
A plea for adaptive data analysis

for understanding physical phenomena

by Norden E. Huang*

Collecting and analyzing data, synthesizing and

theorizing the results are the core of scientific ac-

tivities. Therefore, data analysis should be a critical

link of this chain; its purpose is to reveal the underly-

ing control mechanisms and the physical meaning of

data. Indeed, data analysis is indispensable to every

science and engineering endeavor; it is a critical step

to converting the cold numbers to physical insights

and understandings of a system’s evolution and vari-

ation. For this reason, data analysis methods should

focus more on revealing physically meaningful per-

spectives rather than on simply obtaining representa-

tive mathematical parameters. As data from natural

phenomena are highly variable, their analysis poses a

severe challenge to traditional data analysis methods.

The main reason is that many of the standard meth-

ods are developed with limitations, whether implicit

or explicit. For example, if we try to define a distribu-

tion based on probability theory, the implicit assump-

tion is to have a homogeneous population; for time

series data this means stationarity. In the Fourier-

based spectral analysis, we face not only stationarity

(all frequency or wave number values are constants),

but also linearity, for Fourier transform converts mul-

tiplication to addition. Consequently, the Fourier ex-

pansion results might exist mathematically, but their

physical interpretation is problematical.

Lack of proper method notwithstanding, data

stream and its increasing complexity never stops. In

fact, ever since the arrival of Information Technology,

we have faced data everywhere. Now, we are literally

drowning in data, yet we are still thirsty for knowl-

edge. As Poincaré had famously put it:
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Science is built up of facts,
as a house is built of stones;

but an accumulation of facts is no more a science
than a heap of stones is a house.

Facts here are actually data. Unfortunately, data

analysis, as practiced now based on traditional meth-

ods, had been relegated to data processing in most

cases. There is a whole world of difference between

analyzing and processing data. Processing implies al-

most no thinking: one just do something according

to given algorithms. Yet, analyzing requires separat-

ing the whole dataset into parts and examining the

properties of each part and the inter-relationships

among them. In most cases, at the end of process-

ing, one would get a set of mathematical parameters

based on the algorithm; while, at the end of analyzing,

one should get a full understanding of the physics in-

volved.

I presume that I have “processed” many a set of

data, written the results and published papers ac-

cordingly like many of the research scientists have

done till one day a seemingly trivial problem con-

fronted me: the problem of understanding how ocean

waves grow from small ripples to gigantic waves. This

is a classic and practical problem. The very way the

problem is posed involves an anthropomorphic view:

waves just grow naturally. No one has ever given a

picture on how this process could happen in waves

physically. The detailed mechanism has been thought

to entail very complicated nonlinear wave-wave inter-

action processes, which had been formulated in terms

of a six-fold Boltzmann integral covering page after

page of mathematical formulae. After laborious com-

putations, the results indeed indicate that the waves

would grow gradually, confirming the anthropomor-

phic analogy: like human beings growing from ba-
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bies to adults naturally. The wave research commu-

nity seems to be satisfied, but not me. The reason is

very simple, for it would violate physical limitations.

If one thinks slightly further, one would find

that such an analogy is totally inadequate; it actu-

ally is physically impossible. The waves could not

have grown gradually. As the growth of human be-

ings requires room to accommodate the process, so

does waves. When a train of waves of uniform size

is growing, as each wave should grow of its own ac-

cord, we do need room to accommodate the growth.

If every wave in the train grows a small amount, the

sum of the small amounts would no longer be small

at the end of a wave train. To make room, the last

wave in the train would have to move further than the

other ones. But water waves are dispersive: the phase

and group velocity of a wave depends on its wave

length and period. The shorter wave would propagate

slower than the longer ones. Wave of the same length

should propagate at the same speed; therefore, no

wave could move out further to make room for oth-

ers to grow. This seems to conflict with the rigorous

mathematical result. What is wrong?

