curvature of the metric on D is positive.

In the above work with Yi Zhang, the volume form

is more complicated, because we only know K +D is

nonnegative and positive outside D. How to study

such quasi-projective manifold? It is important to

find the right algebro-geometric and combinatorial

conditions on the Chern forms of M and the Chern

forms of the various devisors D so that the Ricci cur-

vature of the volume form gives rise to a positive def-

inite Ricci form whose n-fold power is asymptotic to

the volume form itself.

An ansatz we propose to contruct complete

Kähler-Einstein metric on M \D is to construct a vol-

ume form described similar to the above Φσ , where

H satisfies the above Monge-Ampére equation with

xi = log |si|. We need to find the condition on the divi-

sors Di so that Φσ gives rise to a positive Ricci form

whose n-flod power is asymptotic to Φσ . Hopefully

we can find a good existence theorem for complete

Kähler-Einstein metric with finite volume on M \ D,
when K +D is nonnegative.

The existence of complete Kähler-Einstein met-

ric on the Shimura varieties comes from the Hermi-

tian symmetric domain that covers it. The tangent

bundle and various homogeneous bundles over the
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symmetric domain are invariant under the discrete

group acting on the domain. Hence they can be de-

scended to the Shimura varieties. As was explained

by Mumford, these bundles and their connections

can be extended naturally to the Mumford Toroidal

compactification of the Shimura variety. (Mumford

proved that the extension satisfies the property of be-

ing “good”.)

And the Chern forms defined by the connection

were identified by Mumford to represent the Chern

class of the extended bundles in the sense of distri-

bution. In the case of the cotangent bundle, the cotan-

gent bundle is extended to be Ω1(log(D)), where D is

the divisor at infinity.

Since the bundles are homogenous, the Chern

numbers of these extended bundles are determined

by some numerical combination of its curvature ten-

sor at one point times the volume of the Shimura

variety. The existence of Kähler-Einstein metric on

the Shimura variety shows that the manifold is sta-

ble in various senses and the homogeneous bundles

are stable with respect to the polarization K+D of the

variety. Besides algebraic geometric characterization

of Shimura variety, it would be good to characterize

algebraic geometrically those holomorphic bundles

that are homogenous.

Incidentally, from my observation in 1978 that

the positivity of K + D implies the existence of a

unique canonical Kähler-Einstein metric on the com-

plement of D. We can find a map from the space of

divisors D such that K+D is ample to the space of sta-

ble bundles defined by cotangent Ω1(log(D)). It will be

nice to find conditions on D so that we can weaken

the conclusion K +D > 0 to K +D ≥ 0.
For a compact algebraic manifolds M, it can be

shown to be a Shimura variety if the canonical line

bundle is ample, and if the bundle, formed by sym-

metric powers of the cotangent (or tangent) bundle

tensored by some line bundle so that the determi-

nant bundle is trivial, is irreducible and has nontrivial

sections. This is a simple observation (due indepen-

dently to Kobayashi-Ochiai and myself) [94] because

the existence of Kähler-Einstein metric will make this

nontrivial section to be a parallel section and hence

the holonomic group will be reduced. Algebraic char-

acterization of Shimura varieties allows one to give a

simple proof of the theorem of David Kazhdan, that

Shimura varieties are invariant under Galois conju-

gation. Unfortunately our knowledge for noncompact

manifold is not good enough to give such a proof in

such case.

2.3.4 Explicit Construction of Kähler-Einstein Metrics and
Uniformization

For Kähler-Einstein manifolds with negative or

zero first Chern class, I proposed [88, p. 139] that

the metric can be computed in the following man-

ner: When the canonical line bundle K is ample, we

can embed the manifold into the complex projective

space by nth power of K.
The embedding can be changed by projective

transformation in general. But there was a concept

of balanced position (inspired by my work with Bour-

guignon and Peter Li [10] on first eigenvalue of the

Laplacian) that I suggested to my former student Luo

[54].

The embedding is unique up to unitary transfor-

mation after putting into such balanced position. The

induced metric from complex projective space de-

fines a sequence of Kähler metrics on the manifold,

which after division by n, will converge to a Kähler-

Einstein metric of the manifold.

In the above construction, when the manifold

has zero first Chern class (Calabi-Yau manifold), the

canonical line bundle should be replaced by any pos-

itive line bundle.

The balanced position is achieved by some pro-

jective transformation. We expect that the projective

transformation depends algebraically on the origi-

nal embedding of the manifold. The whole procedure

should give a reasonable “explicit” form of the Kähler-

Einstein metric. Once we obtain an explicit form of

the Kähler-Einstein metric, we can compute the uni-

formization of the manifold.

