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Abstract. The surveys in the field of nonlinear
filtering (NLF) are enumerous. Most of them are
application-oriented and served as the tutorials for
the practioners. The local approaches, including
Kalman filter and its invariants, have already been
studied from various point of views, due to its
off-the-shelf implementation and wide applications.
However, it cannot give good estimation of the states
in highly nonlinear system or with non-Gaussian
initial conditional density functions. Moreover, while
the local methods only approximate the mean
and variance, the global ones seek the way to
directly obtain the conditional density function of the
states. Consequently, all the statistical information
is acquired. In this survey, we shall briefly go
through the local approaches and put emphases
on the existing three major global approaches:
finite-dimensional NLF, sequential Monte Carlo
methods (particle filter) and the Yau-Yau’s on-
and off-line solver of Duncan-Mortensen-Zakai’s
equation [75]. The discussions are mainly from the
mathematical point of view.

1. Introduction

The field of nonlinear filtering (NLF) has its origin
from tracking and signal processing problems. Yet,
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the underlying formulation is so general and ubiq-
uitous that it can be widely applied to various com-
plex dynamical phenomenon modelled by stochastic
processes. The aim of filtering is to obtain good es-
timates of the states in the stochastic dynamical sys-
tem recursively in time, based on the noisy observa-
tions of the states. The states are also called signals.
The states or signals represent all kinds of quantities
in various applications. For example, the states in the
tracking problem [51] are the moving target’s posi-
tion and velocity, and the observations are some non-
linear functions of the states corrupted by noise. The
states in volatility calibration problem is the under-
lying volatility process while the observations are the
security and derivative prices [28]. The signal process
in the ion channel kinetics problem for nerve cells is
the underlying molecular dynamics, while the obser-
vations are the channel conductances [53]. In the at-
mospheric data assimilation problems [27], the state
refers to the location of a hurricane and the observa-
tions may be the measurements of the wind speed at
various locations.

The study of stochastic filtering has a long story
dated back to 1940s. It was first investigated in the pi-
oneering work by Wiener [67] and Kolmogorov [48].
The most influential work in filtering theory is the
classic Kalman filter (KF) published in 1960 [45] and
subsequent Kalman-Bucy filter published one year
later [46]. After the discovery of KF, its variants and
itself have been dominated the field of filtering the-
ory in signal processing and control area for more
than half century. Till now, KF and its derivatives are
still widely applied in various engineering and scien-
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tific problems, including tracking, communications,
machine learning, economics, finance and etc. How-
ever, the KF performs poorly once either the linear
or the Gaussian assumption is violated [2]. Conse-
quently, the mathematicians and engineers are urged
to pursue a computationally efficient, recursive opti-
mal solution applicable to the more general NLF prob-
lems. Unfortunately, such algorithm only exists for
the limited class of dynamic systems, say Beneš fil-
ter [8], Yau filter [14] and etc. It motivates the re-
searches on the suboptimal solutions of NLF, which
can be classified into two categories: the local and
global approaches. The local ones approximate the
posterior density function by some particular form,
say Gaussian or mixture of Gaussian; while the pos-
terior density function in global approaches are di-
rectly computed without any assumptions on its type.
More extensive discussions on the local and global ap-
proaches can be found in section 3.1 and 3.2, respec-
tively.

From the formulation of NLF, Bayesian theory is
no doubt one of the main tools, which is the most
commonly used method for the study of the dynamic
systems. Bayesian theory was originally discovered
by [7] in 1763. It reveals the fundamental probability
law governing the process of logical inference. How-
ever, it didn’t receive much attention at that time un-
til the re-discovery of its modern form by Laplace in
“Théorie analytique des probailités”. One of the im-
portant branches in statistics is the Bayesian statis-
tics to statistical inference. Not surprisingly, Bayesian
theory was also investigated in the field of filtering
theory. Starting from the KF, although it is first devel-
opped by the orthogonal projection method [45, 40],
it has very nice interpretation of Bayesian frame-
work. It is Ho and Lee who first explored the iterative
Bayesian estimation. They specified in [35] the princi-
ple and procedure of Bayesian framework in the con-
text of filtering. In general, the Bayesian filtering re-
quires a dynamic state-space model (2.2), which con-
sists of two processes: one describes the evolution
of a hidden state of the system, while the other one
is the observation process related to the states and
corrupted with noises. In the Bayesian approach, the
posterior density of the states, obtained from Bayes’
theorem, provides a complete statistical description
of the state variable at that time [1]. The procedure
of Bayesian filtering consists of prediction-correction
recursions. All sorts of variants of KF and the sequen-
tial Monte Carlo methods (particle filters) belong to
this framework.

Besides the Bayesian framework, the conditional
density function of the states can also be obtained
by numerically solving the so-called Kushner’s or
Duncan-Mortensen-Zakai’s equation. It is shown in
[50] that the conditional density p(xt |Yt) of the states

xt based on the observation history Yt satisfies an Itô
stochastic differential equation (SDE), which is called
Kushner’s equation. After the change of measure, the
unnormalized conditional density π(xt |Yt) satisfies a
linear Itô SDE, so-called DMZ equation [24, 59, 77].
Apparently, the DMZ equation is the more prefer-
able one. And the solution to the Kushner’s equation
p(xt |Yt) and that to the DMZ equation π(xt |Yt) is one-
to-one correspondence. Detailed discussions can be
found in section 2.2. Numerous efforts have been de-
voted in the past to solve DMZ equation for a general
dynamic systems. We refer the interested readers to
the survey [32] and references therein. By then, the
algorithms are neither computational efficient nor
recursive. In 2008, Yau and Yau [75] made a major
breakthrough, due to a key observation (see Propo-
sition 3.1) so that the heavy computation of solv-
ing the partial differential equation (PDE) can be pre-
computed, stored and updated by synchronizing with
the observations on-line. Thus, the real-time manner
of the algorithm is foreseeable. The convergence of
their algorithm has been rigorously shown when the
drift function, the diffusion term and the observation
function are time-invariant. We refer this method as
Yau-Yau’s on- and off-line algorithm, and Yau-Yau’s
method for short, in this survey. Recently, Yau and
the author validated it also for the time-varying sys-
tem, and numerically verified the real-time perfor-
mance when the state is of one dimension [56, 57].
More recently, Yueh et al. [76] present an efficient al-
gorithm of Yau-Yau’s method, and numerical simula-
tions with two-dimensional states are performedwell.
In private communication, they claimed the feasibil-
ity and efficiency of Yau-Yau’s method in even higher
dimensions, say for the state with 6 dimension, which
is a major breakthrough in this direction. We briefly
summerize the idea of Yau-Yau’s method in this sur-
vey.

This survey is aim to present various approaches
studied in the literature with the emphases on the re-
cent advance of the global approaches. We note that it
is by no means exhaustive, in particular the local ap-
proaches, i.e. the discussion of some variants of KF,
say ensemble Kalman filter (cf. [3, 36]) is not men-
tioned in section 3.1, which may be effecient in cer-
tain extremely high-dimensional problems, for exam-
ple the atmospheric data assimilation.

The paper is organized as follows. We present the
general formulation of NLF problems in both discrete
and continous-time versions. In section 2 we describe
the stochastic filtering problem abstractly in two as-
pects: one is the Bayesian framework; the other one
is the Kushner’s and DMZ equations. Section 3 de-
votes to summarize local and global approaches of
NLF. The KF, as the most influencial one, is re-derived
from the viewpoint of DMZ equation, which provides
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a natural relation between the approaches based on
Bayesian theory and DMZ equation. Following the KF,
its variants including extended Kalman filter (EKF),
Gaussian sum filter (GSF) and unscented Kalman fil-
ter (UKF), etc are briefly presented. We emphasize the
results of global approaches in section 3.2, where we
display three of the kind: finite-dimensional filters,
sequential Monte Carlo methods (particle filter) and
the Yau-Yau’s method. At last, we arrive the conclu-
tion andmention some possible future developments
in section 4.

