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Introduction
I hope to do a number of things in this expository

article. First, I want to tell you a bit about the finite
simple groups, and try to give you a vague idea of how
they are classified. In a moment I’ll begin that discus-
sion with some motivation. Second, the proof of the
classification is lengthy and complex, so it is impor-
tant to try and simplify the existing proof. There are
several ongoing efforts in that direction; I’m think-
ing in particular of the ambitious programs of Goren-
stein, Lyons, and Solomon (cf. [GLS1]) and of Meier-
frankenfeld, Stellmacher, and Stroth. I also have a
program to simplify part of the proof of the classi-
fication. My approach involves carrying out most of
the proof in the category of fusion systems, not in the
category of groups. The latter part of the article dis-
cusses that program. In addition as fusion systems
play such a large role in the program, before describ-
ing the program I’ll first need to give a quick tutorial
on fusion systems.

So we now have an idea of where we are headed:
we begin with a discussion of why the finite simple
groups and their classification are important. Then
we move to a quick overview of the proof of the clas-
sification of the finite simple groups. This is followed
by an introduction to the theory of fusion systems. Fi-
nally there is a discussion of a program that would,
first, classify most simple 2-fusion systems of com-
ponent type, and then, second, use the theorem on
fusion systems to simplify that part of the classifica-
tion of the finite simple groups dealing with groups
of component type.
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1. Finite Simple Groups
Recall a group G is simple if 1 and G are the only

normal subgroups of G. Equivalently, G and 1 are the
only homomorphic images of G.

Consider subnormal series

1 = G0 � G1 � · · · � Gn = G

for G and the factors (Gi+1/Gi : 0 ≤ i < n) of the series.
A subnormal subgroup of G is a subgroup contained
in some subnormal series. In a groupwith a chain con-
dition on subnormal subgroups (like a finite group),
there are maximal such series, and those are precisely
the series in which all the factors are simple. These
maximal series are called the composition series for
G, and the family of factors of such a series is called
the family of composition factors of G. By the Jordan-
Holder Theorem the composition factors are indepen-
dent of the composition series.

Thus the simple groups are the building blocks
of finite group theory, analogous to the primes in
arithmetic, in that each finite group is built from its
composition factors. However unlike unique factor-
ization in arithmetic, the composition factors of G
don’t uniquely determine G; instead there is also:

The Extension Problem. Given groups X and Y deter-
mine the groups G possessing a normal subgroup H
with H ∼= X and G/H ∼= Y .

In the late nineteenth century, Holder proposed
that one should adopt a two-step program in studying
finite groups:

1. Classify the finite simple groups.
2. Solve the Extension Problem.

It developed that it is possible to classify the sim-
ple groups, although just barely. But the Extension
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Problem seems to be just too complex, except in spe-
cial cases; put another way, attempting to classify all
finite groups is not the right problem. Instead it turns
out that, for some reason, it seems to be possible to
reduce many (most?) problems in finite group the-
ory to some corresponding problem on some class
of minimal groups, which are usually close to simple.
Then, given the classification together with enough
information about the simple groups on our list, it
is often possible to solve the original problem. In
other words we can hope to avoid the Extension Prob-
lem.

In particular over the last 30 or so years, many
problems from a variety of areas of mathematics have
been translated into problems about finite groups,
and then solved via this reduction process using the
classification of the finite simple groups together
with information about the simple groups.

Here is one example from my own work. Univer-
sal algebraists would like to describe finite lattices
as lattices of congruences of finite algebras. An old
result of Palfy and Pudlak [PP] says that each finite
lattice is of this sort if and only if each finite lattice
is an interval in the subgroup lattice of some finite
group. The general consensus among simple group
theorists is that the answer to this question is neg-
ative, and indeed John Sharesian has a conjecture in
[S] of what counterexamples should look like, and has
suggested a particular class of such lattices. In [A2],
I’ve reduced the problem of showing that Sharasian’s
lattices are not intervals to two problems about the
lattice of overgroups of subgroups of almost sim-
ple groups. (A finite group G is almost simple if it
has a unique minimal normal subgroup L, and L is
nonabelian simple.) Work is in progress to solve the
two problems, using our knowledge of the subgroup
structure of almost simple groups.