A simple case is the elliptic curve where we know

how to calculate its unique holomorphic 1-form by

residue. The absolute value of it gives the Ricci-flat

metric on the elliptic curve. We can calculate the uni-

formization of the elliptic curve, using the period cal-

culation.

Computation of the periods of the holomorphic

1-form is obtained by computing the Picard-Fuchs

equation. Once one finds the period, one can obtain a

map from the complex line, mod the lattice spanned

by the periods, to the elliptic curve. The components

of this map is the Weierstrass ℘ function and its

derivatives. This procedure is classical and went back

to Abel, Jacobi and Riemann.

The uniformization of a general algebraic curve:

finding a covering holomorphic map from the upper

half plane to the curve, is more difficult and is done

only for special curves.

Suppose we can calculate the Poincaré metric on

the curve, as was explained above, we can calculate

this map by studying the periods through the Picard-

Fuchs equation. It is of course much more challeng-

ing to calculate the uniformization map explicitly in

higher dimensions.

Given an algebraic manifold, we know it can be

uniformized as a quotient of some classical domain.

It is a classical question on how to find such a uni-

formization.
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As mentioned above, we know how to find an

algebro-geometric criterion (by using Chern numbers)

for an algebraic manifold to be a ball quotient. But

we can generalize this criterion to more general man-

ifolds covered by Hermitian symmetric domains.

Once we identify such an algebraic manifold, we

need to find suitable multivalued holomorphic map

from the manifold into a Hermitian symmetric do-

main.

Chenglong Yu, Peng Gao and I proposed the fol-

lowing program for the ball quotient:

1. Find a reasonably explicit way to construct the

Kähler-Einsteinmetric on the algebraicmanifold. This

involves having a good understanding of the right

projective embedding for the algebraic manifold.

2. Based on Kähler-Einstein metric, we compute

its connection Ah and construct a system of holomor-

phic linear differential equations

ds+
(

−AT
h + 1

n+1 tr(Ah)−adẑ ∂a+AT
h a−a(dẑ ·a)

dẑ dẑa− 1
n+1 tr(Ah)

)
s = 0

where

s =
(

f 1, f 2 · · · f n+1)T
, dẑ =

(
dz1,dz2 · · ·dzn),

a = (a1 · · ·an)
T , ai =−Γi

j
j +

1
n+1 ∑

k
Γk

k
i δ

i
j

Here j doesn’t depend on i. The value of a is such

that it gives a gauge transformation making the con-

nection matrix holomorphic.

3. We find a base for the solution of the this sys-

tem, given by the span of {s1,s2, · · · ,sn+1}. This allows
us to define locally amap to the projective space of di-

mension n. Up to projective transformations we find

a map to the complex ball of dimension n as well.

These maps are multivalued functions. The in-

verse of this map should be given by automorphic

forms and one should be able to find information

of the discrete group that acts on the ball based on

the information of the algebraic variety and the mon-

odromy of the map. An example in the case of elliptic

curve is given by the Weierstrass-℘ function.

For higher genus curve, if the Kähler-Einstein

metric is e2udz∧dz̄, then the system above becomes

d
(

f1

f2

)
+

(
0 ((uz)

2 −uzz)dz
dz 0

)(
f1

f2

)
= 0,

or

( f2)
′′+

(
(uz)

2 −uzz
)

f2 = 0.

The coefficient in the differential equation gives

the Schwarzian derivative for the uniformizationmap

S(u) = uzz −u2
z .

A complete understanding of this program

should create many interesting special functions and

should be related to the GKZ system and the tautolog-

ical system introduced by Bong Lian and myself [48]

on computing the period of integrals of holomorphic

forms.

2.3.5 Relation with Birational Geometry

The moduli space of algebraic manifolds of gen-

eral type was studied by Gieseker and Viehweg who

proved that they are quasi-projective. The detailed

structure of the moduli space is not well understood.

However, the canonical Kähler-Einstein metric on the

manifold can be useful for such study. It induces a

canoncial metric on the moduli space which is called

Weil-Petersson metric: A Kähler metric on the mani-

fold gives rise to a metric on H1(T ) which is the tan-

gent space of the Kuranishi space of the manifold.

The Weil-Petersson metric can be computed in

some cases. But the properties were best understood

only for moduli space of curves. There are several

metrics defined on the moduli space of curves: Weil-

Petersson metric defined by using the Poincaré met-

ric (or the Bergman metric) on the curve, the Teich-

müller metric (which was proved by Royden [66] to

be equal to the Kobayashi metric), the Carathéodory

metric, the Bergman metric and the Kähler-Einstein

metric.