2. Stochastic Filtering Problem

The aim of the stochastic filtering is to obtain
the “best” estimate of the state or the signal in some
sense, where the state ismodelled by a stochastic pro-
cess or a random sequence, denoted as {Xt , t ≥ 0} or
{Xk, k ∈N}. The state itself can’t be measured directly,
while certain measurements of the state can be ob-
tained, denoted as {Yt , t ≥ 0} or {Yk, k ∈ N}, which is
another stochatic process or random sequence. The
observation usually is a function of the state with
some measurement noise {Wt , t ≥ 0} or {Wk, k ∈ N}. If
we are in the continuous-time case, we assume fur-
ther that Xt , Yt and all the other processes in the se-
quel are defined on the probability space (Ω,F ,P). Let
Yt = σ(Ys, s ∈ [0, t]) be the filtration generated by the
observation process Yt up to time t, which contains
all the information from the observation history up
to time t. The filtering problem is to estimate Xt based
on Yt , i.e. E[Xt |Yt ].

Let us describe the discrete-time stochastic filter-
ing as the vector-valued SDE [40], which is commonly
used in the point-based filter.

(2.1)

{
xk =f(xk−1)+wk−1

yk =h(xk)+vk,

where the state xk is the Nx-vector and the measure-
ment yk is the Ny-vector; wk−1 and vk are independent
white Gaussian process noise andmeasurement noise
with the covariance Qk−1 and Rk, respectively. The aim
of discrete estimation problem is to estimate the state
xk based on y1:k, given certain realization of observa-
tions y1:k := {y1,y2, · · · ,yk}.

Suppose {xt} is a Markov process with an in-
finitesimal generator, the state-space equations can
be written in the form of Itô stochastic differential
equation [62]:

(2.2)

{
dxt =f(t,xt)dt +G(t,xt)dwt

dyt =h(t,xt)dt +dvt ,

where f(t,xt) is the drift term, G(t,xt) is the volatil-
ity or diffusion coefficient, and h(t,xt) is the observa-
tion function. The two noise processes {wt , t ≥ 0} and

{vt , t ≥ 0} are Wiener processes, with E[dwtdwT
t ] = Qtdt

and E[dvtdvT
t ] = Rtdt, Rt > 0, respectively. xt ∈ R

Nx and
yt ∈ R

Ny , where Nx and Ny are the dimension of the
states and observations, respectively.

2.1 Bayesian Estimation Framework

In this framework, we assume that

1) The state is a Markov process, i.e. p(xk|x1:k−1) =

p(xk|xk−1);
2) The observations are independent of the given

states, i.e. y1:k−1 are independent of xk.

Let p(xk|y1:k) denote the probability density func-
tion (pdf) of xk under the condition of the observa-
tions y1:k, then from the Bayes’ rule, we have

p(xk|y1:k)
Bayes′
=

p(y1:k|xk)p(xk)

p(y1:k)
=

p(yk,y1:k−1|xk)p(xk)

p(yk,y1:k−1)

(2.3)

=
p(yk|y1:k−1,xk)p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)

Bayes′
=

p(yk|y1:k−1,xk)p(xk|y1:k−1)p(y1:k−1)p(xk)

p(yk|y1:k−1)p(y1:k−1)p(xk)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk

It is clear to see from (2.3) that the posterior pdf
p(xk|y1:k) is obtained by three terms: the prior pdf
p(xk|y1:k−1), the likelihood function p(yk|xk) and the de-
nominator in (2.3).

The Bayesian filtering consists of recursive pre-
diction and update procedures [40].

Prediction: Given the prior pdf p(xk−1|y1:k−1),
the conditional pdf of p(xk|y1:k−1) satisfies the
Chapman-Kolmogorov equation:

(2.4) p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1;

Update: When yk is available, the posterior pdf
p(xk|y1:k) is given by (2.3), i.e.,

(2.5) p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
.

In the general NLF problems, both prior and pos-
terior conditional pdf can’t be computed in the an-
alytic form. Therefore, it is essential to approximate
prior and likelihood functions in (2.3). As the conse-
quence, a variety of local approaches have been de-
velopped by using different approximations.
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2.2 Kushner’s and Duncan-Mortensen-Zakai’s Equa-
tion

In the continuous-time case, we can reformulate
the stochastic filtering problem, by considering the
infinitesimal generator of the state process {xt , t ≥ 0}:

L(◦) :=
1
2

Nx

∑
i, j=1

(GQGT )i j(t,xt)
∂ 2(◦)
∂xi∂x j

+
Nx

∑
i=1

fi(t,xt)
∂ (◦)
∂xi

,

where fi and xi are the ith component of the vector-
valued function f and the vector state xt , respectively.
The question now can be interpreted as how to find
a recursive or finite-dimensional method to compute
the conditional pdf of xt with the filtration Yt , i.e.
p(xt |Yt). It turns out that p(xt |Yt) satisfies the follow-
ing Kushner’s equation (cf. [50]):

d p(xt |Yt) = L∗p(xt |Yt)dt + p(xt |Yt)etΣ−1
v,t dt,

where L∗ is the adjoint operator of L, i.e.

(2.6) L∗(◦) = 1
2

Nx

∑
i, j=1

∂ 2((GQGT )i j◦)
∂xi∂x j

−
Nx

∑
i=1

∂ ( fi◦)
∂xi

,

et is the innovation process

(2.7)
et = yt −

∫ t

0
E[h(s,xs)|Ys]ds,

E[h(s,xs)|Ys] =
∫

h(s,xs)p(xs|Ys)dxs

and Σv,t = E[vt ].
Although the Kushner’s equation leads a way to

solve the NLF problem completely, it needs to solve
an infinite-dimensional system to get even the condi-
tional mean (cf. [13]). Generally speaking, the solution
is neither in a closed form nor easy to be computed
numerically, due to the nonlinearity with respect to
p(xt |Yt) in (2.7).

Through the Kallianpur-Striebel formula [11], one
can define the unnormalized conditional pdf π(xt |Yt)

through the following procedure. In particular, for
any ϕ ∈ B(Ω), the Borel σ -field on the state space Ω,
which is a complete seperable metric space,

P[ϕ] :=
∫

ϕ(xt)p(xt |Yt)dxt =
Ẽ[z̃tϕ(xt)|Yt ]

Ẽ(z̃t |Yt)
, P̃−a.s.,

where the process z̃t satisfying

dz̃t =
Ny

∑
i=1

z̃thi(t,xt)dyi,

with hi and yi the ith component of h and y, respec-
tively. P̃ is the probablity measure introduced by the
process z̃t , such that

dP
dP̃

∣∣∣∣Ft

= z̃t ,

for all t ≥ 0, where Ft is the filtration of xt . And Ẽ is
the expectation with respect to P̃. Hence, the unnor-
malized conditional pdf of xt is defined as following.
For any ϕ ∈ B(S), we define

(2.8) Π[ϕ] = P[ϕ]Π[1], ∀ t ≥ 0, P̃(P)−a.s.

where Π[ϕ] :=
∫

ϕ(xt)π(xt |Yt)dxt . Equation (2.8) explains
the usage of the term “unnormalized” of π(xt |Yt),
since the denominator Π[1] can be viewed as the nor-
malizing factor. Under certain mild condition, the
unnormalized conditional pdf π(xt |Yt) satisfies the
Duncan-Mortensen-Zakai’s (DMZ) equation (cf. [24,
59, 77])

(2.9) dπ(xt |Yt) = L∗π(xt |Yt)dt +h(t,xt)π(xt |Yt)dyt ,

where L∗ is defined in (2.6). There is an one-to-one
correspondence between the solution of Kushner’s
equation and that of DMZ equation. And it is clear to
see that DMZ equation is linear with respect to the un-
normalized conditional pdf π(xt |Yt). Therefore, stud-
ies on how to numerically solve the DMZ equation ef-
ficiently is the key to solve NLF problems completely.

