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In this article, we will explore the contents, meth-

ods, and meaning of mathematics. I have borrowed

the title from a book compiled by three members

of the former Soviet Union’s mathematics commu-

nity: A. D. Aleksandrov, A. N. Kolmogorov, and M. A.

Lavrent’ev.

In 1998, Peking University celebrated the 100th

anniversary of its establishment, and it was on this

occasion that I decided to tackle this important and

unendingly interesting subject.1 As such, it seems fit-

ting to set the proverbial stage with a riotous event

centered at this university: the May Fourth Movement

of 1919. This was a student movement in Beijing that

arose in protest to the way in which the Chinese gov-

ernment responded to the Treaty of Versailles, which

marked the resolution ofWorldWar I. The importance

of the May Fourth movement is found within the fact

that this movement culminated in the march of over

3,000 Peking University students, as well as students

from other neighboring schools, on Tiananmen to ex-

press their discontent over the way the situation was

handled and to voice their desire for modernization

taken by their Western counterparts.

The significance of this tumultuous event to our

story is that it highlights the dispute between Chinese

and Western culture, which was the central player in

the events surrounding the May Fourth Movement.

I will use this dispute to clarify certain aspects of

mathematics in China and their meaning, and so we

will briefly recount the history behind the conflict

here. During the mid-nineteenth century, China’s un-

derstanding of Western science and technology es-
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sentially boiled down to “powerful ships and arma-

ments.” After losing wars again and again, Zhidong

Zhang, a prominent official in the Chinese govern-

ment during the latter years of the Qing Dynasty, pro-

posed a program of “Western learning for practical

applications and Chinese learning providing the fun-

damental structure.” Namely, to add Western tech-

nology for practical purpose, but to retain the tradi-

tional Confucianist spirit as the basis of society. It

was at this moment that the debate between science

and metaphysics was awoken within China.

A faction of the society led by Shuming Liang, a

notable educator and philosopher in the late Qing

Dynasty, wanted a return to the Eastern tradition

of spirituality and humanism, with Confucianism at

its core. They saw Western civilization’s emphasis

on rationalism and scientific knowledge in order to

achieve mastery over the natural world, as a depar-

ture from the essence of human existence. They envi-

sioned that it would lead to the enslaving of human-

ity by machines. Chinese culture in their view, how-

ever, is both self-adaptive and self-sufficient, which

allows it to take a sort of middle ground upon which

it can firmly progress forward. This view was, in

some sense, echoed by the views of the illustrious

Western philosopher Bertrand Russell toward the end

of World War I, who felt a tremendous abhorrence

for the growing materialistic nature of Western civ-

ilization, and who advocated for learning from the

East. This view was not, however, universally held

within China; the nation found itself embroiled in

a tense debate over which way the country should

proceed. A noteworthy example of the opposition to

the views held by Liang and his followers is found

within a faction headed by Shi Hu, who argued that

science is capable of achieving anything within the

realm of knowledge. Moreover, Hu’s followers felt

that even philosophy is subservient to the scientific
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method, and that philosophical views that have not

been closely critiqued by logical reasoning cannot

claim to constitute genuine knowledge.

Ultimately, no final resolution of this raging

conflict between science and metaphysics has been

reached to this day. One of the primary reasons for

lack of a conclusion was that neither of the oppos-

ing factions devoted itself to any serious study of the

basics of modern science and that most of them do

not appreciate the fact that theoretical speculations

must be supported by a robust logical framework and

hard experimental data. Ultimately, the advocacies of

both sides degenerated into nothingmore than empty

rhetoric. This, in fact, epitomizes one of the defining

characteristics of traditional Chinese culture. On the

one hand, some of the Chinese philosophical points

of view are extremely abstract and sometimes with-

out substance. Indeed, such abstraction is markedly

present in Confucianism and Taoism, both of which

preach harmony between human beings and nature,

as well as in Zen Buddhism, which insists on freeing

oneself from the written word and focusing on one’s

soul. On the other hand, traditional Chinese philoso-

phy can be extremely practical. Chuang Tzu, an im-

mensely influential philosopher of the early Taoist

movement, said, “People are always blinded by hap-

piness but don’t know the reality of the world.” This

quote suggests that the pursuit of the intangible (im-

practical) can cause one to miss the reality in front

of them (practical). Such attention to practicality per-

vades much of ancient Chinese science, as exempli-

fied by the fact that the four great inventions of an-

cient China—the compass, paper-making, printing,

and gunpowder—were each used to serve the prac-

tical needs of people. It is in this latter characteris-

tic that traditional Chinese ideals find essential dif-

ference from those of the West, which are based on

the development of basic science. I believe that basic

science provides a bridge between reality and the ab-

stract, as well as providing us with an essential tool

for understanding the universe surrounding us; and

the language of basic science is mathematics.