The last three metrics can be defined by gen-

eral method, not just for moduli space of curves.

Hence the computation of them is interesting. Al-

though K. Liu, X. Sun and I [50, 51] showed that the

last four metrics on the Teichmüller space are all uni-

formly equivalent to each other, it is likely that the

Carathéodory metric is different from the Kobayashi

metric. But the precise statement is not known.

However, Liu-Sun-Yau did calculate the asymp-

totic behavior of the Kähler-Einstein metric on the

Teichmüller space. In fact, the minus Ricci tensor of

the Weil-Peterson metric defines a complete metric

on the Teichmüller space. The Kähler-Einstein met-

ric could be obtained by perturbing from this metric.

The Teichmüller metric and the Weil-Petersson met-

ric are computable based on local information of the

Riemann surface.

The other metrics are defined by global means.

Hence the remarkable theorem of Royden, proving

that a metric defined by global means to be equal

to locally defined metric, has provided powerful in-

formation. It will be very useful to compute all these

metrics in the simplest Teichmüller space of genus

two curves.

The second class of canonical metrics are those

manifolds with zero Kodaira dimension. By taking

the absolute value of the pluriholomorphic n-form,

and taking roots, we obtain a canonical volume form

which may degenerate along a divisor. We can solve

the Monge-Ampère equation to obtain some Kähler
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metric which may be degenerate along the divisor.

It will be interesting to know the birational class of

these manifolds.

Let us now consider the possibility of using met-

rics to understand birational geometry. First of all, for

two classes of manifolds, there are natural measures

that are birational invariant:

For manifolds with Kodaira dimensional equal

to zero, we have a canonical volume form by using

the absolute value of the pluricanonical form. For

manifolds of general type, I introduced 40 years ago

[83] an intrinsic measure that is invariant under bi-

rational transformations. It was a generalization of

the construction given by Kobayashi and Eisenman

in 1970s.

In both cases, we can pick any Kähler class and

solve the Calabi conjecture with this volume form as

prescribed. In the first case, such metric was stud-

ied in the second part of my paper on Calabi con-

jecture. The metric can be proved to be unique and

smooth outside the divisor defined by the pluricanon-

cial form. In the second case, the metric also exists

uniquely. But smoothness depends on the measure

that I constructed.

In any case, given two birational manifolds of gen-

eral type M and M′, we can find M′′ and smooth ratio-

nal maps from M′′ to M and M′ respectively. If the pull-

backs of polarizations on M and M′ are the same on

M′′, then they are isometric to each other. It is easy

to derive from this fact that the group of automor-

phisms of a manifold of general type is finite.

It is not hard to prove that any algebraic mani-

fold of general type admits a Kähler-Einstein metric

with singularity (as was demonstrated by Tsuji and

myself thirty years ago). However, in order for such

metrics to be useful, one needs to know the singular

behavior of the metric. Kähler-Einstein metrics do not

respect rational maps. However, the Bergman met-

ric has better behavior under birational transforma-

tion.

Let us look at the line bundle Km where K is the

canonical line bundle. For any holomorphic section s
of Km, we can take 2/m power of its absolute value,

which defines a pseudo-norm on the canonical line

bundle. If we normalize its integral to be one and

maximize the pseudo-norms among all such s, we ob-
tain a canonical pseudo-norm on the canonical line

bundle. It defines a birational invariant volume form.

The curvature form of this volume form should de-

fine a pseudo-Kähler metric on the manifold. See [20]

for a detailed discussion.

We can deform this pseudo-Kähler metric within

its class to obtain a pseudo-Kähler metric which is

Einstein when it is smooth. When m is large, the

Kähler-Einstein metric should be less singular and if

we know the singular behavior of the original pseudo-

Kähler metric, we should have a way to control the

singularity of this pseudo-Kähler-Einstein metric. It

should be useful to study birational geometry.

For example, when the Kodaira dimension of the

manifold is zero, and the nonzero form s is a section
of Km. The volume form is the absolute value of s to
the power of 2/m. At the nonsingular point of the divi-
sor of s, the local model of the Ricci-flat metric should

be the push-forward of the Kähler metric on an m-fold
branch cover of the manifold branched along the di-

visor s = 0.
Based on this, one can compute the second Chern

form of the Ricci-flat metric degenerate along the di-

visor s = 0. The second Chern form of this degenerate

metric wedge with Kähler class to the top dimension

is positive unless it is flat. This should give interest-

ing information for manifolds with Kodaira dimen-

sion zero.