The two most important types of information
about simple groups G required to achieve and take
advantage of general reductions of this kind are:

(I) the permutation representations of G on sets, or
equivalently the study of the subgroup structure
of G, and

(II) the linear representations of G on vector spaces;
the case where the field of definition is finite is
of particular importance.

Thus these days finite group theorists devote a
lot of time and effort to the study of such represen-
tations of (nearly) simple groups.

2. Classifying the Finite Simple
Groups
Next we consider the finite simple groups and

their classification. For more details on this subject
see [ALSS].

Classification Theorem. Each finite simple group is
isomorphic to one of the following:

(1) A group of prime order.
(2) An alternating group.
(3) A group of Lie type.
(4) One of 26 sporadic simple groups.

The groups of prime order are the abelian simple
groups.

The alternating group on a finite set X is a normal
subgroup of index 2 in the symmetric group on X .
The symmetric group is the automorphism group of
X in the category of sets, so the alternating group is
essentially the automorphism group of this very nice
object.

The groups of Lie type are linear groups: groups
of automorphisms of some family X of polynomial
functions on some finite dimensional vector space.
A group of Lie type can be viewed as a form of a sim-
ple algebraic group.

The sporadic groups live in no known naturally
defined infinite family of simple groups.

The theorem supplies a representation of each
group in the first three cases as (essentially) the group
of automorphisms of some nice object X , which can
be used effectively to study the group. Some of the
sporadics also have such representations, but others
are only studied using local group theory and the clas-
sification itself.

So, how does one go about classifying simple
groups? The primary tool is the local theory of fi-
nite groups. Let G be a finite group and p a prime.
A p-local subgroup of G is the normalizer of a non-
trivial p-subgroup of G. In the classification, the focus
is on the 2-locals. To oversimplify a bit, the simple
groups are classified in terms of their 2-local struc-
ture.

The classification proceeds by induction on the
group order. Let K be the list of simple groups ap-
pearing in the statement of the classification theo-
rem. Define a finite group G to be a K-group if each
simple section of G is in K. (A section of G is a group
of the form A/B for some B � A ≤ G.) In attempting to
prove the theorem, we consider a simple group G of
minimal order subject to G not inK. Then each proper
section of G is a K-group. This K-group condition is
used extensively in the proof of the theorem. For such
appeals to be effective, we need many properties of
the groups in K.

Here are three questions to consider:

Question 1. What do local subgroups of groups in
K look like? How do they differ from the locals in a
random finite group?

Question 2. How do we force the local structure of
our counterexample G to resemble that of some Ḡ
in K?
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Question 3. If G and Ḡ have similar local structure,
how do we prove that G ∼= Ḡ?

I’ll focus on Quesions 1 and 2.
At this point need to introduce a few concepts

and a little technical notation and terminology. Let L
be a finite group. Write O2(L) for the largest normal
2-subgroup of L and write O(L) for the largest normal
subgroup of L of odd order. Call O(L) the core of L.
We will see that cores appear as obstructions in many
parts of the proof of the classification.

A component of L is a subnormal quasisimple sub-
group of L. (A group K is quasimple if K = [K,K] is the
commutator group of K and K/Z(K) is simple.) Think
of the components of L as normal nonabelian simple
subgroups of L.

Define L to be of characteristic 2-type if for
each 2-local subgroup H of L, we have CH(O2(H)) ≤
O2(H). That is all “small” normal subgroups of H are
2-groups and O2(H) dominates the structure of H.
Each group of Lie type over a field of characteristic
2 is of characteristic 2-type, so we should think of
groups of characteristic 2-type as even groups.

Define L to be of component type if for some invo-
lution t in L, CL(t)/O(CL(t)) has a component. Almost
all groups of Lie type over fields of odd characteristic
are of component type, so we should think of groups
of component type as odd groups. Centralizers of in-
volutions in alternating groups and sporadic groups
have some involutions centralizers of one type and
some of the other.

Gorenstein-Walter Dichotomy Theorem. If L is sim-
ple and not “too small” then L is either of characteristic
2-type or component type.

In this theorem G is “small” if it is of 2-rank at
most 2. After treating the “small” simple groups, the
proof of the classification proceeds by considering
each of the two cases in the Dichotomy Theorem (the
even and odd groups), and treats them with different
methods. In this article I’ll concentrate on the groups
of component type, since that is the portion of the
proof the program I mentioned in the introduction
seeks to simplify. So our focus will be on the odd
groups.