Many scientists throughout history have highly

praised mathematics—this is evident in the words of

numerous celebrated physicists. One such example

can be found in the words of American physicist R. P.

Feynman, who said in his book The Character of Phys-

ical Law that “Every one of our laws is a purely math-

ematical statement in rather complex and abstruse

mathematics. . . Why? I have not the slightest idea.”

Another prime example comes from the Hungarian

American theoretical physicist E. Wigner’s classic es-

say The Unreasonable Effectiveness of Mathematics in

the Natural Sciences, in which he concluded: “Themir-

acle of the appropriateness of the language of math-

ematics for the formulation of the laws of physics

is a wonderful gift which we neither understand nor

deserve. We should be grateful for it and hope that

it will remain valid in future research and that it

will extend, for better or for worse, to our pleasure,

even though perhaps also to our bafflement, to wide

branches of learning.” Still another variation on this

theme comes from the British-American theoretical

physicist F. Dyson, who said, “One factor that has

remained constant through all the twists and turns

of the history of physical science is the decisive im-

portance of the mathematical imagination.” Even out-

side of the physics community this was recognized

by, for example, H. D. Thoreau, a nineteenth-century

American philosopher, who wrote in his seminal work

Walden that “The most distinct and beautiful state-

ment of any truth must take at last the mathematical

form.”

In fact, the art of mathematics not only absorbs

vital nutrients from nature, but also derives enor-

mous inspiration from the both the social and en-

gineering sciences. Upon receiving inspiration from

any variety of phenomena, the human soul discerns

the outline of beauty; and the elements contained

within this domain which can be handled by strict

adherence to the laws of logic are what mathemati-

cians study. The difference betweenmathematics and

other sciences lies in the fact that mathematics in-

corporates the abstract. Some mathematicians be-

lieve that, as long as a theorem is beautiful, it has

the power to resolve questions of importance in na-

ture. Aside from the great influence afforded aes-

thetics, another key difference between mathematics

and, say, literature is that all propositions can be de-

duced from a comparatively small collection of eas-

ily recognized axioms. The origins of this aspect of

mathematics, as a systematic science, can be traced

back to the prodigious geometer Euclid, whose Ele-

ments stood as an imperishable masterpiece in an-

cient Greece. Upon translating this jewel of mathe-

matics into Chinese, the Italian Jesuit priest Matteo

Ricci and the Chinese scholar and scientist Guangqi

Xu remarked: “There are more than five hundred

questions in 13 volumes; there are interconnections

between the volumes and between the propositions.

Their sequencing is rigid and cannot be perturbed

with impunity, and in their step-by-step build-up to

the inevitable conclusions, one finally perceives the

profound truths.” Theorems, no matter how deep or

subtle, can nevertheless be deduced from a few sim-

ple axioms. Beauty is finally united with truth, and

they can no longer be separated. It is worth pointing

out that Euclid’s understanding of mathematics di-

rectly influenced the thoughts of Newton and his fa-

mous three laws of motion. Indeed, the style of writ-

ing of Newton’s magnum opus, Philosophiæ Naturalis

Principia Mathematica (The Mathematical Principles
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of Natural Philosophy) grows directly out of the ax-

iomatic structure of Euclid’s Elements. Euclid’s influ-

ence extends far beyond Newton. The recent quest for

Unified Field Theory—the dream of all modern physi-

cists starting with Einstein—is nothing but an expres-

sion of the same desire to explain all the forces in the

universe from a few basic principles.

Mathematicians have a deep understanding of the

harmony between truth and beauty. For example, En-

glish mathematician J. J. Sylvester said: “The world of

ideas which [mathematics] discloses or illuminates,

the contemplation of divine beauty and order which

it induces, the harmonious connexion of its parts,

the infinite hierarchy and absolute evidence of the

truths with which it is concerned, these, and such like,

are the surest grounds of the title of mathematics to

human regard, and would remain unimpeached and

unimpaired were the plan of the universe unrolled

like a map at our feet, and the mind of man qualified

to take in the whole scheme of creation at a glance.”

