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The hiring of Raoul Bott also paid off immensely

for Harvard, although it is fair to say that as a young

man, Bott did not exhibit greatmathematical flair, nor

did he show much academic promise in general. Born

in Budapest in 1923—and raised mainly in Slovakia

(until his family immigrated to Canada in 1938)—Bott

was, at best, a mediocre student throughout child-

hood. In five years of schooling in Bratislava, Slovakia,

he did not earn a single A, except in singing and Ger-

man. In mathematics, he typically got Cs and the oc-

casional B, which should make him a hero among late

bloomers.

As a youth of about twelve to fourteen, Bott and

a friend had fun playing around with electricity—cre-

ating sparks, wiring together fuse boxes, transform-

ers, and vacuum tubes, and, in the process, figuring

out how various gadgets work. This experimentation

eventually served him well. A mathematician, Bott

later explained, is “someone who likes to get to the

root of things.”1

Although Bott frequently told his Harvard stu-

dents that he never would have made it into the

school as an undergraduate, he somehow managed

to get into McGill University, where he majored in

electrical engineering.2 Upon graduating in 1945, he

joined the Canadian army but left after four months
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when World War II came to a sudden and unexpected

end.

Bott then enrolled in a one-year master’s program

in engineering at McGill, but after completing that he

was still unsure of his future course. So he met with

the dean of McGill’s medical school, as he contem-

plated a career shift. In response to questions posed

by the dean, Bott confessed to disliking the dissection

of animals and hating chemistry even more, showing

little enthusiasm for the standard subjects taken up

in medical school. Finally, the dean asked him: “Is it

that maybe you want to do good for humanity…? Be-

cause they make the worst doctors.”3

That ended Bott’s thoughts of a medical career. “I

thanked him,” Bott said. “And as I walked out of his

door I knew that I would start afresh and with God’s

grace try and become a mathematician.”4

Initially, he wanted to pursue mathematics at

McGill, until he was told that his background was so

thin he would have to get a bachelor’s degree first—a

process that could take three years. He turned in-

stead to the Carnegie Institute of Technology (since

renamed Carnegie Mellon University), interested in

themaster’s program in appliedmathematics. But the

course requirements were so extensive that it would

have taken him three years to get a master’s degree.

Carnegie’s math chair, John Lighton Synge, suggested

their new doctoral program, which had hardly any re-

quirements at all. Bott liked the idea andwas assigned

Richard J. Duffin as his adviser.

Bott and Duffin took on, and eventually solved,

what was then one of the most challenging problems

in electrical network theory. The resultant Bott-Duffin

theorem not only was of great theoretical significance

but also had important practical applications in the

electronics industry. The paper that Bott and Duffin

coauthored had important consequences for Bott’s

career, as well, because the work impressed Hermann

JULY 2014 NOTICES OF THE ICCM 87



Weyl, who arranged for Bott to spend the 1949–50

academic year at the Institute for Advanced Study in

Princeton.5 (Weyl, as you may recall, came up earlier

in this chapter, having secured a position at the In-

stitute for Advanced Study for Richard Brauer; Weyl

later did the same for Richard’s brother, Alfred.)

“The general plan of my appointment [at the in-

stitute], as I understood it,” Bott wrote, “was that I

was to write a book on network theory at the Insti-

tute.” On his first day at work in Princeton, Bott met

with Marston Morse, who was in charge of the tem-

porary members that year. “[Morse] immediately dis-

missed my fears of having to write a book. It was a

matter of course to him that at the Institute a young

man should only do what he wanted to do; that was

the place where a young man should find himself and

the last place in the world for performing a chore…

I remember leaving this interview with a light heart,

newly liberated, and buoyed by the energy and opti-

mism I had just encountered.”6

Bott immediately went to his office and started

working on the four-color problem, thinking that the

trick he had used to solve the network problem—a

function that he considered his “secret weapon,”