3. Two Categories: Local and Global
Approaches

3.1 Local Approach

Around 1960s, the Kalman filtering (KF) has been
developed in the seminal papers [45, 46] by using
the orthogonal projection method, under the linear
and Gaussian assumptions. It has been shown to be
optimal in the sense that it is unbiased, i.e. E[x̂k] =

E[xk] and is a minimum variance estimate. In the late
1960s, Kailath [44] reformulated the KF with the inno-
vation approach [1] and the tool of martingales the-
ory [23]. The KF is also optimal from the viewpoint of
innovation that it is whitening filter. The celebrated
KF can also be derived within the Bayesian frame-
work, which is reduced to the maximum a posteri-
ori (MAP) solution [13] and the maximum likelihood
(ML) solution [64]. The nice Bayesian interpretation
of KF can be found in [35]. Recently, the derivation
from DMZ equation is investigated in [25, 26]. We re-
fer the interested readers for a detailed history of KF
and its variants to [44, 40, 29] and reference therein.
To be somewhat self-contained, we briefly sketch the
re-derivation of the KF from the discrete DMZ equa-
tion [26] under the linear and Gaussian assumptions.
Equation (2.1) reduces to the following special case:

(3.1)

{
xk = Fk,k−1xk−1 +wk−1

yk = Hkxk +vk,
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where Fk,k−1 and Hk are called transition matrix and
measurement matrix, respectively. Let us further as-
sume that the state process xk, the observation pro-
cess yk and the noise processes wk, vk are mutually
independent. To simplify notation, we suppose that
{wk}∞

k=1 and {vk}∞
k=0 are sequences of independent

N (0,INx) and N (0,INy) random variables, respectively.
The following theorem provides a recursive for-

mula for unnormalized conditional pdf of xk given
y1:k. It is the discrete time version of DMZ equation.

Theorem 3.1 ([25, 26]). π(xk|y1:k) satisfies the recur-
sion:

π(xk|y1:k)

(3.2)

=
φ(yk −Hkxk)

φ(yk)

∫
RNx

π(xk−1|y1:k−1)ψ(xk −Fk,k−1xk−1)dxk−1,

where ψ(x) = (2π)−
Nx
2 exp(− x′x

2 ) and φ(y) = (2π)−
Ny
2 ×

exp(− y′y
2 ), for x ∈ R

Nx and y ∈ R
Ny , respectively.

The DMZ equation (3.2) is exact under the linear
and Gaussian assumptions, and it has the form of a
convolution equation. It is readily to verify that (3.2)
yields the KF.

The KF consists of an iterative prediction-
correction procedure. Let us denote xk|k−1 =E[xk|y1:k−1]

the conditional expectation of xk given y1:k−1, and the
conditional variance ΣΣΣk|k−1 = Var[xk|y1:k−1]. Assume it
is xk−1 ∼ N (μμμk−1,ΣΣΣk−1), that is, the normalized condi-
tional pdf is

p(xk−1|y1:k−1) = |ΣΣΣk−1|−
1
2 ψ

(
ΣΣΣ−1

k−1(xk−1 −μμμk−1)
)
.

Prediction: Starting from π(xk−1|y1:k−1) ∼
ψ(ΣΣΣ−1

k−1(xk−1 −μμμk−1)), we have

xk|k−1 = E[xk|y1:k−1]
(3.1)
= E[Fk,k−1xk−1 +wk−1|y1:k−1]

= E[Fk,k−1xk−1|y1:k−1] = Fk,k−1μμμk−1,

with μμμk−1 = E[xk−1|y1:k−1], and

ΣΣΣk|k−1 = E[(xk −xk|k−1)(xk −xk|k−1)
′|y1:k−1]

= E[
(
Fk,k−1(xk−1 −μμμk−1)+wk−1

)
× (

Fk,k−1(xk−1 −μμμk−1)+wk−1
)′ |y1:k−1]

= Fk,k−1ΣΣΣk−1F ′
k,k−1 + I2

Nx×Nx

Correction: The posterior conditional pdf is
shown to be N (μμμk,ΣΣΣk). That is, π(xk|y1:k) ∼
ψ(ΣΣΣ−1

k (xk −μμμk)), where μμμk and ΣΣΣk are given in (3.4)
and (3.3) below.

Theorem 3.2 ([26]). Suppose xk−1 ∼ N (μμμk−1,ΣΣΣk−1).
Then xk ∼N (μμμk,ΣΣΣk), where

ΣΣΣk = ΣΣΣk|k−1 −ΣΣΣk|k−1H ′
k

(
I2

Ny×Ny +HkΣΣΣk|k−1H ′
k

)−1
HkΣΣΣk|k−1,

(3.3)

and

μμμk = Fk,k−1μμμk−1 +ΣΣΣk|k−1H ′
k

(
I2

Ny×Ny +HkΣΣΣk|k−1H ′
k

)−1
(3.4)

× (yk −HkFk,k−1μμμk−1).

The quantity Kk = ΣΣΣk|k−1H ′
k(I

2
Ny×Ny

+HkΣΣΣk|k−1H ′
k)

−1 is the
so-called Kalman gain.

The KF is well-known to be optimal under lin-
ear Gaussian assumptions. However, real applica-
tions generally can’t be set up with the model sat-
isfying these assumptions. Therefore, many variants
have been developed, following the idea of the KF in
the hope of solving the general NLF problems.

The basic idea of EKF is to linearize (2.1) at the
previous step’s estimation, i.e.

F̂k,k−1 =
df(x)

dx

∣∣∣∣
x=xk−1

, Ĥk =
dh(x)

dx

∣∣∣∣
x=xk−1

.

Then the KF is applied to this linearized equation. The
EKF is biased in general and it only works well when
the true posterior conditional pdf is almost Gaussian.
It could perform extremely poor especially when the
true posterior is heavily skew or multimodal or the
dynamics are highly nonlinear. Another drawback of
EKF is the heavy computation to evaluate the Jacobian
matrix at each time step. A detailed discussion on EKF
and its applications can be found in many books, say
[29, 40] etc.

Unlike the EKF, which approximate the nonlinear
term near the vicinity of the previous estimation, the
GSF proposed to approximate the posterior pdf by a
mixture of weighted Gaussians. That is,

p(x) =
M

∑
i=1

wiN (μμμ i,ΣΣΣi),

where the weighted coefficients wi > 0 and ∑i=1 wi = 1.
Then the GSF runs a bank of EKF in parallel to obtain
a suboptimal estimation.

Ito, et al. [38] improves the GSF further to avoid
the intensive computational part of EKF, i.e. the
evaluation of the Jacobian matrix. Indeed, with the
Gaussian assumption, the Bayesian nonlinear filter-
ing framework is given as follows:
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Prediction:

xk|k−1 =
∫
RNx

f(xk−1)N (xk−1;μμμk−1,ΣΣΣk−1)dxk−1

(3.5)

ΣΣΣk|k−1 =
∫
RNx

f(xk−1)(f(xk−1))
′N (xk−1;μμμk−1,ΣΣΣk−1)dxk−1

(3.6)

−xk|k−1x′k|k−1 + INx×Nx ,

whereN (xk−1;μμμk−1,ΣΣΣk−1) represents themultivari-
ate normal distribution with the mean μμμk−1 and
the covariance ΣΣΣk−1.
Correction:

μμμk = xk|k−1 +Lk(yk − zk)

ΣΣΣk = ΣΣΣk|k−1 −LkΣΣΣ′
xz,

where

Lk = ΣΣΣxz(Rk +ΣΣΣzz)
−1(3.7)

zk =
∫
RNx

h(xk)N
(
xk;xk|k−1,ΣΣΣk|k−1

)
dxk(3.8)

ΣΣΣxz =
∫
RNx

(xk −xk|k−1)(h(xk)− zk)
′(3.9)

×N (
xk;xk|k−1,ΣΣΣk|k−1

)
dxk

ΣΣΣzz =
∫
RNx

(h(xk)− zk)(h(xk)− zk)
′(3.10)

×N (
xk;xk|k−1,ΣΣΣk|k−1

)
dxk.