Many years ago, I conjectured that there are only a

finite number of deformation types for compact Käh-

ler manifolds with c1 = 0 at each dimension. The ques-

tion is still unknown and is getting more and more

important in string theory. The minimal model of al-

gebraicmanifold with Kodaira dimension zero should

play an important role if we want to ask similar ques-

tions for such manifolds.

3. Hermitian-Yang-Mills Connections

Hermitian metric on a complex manifold has a

natural generalization to Holomorphic bundles over

complex manifolds. Given a Hermitian metric on the

bundle, there is a natural connection which preserves

the metric and also the (0,1) part of the covariant

derivative would be the same as the naturally defined

∂̄ operator that depends only on the complex struc-

ture of the bundle and the complex manifold. The

curvature is a (1,1)-form with values in the endomor-

phism of the bundle.

3.1 Donaldson-Uhlenbeck-Yau Correspondence

There is a natural generalization of the Kähler-

Einstein condition to this setting by wedging the cur-

vature 2-form with the Kähler form to the top dimen-

sion and require it to be a scalar multiple of iden-

tity tensor with the volume form. This equation is the

natural generalization of anti-self-dual equations for

bundles over a Kähler surface.

In fact, around 1977, C. N. Yang [95] was trying

to solve the anti-self-dual Yang-Mills equation on R4,

and he showed that it can be reduced to Cauchy-

Riemann equations. And therefore he demonstrated

that the above equation is part of Yang-Mills equa-

tions. It is therefore natural to call such connection

to be Hermitian Yang-Mills connection.
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The equation became rather well known in the

math community after 1977, when people recognized

the importance of applications of Kähler-Einstein

metric to complex geometry. The proof of the exis-

tence of such connections would be clearly different

as the Calabi-Yau theorem was based on the com-

plex Monge-Amperè equation which depends only on

a scalar. The Hermitian Yang-Mills connection is a

vector-valued equation.

In December of 1977, when I was preparing the

talk for the ICM in Helsinki, I thought about the pos-

sible conditions for existence of Hermitian Yang-Mills

connections. I concluded that it had to be related to

the slope stability of the holomorphic bundle, as was

motivated by the work of Bogomolov and Miyaoka

on Chern number inequalities. I was informed much

later that this possibility was also believed to be true

by Hitchin and Kobayashi.

However, the proof would have to be quite tough

as there is no good way to handle such a nonlinear

system of elliptic equations. It turns out that Donald-

son and Uhlenbeck-Yau were working on this prob-

lem independently. I learnt from Hitchin during a trip

to England that Donaldson was able to prove the exis-

tence for Hermitian connections of any holomorphic

vector bundle that can be deformed to the tangent

bundle of a K3 surface. (Note that the Ricci-flat met-

ric on a K3 surface provides a natural solution of the

Hermitian Yang-Mills connection on the tangent bun-

dle.) This is of course encouraging as it indicates the

possibility of the conjecture.

It turns out that Donaldson [22] was concentrated

on algebraic surfaces and Uhlenbeck-Yau [79] on arbi-

trary dimensional Kählermanifolds. While Donaldson

used the Bott-Chern form and the Hermitian Yang-

Mills flow, Uhlenbeck-Yau constructed a destabilizing

sheaf assuming the nonexistence of Hermitian Yang-

Mills connection.

The proof of regularity of the destabilizing sub-

sheaf took nontrivial effort and as a result, our paper

appeared later than the work of Donaldson’s proof

for algebraic surfaces. After we published our work,

Donaldson found that some of our formula can be

used to re-prove the Uhlenbeck-Yau theorem for al-

gebraic manifolds by restriction of the bundle to hy-

perplane sections of the algebraic manifold. (It was

proved by Maruyama and Mehta-Ramanathan that a

stable bundle is stable on a generic hyperplane sec-

tion.)

This later argument of Donaldson depends intrin-

sically on the manifold being projective for higher di-

mensional manifolds. As was acknowledged by Don-

aldson, the argument of Uhlenbeck-Yau is most natu-

ral and in fact, all the later development for Hermitian

Yang-Mills connections for higher dimensional mani-

folds are based on the procedure of Uhlenbeck-Yau.

Some later paper such as the one by Bando-Siu

[5] used the Hermitian Yang-Mills flow to generalize

our result, but the essential feature of Uhlenbeck-Yau

procedure is still needed in an essential manner. It

should also be pointed out that the continuity argu-

ment used by Uhlenbeck-Yau is just as convenient as

the Hermitian Yang-Mills flow.