might crack this problem as well. Morse dropped by

for a chat a few weeks later. “When he heard what

I was doing, he didn’t really object,” Bott wrote. “In-

stead, he first spoke of the great interest in the ques-

tion, but then started to talk about the many good

men he had seen start to work on it, never to reap-

pear again. After he left, I threw allmy computations

in the waste basket and never thought about the ques-

tion again!”7

What he did think about—perhaps owing to

the presence of Morse, Norman Steenrod, and oth-

ers—was topology. Surrounded by giants in the field,

Bott studied the subject deeply, though he appeared

to be in no great rush to publish anything. In fact,

he said, “I didn’t write a single paper in my first year

there. So I was very delighted when Marston Morse

called me up at the end of that year and said, ‘Do

you want to stay another year?’ And I said, ‘Of course,

yes!’ He said, ‘Is your salary enough?’ (It was $300 a

month.) I said, ‘Certainly!’ because I was so delighted

to be able to stay another year. My wife took a dimmer

view, but we managed.”8

In 1951, Bott joined the faculty of the University

of Michigan, where he continued to focus on topol-

ogy, paying particular attention to Morse’s theory of

critical points. A standard picture from Morse the-

ory, as discussed in Chapter 4, involves a doughnut

(or “torus”) standing upright. This surface has four

“critical points”—a maximum on top of the dough-

nut, a minimum on the bottom, and two saddle points

on the top and bottom of the doughnut’s inner ring.

“Generally, the critical points of a function are iso-

lated,” Bott wrote, but he realized these points could

come in “bigger aggregates” and could even be the

special kinds of spaces we call manifolds.9

One way to picture this is to take the upright

doughnut from the previous example and topple it

over, so that it is now lying on its side, flat on a table-

top. The maximum of this newly configured object is

no longer a point—it is a circle. The minimum, simi-

larly, is a circle too. One could determine the topology

of the space—and correctly identify it as a torus—by

knowing that the critical manifolds are two circles,

aligned one above the other.

Bott thus provided a generalization of classi-

cal Morse theory, often called Morse-Bott theory, in

which critical manifolds replaced the critical points

of the original theory. The critical manifolds of this

theory could be individual points, which is the zero-

dimensional special case. Or they could be one-

dimensional manifolds, like the circles in the tipped

doughnut. They could be higher-dimensional objects,

too—manifolds of any finite dimension, in fact.

Bott used this generalized version of Morse the-

ory to compute the homotopy groups of a manifold,

and from there he proved the periodicity theorem.

That, admittedly, is a bit of a mouthful, so we will

try to break down that statement, explaining in sim-

plified terms what he did.

Whereas Morse was primarily interested in us-

ing topology to solve problems in analysis—to solve

differential equations, in other words—Bott turned

that around, using Morse theory to solve problems

in topology. And one of the main problems in topol-

ogy—as in other areas of mathematics and through-

out science, in general—is the classification problem.

“Just as scientists want to classify plants and ani-

mals to understand how biology works and how life

is or organized, mathematicians also strive to find

some order among mathematical objects,” says Tufts

University mathematician Loring Tu, a former Har-

vard graduate student who coauthored a book on al-

gebraic topology with Bott.10 Group theorists, there-

fore, are interested in classifying groups, such as the

finite simple groups discussed earlier in this chap-

ter. Topologists, similarly, want to be able to look

at various spaces—seeing which ones are equivalent,

which ones are different—and then sort them into

their proper bins.

Mathematicians define invariants—fixed, intrin-

sic features of a space—in order to distinguish among

different topological spaces. If two spaces are “home-

omorphic”—meaning that one can be deformed into

the other by stretching, bending, or squishing but not

cutting—they must have the same topological invari-

ants. One of the simplest topological invariants to de-

fine is the homotopy group, there being one for each
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dimension. If two spaces (or manifolds) have differ-

ent homotopy groups, they really are different and

cannot be homeomorphic.

Computing the homotopy groups of a manifold

constitutes an important step toward understanding

the topology of that manifold. The first homotopy

group, also called the fundamental group, relates to

the kinds of loops you can draw in a space that cannot

be shrunk down to a point. A two-dimensional sphere,

for example, has a trivial fundamental group, because

any loop you can draw on the surface of a sphere

can be shrunk down to a point without impediment.

A sphere’s first homotopy group is therefore zero.