At the time, I was working in NASA and I had a

well-equipped wave tank built to study the statisti-

cal properties of the ocean surface in order to un-

derstand the radar backscattering from satellites as a

means to infer ocean surface conditions such as sea

surface wind velocity, ocean current and wave height,

for example. I contrived a simple experiment to see

how waves actually evolve as a given uniform wave

train propagates down a long channel. Once I got

the data, I “processed” them using the time-honored

Fourier analysis, and I could not get any cue from the

details. The spectra at each station indeed evolved

gradually. The spectrum at the end of the wave tank

showed a slight downshift of the peak frequency, in-

dicating that the waves indeed “grew” slightly just

as the mathematical formulation dictated. I was puz-

zled. I actually counted the waves and found the num-

ber of the waves in the total data length indeed de-

creased, another indication that the wave had gotten

longer. But how could this happen? After consider-

able struggle, I decided to look closer and tried a dif-

ferent transform that would not just give me a mean

but would allow me to examine wave by wave. Sud-

denly, the Hilbert transform came into my mind.

The Hilbert transform allows one to find the an-

alytic pair of a given signal through converting a set

of data in real numbers into complex numbers. Then,

one can construct and examine the phase variation

and see how exactly each individual wave has evolved.

If the waves are growing gradually, the phase func-

tion should be smooth. The Hilbert transform re-

sults shocked me: I found that the phase function

experienced discrete jumps. Each jump was exactly

2π , indicating loss of one whole cycle of oscillation,

which means that a whole wave had simply disap-

peared. This is equally impossible, for the conserva-

tion law of wave motion strictly disallows annihila-

tion of any waves. I poured over the data and concen-

trated on the part where the missing wave occurred

and found the reason: the waves actually had under-

gone a fusion process, two waves merging into one

locally. This newly formed wave became twice as long

as their prior state. As a result, it propagated faster

and caught up with the wave ahead. This time, they

shared the space, having evolved from three waves

into two. This process would go on until n-waves be-
come (n−1) waves. Thus, the wave growth process ac-

tually happens locally, discretely and abruptly, when

waves fuse together like particles. Although we still

treat the waves as a continuum, the actual wave evo-

lution even at this macro-scale also retains the wave

particle duality. This shocking phenomenon appears

in the traditional Fourier analysis as a mundane grad-

ual sideband evolution and spectral peak shift. In-

deed, as the Fourier spectrum is expressed in terms

of the mean frequency, it is totally insensitive to such

local changes (Huang et al., 1999).

I was both shocked and excited by these revela-

tions: shocked because of the discrete nature of the

waves, and excited because of the newly found tool

of instantaneous frequency (Huang et al., 2009). The

latter reveals a mechanism that explains the detailed

physics without violating any physical limitations. I

was particularly impressed by the power of the in-

stantaneous frequency in revealing the details of the

wave evolution process. In fact all theoretical wave

motions require the existence of a phase function so

that the temporal derivative is the negative frequency

and spatial derivative is the wave number. Therefore,

the sum of the temporal derivative of wave num-

ber and the spatial derivative of frequency should al-

ways be zero. This is known as the wave conserva-

tion law. The very existence of the wave conservation

law requires that the frequency and wave number to

be differentiable. Even though Fourier analysis does

not violate the wave conservation law, the constant-

valued wave number and frequency in Fourier anal-

ysis reduces the wave conservation law to the trivial

case of “zero plus zero equals zero”. Fourier analysis

would produce such a result for any problem. Thus

the application of Fourier analysis could drain all the

physics from the result just as in the present wave

evolution process.

The realization of the power of instantaneous fre-

quency indicates that all physically meaningful time-

frequency analysis has to be expressed in term of it.

In order to have instantaneous frequency, we have to

express the data in adaptive basis, not as the a pri-

ori simple harmonics components as in Fourier anal-
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ysis or wavelet basis. The reason is simple: The nat-

ural phenomena are high variable. In most cases, the

processes involved are neither linear nor stationary.