Echoing this, the historian of mathematics M. Kline

said, “An elegantly executed proof is a poem in all

but the form in which it is written.”

In fact, having absorbed the essence of the nat-

ural sciences, mathematicians then yield control to

their imagination—strictly counseled by aesthetic as-

pirations and the restrictions of logic—to ultimately

create genuinely amazing propositions which aston-

ish even the mathematicians themselves. As a prime

example of this occurrence, consider the resolu-

tion of the Weil Conjecture, which led to a com-

plete restructuring of arithmetic geometry, and which

blended topological and algebraic geometry into the

theory of equations of integers. A. Grothendieck and

P. Deligne’s proof of the Weil Conjecture is rightly

viewed as a colossal achievement in the grand pro-

gram of releasing oneself to the realm of abstract

ideas.

When recounting the history of mathematics, we

find ourselves encountering a plethora of advances

that were obtained via the natural integration of sev-

eral diverse and salient concepts. Such occurrences

have become the great milestones of mathematical

development. Einstein famously merged the seem-

ingly disparate concepts of time and space, an accom-

plishment which is universally recognized as a cor-

nerstone of twentieth-century physics. Another soul-

stirring example is A. Wiles study of automorphic

forms and their relation to Fermat’s Last Theorem.

It is remarkable that mathematicians are capable of

achieving such towering feats without depending on

inspiration from the natural sciences. The reason for

this capability can be traced back to the fact that both

math and the notion of space are themselves part

of nature, and their immense structure constitutes

an integral part of the structure of the universe. We

should keep in mind, however, that the mystery of

nature is too deep to be fathomed, and its perfection

is not only found in math and the concept of space,

but everywhere; it is for this reason, therefore, that

mathematicians cannot and should not resist the pull

of nature.

The two major discoveries in physics of the

twentieth century—relativity and quantum mechan-

ics—had a deep impact on mathematics. General

relativity makes differential geometry “having sub-

stance in nature”, and Riemannian geometry is no

longer merely an abstract branch of mathematics. Be-

yond this, from the beginning, quantum field the-

ory cast mathematicians into a state of chaos, for

its foundation is not clear. However, its effect on

mathematics has been like magic. The application

of the Dirac equation to geometry, for example, is

quite elusive, and forcefully affected the develop-

ment of geometry. More recently, supersymmetry—a

concept developed by physicists within the past forty

years—stands as another bizarre concept, in both ex-

perimental and theoretical terms. Through the help

of superstring theory, however, mathematicians have

developed techniques for solving numerous difficult

mathematical problems that have remained open for

centuries. The utility and importance of superstring

theory in mathematics is unquestionable, and so, un-

less the gods of destiny wish to make fools of human-

ity, it will ultimately find its place in physics as well.

At the end of the nineteenth century, the ax-

iomatization movement laid a solid foundation for

mathematics. Mathematicians were under the impres-

sion that they had the necessary tools to resolutely

move forward with no more fear about issues of

rigor. Indeed, at the beginning of the twentieth cen-

tury Hilbert thought that all propositions in the realm

of mathematics could be deduced from a complete

set of simple axioms. However, in his famous 1931

paper Über formal unentscheidbare Sätze der Prin-

cipia Mathematica und verwandter Systeme, I (On For-

mally Undecidable Propositions of Principia Mathe-

matica and Related Systems, I), Gödel proved that

any axiomatic system sufficiently robust to incorpo-

rate standard logic and elementary number theory

cannot be established. This means that Hilbert’s idea

is not completely sound and science is not omnipo-

tent. Nevertheless, insofar as the problems that arise

from the natural world are concerned, we believe that

Hilbert’s ideas are basically correct.