Assume then that ourminimal counter example G
is of component type. Recall this means that for some
involution t in G, CG(t)/O(CG(t)) has a component. But
if Ḡ in K is of component type then more is true: CḠ(t̄)
has a component. This suggests:

B-Conjecture. If L is a finite group with O(L) = 1
and t is an involution in L, then each component of
CL(t)/O(CL(t)) is the image of a component of CL(t).

If G satisfies the condition in the B-Conjecture
then it is possible to play combinatorial games and
show that if t is chosen so that a component K ofCG(t)
is “large” among all choices for t and K, then CG(t) re-

sembles the centralizer of some involution in some
member of K; indeed the structure of CG(t) is domi-
nated by, and can be retrieved from, K. In this case
we say K is a standard subgroup of G. Then one must
go on and solve the:

Standard Form Problem for K. Given a quasisimple
group K show that each simple group in which K is
standard is in K.

To implement this approach, one must first ver-
ify the B-Conjecture. Unfortunately the proof of the
B-Conjecture is long and unpleasent. Note the ob-
struction posed by the B-Conjecture arises from the
cores of 2-locals, or more generally the cores of fi-
nite groups. Perhaps the main reason to believe that
the groups of component type are best treated from
the point of view of 2-fusion systems is that 2-fusion
systems have no cores.

We will return to groups of component type in a
while, but first a few words about fusion systems.

3. Fusion Systems
The notion of a “fusion system” was introduced

by Luis Puig (cf. [P]) who also proved many of the
most basic theorems about fusion systems. However
we will use different notation and terminology (intro-
duced by topologists) than Puig. Our basic reference
for fusion systems will be [AKO].

Let p be a prime and S a finite p-group. A fusion
system on S is a category F whose objects are the sub-
groups of S and such that the set homF (P,Q) of mor-
phisms from a subgroup P to a subgroup Q consists of
injective group homomorphisms from P into Q, and
such that these morphism sets satisfy two weak ax-
ioms. In addition F is saturated if two more axioms
are satisfied. See section I.2 in [AKO] for the precise
definitions; rather than giving them here, it is perhaps
more illuminating to consider the following example:

Standard Example. Let G be a finite group and S a Sy-
low p-subgroup of G. Write FS(G) for the fusion sys-
tem on S such that hom(P,Q) consists of themaps from
P into Q induced by conjugation in G: that is the maps
cg : P → Q, where cg : x �→ g−1xg for g ∈ G with g−1Pg ≤ Q
and x ∈ P.

Call FS(G) the p-fusion system of G. Elements x and
y in S are said to be fused in G if x and y are conjugate
in G. The study of fusion in finite groups goes back at
least to Burnside and played an important role in the
original proof of the classification, although at that
time the formal notion of a fusion system did not ex-
ist.

Using Sylow’s Theorem, one can verify that the
p-fusion system of a finite group is saturated. How-
ever there do exist saturated fusion systems that do
not come from groups; such systems are said to be ex-
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otic. For example there is one known infinite family of
simple exotic 2-fusion systems: the Benson-Solomon
systems.

It is possible to translate many (but not all) con-
cepts from local finite group theory to analogous no-
tions for fusion systems. Sometimes these notions be-
have better for fusion systems, and difficulties which
arise for groups vanish for fusion systems. The ob-
struction corresponding to the B-Conjecture is an im-
portant example of this effect.

Fusion systems can be regarded as algebraic or
topological objects. In particular algebraic topolo-
gists are interested in fusion systems for their own
reasons. Another advantage to working with fusion
systems is that arguments from algebraic topology
become available, or at least are more intuitive for
fusion systems than for groups.

Finally Puig’s primary area of interest is the mod-
ular representation theory of finite groups. Puig cre-
ated his theory as a tool in modular representation
theory, where it has come to be important. Thus fu-
sion systems are of interest in at least three math-
ematical specialties: modular representation theory,
algebraic topology, and the local theory of finite
groups.

We will need some basic notation, terminology,
and concepts for fusion systems. Let F be a fusion
system on a finite p-group S. For P ≤ S, let PF = {Pφ :
φ ∈ homF (P,S)} be the set of conjugates of P. We say
that P is fully normalized in F if |NS(P)| ≥ |NS(Q)| for
each Q ∈ PF . In the Standard Example, P is fully nor-
malized if and only if NS(P) ∈ Sylp(NG(P)). Write F f for
the set of fully normalized subgroups of S.