A Priori basis would most likely to fail, for it could

not be expected to fit all the ever-changing wave-

forms distorted by the nonlinear and nonstationary

processes. Even if a particular basis could be selected

to fit the given data within some time period, the non-

stationarity would cause the controlling process to

vary with time. Consequently, the fixed a priori basis

would not fit the data all the time. On the contrary,

instantaneous frequency representation overcomes

both nonlinearity and nonstationarity limitations. To

obtain the instantaneous frequency, one would have

to use adaptive basis. Such a basis would adapt to the

characteristics of the data and fit any given form of

the data all the time. The difficulty encountered in us-

ing an adaptive basis is that the dictionary for the ba-

sis would have to contain non-denumerably infinitely

many basis functions. On the other hand, the advan-

tage of adaptive basis is that it gives an extremely

sparse representation of the data from the vast ba-

sis space. With the proposed adaptive Empirical Mode

Decomposition (EMD, Huang et al., 1998), for exam-

ple, the number of representative components is only

ln2N, with N as the number of data points, which is

considerably less than the N/2 components used in

the time-honored Fourier expansion.

It should be pointed out that the term, adaptive

data analysis, is not new. Windrow and Stearns (1985)

have published a book on adaptive data processing.

But the method is primarily on feedback loop in a cir-

cuitry, which is hard to apply in general type of data

analysis. What we want to emphasize is the expan-

sion of the data on an adaptive basis so that the in-

stantaneous frequency could be computed. In this as-

pect, the adaptive wavelet analysis seems to fit the re-

quirement (see for example, Wickerhauser, 1996 and

Chang, et al., 2000). But in detailed examination, one

would find that adaptive wavelet does not exactly fit

the definition of adaptivity, for once a wavelet is se-

lected it would be required to fit the all the data. Dy-

namic process changes in the time span would make

application of the adaptive wavelet problematic. Fur-

thermore, the pre-selected wavelet basis would re-

quire integration transform to find the frequency.

Then, we have to suffer the consequence imposed by

the limitation of uncertainty principle. A more recent

review on the related issues can be found in Rehman

et al., (2014).

There are more fundamental differences between

the results from adaptive basis and a priori basis. For

a priori basis, we have to prove the properties of the

basis first to make sure that expansions in terms of

the basis are convergent, complete, orthogonal and

unique. Once a basis satisfies all these conditions, all

we need do is to convolve our data with the given ba-

sis to obtain a set of mathematical parameters with

respect to this particular basis. This is equivalent

to establishing a coordinate system with each basis

function as a unit vector, and the expansion serves

as a projection of the data in this coordinate system.

Once the basis is established, all datasets have to use

the same coordinate system. For adaptive data anal-

ysis, we have to derive the basis from the data and

based on the data. There would be infinitely many

basis functions to choose from. In selecting the basis

function, the implicit assumption is that it not only

would have to fit the data best, but also to impart

all the necessary properties required such as conver-

gence, completeness, orthogonality and uniqueness.

Of course, we could only check the properties of the

basis a posteriori, for the basis functions are selected

specifically for the given data set only. A change of

the value at even a single point would call for a to-

tally different set of bases.

The algorithm of the selection could be the EMD

method in which an iterative upper and lower en-

velopes averaging separates the data into a collec-

tion of mono-component functions symmetric with

respect to zero known as the Intrinsic Mode Func-

tions (IMF). This decomposition is implemented in

the time domain. Alternative approaches using basis

pursue would also work. Once we have an IMF basis,

we can compute the Instantaneous Frequency directly

through quadrature.

The distribution of frequency is known as the

spectrum of the data. It is an extremely useful quanti-

fier for the data. But the importance of having instan-

taneous frequency reaches far beyond having a high

fidelity spectrum, we can use it to help us to quan-

tify nonlinearity and nonstationarity, the two sub-

jects whose description in the past can only be han-

dled from a qualitative standpoint. Now let us ponder

what Bill Gates had once stated: “My plan to fix the

World’s biggest problems: Measure them.” Unfortu-

nately, our current definitions for either nonlinearity

or nonstationarity are all qualitative. The proffered

answer is either yes or no, with no nuances or quanti-

fiers. This state of affairs has for long led to the loose

use of the term, “nonlinear effects,” not as an answer

to clarify but as a fig leaf to hide our ignorance. The

Instantaneous Frequency offers a glimpse of hope

here. If a phenomenon can be classified as oscillatory

(in fact all time series could be regarded as undula-

tions with respect to time; therefore oscillatory) and

as a frequency spectrum could shed some light on the

phenomenon, we could use instantaneous frequency

to quantify both of its nonlinearity and nonstation-

arity using the variation of frequency as function of

time.
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There are two types of variations in frequency:

inter-wave and intra-wavemodulations. Traditionally,

data are expanded in Fourier series in which the fre-

quency values for all the basis functions are constant.