The integrals in (3.5)–(3.6) and (3.8)–(3.10) can be ap-
proximated by various numerical rules, such as Gauss
quadrature rule, unscented transformation and cu-
bature rule, etc. Consequently, they lead to differ-
ent filtering methods, such as unscented Kalman fil-
ter (UKF) [42, 43], Gaussian quadrature Kalman filter
(GKF) [38, 5] and cubature Kalman filter (CKF) [4, 6].
Very recently, Jia, et al. [41] investigated the high-
dimensional NLF problems by GKF with the sparse-
grid algorithm [66].

3.2 Global Approach

The local approaches performs more effective
than the global ones. The real-time manner is very ap-
pealing in many real applications. However, the com-
mon drawbacks inherited from KF are the follows:

1) They perform well only when the posterior con-
ditional pdf is close to the Gaussian and the dy-
namic system is almost linear.

2) Only mean and variance are obtained. No more
statistical information is available.

Unlike the local approaches, the global ones are aim
to obtain the approximation of the conditional pdf.
No apriori assumptions need to be imposed on the

system or the posterior conditional pdf. All statis-
tical information is obtained automatically. In this
sense, the NLF problems are solved completely. The
only problems are the real-timemanner and the heavy
computation in high-dimensional states NLF prob-
lems.

In general, the NLF problem is intractable with
finite statistics, say mean and moments. It is inter-
esting to understand under what conditions certain
NLF problems can be transformed into finite dimen-
sional ones. And is there any NLF problem essentially
infinite-dimensional?

KF is a typical finite-dimensional filter in the
sense that it can be implemented by integrating a
finite number of (actually two) ordinary differential
equations (ODE). Or say, it has the sufficient statis-
tics with finite (two) variables, i.e. the conditional
mean and variance. However, not all NLF problems
are finite-dimensional. For instance, Hazewinkel et
al. have shown in [34] the nonexistence of finite-
dimensional filter for the cubic sensor problem.
Hence, it is meanful to construct finite-dimensional
filter for more general NLF problems and to study the
necessary and sufficient conditions to guarantee the
existence of such filters.

As far as the author knows, Beneš [8] is the first
one to investigate the exact finite-dimensional filter
in the NLF context. Later, Yau [14] gives a more gen-
eral case including the KF and Beneš filter as spe-
cial cases. Around 2000, the exact finite-dimensional
filter from the differential geometric point of view
is studied by Brigo et al. [10] and reference therein,
which is the so-called projection filters.

At the International Congress of Mathematicians
in 1983, Brockett [11] proposed to systematically
study the finite-dimensional filters by using the es-
timation algebra to classify all the finite-dimensional
ones. The estimation algebra E of the filtering model
(2.2) is defined as the Lie algebra generated by
{L0,L1, . . . ,Lm}, where L0 is related to L∗ and Li, i =
1, . . . ,m, are the zero degree differential operators of
multiplication by hi. As an immediate application of
the classification, it can be used to construct new ex-
act finite-dimensional filters for NLF problems. The
following theorem given by Ocone [61] is the first one
characterized the functions in a finite-dimensional
estimation algebra.

Theorem 3.3 ([61]). Let E be a finite-dimensional es-
timation algebra. If a function ξ is in E, then ξ is a
polynomial of degree at most two.

In particular, if G = Q = R = I, I is the identity ma-
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trix, then

(3.11) L0(◦) :=
1
2

Nx

∑
i=1

∂ 2◦
∂x2

i
−

Nx

∑
i=1

fi
∂◦
∂xi

−
Nx

∑
i=1

∂ fi

∂xi
◦−1

2

Ny

∑
i=1

h2
i ◦,

and Li(◦) := hi◦, where fi and hi are the ith component
of f and h, respectively. In real applications, the ac-
tual observations consist of piecewise smooth sam-
ple paths y(t). Davis [19] was interested in construct-
ing robust estimators from these kind of observa-
tion paths. He considered a version of (2.9) dealing
with path-wise observation y(t). It follows immedi-
ately from an exponential transformation:

u(t,x) = exp

(
Ny

∑
i=1

hi(x)yi(t)

)
π(t,x).

Equation (2.9) is reduced to the following PDE, which
is called robust DMZ equation in our context.

∂u
∂ t

(t,x) = L0u(t,x)+
Ny

∑
i=1

yi(t)[LNy ,Li]u(t,x)(3.12)

+
1
2

Ny

∑
i, j=1

yi(t)y j(t)[[L0,Li],L j]u(t,x),

where [Li,L j] is the Lie bracket of the differential op-
erators Li and L j, defined as [Li,L j](φ) := Li(L j(φ))−
L j(Li(φ)), for any φ ∈C∞.

Yau [69] constructs a class of finite-dimensional
filter for NLF problem using estimation algebra tech-
niques. It is referred as Yau filter in [14], which in-
cludes the Kalman-Bucy filter and Beneš filter as spe-
cial cases. Yau also gave a necessary and sufficient
condition to guarantee the estimation algebra to be
finite-dimensional.

In particular, the following theorem from [69]
shows how to construct finite-dimensional filters
from finite-dimensional estimation algebras with
maximal rank. The estimation algebra E is said to be
of maximal rank if, for any 1 ≤ i ≤ Nx, there exists a
constant ci such that xi + ci is in E.

Theorem 3.4 (Yau [69]). Let E be an estimation alge-

bra of (2.2) satisfying
∂ f j
∂xi

− ∂ fi
∂x j

= ci j, where the ci js are

constants for all 1 ≤ i, j ≤ Nx. Suppose that E is a fi-
nite dimensional estimation algebra of maximal rank.
Then E has a basis of the form 1,x1, . . . ,xNx ,D1, . . . ,DNx

and L0, and ∑Nx
i=1

∂ fi
∂xi

+∑Nx
i=1 f 2

i +∑Ny
i=1 h2

i is a degree two

polynomial ∑Nx
i, j=1 ai jxix j +∑Nx

i=1 bixi+d, where Di =
∂

∂xi
− fi

and L0 is defined in (3.11). The robust DMZ equation
(3.12) has a solution for all t ≥ 0 of the form

u(t,x) = eT (t)erNx (t)xNx . . .er1(t)x1 esNx (t)DNx . . .es1(t)D1 etL0 σ0

where T (t),r1(t), . . . ,rNx(t),s1(t), . . . ,sNx(t) satisfies the fol-

lowing ODEs:

dsi

dt
(t) = ri(t)+

Nx

∑
j=1

s j(t)c ji +
Nx

∑
k=1

hkiyk(t), 1 ≤ i ≤ Nx;

dr j

dt
(t) =

1
2

Nx

∑
i=1

si(t)(ai j +a ji), 1 ≤ j ≤ Nx;

dT
dt

=−1
2

Nx

∑
i=1

r2
i (t)−

1
2

Nx

∑
i=1

s2
i (t)

(
Nx

∑
j=1

c2
i j −ai j

)

+
Nx

∑
i=1

ri(t)−
Nx

∑
j=2

j

∑
i=1

s j(t)ci j

+ ∑
1≤i<k≤Nx

si(t)sk(t)

[
Nx

∑
j=1

ci jc jk +
1
2
(aik +aki)

]

+
1
2

Nx

∑
i=1

si(t)bi +
1
2

Ny

∑
i, j=1

yi(t)y j(t)
Nx

∑
k=1

hikh jk

−
Nx

∑
i, j=1

si(t)r j(t)ci j,

where hk(x) = ∑Nx
j=1 hk jx j + ek, 1 ≤ k ≤ Ny, hk j and ek are

constants. In particular, a universal finite-dimensional
filter exists.

The characterization of the condition
∂ f j
∂xi

− ∂ fi
∂x j

=

ci j, where ci j are constants for all 1 ≤ i, j ≤ Nx, is also
given in [69].

Theorem 3.5 ([69]).
∂ f j
∂xi

− ∂ fi
∂x j

= ci j, where ci j are con-

stants for all 1 ≤ i, j ≤ Nx, if and only if

( f1, . . . , fNx) = (l1, . . . , lNx)+

(
∂ψ
∂x1

, . . . ,
∂ψ

∂xNx

)
,

where l1, . . . , lNx are polynomials of degree one and ψ is
a C∞ function.

And the classification of the finite-dimensional
estimation algebra with maximal rank has been com-
pleted in [70, 72].