Define the normalizer in F of P to be the subsys-
tem NF (P) of F on NS(P) such that for Q,R ≤ NS(P) an
F-morphism φ : Q → R is a NF (P)-morphism if φ ex-
tends to an F-morphism φ̂ : PQ → PR acting on P. De-
fine P to be normal in F and write P � F if F = NF (P).

One can define the centralizerCF (P) of P in F sim-
ilarly. The following result of Puig appears as II.2.1 in
[AKO]:

Theorem 3.1 (Puig). If F is saturated and P ∈ F f then
NF (P) and CF (P) are saturated.

There is a largest subgroup Op(F) normal in F .
We say that F is constrained if CS(Op(F))≤ Op(F).

The local subsystems of F are the subsystems
NF (P) for P ≤ S. These local subsystems are the ana-
logues of the local subgroups in a finite group; they
allow us to build a local theory of fusion systems. To
take advantage of Puig’s theorem, we need the follow-
ing result, which is part of I.2.6 in [AKO].

Lemma 3.2. Let F be saturated and P ≤ S. Define
A(P) = {φ ∈ homF (NS(P),S) : Pφ ∈ F f }. Then there exists
Q ∈ PF ∩F f and for each such Q there exists α ∈ A(P)
with Pα = Q.

4. Groups of Component Type

Assume G is a finite group with O(G) = 1 such that
G satisfies the B-Conjecture:

B-Conjecture. If G is a finite group such that O(G) =

1 then for each involution t in G, each component of
CG(t)/O(CG(t)) is the image of a component of CG(t).

The B-Conjecture was proved by brute force. One
major reason why one could hope that the theory of
fusion systems might make possible a simplification
of this part of the classification is that it should allow
us to avoid having to prove the B-Conjecture.

Let C be the set of components of centralizers of
involutions of G.

Component Theorem. If L is “maximal” in C then (es-
sentially) either

(1) L is a component of G, or
(2) L is standard in G.

Here L is standard in G if K =CG(L) is tightly em-
bedded in G, L � NG(K), and L commutes with none
of its conjugates.

A subgroup K of G is tightly embedded in G if K
is of even order but K ∩Kg is of odd order for each
conjugate Kg 	= K.

Theorems on tight embedding show that if L is
standard in G then either a Sylow 2-subgroup Q of
K contains a unique involution, or Q is elementary
abelian; in practice in the latter case |Q| ≤ 4. At this
point the centralizer in G of an involution of Q looks
like the centralizer in some known simple group, and
it remains to solve the:

Standard Form Problem for L. Determine those fi-
nite groups G with O(G) = 1 possessing a standard
subgroup isomorphic to L.

Definition (Gorenstein). L ∈ C is terminal in G if for
each involution t ∈CG(L), L is a component of CG(t).

Example. If L is a component of G then L is terminal
in G.

Lemma 4.1. If L is terminal and commutes with none
of its conjugates then L is standard in G.

Proof. Let K =CG(L). First, if g ∈ G and |K ∩Kg| is even
then there is an involution t ∈ K ∩Kg. Then L and Lg

are components of CG(t), so as [L,Lg] 	= 1, L = Lg and
hence K = Kg. Therefore K is tightly embedded in G.

Second, if g ∈ NG(K) then we just saw that L = Lg,
so indeed L � NG(K).

Thus to prove the Component Theorem it suffice
to:

(a) prove L is terminal, and then
(b) show if [L,Lg] = 1 for some g ∈ G then L is a com-

ponent of G.
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I close with two examples that we want to avoid,
as the corresponding standard form problems can be
difficult:

Example 4.2. Let G = (L1 ×L2)〈t〉 be a wreath product
of a simple group L1 ∼= L2 by a group 〈t〉 of order 2; ie.
Lt

1 = L2. Then L = {llt : l ∈ L1} ∼= L1 is a standard sub-
group of G.

Example 4.3. Let G = X〈t〉 where X = X(q2) is of Lie
type over Fq2 with q even, and t is an involution in-
ducing a field automorphism on X . Then (essentially)
CG(t) = 〈t〉×L with L ∼= X(q) standard in G.

These examples are difficult because the 2-share
nt of |CG(t)| is small relative to the 2-share nG of |G|;
roughly nG = n2

t . This makes it hard to retrieve G from
CG(t).