Therefore, we have to say the expansion is meaning-

ful only for linear and stationary processes. For the

new Instantaneous Frequency, we would have differ-

ent frequency values for each IMF at every data point.

This should be the case: For example, when we lis-

ten to the performance of a symphony orchestra, we

should hear different instruments at any given mo-

ment, with each IMF representing one kind of instru-

ment. As the music sound is ever changing, it is natu-

ral to classify the frequency variations from one cycle

of sound wave oscillation to the next in order to rep-

resent the nonstationarity. But there is an additional

subtle variation of frequency: the intra-wave modu-

lation representing the frequency within one cycle of

oscillation.

To quantify nonlinearity, we have to use the intra-

wave frequency modulations. This is not as direct as

nonstationarity. Nevertheless, it does not need a great

stretch of our imagination to rationalize the compar-

ison between a simple harmonic wave with one hav-

ing nonlinear distortions that would end up with har-

monics. Traditionally, harmonic distortion is already

identified as nonlinear effects. Due to the interfer-

ence of noise, which invariably resides in the higher

frequency range, no one before has succeeded in us-

ing harmonics to quantify nonlinearity. The intra-

wave modulation, on the other hand, requires that

frequency variations all happen near the fundamen-

tal frequency. Therefore, it is very easily quantifiable.

Both quantification of nonlinearity and nonstation-

arity would have great practical applications in the

health monitoring of machinery, structures and even

the health of human beings. A machine is designed

to operate smoothly; therefore, any nonstationary be-

havior bodes problems. The degree of nonstationarity

could be used to establish criteria for the safe opera-

tion of machinery. Structures such as building, bridge

or the frame of an airplane, are designed based on

elastic strength of materials. Therefore, any deviation

from the linear stress-strain relationship could bode

deficiency. Consequently, we could use the degree of

nonlinearity to establish criteria for safety too.

As for the health of a human being or any life

system, the situation is much more complicated. If

we view a living organism holistically as a complex

system, then its behavior could be regarded as the

result of interactions amongst the subsystems in the

organism. The process is extremely complicated for

high level organisms such as human beings. A uni-

versal rule has been proposed, by a group at Harvard

Medical School, to quantify the health and disease

state of living organisms in terms of the degree of

complexity. Health organisms would respond to chal-

lenges from the outside environment; therefore, the

systemwould have to be able to occupy a large part of

the living variable phase space. As the organism be-

comes sick or old, the system would degenerate and

the region in the phase space occupied would shrink.

As a result, measurement of any dynamic biomark-

ers, such as heart beats or movements, could be used

to quantify the health state of the organism through

a multi-scale entropy computation. Such evaluation

though does not need Instantaneous Frequency per

se, but the entropy calculation is a statistical measure

requiring mean operation. Here, again, adaptive data

analysis offers a critical service, for any calculation of

mean requires that the data be detrended.

Trend and detrend are in great need in data anal-

ysis, especially in financial and economics research,

yet there is no clear definition. In a casual Internet

search, for example, there are presently more than 12

million items related to trend and detrend. Among

these millions of usages, however, none gave a rig-

orous and satisfactory scientific definition of either

trend or detrend other than a best fitted straight line.

As there is a lack of precise definition for trend, de-

terminations of trend and detrend are totally ad hoc

operations mostly based on regression analysis. This

has led to an interesting situation: One economist’s

trend is another economist’s cycle.

Trend determination could be treated as regres-

sion analysis, which has long been a core topic in

the field of statistics and econometrics. It has also

been used extensively in scientific research to define

causal relationships. Traditionally, there are two ap-

proaches to regression analysis: parametric and non-

parametric regression. For parametric regression, the

analysis is limited to the determination of the a num-

ber of coefficients or parameters of the pre-selected

function, typically through least square or the max-

imum likelihood methods. The idea behind this ap-

proach is simple and definitive, but the justification

for adopting it is rather thin: How could one defend

the selection of one fixed functional form over oth-

ers? As the final result of the regression depends

solely on the pre-selected functional form, the ab ini-

tial determined functional formwould not only be the

most important step of the analysis, it could also to-

tally prejudice the final result. Of critical importance

is the fact that the selection of the functional form is

totally arbitrary.