Theorem 3.6 ([72]). Suppose that the state space of the
filteringmodel (2.2) is of dimension Nx. If E is the finite-
dimensional estimation algebra with maximal rank,
then f = ∇φ +(α1, . . . ,αNx), where φ is a smooth func-
tion and αi, 1 ≤ i ≤ Nx are affine functions and E is a
real vector space of dimension 2Nx +2 with basis given
by 1,x1, . . . ,xNx ,D1, . . . ,DNx and L0.

The finite-dimensional filter can also be con-
structed from the finite-dimensional estimation alge-
bra with non-maximal rank, see [63]. However, the
classification of the non-maximal rank ones is still
wide open, except some partial results, including
those for low-dimensional estimation algebra with ar-
bitrary states’ dimension [73, 15]; the classification
with state dimension 2 and arbitrary dimensional es-
timation algebra [68].
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Besides the classification of the estimation alge-
bra, Yau et al. [74] introduced the direct method to
solve the NLF with finite-dimensional estimation al-
gebra, which has been further generalized by [37, 72].
Based on the Wei-Norman approach of the estimation
algebra to solve the DMZ equation, one needs to know
the basis of the estimation algebra explicitly, so that
the DMZ equation can be reduced to a finite system
of ODE and several first-order linear PDEs. Unfortu-
nately, the basis can only be known when the estima-
tion algebra has maximal rank. The direct method in
[74, 37, 71] is easy to implement and don’t rely on the
explicit basis of the estimation algebra, which can be
applied to all Yau filters [14]. Moreover, the number
of sufficient statistics required to acquire the condi-
tional pdf is Nx. More precisely, in [37] Yau et al. as-
sume that the following conditions are satisfied:

1)
∂ f j
∂xi

− ∂ fi
∂x j

= ci j, where ci j are constants, 1 ≤ i, j ≤ Nx.

This is so-called Yau filter in [14]. This condition
is equivalent to

(3.13) fi(x) = li(x)+
∂F
∂xi

(x),

for 1 ≤ i ≤ Nx, where li(x) = ∑Nx
j=1 di jx j +di for 1 ≤ i ≤

Nx and F is a C∞ function.
2) Yau showed in [69] that the observation func-

tions h1, · · · ,hNy are polynomials of degree at most
one for all the Yau filters with finite-dimensional
estimation algebra. Without loss of generality, we
assume that

(3.14) hi(x) =
Nx

∑
j=1

ci jx j + ci,

for 1 ≤ i ≤ Ny, where ci j and ci are constants.
3) It is also shown in [69] that

η(x) :=
Nx

∑
i=1

∂ fi

∂xi
+

Nx

∑
i=1

f 2
i +

Ny

∑
i=1

h2
i

is a polynomial of degree at most two for all the
Yau filter with finite-dimensional estimation al-
gebra. Without loss of generality, let us assume
that

(3.15) η(x) =
Nx

∑
i, j=1

ηi jxix j +
Nx

∑
i=1

ηixi +η0,

where ηi j, ηi and η0 are constants.

Under the conditions above, the solution of the ro-
bust DMZ equation (3.12) can be solved directly as
described in the following theorem:

Theorem 3.7 ([71]). Consider the filtering model (2.2)
with Q = G = R = I with the conditions (3.13)–(3.15).
Then the solution u(t,x) for the robust DMZ equation
(3.12) is reduced to the solution of ũ(t,x) for the for-
ward Kolmogorov equation

(3.16)⎧⎪⎨
⎪⎩

∂ ũ
∂ t

(t,x) =
1
2

ũ(t,x)−

Nx

∑
i=1

Hi(x)
∂ ũ
∂xi

(t,x)−P(x)ũ(t,x)

ũ(0,x) = eG(x)−F(x)σ0(x)

where

ũ(t,x)= exp

[
c(t)+G(x)−

Nx

∑
i=1

ai(t)xi−F(x+b(t))

]
u(t,x+b(t))

and ai(t), bi(t) and c(t) satisfy the following system of
ODEs:

(3.17)

⎧⎪⎪⎨
⎪⎪⎩

a′i(t)−
1
2

Nx

∑
j=1

(ηi j +η ji)b j(t)+
Nx

∑
j=1

d jib′j(t) = 0

ai(0) = 0,

(3.18)

⎧⎪⎪⎨
⎪⎪⎩

b′i(t)−ai(t)−
Nx

∑
j=1

di jb j(t)+
Nx

∑
j=1

c jiy j(t) = 0

bi(0) = 0,

(3.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c′i(t) =−1
2

Nx

∑
i=1

(b′i(t))
2 +

Nx

∑
i=1

ai(t)b′i(t)−
Nx

∑
i=1

dib′i(t)

+
1
2

Nx

∑
i, j=1

ηi jbi(t)b j(t)+
1
2

Nx

∑
i=1

ηibi(t)

c(0) = 0,

for 1 ≤ i ≤ Nx, if we can choose H(x), G(x) and P(x) such
that

1
2

Nx

∑
i=1

H2
i (x)−

1
2

Nx

∑
i=1

∂Hi

∂xi
(x)− 1

2
η(x)+P(x) = 0,

where Hi(x)− ∂G
∂xi

(x) = li(x).

The possible choices of H(x), G(x) and P(x) in [71]
include the follows:

1) Choose a C∞ function G(x) such that


G(x)+ |∇G|2(x)

+2
Nx

∑
i=1

li(x)
∂G
∂xi

(x) = η(x)−
Nx

∑
i=1

l2
i (x)−

Nx

∑
i=1

∂ li
∂xi

(x),

Hi(x) =
∂G
∂xi

(x)+ li(x),

and

P(x) =
Nx

∑
i=1

∂Hi

∂xi
(x) =

Nx

∑
i=1

(
∂ 2G
∂x2

i
(x)+

∂ li
∂xi

(x)
)
.

2) Choose

G(x)≡ 0;

P(x) =
1
2

η(x)− 1
2

Nx

∑
i=1

l2
i (x)−

1
2

Nx

∑
i=1

∂ li
∂xi

(x);

Hi(x) = li(x),

for 1 ≤ i ≤ Nx.
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3) Choose a function G(x) such that ∂G
∂xi

(x) =−li(x) if
di j = d ji for 1≤ i, j ≤Nx. Let P(x) = 1

2 η(x) and Hi(x)≡
0, 1 ≤ i ≤ Nx.

4) Choose

G(x) = F(x);

P(x) =
1
2

η(x)− 1
2

Nx

∑
i=1

f 2
i (x)+

1
2

Nx

∑
i=1

∂ fi

∂xi
(x);

Hi(x) = fi(x),

for 1 ≤ i ≤ Nx.

The use of Monte Carlo methods for NLF can be
traced back to [33]. The algorithm is so-called se-
quential importance sampling (SIS). Although it has
been known since 1970s, it is not commonly used
in the NLF problems, due to some major drawbacks
until [30], the so-called bootstrap filter has been de-
veloped. In [30], Gordon et al. identified the degener-
acy of the importance weights as sample improver-
ishment. In brief, it asserts that most of the samples
are annihilated due to the very small normalized im-
portance weights in the long run. The remedy is to re-
juvenate by replicating the samples with high impor-
tance weights and removing those with low weights.
This is similar as the algorithm in [65], so-called sam-
pling and importance resampling (SIR). Starting from
the bootstrap filter [30], various similar filtering have
been studied, including Monte Carlo filter [47], parti-
cle filter [21] and etc. A good introduction to this field
has been written by Künsch [52], while the interesting
recent developments in theory and applications are
covered in [20].

The sequential Monte Carlo method is within the
Bayesian framework. In the NLF context, we are con-
cerned to compute the expectations of the form:

E(ϕ) =
∫

ϕ(x)p(x)dx,

where ϕ(◦) are some functions for estimation. For ex-
ample, ϕ(x) = x gives the mean. The approximation
of integral by Monte Carlo method can be achieved
by generating random samples from p, denoted as
{x(i)}N

i=1, and approximate p by pointmasses, i.e. p(x)=
∑N

i=1 δx(i) (x), where δa(x) is the Kronecker-delta func-
tion. Henceforth, the expectation E(ϕ) is given by

(3.20) E(ϕ)≈ 1
N

N

∑
i=1

ϕ
(

x(i)
)
.