As the groups in the two examples are of com-
ponent type, they are “odd groups” from the point
of view of the original proof of the classification. We
wish to move the boundary between even and odd
groups so that the groups in these examples need
never be considered from the point of view of the cen-
tralizer of t.

5. 2-Fusion Systems of Component
Type

In this section let F be a saturated fusion system
on a finite 2-group S.

A subgroup P of S is strongly closed in S with re-
spect to F if for each Q≤P and φ ∈ homF (Q,S), we have
Qφ ≤ P.

From section I.6 in [AKO], we have the notion of a
normal subsystem ofF , and from section II.5 in [AKO],
for each T ≤ S strongly closed in S with respect to F ,
we have a factor system F/T . If E � F and T is Sylow
in E , then T is strongly closed, so we can define F/E =

F/T .
Thenwe can define simple systems and subnormal

subsystems of F in the obvious way by analogy with
groups. There is also a smallest normal subsystem
O2(F) such that F/O2(F) is a 2-group.

Define F to be quasisimple if F = O2(F) and
F/Z(F) is simple. The components of F are its sub-
normal quasisimple subsystems. These components
have properties similar to those of components of
groups.

Define F to be of component type if for some fully
centralized involution t (ie. 〈t〉 ∈ F f ), CF (t) has a com-
ponent. Define F to be of characteristic 2-type if for
each P ∈ F f , NF (P) is constrained (cf. section 3).

The following result is II.14.3 in [AKO]; it should
be compared to the Dichotomy Theorem for groups
in section 2, whose statement is less attractive and
whose proof is much more difficult. Also the pres-

ence of cores in the definition of “groups of compo-
nent type” makes the Dichotomy Theorem for groups
hard to apply, while cores are invisible in the 2-fusion
systems of groups (cf. Remark 6.1) so such difficul-
ties vanish when working with fusion systems.

Dichotomy Theorem for Fusion Systems. F is either
of component type or characteristic 2-type.

Remark 5.1. We can only define the notion of a
“component” in a saturated system, and (from The-
orem 3.1), in the definition of systems of component
type, to insure that CF (t) is saturated, we need the
condition t ∈ F f .

In a group G we defined C(G) to be the set of com-
ponents of centralizers of involutions of G. What is
the right definition of C(F)?

Recall from Lemma 3.2 that for P ≤ S, A(P) de-
notes the set of α ∈ homF (NS(P),S) such that Pα ∈ F f ,
and that for each Q ∈ PF ∩F f there is α ∈ A(P) with
Pα = Q.

A subsystem E of F centralizes P ≤ S if E ≤CF (P).
Given a quasisimple subsystem C of F , define I(C)

to consist of the involutions t centralizing C such that
for α ∈A(t), Cα is a component of CF (tα). Then define
C= C(F) to be the set of quasisimple subsystems C of
F such that I(C) 	= ∅. We decree that C is the set of
components of involution centralizers in F . In partic-
ular F is of component type iff C(F) 	=∅.

Remark 5.2. Given a general subsystem E of F , the
notions of the “normalizer” and “centralizer” in F of
E are not defined (at least at present). But if E is a
component of F then the two notions can be defined.

Let C ∈ C with T Sylow in C and t ∈ I(C). Define
Qt = (CS(t)α ∩CCS(tα)(Cα))α−1 for α ∈ A(t).

Two subsystems Ei of F with Sylow groups Ti, for
i = 1,2, are said to centralize each other if F contains
a central product E1 ∗ E2 of the systems; equivalently
Ti centralizes E3−i for i = 1,2.

Define Δ(C) to consist of those conjugates C1 of
C such that for T1 Sylow in C1, C centralizes C1, each
involution in T1 is in I(C), and each involution in T is
in I(C1). Set C⊥ = Δ(C)∪{C}.

The following result appears in the preprint [A3]:

Theorem 5.3. If C is “maximal” in C, T ∈ F f , and C⊥ 	=
{C} then either

(1) C is a component of F , or
(2) T has a unique involution, C⊥ = {C,C1} is of order 2,

and Z(C) = Z(C1).