On a doughnut, there are two different kinds of cir-

cles that cannot be constricted to a point. One would

be a circle that starts on the outside of the dough-

nut, goes through the hole in the center, and loops

around. This cannot be shrunk to a point without cut-

ting the doughnut. There is also another kind of circle

that wraps around the circumference of the dough-

nut, sticking to what might be called the “equator.” It,

too, cannot be shrunk to a point without crushing the

doughnut so that it no longer has a hole and, there-

fore, is no longer a doughnut—just some amorphous,

mashed-up pastry.

The fundamental group of the doughnut thus has

“two generators,” two distinct circles, explains Tu,

“but you can go around a circle any number of times,

in a positive or negative direction, so we say the fun-

damental group of the doughnut is two copies of the

integers.” Tu adds that “the homotopy groups are

very easy to define, but they are very difficult to com-

pute, even for a two-dimensional sphere, which seems

like a simple enough object.”11

One puzzling feature was that the homotopy

groups appeared to follow no pattern whatsoever.

The first homotopy group for the sphere (or the fun-

damental group) is zero, as mentioned before. The

second homotopy group contains all the integers, and

the third homotopy group contains all the integers,

too, whereas the fourth and fifth groups have just two

elements, and the sixth group has twelve elements.

There was no apparent rhyme or reason to it.

This perplexing situation made Bott curious

enough to try computing some of the homotopy

groups on his own. Among other things, he was in-

terested in determining the homotopy groups asso-

ciated with a rotation group of arbitrary dimension,

or SO(n), as it is called. Keep in mind, however, that

these rotation groups are Lie groups (as discussed

in Chapter 6), which means that they are also mani-

folds. Amanifold, in turn, has homotopy groups. So if

you want to understand the structure of rotations in

n-dimensional space, one of the first things youmight

try is computing the homotopy groups.

That is what Bott set out to do. Applying Morse

theory to study the homotopy groups of Lie groups,

he uncovered an astonishing pattern: the “stable”

homotopy groups of SO(n)—which is to say, the

homotopy groups of SO(n) when n is sufficiently

large—literally repeat in cycles of eight. For large val-

ues of n—or for stable homotopy groups, in other

words—the first homotopy group for SO(n) is the

same as the ninth homotopy group, and the second

homotopy group is the same as the tenth homotopy

group, and so on. The same thing happens when one

looks at rotations in “complex space,” a space with

complex number coordinates. These rotations form

a group called SU(n), which stands for “special uni-

tary group.” When n, once again, is sufficiently large,

the homotopy groups of SU(n) repeat in cycles of two:

the first homotopy group for SU(n) is the same as the

third homotopy group, the second homotopy group

is the same as the fourth, and so on.

Bott’s 1957 paper—which established this find-

ing and was expanded upon in later work—came as

a “bombshell,” according Michael Atiyah, a longtime

collaborator of Bott’s presently based at the Univer-

sity of Edinburgh. “The results were beautiful, far-

reaching and totally unexpected.”12

Some mathematicians have compared the peri-

odicity theorem to the periodic table of elements in

chemistry. Hans Samelson, a University of Michigan

colleague whom Bott considered a “kindred spirit,”13

called the “periodicity result… the loveliest fact in

all topology, with its endlessly repeatable ‘mantras’…

The discovery had a tremendous effect and started a

flood of developments.”14

Some of the developments Samelson alluded to

included K-theory, the study of vector bundles that

was pioneered by Grothendieck, Serre, Atiyah, and

Friedrich Hirzebruch. (A cylinder is a simple exam-

ple of a vector bundle consisting of vectors—in this

case, vertical line segments or “arrows” endowed with

both a direction and magnitude—attached to a cir-

cle lying in a horizontal plane.) A 1959 paper by Bott

provided a “K-theoretic formulation of the periodicity

theorem,” and several years later he and Atiyah pro-

vided a new proof of periodicity, which fit into the K-

theory framework.15 The periodicity theorem was ex-

tremely useful in this context, because it provided an

expeditious way for mathematicians to classify vec-

tor bundles. As Harvard mathematician Michael Hop-

kins explains, “The periodicity theorem accounts for

the computability of K-theory (and in some sense K-

theory itself).”16 Consequently, Bott added, “K-theory

then took off, and it was great fun to be involved in

its development.”17

Thanks to his proof of the periodicity theorem,

Bott received offers from four universities and did

not know what to do. Harvard mathematician John
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Tate urged his school—which had no topologist at

the time—to hire Bott. Zariski, who was the mathe-

matics chair at the time, liked the idea, figuring that

“Bott was just the man to enliven what often seemed

to him a rather stodgy department.”18 Bott accepted

the offer in 1959 and stayed for the rest of his career.