A few years later, Carlos Simpson [69] generalized

the Uhlenbeck-Yau argument to establish similar the-

orem when the Higgs field was introduced. Hermitian

Yang-Mills connections were proposed by me to Ed-

ward Witten in 1984 to study heterotic string, which

had since became an important subject in mathemat-

ical physics. But from the very beginning, we knew

the importance of Hermitian Yang-Mills connections,

as it provides important Chern number inequalities,

and also the conditions for the bundle to be projec-

tively flat.

3.2 Chern Number Inequalities and

Characterization of Flat Bundles

The very first applications was the sharpening of

the Chern number inequality of Bogomolov and a very

important generalization of the theorem of Seshadri-

Narasimhan (1965) that every stable bundle over an

algebraic curve is flat if the degree of the bundle is

zero. A very remarkable corollary of the existence of

Hermitian Yang-Mills connection for stable holomor-

phic bundle is that such bundle must be projective

flat, if the Bogomolov inequality 2r c2(E)≥ (r−1)c1(E)2

becomes equality.

This can be considered as a generalization of my

theorem that the equality of certain Chern numbers

can be used to characterize ball quotients. In fact,

Carlos Simpson observed that by generalizing this

theorem to the Hermitian Yang-Mills-Higgs connec-

tion, one can reproduce my previous theorem that

an algebraic surface of general type is covered by

the ball if the ratio of the two Chern numbers is the

same as the projective plane. In fact, by choosing the

Higgs field carefully, one can generalize the theorem

to characterize quotient of general Hermitian sym-

metric space assuming suitable stability.

Characterization of flat bundles based on Hermi-

tian Yang-Mills-Higgs connection also allows Simpson

to construct variation of Hodge structures. This is re-

markable and led me to believe that there is a good

connection with the characterization of quotients of

more general Hermitian symmetric domains based on

the existence of Kähler-Einstein metrics.

It is really remarkable that the construction

of stable bundles satisfying certain Chern number

equality gives rise to nontrivial projective representa-

tion of the fundamental group of the manifold, which

we know little about.
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In particular, if some natural bundle constructed

from the tangent bundle of the manifold is stable

with respect to certain polarization and if the num-

bers defined by wedging the second Chern class of

the natural bundle with the polarization n− 2 times,

and the square of the first Chern class of the natu-

ral bundle wedged with the polarization n− 2 times

are equal to zero, then the natural bundle admits a

flat Hermitian connection, which means that the fun-

damental group of the manifold has a nontrivial uni-

tary representation, unless the natural bundle is triv-

ial. Note that we do not need to assume existence of

Kähler-Einstein metric on the manifold in this setting.

Natural bundles are bundles constructed from natu-

ral decomposition of tensor product of tangent and

cotangent bundles.

It raises an interesting question in this regard:

given an algebraic manifold M with a fixed Kähler

class, we consider all holomorphic bundles with triv-

ial first Chern class over M which are polystable with

respect to this Kähler class. We consider two such

bundles equivalent if they become isomorphic to each

other after adding trivial bundles. They form a ring

consisting of countable number of algebraic subvar-

ities which are moduli space of the bundles with a

fixed Hilbert polynomial.

There is a subring formed by those stable bun-

dles whose second Chern class wedged with the Käh-

ler class to n− 2 times vanishes. Does the structure

of this subring determine the algebraic fundamen-

tal group of the manifold? (It is quite likely that we

need to consider bundles with Hilbert space fiber in

order to obtain information for the full fundamen-

tal group.) What is the structure of this subring for

Shimura varieties? Can they determine the Shimura

variety?

3.3 Generalization to Non-Kähler and Non-Compact

Manifolds

Since the theory of Uhlenbeck-Yau was general-

ized by Jun Li and myself to general complex man-

ifolds, we are able to apply it to handle some inter-

esting non-Kähler manifolds. The most notable one

was the class VII surfaces of Kodaira. They were stud-

ied by Kodaira, Inoue and Bombieri. Kobayashi and

Ochiai realized the importance of holomorphic con-

nections for such manifolds. Bogomolov claimed that

for such manifolds without curves, they are given by

the examples constructed by Inoue. The proof by Bo-

gomolov [6, 9] is not clear.

Jun Li, Fangyang Zheng and I [46] gave a clear

proof based on the existence of Hermitian Yang-Mills

connections. It should be possible to generalize our

argument to handle those class VII surfaces with fi-

nite number of curves also. Many years ago, I pro-

posed to study those connections mod the curves

long ago. If this proposal is successful, it should

complete the Kodaira classification of complex non-

Kähler surfaces.

The study of Hermitian Yang-Mills connections

over quasi-projective curve was discussed by Simp-

son. The generalization to the case when the base pair

is (M,D) with D nonsingular, is not hard. The case

when D is normal crossing divisor is more difficult,

and was studied by Takuro Mochizuki [63].