Define C to be terminal in C if C = C⊥ and for each
t ∈ I(C) and each involution i ∈ Qt , we have i ∈ I(C). No-
tice that this definition is analogous to the Gorenstein
definition for groups in section 4, except that we are
adding the condition that C “commutes with none of
its conjugates”.
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Theorem 5.4. If C is “maximal” in C and T ∈ F f then
(essentially) either C is a component of F or C is termi-
nal in C.

Proof. This is also a result in the preprint [A3]. Some
other cases also arise, but this simplified statement
captures the spirit of the result.

Theorem 5.4 is analogous to the Component The-
orem for groups, except it is weaker: we’ve only
shown that C is terminal, not that C is standard. On
the other hand in the case of groups, if L were ter-
minal and commuted with no conjugate then from
Lemma 4.1, L would be standard.

But what does it mean for C to be “standard”?
Recall that a quasisimple subgroup L of a group

G is standard in G if K = CG(L) is tightly embedded
in G, L � NG(K), and L commutes with none of its
conjugates.

It is possible to define the notion of a tightly
embedded subsystem of F , and to prove theorems
about tightly embedded subsystems analogous to the
corresponding theorem about tightly embedded sub-
groups. But recall we don’t have a notion of the “cen-
tralizer” in F of C, nor a notion of the “normalizer” in
F of a centralizer.

Nevertheless I’ve advanced a definition of a “stan-
dard subsystem” of F that involves four conditions
on C. I’ll only mention the first condition, Condition
(S1). Write X̃ (C) for the set of 2-subgroups P of F cen-
tralizing C such that each involution in P is in I(C). For
example if C is terminal and t ∈ I(C), then Qt ∈ X̃ (C).
Condition (S1) says that X̃ (C) contains a unique max-
imal member Q.

It can be shown that, if C is standard inF , then Q is
Sylow in a saturated subsystem Q of F centralizing C,
such that Q is tightly embedded in F and C � NF (Q).
We decree that Q is the centralizer in F of C.

Given a standard subsystem C in F , one can then
(just as in the case of groups) use the theorems on
tightly embedded subsystems to show that either Q
is elementary abelian or Q has a unique involution.
Then the centralizer of an involution in Q resembles
the centralizer in some known simple system, and
it remains to solve the corresponding standard form
problem for C.

There is an exception to this approach. If C is the
2-fusion system of a group of Lie type in odd charac-
teristic other than L2(q), one instead seeks to prove a
version for 2-fusion systems of the so-called Classi-
cal Involution Theorem for groups in [A1], and extend
that result to a fusion theoretic version of a theorem
of Walter in [W]. This would allow us to avoid treating
the standard form problems for most of the 2-fusion
systems of groups of Lie type in odd characteristic
other than L2(q).

Caution. If C is terminal then, in general, C need not
be standard. For if x ∈ Q and s ∈ CS(T ) then xs ∈ Q by

the uniqueness of Q in (S1), so z = xxs ∈ Q. Then if 1 	=
z ∈ T , we have z ∈ Z(C), so in particular Z(C) 	= 1. But in
Examples 4.2 and 4.3, taking F =FS(G) and C =FT (L),
we have C terminal with Z(C)= 1, whereasCS(T )�CS(t).

On the other hand if C is terminal and Z(C) 	= 1
then the first three condition of the definition of
“standard subsystem” are satisfied, and, in the exam-
ples I’ve looked at, the fourth condition can be estab-
lished via ad hoc means.

Thus we seek to avoid the “bad” cases in Exam-
ples 4.2 and 4.3, just as we wished to avoid them
for groups. Note that these cases do not arise when
Z(C) 	= 1. We will see one way to avoid these cases in
a moment; but first we need to take a closer look at
the “known” simple 2-fusion systems.

6. Simple 2-Fusion Systems
Write K for the class of “known” simple 2-fusion

systems.
The only exotic members of K are the Benson-

Solomon systems, which are of component type. In-
deed if F is Benson-Solomon then F has one class
of involutions tF , and CF (t) is the 2-fusion system of
Spin7(q) for some odd prime power q.

Thus all other members F of K are of the form
FS(G) for some finite group G and S ∈ Syl2(G). Assume
F is not the system of the group of order 2.

Remark 6.1. Let G∗ = G/O(G). Then the projection
∗ : S → S∗ is an isomorphism of FS(G) with FS∗(G∗).
That is O(G) does not effect 2-fusion in G.

Remark 6.2. If H � G then FS∩H(H) � F .