Five years later, at a conference in Woods Hole,

Massachusetts, in 1964, Atiyah and Bott came up

with a formula that Bott considered “among my fa-

vorites in all of mathematics.”19 Their work was a

broad generalization of the Lefschetz fixed-point the-

orem, which Princeton mathematician Solomon Lef-

schetz proved in 1937. Lefschetz’s formula (which is

expressed in terms of cohomology) involves the num-

ber of fixed points of a map from a space to itself. A

map, as stated previously, is like a function that takes

a point in one space and assigns it to a point in an-

other space (although the “other” space could, in fact,

be the same space).

As a simple example, suppose we have the func-

tion g(x) = 3x4 +2x+1 and want to solve the equation

3x4 + 2x+ 1 = 0. One thing we can do is add an x to

both sides of the equation: g(x)+ x = x. Next, we in-

vent a map h(x) that is equal to g(x)+x. Then the orig-

inal equation g(x) = 0 is equivalent to h(x) = x, which
means that h maps x to itself. Thus, a solution x of

the original equation is a fixed point of the map h.
It is called a fixed point because x does not change

during the mapping from one space to another; its

position remains fixed. (Technically speaking, this ex-

ample concerns an algebraic equation on the real line;

the same idea of transforming a solution of an equa-

tion to a fixed point of a map applies to a differential

equation on a manifold.)

To see the Lefschetz fixed-point theorem in ac-

tion, rotate a sphere around its vertical axis. That is

an example of a transformation, or map, that takes a

sphere to a sphere. In this case, there are just two

fixed points—the north and south poles—as every

other point moves during the rotation. One can also

use Lefschetz’s formula to determine algebraically

that there are two fixed points. A virtue of the lat-

ter approach is that you can use it to figure out the

number of fixed points in more complicated situa-

tions where you cannot draw a simple picture of a

spinning globe.

“Algebra is almost always easier to do than ge-

ometry and topology, and that’s the basic idea be-

hind cohomology, which involves converting geomet-

ric and topological problems into algebraic ones,” ex-

plains Tu. Atiyah and Bott went further still, Tu adds,

“deriving a far-reaching generalization that, in one

special case, gives you back the Lefschetz theorem,

but it also gives you many other fixed-point theo-

rems—some new theorems and some classical ones,

as well.”20

In 1982, Atiyah and Bott came up with another

formula involving fixed points, this one on the sub-

ject of “equivariant cohomology.” Cohomology, a

term that comes up many times throughout this

book, is an algebraic invariant that mathematicians

assign to spaces, which means it is one of the tools

they use to study spaces. When the space you are

studying has symmetries of a particular sort, there

is a kind of cohomology you can study called “equiv-

ariant cohomology.”

Two French mathematicians, Nicole Berline and

Michèle Vergne, discovered this same formula inde-

pendently, and almost simultaneously. The Atiyah-

Bott-Berline-Vergne formula—or the equivariant lo-

calization formula, as it is often called—allows you

to compute certain integrals on manifolds with sym-

metries. This formula is extremely convenient since

many important physical quantities can be expressed

as integrals, yet computing those integrals can be

quite difficult.

Consider again the example of a sphere, this time

of radius 1. It has rotational symmetry about a verti-

cal axis and, as before, has exactly two fixed points.

The surface area of the sphere is a surface integral.