With the difficulties of parametric regression un-

resolved, increasingly recent developments have con-

centrated on the non-parametric or semi-parametric

approaches. The techniques used in the non-

parametric are much richer: there are studies of the

asymptotic form of the functions assuming infinitely
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many data, as well as smoothing with kernel estima-

tors and spline, for example. Essentially, in the ker-

nel smoothing approach, a smoothing function is se-

lected for a given window. Through repeated appli-

cations of the smoothing operations on the scattered

observational data, a final regression formwill merge.

Here the smoothing function is not a major prob-

lem; even a box-car filter works well enough. The cru-

cial factor here is determination of the window size,

which would determine the final smoothness of the

regression. Selection of the window size is particu-

larly problematic when the process is nonstationary.

The spline approach seems to have overcome this dif-

ficulty, but the selection of the controlling points for

the spline presents another crucial problem, for the

number of the controlling point would determine the

smoothness of the result. And also, there remains the

crucial problem of deciding which of the numerous

spline functions should be adopted.

All these difficulties can be traced to the lack of

definition for trend. This philosophical difficulty was

anticipated by Confucius (551 to 479 BC) some 2500

years ago:

Without a proper definition,
logical discourse would be impossible.
Without logical discourse,
nothing can be accomplished.

A definitive definition for trend was proposed by

us (Wu et al., 2007): Within the given data span, the

trend is an intrinsically fitted monotonic function,

or a function in which there can be at most one ex-

tremum. In fact, trend should be the residue after

all cycles are removed. The definition of a cycle in

the data refers to the existence of two extrema. Re-

moval of cycles can be easily done by envelopes. In-

deed, the trend should be determined through EMD.

Comparing the current practice, I believe the trend

determined through EMDmakes eminent sense as has

been repeatedly demonstrated in different applica-

tions. In the application of quantification of complex-

ity, systematic combination of the IMF from the short-

est period gradually to the longest ones would give

an Intrinsic scale stratification. As the all IMFs have

zero mean, the partial sums would not contain any

trend to complicate the mean operation. The intrin-

sic multi-scale entropy result would reveal a richer

structure of the data.

All the above results are possible due to adap-

tive decomposition. To be adaptive, the method has

to be independent of any a priori basis. The EMD is

a time domain scale separation method that is inde-

pendent of any basis. Yet in mathematical theory, the

mainstream approach is still based on a priori basis.

Our experience has increasingly pointed out that the

general approach of adaptive data analysis should be

examined seriously. As technology becomes more so-

phisticated, data both in quantity and quality would

increase. We are overwhelmed by the volume of data,

yet at the same time we are also underserved by the

information we could extract from the data. In order

to be rigorous, all traditional data analysis methods

are limited by the necessary, yet artificial, assump-

tions of stationarity and linearity. The only way to

break through this bottleneck is to use adaptive data

analysis. EMD is an adaptive data analysis method,

which enables us to define instantaneous frequency,

the true and physically meaningful way to represent

frequency. With the frequency definition, we can also

quantify the degree and order of nonlinearity, and

also determine the trend. A new day for adaptive data

analysis seems to have dawned. Our experience in-

dicates that the combination of EMD and the spec-

tral analysis based on Instantaneous Frequency in

terms of a Hilbert Spectral Analysis (Huang et al.,

2010) could help us to clarify and provide insight

to the underlying physical processes for many scien-

tific, engineering and biomedical problems. This com-

bination has been designated as Hilbert-Huang Trans-

form (HHT) by NASA. Unfortunately, a firm theoreti-

cal foundation for HHT is still elusive. The recent re-

sults by Hou’s group (Hou et al., 2009; Hou and Shi,

2011 and 2012) at Caltech have shown great promise

in this respect. It is time for us to pay attention to

the theoretical foundation of this crucial approach to

data analysis in order to put the versatile data analy-

sis method on firm ground.
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