Having obtained some understanding of the di-

versity of mathematics, I now turn to the question:

What is it, exactly, that mathematicians do? To help

answer this, I will roughly classify mathematicians

into three types, based on their intrinsic features, as

seen below.
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I. Mathematicians Who Produce
Theory

The working patterns of a mathematician belong-

ing to this class can be further subdivided into essen-

tially seven categories.

a. The first category includes mathematicians

who catch glimpses of far-reaching commonalities

between phenomena, and who, from this, refine the

behavior relevant to what they wish to study into a

set of basic principles. These principles can then be

employed to explain a number of similar issues in a

systematic manner. An obvious example of this man-

ner is S. Lie, who, after observing numerous symmet-

rical phenomena in both mathematics and physics at

the end of the last century, created the theory of con-

tinuous group transformations in relation to differ-

ential equations. The concept of a Lie group has be-

come a crucial and basic concept in modern mathe-

matics.

b. Another category of mathematicians extend

and graft existing theoretical constructs onto other

structures. Examples of this include: calculus being

extended from finite dimensional spaces to infinite

dimensional spaces, calculus being utilized on sur-

faces in order to obtain connection theory, and so

forth. Indeed, when Ricci, Christoffel, and various

other geometers began researching connection the-

ory on surfaces (without dependence on the choice

of coordinates), it was difficult for them to imagine

that it would become so important to Yang-Mills field

theory decades later.

c. The pursuit of commonality between differ-

ent subjects naturally lends itself to the discovery of

new results via some manner of comparison method.

For example, A. Weil developed arithmetic geome-

try through comparisons between equations of inte-

gers and algebraic geometry. Another important il-

lustration of this paradigm is found in R. Langlands,

who was led to proposing the so-called Langlands

program, by seeking to combine the representation

theory of groups and automorphic forms, which ex-

tended commutative class field theory to noncommu-

tative class fields.

d. New theoretical developments arise out of the

attempt to explain new phenomena uncovered in

mathematics. An example of this theme comes after

Gauss’ discovery that the curvature of a surface is in-

trinsic (i.e. it is only relevant to its first fundamental

form), Riemann subsequently created a major field

in geometry that now bears his name, and this new

kind of geometry has been essential in the develop-

ments in geometry within the recent centuries. After

H. Whitney unmasked new invariants of a fiber bun-

dle that he called “characteristic classes.” L. Pontrya-

gin and S. S. Chern generalized his idea to more gen-

eral cases. Today, Chern classes have become some

of the most basic invariants.

e. Much theoretical development is fueled by the

desire to solve important issues currently plaguing

the mathematical community. For instance, in order

to solve the problem of embedding a general Rieman-

nian manifold into Euclidean space isometrically, J.

Nash developed the implicit function theorem and

this led to the formation of an entirely new subject,

which proved incredibly useful in studying differen-

tial equations. Another example is seen in S. Smale’s

solution of the Poincaré conjecture in dimension at

least five by employing h-cobordism theory, this the-

oretical construct became one of the most important

tools for differential topology.

f. The proofs of new theorems often point to the

need for deeper theoretical developments. Thus the

Atiyah-Singer index theorem and Donaldson’s theory

were followed by many different proofs which in turn

led to much important work.

g. Lastly, mathematicians of this category often

confer a new structure that leads to promising new ar-

eas of research. Example include: Kähler, after intro-

ducing his eponymous metric when researching com-

plex manifolds; Thurston’s recent introduction of

the concept of geometrization when studying three-

dimensional manifolds; and so on. In general, the in-

troduction of a new structure gives a meaningful re-

search direction. However, one often needs to im-

pose restrictions on the structure, e.g., construction

of Ricci flat metrics on Kähler manifolds with zero

first Chern Class.

II. Mathematicians Seeking Laws
Underlying Natural Phenomena

This class of mathematician works on data, ex-

periments, explores problems deemed worthy of re-

search in light of their connection to natural and so-

cial phenomena, distills the key ideas, and makes sig-

nificant conjectures. For example, Gauss proposed

the form of the asymptotic distribution of prime

numbers amongst the integers after inspecting a

large collection of prime numbers himself. Another

example would be the letters between B. Pascal and

P. Fermat regarding the odds in gambling, which laid

the foundation of modern probability theory. F. Black

and M. Scholes proposed the equation describing op-

tion pricing, once the futures market had emerged

in 1950s, and this was immediately and widely ap-

plied in options dealing. Scholes won the Nobel Prize

in Economics in 1997 for this influential work. There

are, indeed, too many examples of this nature to enu-

merate.