3.4 Analytic Criterions for Various Stability

Conditions

There is no simple criterion to check whether a

bundle is stable or not. In many cases, the existence

of Hermitian Yang-Mills connection helps to under-

stand properties of stability of bundles. Slope stabil-

ity is only one kind of stability that appeared in alge-

braic geometry. A natural class of stability was intro-

duced by David Gieseker in early 1970s. He compared

Hilbert polynomials of the subsheaves.

The analytic analog of Gieseker stability is not

well understood, although Conan Leung studied this

problem in his PhD thesis [44], under my guidance

about 20 years ago. There are a sequence of differen-

tial equations which can be considered as a natural

generalization of the Hermitian Yang-Mills equations.

(Todd classes are part of the equations as Hilbert

polynomial need to be expressed.) Assuming the cur-

vature is uniformly bounded, Leung proved that the

existence of the equations is equivalent to Gieseker

stability of the bundle. This bound of the curvature

has not been proved and whether this set of equa-

tions is the most natural set of equations is not clear.

As was proposed by me [89], the existence of a

Kähler Einstein metric or metrics with constant scalar

curvature on an algebraic manifold is related to sta-

bility of the algebraic manifold. My former student

Luo, followed my suggestion of using the concept of

balanced condition to study stability of manifolds. It

would be good to relate manifold stability to bun-

dle stability. Now Chen-Donaldson-Sun proved that

K-stability of the manifold implies the existence of

Kähler-Einstein metric. It implies, in particular, the

stability of the tangent bundle of the manifold.

In order to relate two concepts of stability, I pro-

pose to define a bundle to be balanced if the sections

of the bundle, after twisted by a very ample line bun-

dle, can embed the manifold into a balanced subman-

ifold of the Grassmannian.

Hermitian Yang-Mills bundles are mirror to spe-

cial Lagrangian submanifolds in the theory of mir-

ror symmetry under the program of Strominger-Yau-

Zaslow. Gieseker stability is slightly weaker than

slope stability. It may be interesting to know which

class of Lagrangian cycles will be their mirror im-

ages. By studying stability question for Lagrangian
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cycles carefully and applying mirror symmetry, Mike

Douglas found new concepts of stability of bundles.

Based on his work and the works of F. Denef, Douglas-

Reinbacher-Yau [24] proposed a conjecture on the ex-

istence of stable bundles based on Chern classes of

the bundle which can be stated as follows:

Consider an ample class D on a simply connected

Calabi-Yau threefold X and an integer r > 1 and three

classes

ci ∈ H2i(D,Z), i = 1,2,3

such that(
2rc2 − (r−1)c2

1 −
r2

12
c2(D)

)
= 2r2D2

and (
c3

1 +3r(rch3 − ch2c1)
)
< 8

√
2 · r3D3

Then there exists a rank r reflexive sheafV on X stable

with respect to some ample class such that

ci(V ) = ci, i = 1,2,3

Prior to the SYZ program on mirror symmetry,

Kontsevich introduced the concept of homological

mirror symmetry, where he introduced the derived

category over algebraic manifolds. It was realized

later to correspond to branes in string theory. This

has been developed into a rich theory. Bridgeland

studied the concept of stability of derived category

and it is now called Bridgeland stability. It would be

interesting to find a suitable analytic counterpart of

Bridgeland stability.

4. Mirror Symmetry

Supersymmetry provides powerful tools to un-

derstand Calabi-Yau manifolds. The intuitions from

physics have been powerful. The important concepts

introduced by string theorists have deep influence on

the geometry of such manifolds. The most important

one was the idea of mirror symmetry. It called for the

existence of another Calabi-Yau manifold (which we

call the mirror manifold) whose Hodge diamond for

cohomology is the transpose of the Hodge diamond

of the original Calabi-Yau manifold.

4.1 Counting of Curves

More importantly the conformal field theory

based on one Calabi-Yau manifold is dual to that of

its mirror manifold. The Type IIA conformal field the-

ory of Calabi-Yau manifold is isomorphic to the Type

IIB theory of the mirror manifold. This is a remark-

able theory predicted by Vafa, Dixon and others. But

it was Greene-Plesser and Candelas et al. who devel-

oped the details of such theory. The most remarkable

consequence is that it solved an old problem in enu-

merative geometry.

The reason is that the Type IIB theory can be

computed by deformation theory of Kodaria-Spencer

while the type IIA has quantum corrections. The

quantum corrections are provided by the rational

curves on the Calabi-Yau manifold. Since Type IIA

theory of one manifold is isomorphic to the type IIB

of the mirror manifold, we can compute the num-

ber of rational curves on the Calabi-Yau manifolds by

the variation of Hodge structure for its mirror fam-

ily.