Remark 6.3. O2(G)≤ O2(F).

We wish to show that F = FS(G) is the 2-fusion
system of some simple group G. By Remark 6.1, re-
placing G by G/O(G), we may assume O(G) = 1. As
F is simple and not of order 2, we conclude from
Remark 6.3 that O2(G) = 1. Let L be a minimal nor-
mal subgroup of G. By Remark 6.2 and the simplicity
of F , S ≤ L and F = FS(L), so we may take G = L. As
O2(G) = O(G) = 1, L is the direct product of isomor-
phic nonabelian simple groups. Then by Remark 6.2,
L is simple. Thus we’ve shown that each member of
K that is not Benson-Solomon is of the form FS(G) for
some nonabelian simple group G.

What about the converse?
A Goldschmidt group is a nonabelian simple

group G such that G has a nontrivial abelian
2-subgroup strongly closed in a Sylow 2-subgroup S
of G with respect to G. By a theorem of Goldschmidt
[Go], G is Goldschmidt iff G is of Lie type in charac-
teristic 2 of Lie rank 1, or S is abelian.

Remark 6.4. If G is Goldschmidt then S � G. In par-
ticular the 2-fusion system of a Goldschmidt group is
not simple.
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Remark 6.5. It turns out that if G is a known simple
group but not Goldschmidt then F is simple. Thus
the members of K are the Benson-Solomon systems
together with the 2-fusion systems of the known sim-
ple groups that are not Goldschmidt.

A member C of K is said to be tamely realized by
some simple group G = K(C) if (essentially) C = FT (G)

and all automorphisms of C are induced by automor-
phisms of G. In particular, in as yet unpublished work,
Broto, Moller, and Oliver show that most members of
K that are not Benson-Solomon are tamely realized by
some K(C). This fact is crucial in analyzing systems of
component type in an inductive setting, as it allows
us to describe suitable extensions of C ∈ C induced
in F .

Define F to be aK-system if each simple section of
F is inK. (A section of F is a factor system of a subsys-
tem of F .) If we attempt to classify all simple 2-fusion
systems via an inductive approach, then a minimal
counter example F to such a classification has the
property that all proper sections of F are K-systems.

In attempting to classify simple systems of com-
ponent type (or some subclass of such systems) we
may want to assume a weaker condition; for example
for each C ∈ C, C/Z(C)∈K. Indeed we are led to impose
further constraints on the members of C.

Let C be quasisimple on T . Define C to be intrin-
sic if Z(C) 	= 1. The intrinsic K-systems consist of the
2-fusion systems of coverings of groups of Lie type
and odd characteristic, alternating groups, and a fi-
nite number of groups of Lie type and characteristic
2 and sporadic groups.

If C ∈ C, define C to be intrinsic in C if I(C) ∩
Z(C) 	=∅.

Define C to be subintrinsic if there exists a mem-
ber of C(C) intrinsic in C(C). The subinstrinsic mem-
bers of K consist of the Benson-Solomon systems,
most groups of Lie type in odd characteristic, and
some sporadic groups.

If C ∈ C, define C to be subinstrinsic in C if there
exists D ∈ C(C) such that D is intrinsic in C(F).

Problem A. Assume F is simple and for each C ∈ C,
C/Z(C)∈K. Assume somemember of C is subintrinsic.
Prove F ∈ K.

We have identified one subclass of the class of
fusion systems of component type which it seems
likely we can classify: the systems arising in Problem
A where C contains a subintrinsic member. We next
consider a second class: the systems of J-component
type.

Recall the 2-rank m2(G) of a finite group G is the
largest integer m such that G contains a direct product
of m copies of the group of order 2.

Define J = J (F) to be the set of involutions t ∈ S
such that m2(CS(t)) = m2(S). For C ∈ C, set J (C) = J ∩

I(C). Define CJ to consist of those C ∈ C such that
J (C) 	=∅.

Define F to be of J-component type if

(a) for each C ∈ C, C/Z(C) ∈K, and
(b) no member of C is subintrinsic, and
(c) CJ 	=∅.

Define C ∈CJ to be J-terminal if C⊥ = C and for each
t ∈ J (C), each involution in Qt is in I(C). The following
result appears in the preprint [A3]:

Theorem 6.6. Assume F is of J-component type, C ∈ CJ

is “maximal” in CJ , and T ∈F f . Then one of the follow-
ing holds:

(1) K(C) is An for some n ≥ 8.
(2) K(C) is L2(q) for some odd q, and many conditions

hold.
(3) K(C) is L3(4), G2(4), L3(3), or U3(3).
(4) C is a component of F .
(5) C is J-terminal.