In any case, it is not easy to make good conjec-

tures in mathematics. One has to have an adequate
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understanding of the given situation before one can

do that. A good example appears in Chinese litera-

ture: It is possible to form a good idea of the final

outcome of the famous Chinese novel, The Dream of

the Red Chamber, by reading the first sixty or seventy

chapters. However, one cannot do that if one does not

understand the poetry or the imageries in those sixty

or seventy chapters.

III. Mathematicians Who Solve Difficult
Problems

All mathematical theories must ultimately lead to

the solution of some important problems—otherwise

this theory would be empty and valueless. The signif-

icance of a new theoretical framework must be pro-

portional to that of the problems it has the ability to

solve. Indeed, the significance of a difficult mathe-

matical problem lies in whether or not it produces an

abundant new theoretical world in which we can ex-

plore. A single, wonderful proof is not the only part of

mathematics. To understand this point a little more

clearly, consider the example of the four-color prob-

lem—it cannot be said that a large amount of signif-

icant mathematics has resulted from its solution al-

most forty years ago.

On the other hand, there have been countless

unyieldingly formidable problems whose resolution

moved the relevant topics into the mainstay; only

by overcoming them can we reach a deep under-

standing of the subject. For instance, we cannot

say that we understood three-dimensional space un-

til we resolved the Poincaré conjecture. I person-

ally encountered a similar situation in my efforts

to solve the Calabi Conjecture: I believed that only

after solving the Calabi Conjecture can we under-

stand the concept of Ricci curvature in Kähler geom-

etry.

Mathematicians should keep alive the discoveries

of the past and enlighten the future. Here, in order

to “keep alive the past” one must solve a challenging

problem, while to “enlighten the future” one needs

to develop deeper theoretical structures and search

for new questions. Mathematics will die without new

questions; thus to “enlighten the future” is the com-

mon imperative of all mathematicians. Our ultimate

target is to integrate the natural sciences, the social

sciences, and engineering—with mathematics as the

foundation.

In the wake of Andrew Wiles’ solution of Fer-

mat’s Last Theorem, many people wondered where

the practical applications of such an achievement lie.

Although all of us mathematicians regard the proof

of Fermat’s Last Theorem as epoch-making and there-

fore do not give a moment of thought to such con-

cerns about applications, it is nevertheless worth-

while to confront this issue. It not only resolved a

350 year old puzzle, but it also allowed us to more

deeply understand elliptic curves over rational num-

ber fields. Tremendous sparks burst forth from this

combination of number theory/automorphic forms

and elliptic curves. It is now worth mentioning that

elliptic curves have flourished in coding theory, and

consequently this understanding will be immensely

useful in online trading. Its potential is beyond spec-

ulation.

Finally let us talk briefly about the difference be-

tween physicists and mathematicians. Generally, no

permanent truth exists in the field of physics, in spite

of physicists’ grand efforts to conquer nature by per-

sistently exploring the workings of the universe, and

their hope to find the ultimate unified field theory.

This statement is based on the fact that the entire

truth of nature is too difficult for human beings to

fully comprehend. In the realm of mathematics, how-

ever, every theorem can be strictly deduced from the

axioms of the system, and are therefore irrefutable

truths. As we have seen, mathematicians hold beauty

as the main standard for selection. Good theorems

allow us to feel and experience both the beauty and

truth of nature, while leisurely reaching the state of

“heaven, earth and I exist as a whole, and everything

is with me.” Our abstract view of nature is different

from physicists’ aspiration to understand nature.

Physicists make leaps in their thoughts in the

hopes of capturing some truth of nature. Although

this method is not rigorous, and one can easily make

mistakes, it nevertheless allows physicists to arrive

at a more thorough and more penetrating under-

standing of nature—a characteristic which is admired

deeply by the mathematical community. By contrast,

mathematicians must be very careful to proceed step

by step, which requires them to spend time elim-

inating any possible errors that can arise. These

two methods are, therefore, complementary to each

other; neither can be omitted in our search for truth.

In traditional Chinese culture, we often talk about

establishing moral standards without discussing the

pursuit of truth, but how can we establish moral stan-

dards if we do not seek the truth? Confucius said

that “to be gentle and magnanimous is the result of

education by poetry.” This is vaguely talking about

beauty—how can we be gentle if we do not pursue

beauty? Mathematics is the pursuit of both truth and

beauty, and as such it is, without any doubt, the fun-

damental science most vital to China.
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