Intuitively, as N →+∞, E(ϕ) is well approximated.
Sampling directly from the distribution p is no

doubt a good choice. However, in the NLF context, nei-
ther the prior pdf p(xk−1|y1:k−1) nor the posterior one

p(xk|y1:k) are known. Generally speaking, we can’t sam-
ple directly from p. Instead, we sample from another
convenient distribution q, which is called importance
distribution or instruction distribution. To guarantee
the unbiased estimation of E(ϕ), we need to make a
correction by

E(ϕ) =
∫

ϕ(x)p(x)dx

(3.21)

=
∫

ϕ(x)
p(x)
q(x)

q(x)dx
(3.20)≈ 1

∑N
j=1 w( j)

N

∑
i=1

w(i)ϕ
(

x(i)
)
,

where w(i) := p(x(i))
q(x(i))

is the unnormalized importance

weight.
Back to the Bayesian framework, let us apply the

Monte Carlo sampling technique as follows. We sam-
ple N particles {x(i)k }N

i=1 from an importance distribu-
tion qk(xk|y1:k) and compute the unnormalized impor-
tance weights

(3.22) w(i)
k =

p
(

x(i)k |y1:k

)
q
(

x(i)k |y1:k

) ,

for i = 1,2, . . . ,N. Then the conditional expectation of
any function ϕ can be approximated by the weighted
sample {x(i),w(i)

k }N
i=1:

(3.23)

E(ϕ) =
∫

ϕ(xk)p(xk|y1:k)dxk ≈
N

∑
i=1

w(i)
k

∑N
j=1 w( j)

k

ϕ
(

x(i)k

)
.

How does the pair (x(i)k ,w(i)
k ) propagate through

the dynamic system? The samples {x(i)k }N
i=1 are propa-

gated as

(3.24) x(i)k+1 ∼ q̃
(

x(i)k+1|x(i)k ,y1:k+1

)
=

q
(

x(i)k+1|y1:k+1

)
q
(

x(i)k |y1:k

) ;

and the unnormalized weights {w(i)
k }N

i=1 are updated
as

w(i)
k+1 =

p
(

x(i)k+1|y1:k+1

)
q
(

x(i)k+1|y1:k+1

) (3.24)
=

f
(

x(i)k+1|x(i)k

)
p
(

x(i)k |y1:k+1

)
q̃
(

x(i)k+1|xk,y1:k+1

)
q
(

x(i)k |y1:k

)

(3.22)
= w(i)

k

f
(

x(i)k+1|x(i)k

)
p
(

x(i)k |y1:k+1

)
q̃
(

x(i)k+1|xk,y1:k+1

)
p
(

x(i)k |y1:k

)

= w(i)
k

f
(

x(i)k+1|x(i)k

)
h
(

yk+1|x(i)k

)
q̃
(

x(i)k+1|xk,y1:k+1

)
l(yk+1|y1:k)

,

where f (xk|xk−1) and h(yk|xk) are the transition den-
sity and the observation density, respectively, and
l(yk|y1:k−1) is the predictive distribution of yk given
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y1:k−1. l(yk|y1:k−1) is usually difficult to evaluate. But
it does not depend on the state, and hence it is not
necessary to be computed, since the weights will be
renormalized as in (3.21). The algorithm described
above is so-called SIS.

Although SIS achieves great success for short
data records, it is doomed to fail in the long run,
since the probability mass concentrated on a small
portion of the samples after a few iteration steps, see
[22]. The remedy is to resample the particles. The pro-
cedure surely will introduce some additional Monte
Carlo variance, but in the long run it alleviates the ac-
cumulative error over time and help to eliminate the
particle improverishment. The standard particle fil-
tering algorithm is to resample the particles accord-
ing to the normalized weights, and after that, the
weights are reset to be 1

N . In detail, the particles with
small importance weights are eliminated; while those
with large ones are replicated. This improved algo-
rithm is referred as SIR.

The structure of the particle filter [18] can be
summerized abstractly as follows:

1) Mutation: Draw for i = 1, . . . ,N,

x(i)k ∼ Kk

(
x̂(i)k−1,dxk

)
,

where x̂(i)k are the ith resampled particles at time
step k, Kk : Xk−1 → P(Xk) is a given probability ker-
nel, and Xk is the sample space at time step k.

2) Correction: Assign weights to particles so that,
for i = 1, . . . ,N,

w(i)
k ∝

p
(

x(i)k |y1:k

)
p̃
(

x(i)k |y1:k−1

) ,
where p̃(·|y1:k−1) =

∫
p(xk−1|y1:k−1)Kk(xk−1, ·)dxk−1.

3) Selection: Resample, according to a given selec-
tion scheme,

(
x(i)k ,w(i)

k

)N

i=1
→

(
x̂(i)k ,1

)N

i=1
.

Various resampling strategies give different al-
gorithms. Multinomial resampling [30] amounts to
drawing N independent new particles from the multi-
nomial distribution which produces {x(i)k }N

i=1 with the

probability w̃(i)
k , where w̃(i)

k := w(i)
k

∑N
j=1 w( j)

k

with w(i)
k defined

in (3.22). Residual resampling [54] consists of re-
producing �Nw̃(i)

k � times each particle x(i)k , where �·�
stands for the integer part. The number of new par-
ticles need to draw from the multinomial distribu-
tion is Nr = N −∑N

i=1�Nw̃(i)
k �. This strategy yields N par-

ticles {x(i)k }N
i=1 with probability

Nw̃(i)
k −�Nw̃(i)

k �
Nr

. Systematic
resampling [12, 17] is the selection method such that

the number of replicates of certain particle x(i)k with

the probability in the range of Nw̃(i)
k ±1.

It has been discussed in [16, 18] that to what ex-
tent (3.23) yields a good approximation of the expec-
tation as the number of the particles N tends to infin-
ity. The following theorem gives the central limit the-
orem of the PF with either multinomial resampling or
residual resampling strategies.

Theorem 3.8 ([18]). If the selection strategies are ei-
ther multinomial resampling or residual resampling,
and provided that the unit function xk �→ 1 belongs to
Φ(1)

k for every k, where Φ(d)
k is the set of measurable

functions ϕ : Xk → R
d such that for some δ > 0,

Ep(xk |y1:k−1)||wk ·ϕ||2+δ <+∞,

where Xk is the sample space at time step k. Then for
any ϕ ∈ Φ(d)

k , Ep(xk |y1:k−1)(ϕ), Vk(ϕ) and V̂k(ϕ) are finite
quantities, and the following convergences in distribu-
tion hold as N →+∞:

N
1
2

⎧⎨
⎩

∑N
i=1 w(i)

k ϕ
(

x(i)k

)
∑N

j=1 w( j)
k

−Ep(xk |y1:k)(ϕ)

⎫⎬
⎭ D→N (0,Vk(ϕ));

N
1
2

{
N−1

N

∑
i=1

ϕ
(

x̂(i)k

)
−Ep(xk |y1:k)(ϕ)

}
D→N (0,V̂k(ϕ)),

where

Ṽk(ϕ) = V̂k−1{EKk(ϕ)}+Ep(xk−1|y1:k−1){VarKk(ϕ)};

Vk(ϕ) = Ṽk{wk · (ϕ −Ep(xk |y1:k)ϕ)}.

For multinomial resampling, we have

V̂k(ϕ) =Vk(ϕ)+Varp(xk |y1:k)(ϕ);

while for residual resampling, we have

V̂k(ϕ) =Vk(ϕ)+Rk(ϕ),

with

Rk(ϕ) = E p̃(xk |y1:k−1){r(wk)ϕϕ ′}− 1
E p̃(xk |y1:k−1){r(wk)}

×
[
E p̃(xk |y1:k−1){r(wk)ϕ}

][
E p̃(xk |y1:k−1){r(wk)ϕ}

]′
,

and r(·) = ·− �·�. The notation EKk(ϕ) and VarKk(ϕ) are
the short for EKk(xk−1,·){ϕ(·)} and VarKk(xk−1,·){ϕ(·)}, re-
spectively.