In the case where C is J-terminal, one would at-
tempt to show that C is actually standard, and then go
on to either obtain a contradiction or show F ∈ K. In
the exceptional cases (1)–(3), one could attempt to do
the same; for example I have notes treating case (1).

In any event we are led to the following problems:

Problem B. Assume F is simple of J-component type.
Prove F ∈K.

Define a simple system F to be odd if either

(A) for each C ∈ C, C/Z(C) ∈K and some member of C
is subintrinsic, or

(B) F is of J-component type.

Define F to be even if all proper sections of F are
K-systems and F is not odd.

Problem C. Prove all odd systems are in K.

Problem D. Prove all even systems are in K.

7. From Fusion Systems to Groups
We wish to use theorems about 2-fusion systems

to prove theorems about groups. In particular we
want to study groups G in which every proper sec-
tion of G is a K-group, as a minimal counter example
to the theorem classifying the finite simple groups
has this property. As a first step we have:

Theorem 7.1. Let G be a finite group such that each
proper section of G is a K-group. Let F be the 2-fusion
system of G. Then either

(1) G is a K-group, or
(2) G is simple, F = O2(F), and F is almost simple.

Here F is almost simple if F has a unique minimal
normal subsystem, and that subsystem is simple and
not of order 2.

JULY 2015 NOTICES OF THE ICCM 41



The theorem shows that the 2-fusion system of
our minimal counter example is essentially simple.
Thus results about simple 2-fusion systems can in-
deed be useful in studying simple groups.

Let G ∈ K be a known simple group, or assume
G /∈ K but each proper section of G is a K-group. Let
F be the 2-fusion system of G. Define G to be odd if
F is odd and G to be even if F is even. (Actually when
G /∈K we want the simple minimal normal subsystem
of F to be odd or even.) What can we say about G? In
the odd case, we want to use a solution to Problem C
to show that G ∈ K. I won’t say anything more about
that case, so instead assume G is even.

Let J be the set of involutions j ∈ G such that
m2(CG( j)) = m2(G). Take j ∈ J ; conjugating in G,
we may assume j ∈ F f . Then as G is even, CF ( j)
has no components, so the components of CG( j)∗ =
CG( j)/O(CG( j)) are coverings of Goldschmidt groups.
If L∗ is such a component and not simple then L∗ ∼=
SL2(q) for some odd q, or L∗ is a proper covering of
Sz(8). The former can presumably be handled using
the so-called Classical Involution Theorem [A1], and
the latter using ad hoc methods. Thus we can pre-
sumably assume G is J-locally Goldschmidt: for each
j ∈ J (G), the components of CG( j)/O(CG( j)) are Gold-
schmidt groups.

Theorem 7.2. Assume G is J-locally Goldschmidt. Then

(1) O(CG(t)) = 1 for each involution t in G.
(2) If for some j ∈ J (G), CG( j) has a component iso-

morphic to L2(q), q odd, U3(4), 2G2(q), or J1, then
G ∈K.

This leaves only the case where for j ∈ J (G), all
components of CG( j) are isomorphic to L2(2n), U3(2n),
or Sz(2n)with n≥ 3. Presumably in the case where such
a component exists, it is not too difficult to obtain a
contradiction. If so, we will have shown that for each
j ∈ J (G), CG(O2(CG( j)))≤ O2(CG( j)).

We also known that if t is an involution in G and L
is a component of CG(t) with T ∈ Syl2(G), then FT (L) is

not subintrinsic, so L is of Lie type of even character-
istic, an alternating group, or one of a small number
of sporadic groups or groups of Lie type in odd char-
acteristic of small Lie rank whose 2-fusion system is
that of a group over F3.

Thus we see (in general terms) what a minimal
counter example to the classification of finite sim-
ple groups that is even looks like, at least 2-locally.
One could hope to handle this case using the GLS
approach, or the approach of MSS. Alternatively, one
could solve Problem D, and then use the fact that F
is a known simple fusion system to show G ∈ K. Per-
haps the MSS methods could be used to solve Prob-
lem D.
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