The initial theory was mostly based on physical

intuition. But two groups of mathematicians proved

such statements rigorously in 1996, by Lian-Liu-Yau

[47] and Givental [30] independently. Despite that the

proof is rigorous, the intuition from string theory

played the most important role. The idea of super-

symmetry has become one of the most fundamental

philosophies underlying the current modern develop-

ment of algebraic geometry.

The simplest and most elegant examples of geo-

metric structures showing up in string theory stud-

ies are the Calabi-Yau manifolds, where rich struc-

tures related to deep string theory and Quantum Field

Theory dualities are discovered. This includes the so

called Gromov-Witten invariants related to the count-

ing of rational curves mentioned above.

The counting of algebraic curves of higher genus

is far more complicated. One approach was initiated

by Bershadsky, Cecotti, Ooguri and Vafa (BCOV), who

developed a theory called Kodaria-Spencer theory of

gravity. The computation gives beautiful predictions

based on some master equations. But it suffers from

an ambiguity which is called holomorphic ambiguity.

Up to now, we still have difficulty to overcome this

ambiguity, although some important progress was

made by Zinger, Jun Li and their coauthors for genus

one or low genus curves.

Modularity of partition functions of the so-called

topological strings contains non-trivial arithmetic in-

formation of the Gromov-Witten invariants and it is

still a mystery to understand the appearance of mod-

ular forms completely. Yamaguchi and I were able

to demonstrate some polynomial structure on such

partition functions [82], which suggested that there

is rich algebraic structure behind them. Due to espe-

cially its impressive power in enumerative geometry,

there was a great desire to understand mirror sym-

metry mathematically.

4.2 Mathematical Approaches to Mirror Symmetry

As mentioned above, two different approaches

were proposed. One is the famous Kontsevich’s ho-

mological mirror symmetry conjecture [41] which

says that the derived category of coherent sheaves
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of a Calabi-Yau manifold is equivalent to the Fukaya

category of its mirror manifold. Fukaya pioneered the

research to study the extensive complicated struc-

ture of the Florer theory of Lagrangian cycles through

A∞-algebra [26, 25], which is an important ingredi-

ent in the conjecture of Konsevich. Another approach

was proposed by Strominger-Yau-Zaslow [71] that the

Calabi-Yau manifold is fibered by special Lagrangian

torus and the mirror manifold is obtained by replac-

ing the torus by its dual torus. Much progress was

made by Auroux, Seidel et al. in this direction. It is

important that singularities are allowed in the fibra-

tion for both topological and more subtle reasons.

The SYZ conjecture has much evidence to be true.

Gross and Siebert made a lot of progress in the last

few years using tropical methods.

Mirror symmetry has inspired many important

developments in Kähler geometry. The program of

SYZ calls for close relationship between special La-

grangians with bundles. In the paper of Leung-Yau-

Zaslow, we explained how, under the SYZ map, equa-

tion for special Lagrangian cycle which intersects the

SYZ torus at one point can be transformed to an

equation for a holomorphic line bundle. The equa-

tion turns out to be studied by M. Mariño, R. Mi-

nasian, G. Moore and Strominger [57], recently Tris-

tan Collins, Adam Jacob, and myself [14] studied this

equation and we can prove the existence for many im-

portant cases assuming some form of stability for the

(1,1)-class. The equation has the form:

Im
(
J+

√
−1ω

)n
= tan

(
θ̂
)
Re

(
J+

√
−1ω

)n

where θ̂ is a topological constant determined by J and
[ω].

The equation admits supersymmetry and the

pair consists of the Kähler class J and the closed

(1,1)-class ω can be looked as a natural complexfica-

tion of the Kähler class. It defines an open set in the

complexified Kähler cone. This may give a good can-

didate for the mirror of the moduli space of polarized

complex structures of its mirror manifold. Note that

we like to see the “Kähler moduli” to be isomorphic

to the moduli space of the complex structure on its

mirror manifold. It is also important to find a suitable

discrete group acting on this open set in the Kähler

cone. The mirror symmetric version of the special La-

grangian that intersects the SYZ torus for more than

a point is supposed to be a higher rank bundle. The

equation defined on it is being explored.

One should note that the homological mirror con-

jecture of Kontsevich has inspired a great deal of

study of derived category in geometry. While we may

not be used to abstract reasoning of category theory

in geometry, we hope that its relationship to SYZ con-

struction may eventually broaden the scope of geom-

etry.