Various numerical schemes to solve the PDEs can
applied to (2.9) to obtain an approximation to the con-
ditional pdf π . Yet, the main drawback of PDE meth-
ods are the intensive computation. It is almost impos-
sible to achieve the real time performance. To over-
come this shortcoming, the splitting-up algorithm is
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introduced to move the heavy computation off-line.
It is like the Trotter product formula from semi-
group theory. This operator splitting algorithm is
proposed for the DMZ equation by Bensoussan, et al.
[9]. More research articles follow this direction are
[31, 60, 39] etc. In 1990s, Lototsky, et al. [55] devel-
oped a new algorithm (so-called S3-algorithm) based
on the Cameron-Martin version of Wiener chaos ex-
pansion. However, both the splitting-up method and
the S3-algorithm require the boundedness of the drift-
ing term and the observation term ( f and h in (2.2)),
which leaves out even the linear case. To overcome
this restriction, Yau and Yau [75] developed a real-
time novel algorithm, called Yau-Yau’s method, to
solve the robust DMZ equation, where the bounded-
ness of the drift term and observation term is re-
placed by some mild growth conditions on f and h.
This algorithmhas been further validated and applied
to time-varying system in [56, 57] i.e. f , h and g can
be explicitly time-dependent. We report this method
in this section.

Let us assume that we know the observation time
sequence a-prior, and denote it as Pk = {0 = τ0 < τ1 <

· · · < τk = T}. But the observation data {yτi} at each
sampling time τi, i = 0, · · · ,k are unknown until the on-
line experiment runs. We call the computation off-line
if it can be performed without any on-line experimen-
tal data; otherwise, it is called on-line computations.

The robust DMZ equation of the model (2.2) in
general form is given as following:

(3.25)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

(t,x)+
∂
∂ t

(
hT R−1)T ytu(t,x)

= exp
(−hT R−1yt

)[
L− 1

2
hT R−1h

]
× exp

(
hT R−1yt

)
u(t,x)

u(0,x) = π0(x),

where L is defined as

L(∗)≡ 1
2

Nx

∑
i, j=1

∂ 2

∂xi∂x j

[(
GQGT )

i j ∗
]
−

Nx

∑
i=1

∂ ( fi∗)
∂xi

,(3.26)

by using the exponential transformation [19]

u(t,x) = exp [hT (t,x)R−1(t)yt ]π(t,x).(3.27)

More explicitly, (3.25) can be expanded as
(3.28)⎧⎨
⎩

∂u
∂ t

(t,x) =
1
2

D2
wu(t,x)+F(t,x) ·∇u(t,x)+ J(t,x)u(t,x)

u(0,x) = π0(x),

where

D2
w =

Nx

∑
i, j=1

(GQGT )i j
∂ 2

∂xi∂x j
,

(3.29)

F(t,x) =

[
Nx

∑
j=1

∂
∂x j

(
GQGT )

i j +
Nx

∑
j=1

(GQGT )i j
∂K
∂x j

− fi

]Nx

i=1

,

(3.30)

J(t,x) =− ∂
∂ t

(
hT R−1)T y(t)+

1
2

Nx

∑
i, j=1

∂ 2

∂xi∂x j

(
GQGT )

i j

(3.31)

+
Nx

∑
i, j=1

∂
∂xi

(
GQGT )

i j
∂K
∂x j

+
1
2

Nx

∑
i, j=1

(GQGT )i j

[
∂ 2K

∂xi∂x j
+

∂K
∂xi

∂K
∂x j

]

−
Nx

∑
i=1

∂ fi

∂xi
−

Nx

∑
i=1

fi
∂K
∂xi

− 1
2
(
hT R−1h

)
,

in which

K(t,x) = hT (t,x)R−1(t)yt .(3.32)

Let ui(t,x) be the solution of the robust DMZ equa-
tion (3.12) with yt freezed as the observation yτi−1 on
the interval τi−1 ≤ t ≤ τi, i = 1,2, · · · ,k

(3.33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂ t
(t,x)+

∂
∂ t

(
hT R−1)T yτi−1 ui(t,x)

= exp
(−hT R−1yτi−1

)[
L− 1

2
hT R−1h

]
× exp

(
hT R−1yτi−1

)
ui(t,x)

u1(0,x) = π0(x),

or

ui(τi−1,x) = ui−1(τi−1,x), for i = 2,3, · · · ,k.

Define the norm of Pk by |Pk| = sup1≤i≤k(τi − τi−1). It is
shown in [75, 56] that as |Pk| → 0, we have

k

∑
i=1

χ[τi−1,τi](t)ui(t,x)→ u(t,x)

in some sense, for all 0≤ t ≤ T , where u(t,x) is the exact
solution of (3.25). For the conciseness of notation, let
us denote

N(t,x)≡− ∂
∂ t

(
hT R−1)yt − 1

2
D2

wK(3.34)

+
1
2

DwK ·∇K − f ·∇K − 1
2
(
hT R−1h

)
,

The proof consists of two steps:

1) The exact solution u(t,x) of the robust DMZ equa-
tion (3.25) is well approximated by uR as R → ∞,
for any t ∈ [0,T ], where uR is the solution to (3.25)
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restricted on BR (the ball centered at the origin
with the radius R) with Dirichlet boundary condi-
tion.

Theorem 3.9 ([56]). For any T > 0, let u(t,x) be
a solution of the robust DMZ equation (3.28) in
[0,T ]×R

n. Let R � 1 and uR(t,x) be the solution to
(3.25) restricted on BR. Assume the following con-
ditions are satisfied, for all (t,x) ∈ [0,T ]×R

n:

• N(t,x)+ 3
2 Nx||GQGT ||∞ + |f−DwK| ≤C,

• e−
√

1+|x|2 [14Nx||GQGT ||∞ +4|f−DwK|]≤ C̃,

where N and K are defined in (3.34) and (3.32),
respectively, Dw is defined as

Dw∗=
[

Nx

∑
j=1

(
GQGT )

i j (t,x)
∂∗
∂x j

]Nx

i=1

,(3.35)

and C, C̃ are generic constants possibly depending
on T . Let v= u−uR, then v≥ 0 for all (t,x)∈ [0,T ]×BR

and ∫
B R

2

v(T,x)≤ C̄e−
9

16 R
∫
RNx

e
√

1+|x|2 π0(x),(3.36)

where C̄ is some constant, which may depend on
T .

2) uR(τ,x) is well approximated by uk,R(τ,x), as k →
+∞, in the L1 sense, where uk,R is described in de-
tail in the theorem below.

Theorem 3.10 ([56]). Let Ω be a bounded domain
in R

n. Assume that

• |N(t,x)| ≤C,

• There exists some α ∈ (0,1), such that

|N(t,x)−N(t,x; t̄)| ≤ C̃|t − t̄|α ,(3.37)

for all (t,x) ∈ [0,T ]×Ω, t̄ ∈ [0,T ], where N(t,x) is in
(3.34), and N(t,x; t̄) denotes N(t,x) with the obser-
vation yt = yt̄ . Let uΩ(t,x) be the solution of (3.28)
on [0,T ]×Ω with zero-Dirichlet boundary condi-
tion. For any 0 ≤ τ ≤ T , let Pτ

k = {0 = τ0 < τ1 < τ2 <

· · · < τk = τ} be a partition of [0,τ], where τi =
iτ
k .