The equivariant localization formula assigns a num-

ber, or multiplicity, to each fixed point and says that

the surface integral is a constant, 2π , times the sum of

the multiplicities at all the fixed points. In this case,

the multiplicity assigned to each fixed point is 1, and

since there are two fixed points, the area of the unit

sphere, according to this reckoning, is 2π times 2, or

4π , as it should be. The approach is “very powerful,”

says Tu, “because instead of having to compute an

integral, you just have to add up a few numbers.”21

Commenting on their eventual breakthrough,

Bott said that “Michael and I had been wrestling with

the question of equivariant cohomology since the

1960s,” approaching it through the notion of fixed-

point theorems. “It is amazing how long it takes for

a new idea to penetrate our collective consciousness

and how natural and obvious that same idea seems

the moment it is properly enunciated.”22

Speaking of his long-term collaboration with Bott,

whom he knew for more than fifty years, Atiyah said:

“It was impossible to work with Bott without becom-

ing entranced by his personality. Work became a joy

to be shared rather than a burden to bear… His per-

sonality overflowed into his work, into his relations

with collaborators and students, into his lecturing

style, and into his writing. Man and mathematician

were happily fused.”23

Another colleague, the Harvard geometer Clifford

Taubes, maintains that Bott had a profound influ-

ence on him when he was a graduate student at Har-

vard, earning his Ph.D. in physics in 1980. “It was just

wonderful… to see how this beautiful mathematics
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flowed,” Taubes said of the class he took that was

taught by Bott. “I, for one, would have been a physi-

cist if I had not been in his class, but I was seduced by

mathematics.” Bott’s impact, of course, spread far be-

yond a single graduate student in the late 1970s. All

told, says Taubes, “he had a tremendous influence in

the development of modern geometry and topology. I

would say that his contributions to this were as great

as any one person.”24

Taubes is not alone in that assessment. Bott won

the 2000 Wolf Prize in Mathematics, which he shared

with Jean-Pierre Serre, for his work in topology that

culminated in the periodicity theorem and “provided

the foundation for K-theory, to which Bott also con-

tributed greatly.”25

Bott died in 2005, after having proved many im-

portant theorems and leaving an indelible mark on

generations of students. Two of his students won the

Fields Medal: Stephen Smale, who got his Ph.D. at the

University of Michigan in 1957, and Daniel Quillen,

who got his Ph.D. from Harvard in 1964. Another of

his Harvard students, Robert D. MacPherson—a co-

inventor of “intersection homology”—has had a dis-

tinguished career at Brown University, MIT, and the

Institute for Advanced Study.

Bott was, by all accounts, an imperturbable

teacher. Once a five-square-foot chunk of ceiling fell

down in the middle of his Math 11 classroom. He

calmly waited for the dust to settle and then resumed

his discussion, urging his students to ignore the large

cracks in the ceiling.26 A class with Bott, says Bene-

dict Gross, “was an amazing experience, like drinking

from the original stream, as a lot of it was his own

work.”27

“I recall him arriving at each class with no notes,

puffing on a cigarette right under the No Smok-

ing sign, and simply living the mathematics in our

presence,” said Washington University mathemati-

cian Lawrence Conlon, who was a graduate student

when Bott burst onto the Harvard scene. After amind-

blowing class with Bott on algebraic topology, Conlon

mustered the courage to ask him to direct his the-

sis. “Well, Larry,” said Bott, “you’re a good student,

but what we have to find out now is whether you can

dream.”28

Bott’s presence, according to Mazur, “radiated

friendship of the sort that simply made everyone not

only happier but somehow perform better.”29 Bott

was that rare person, possessing “such an extraordi-

nary amount of humor and optimism” that he could

truthfully claim, as he did, “I can’t say that there is

any mathematics that I don’t like.”30

Much as his students and colleagues appreciated

Bott, he also appreciated them in return. Upon receiv-

ing the Steele Prize for Lifetime Achievement in 1990,

he offered thanks for what had then been more than

thirty years at Harvard, where “there is not a single

colleague or student who has not added to my ed-

ucation or uncovered some hidden mystery of our

subject.”31

In hiring Ahlfors, Zariski, Brauer, Bott, and oth-

ers who followed, Harvard was opening its doors to

mathematicians from foreign shores who enriched

the department, the field, and the culture. Bott ex-

tended thanks in return to “this country, which has

accepted so many of us from so many shores with

such greatness of spirit and generosity. Accepted

us—accent and all—to do the best we can in our craft

as we saw fit.”32
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