5. Future Directions in Mathematical
Physics and Arithmetic Geometry

In conclusion, we should say that the beauti-

ful subject initiated by Riemann in the nineteenth

century on Riemann surfaces had deep influence

on the development of complex geometry in the

20th century. While Hodge provided the fundamen-

tal structure relating complex analysis with topol-

ogy via Hodge groups, Kodaira provided fundamental

methods to construct holomorphic sections of bun-

dles. With the works of Chern classes and Hirzebruch-

Riemann-Roch formula, the works of Hodge and Ko-

daira have been developed to be most powerful tools

in understanding Kähler geometry. The modern de-

velopment has been emphasizing the use of nonlin-

ear elliptic equations, relating the concept of Kähler-

Einstein metrics and Hermitian Yang-Mills equations

to various fundamental concepts of stability intro-

duced to study moduli spaces.

The most recent development on Calabi-Yau

space due to cooperations between mathematicians

and string theorists has been spectacular. Ideas of

many fields in mathematics were used. We hope to

see some more ideas of number theory in this beauti-

ful subject. For many Calabi-Yau manifolds, the par-

tition functions related to conformal field theory are

related to modular forms. For example, it was ob-

served in 1996 by Zaslow and I [91] that the partition

function counting rational curves of various degrees

in K3 surfaces can be written in terms of η-functions.

This was the first time that suchmodular function ap-

pears in counting curves in algebraic geometry. This

motivated Göttsche to generalize the Yau-Zaslow for-

mula to general surfaces and for curves of arbitrary

genus. This was recently first proved by Y. Tzeng [78]

and later by Kool-Shende-Thomas [42]. For Calabi-

Yau manifolds with higher dimension, these formu-

las are much more complicated and their organiza-

tion is still being explored. In recent work with Zhou

and others [2], we were able to show the ring gener-

ated by quasi-modular forms associated to PSL(2,Z)
or a congruent subgroup therein is isomorphic to the

ring of higher genus Gromov-Witten invariants for

certain non-compact Calabi-Yau geometries based on

the projective plane and also del Pezzo surfaces. This

was later extended to the orbifold case [67] and also

to include open Gromov-Witten theory in [43].

For more classical arithmetic geometry, we may

point out that Serge Lang has noticed long time ago

that the importance of Kobayashi hyperbolicity is rel-

evant to the question of Diophanitine problem, such

as the Mordell conjecture proved by Faltings for al-

gebraic curves of higher genus. Kobayashi conjec-

tured that for an algebaic manifold of general type,

the Kobayashi metric should be non-degenerate in a

Zariski open set. In particular, there is a subvariety of
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the manifold such that all rational curves and elliptic

curves are subset of this algebraic subvariety. This is

sometimes called the Lang conjecture.

Lang also conjectures that if the manifold is de-

fined over integers, the rational points of the man-

ifold should all be in this subvariety. There was lit-

tle progress on the Kobayashi-Lang conjecture ex-

cept in the case of surfaces where Bogomolov [7] and

Miyaoka [62] made important contributions. Steven

Lu and I studied the differential geometric aspect of

it [52].

For algebraic surfaces with positive index, one

can find a Finsler metric with strongly negative holo-

morphic sectional curvature, but the metric may de-

generate in some subvarieties. This statement im-

plies the Kobayashi-Lang conjecture. Therefore one

would like to make the following conjecture: an al-

gebraic manifold is of general type if and only if it

admits a complex Finsler metric which may be degen-

erate along a subvariety which has strongly negative

holomorphic sectional curvature. It is quite possible

that Finsler metric may be replaced by Kähler met-

ric. The converse was asked by me, there were some

progress due to several people, but only recently

DaminWu and I [81] were able to prove that if an alge-

braic manifold admits a Kähler metric with strongly

negative holomorphic sectional curvature, its canon-

ical line bundle must be ample. (Our original argu-

ment assumes manifold to be algebraic, but it was

pointed out by Valentino Tosatti and Xiaokui Yang

[74] that our argument, which is based on solving

Monge-Amperè equation, can work for Kähler man-

ifold also.) It is not hard to generalize the theorem to

complete non-compact Kähler manifolds whose holo-

morphic sectional curvature is bounded by two neg-

ative constants. A natural question is that a compact

manifold admits a pseudo-Kähler metric (Kähler met-

ric that may degenerate along some subvarities) with

strongly negative holomorphic sectional curvature iff

the manifold is of general type. Manin has conjec-

tured that Kähler-Einstein metric will play important

role in arithmetic geometry. I believe that is the case.

There is still much to learn about the relation be-

tween complex geometry, algebra and number the-

ory.
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