Let ui,Ω(t,x) be the approximate solution obtained
by our algorithm restricted on [τi−1,τi]×Ω. That is,
ui,Ω(t,x) is the solution on Ω× [τi−1,τi] of the equa-
tion

(3.38)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ui,Ω

∂ t
(t,x) =

1
2

D2
wui,Ω(t,x)+F(t,x;τi−1)

×∇ui,Ω(t,x)+ J(t,x;τi−1)ui,Ω(x, t)

ui,Ω(τi−1,x) = ui−1,Ω(τi−1,x)

ui,Ω(t,x)|∂Ω = 0,

for i = 1,2, · · · ,k, with u1,Ω(0,x) = π0,Ω(x). Here,
F(t,x;τi−1), J(t,x;τi−1) denote F(t,x), J(t,x) with the

observation yt = yτi−1 , respectively. Then

uΩ(τ,x) = lim
k→∞

uk,Ω(τ,x),

in the L1 sense in space and the following estimate
holds:

∫
Ω
|uΩ −uk,Ω|(τ,x)≤ C̄

kα ,(3.39)

where C,C̃,C̄ are generic constants, possibly de-
pending on T ,

∫
Ω σ0,Ω. The right-hand side of (3.39)

tends to zero as k → ∞.

Generally speaking, it is impractical to solve
(3.33) in the real-time manner, since the on-line data
{yτi}, i = 1, · · · ,k, are in the coefficients of (3.33). We
have to numerically solve the time-consuming PDE
on-line, every time after the new observation data
coming in. Yet, the proposition below helps to move
the heavy computations off-line. This is the key ingre-
dient of the Yau-Yau’s method in [75, 56].

Proposition 3.1 ([75, 56]). For each τi−1 ≤ t < τi, i =
1,2, · · · ,k, ui(t,x) satisfies (3.33) if and only if

(3.40) ρi(t,x) = exp
[
hT (t,x)R−1(t)yτi−1

]
ui(t,x),

satisfies the Kolmogorov forward equation (KFE)

(3.41)
∂ρi

∂ t
(t,x) =

(
L− 1

2
hT R−1h

)
ρi(t,x),

where L is defined in (3.26).

It is clear that (3.41) is independent of the ob-
servation path {yτi}k

i=0, and the transformation be-
tween ui and ρi is one-to-one. It is also not hard to
see that (3.41) could be numerically solved before-
hand. Let us denote U(t) := L− 1

2 hT R−1h for short to
emphasize its time-dependence. Under certain con-
ditions, {U(t)}t∈[0,T ] forms a family of strong elliptic
operators. Furthermore, the operator U(t) : D(U(t)) ⊂
L2(RNx)→ L2(RNx) is the infinitesimal generator of the
two-parameter semigroup U(t,τ), for t ≥ τ . In particu-
lar, with the observation time sequence known {τi}k

i=1,
we obtain a sequence of two-parameter semigroup
{U(t,τi−1)}k

i=1, for τi−1 ≤ t < τi. Let us take the initial
conditions of KFE (3.41) at t = τi as a set of complete
orthonormal base in L2(RNx), say {φl(x)}∞

l=1. We pre-
compute the solutions of (3.41) at time t = τi+1, de-
noted as {U(τi+1,τi)φl}∞

l=1. These data should be stored
in preparation of the on-line computations.

The on-line computation in our algorithm con-
sists of two parts at each time step τi−1, i = 1, · · · ,k.

• Project the initial condition ρi(τi−1,x) ∈ L2(RNx) at
t = τi−1 onto the base {φl(x)}∞

l=1, i.e., ρi(τi−1,x) =

54 NOTICES OF THE ICCM VOLUME 3, NUMBER 1



∑∞
l=1 ρ̂i,lφl(x). Hence, the solution to (3.41) at t = τi

can be expressed as

ρi(τi,x)=U(τi,τi−1)ρi(τi−1,x)=
∞

∑
l=1

ρ̂i,l [U(τi,τi−1)φl(x)] ,

(3.42)

where {U(τi,τi−1)φl(x)}∞
l=1 have already been com-

puted off-line.
• Update the initial condition of (3.41) at τi with

the new observation yτi . Let us specify the obser-
vation updates (the initial condition of (3.41) ) for
each time step. For 0 ≤ t ≤ τ1, the initial condition
is ρ1(x,0) = π0(x). At time t = τ1, when the observa-
tion yτ1 is available,

ρ2(τ1,x)
(3.40)
= exp

[
hT (τ1,x)R−1(τ1)y(τ1)

]
u2(τ1,x)

(3.40),(3.33)
= exp

[
hT (τ1,x)R−1(τ1)y(τ1)

]
ρ1(τ1,x),

with the fact y0 = 0. Here, ρ1(τ1,x) =

∑∞
l=1 ρ̂1,l [U(τ1,0)φl(x)], where {ρ̂1,l}∞

l=1 is com-
puted in the previous step, and {U(τ1,0)φl(x)}∞

l=1
are prepared by off-line computations. Hence,
we obtain the initial condition ρ2(τ1,x) of (3.41)
for the next time interval τ1 ≤ t ≤ τ2. Recursively,
the initial condition of (3.41) for τi−1 ≤ t ≤ τi is

ρi(τi−1,x) = exp
[
hT (τi−1,x)R−1(τi−1)(yτi−1 −yτi−2)

](3.43)

×ρi−1(τi−1,x),

for i = 2,3, · · · ,k, where ρi−1(τi−1,x) =

∑∞
l=1 ρ̂i−2,l [U(τi−1,τi−2)φl(x)].

The approximation of u(t,x), denoted as ũ(t,x), is ob-
tained

ũ(t,x) =
k

∑
i=1

χ[τi−1,τi](t)ui(t,x),(3.44)

where ui(t,x) is obtained from ρi(t,x) by (3.40). And
π(x, t) could be recovered by (3.27).

In [57], the algorithm suggested in [75, 56] has
been applied to several 1D NLF problems, and the re-
sults have been compared with the EKF and the PF
both in accuracy and in real-time manner. The ba-
sis functions of L2(R) are chosen to be the general-
ized Hermite functions {Hα,β

n (x)}N
n=0, where α > 0 and

β are the scaling factor and the translating factor,
respectively. When applying to the high-dimensional
NLF problems, the curse of dimensionality is arisen.
To tackle this difficulty in some degree, Yau and the
author [58] investigate to solve the KFE by using the
sparse-grid algorithm [66]. This shed a light on ap-
plying the Yau-Yau’smethod to high-dimensional NLF
problems.

4. Conclusion and Future Work

In this survey, starting from the KF, we briefly
go through the local approaches, including EKF, GSF,
QKF and etc. The Bayesian interpretation of KF is
somewhat clear from [35]. In this survey, we briefly
sketch the re-derivation of KF from DMZ equation ac-
cording to [26]. Emphases have been put on the exist-
ing threemajor global approaches: finite-dimensional
filter, sequential Monte Carlo methods (particle filter)
and the Yau-Yau’s method.

The study of finite-dimensional filter starts from
1980s. It is well-known that there exits finite-
dimensional estimator for certain type of NLF prob-
lem, say [8] and there also exists essentially infinite-
dimensional one [34]. Thus, the natural question is
to ask for the borderline. From the viewpoint of esti-
mation algebra, Yau gave the complete classification
for the estimation algebra with maximal rank [69, 70]
and some partial results on those with non-maximal
rank [73, 15, 68]. The complete classification of gen-
eral estimation algebra is still wide open. The greatest
benefit from the classfication is to construct numer-
ous novel finite-dimensional filters.

The sequential Monte Carlo methods is nowadays
one of the most popular methods in industry. The
derivation from the prediction-correction recursion
has been included in this survey. Also, the conver-
gence of the PF with multinomial and residual resam-
pling strategy has been stated rigorously. The per-
formance of PF can be improved further with care-
fully chosen the instruction distribution and expe-
rienced resampling strategies. However, the PF can
never achieve the real-time performance due to its na-
ture of Monte Carlo simulations.

The Yau-Yau’s method is the most recent algo-
rithm [75, 56, 57] in solving directly the posterior
pdf. The real-time performance is guaranteed for
NLF problems with medium low dimensional states
[56, 76], and no further assumptions on the func-
tion’s type (say Gaussian). The further investigations
can be carried on how to apply to high-dimensional
state NLF problem and break the so-called “curse of
dimension” in certain degree. A possible way-out is
to combine the sparse-grid algorithm [58]. More ef-
forts are needed in this direction, if in aim to solve
real applications.
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