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Mathematical activity has changed a lot in the last 50 
years. Some of these changes, like the use of computers, 
are very visible and are being implemented in mathe-
matical education quite extensively. There are other, more 
subtle trends that may not be so obvious. We discuss 
some of these trends and how they could, or should, in-
fluence the future of mathematical education. 

Introduction 

Mathematical activity (research, applications, educa-
tion, exposition) has changed a lot in the last 50 years. 
Some of these changes, like the use of computers, are very 
visible and are being implemented in mathematical edu-
cation quite extensively. There are other, more subtle 
trends that may not be so obvious. Should these influence 
the way we teach mathematics? The answer may, of 
course, be different at the primary, secondary, under-
graduate and graduate level. 

Here are some of the general trends in mathematics, 
which we should take into account. 

1. The size of the community and of mathematical re-
search activity is increasing exponentially; it doubles 
every 25 years or so. This fact has a number of con-
sequences: the impossibility of keeping up with new 
results; the need of more efficient cooperation be-
tween researchers; the difficulty of identifying “core” 
mathematics (to be mastered at various levels); the 
need for better dissemination of new ideas. How can 
mathematical education prepare future researchers 
and appliers of mathematics, future decision makers 
and the informed public for these changes? 

2. New areas of application, and their increasing sig-
nificance. Information technology, sciences, the 
economy, and almost all areas of human activity 
make more and more use of mathematics, and, per-
haps more significantly, they use all branches of 
mathematics, not just traditional applied mathemat-
ics. How can we train our students to recognize 
problems where mathematics can help in the solu-
tion? 

3. New tools: computers and information technology. 
This is perhaps the most visible new feature, and 
accordingly a lot has been done to introduce com-

puters in education. But the influence of computers 
on our everyday life and research is also changing fast: 
besides the design of algorithms, experimentation, 
and possibilities in illustration and visualization, we 
use email, discussion groups, on-line encyclopedias 
and other internet resources. Can education utilize 
these possibilities, keep up with the changes, and also 
teach students to use them in productive ways? 

4. New forms of mathematical activity. In part as an 
answer to the issues raised above, many new forms of 
mathematical activity are gaining significance: algo-
rithms and programming, modeling, conjecturing, 
expository writing and lecturing. Which of these 
non-traditional mathematical activities could and 
should be taught to students? 

I will say some more about these trends, and discuss 
the question of their influence on mathematical education. 
I will make use of some observations from my earlier ar-
ticles [6, 7]. 

The size of the community and of 
mathematical research activity 

The number of mathematical publications (along with 
publications in other sciences) has increased exponen-
tially in the last 50 years. Mathematics has outgrown the 
small and close-knit community of nerds that it used to 
be; with increasing size, the profession is becoming more 
diverse, more structured and more complex. 

Mathematicians sometimes pretend that mathemati-
cal research is as it used to be: that we find all the in-
formation that might be relevant by browsing through the 
new periodicals in the library, and that if we publish a 
paper in an established journal, then it will reach all the 
people whose research might utilize our results. But of 
course 3/4 of the relevant periodicals are not on the li-
brary table, and even if one had access to all these jour-
nals, and had the time to read all of them, one would only 
be familiar with the results of a small corner of mathe-
matics. 

A larger structure is never just a scaled-up version of 
the smaller. In larger and more complex animals an in-
creasingly large fraction of the body is devoted to “over-
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head”: the transportation of material and the coordina-
tion of the function of various parts. In larger and more 
complex societies an increasingly large fraction of the 
resources is devoted to non-productive activities like 
transportation information processing, education or rec-
reation. 

We have to realize and accept that a larger and larger 
part of our mathematical activity will be devoted to 
communication. 

This is easy to observe: the number of professional 
visits, conferences, workshops, research institutes is in-
creasing fast, e-mail is used more and more. The per-
centage of papers with multiple authors has jumped. But 
probably we will reach the point soon where mutual 
personal contact does not provide sufficient information 
flow. 

There is another consequence of the increase in mass: 
the inevitable formation of smaller communities, one 
might say subcultures. One response to this problem is 
the creation of an activity that deals with the secondary 
processing of research results. For lack of a better word, 
I’ll call this expository writing, although I’d like to con-
sider it more as a form of mathematical research than as a 
form of writing: finding the ramifications of a result, its 
connections with results in other fields, explaining, per-
haps translating it for people coming from a different 
subculture. 

Are there corresponding changes in mathematical 
curricula and, more generally, in the way we teach 
mathematics? The first, and most pressing, problem is the 
sheer size of material that would be nice (or absolutely 
necessary) to teach. In addition, as we will see, we should 
put more emphasis on (which also means giving more 
teaching time to) some non-traditional mathematical ac-
tivities like algorithm design, modeling, experimentation 
and exposition. I also have to emphasize the necessity of 
preserving problem solving as a major feature of teaching 
mathematics. 

How to find time to learning concepts, theorems, 
proofs, especially with the rapid expansion of material, 
and at a time when class time devoted to mathematics is 
being reduced in many countries? Which of the new areas 
should make its way to education (on the secondary or 
college level), and which of the traditional material should 
be left out? This is not a one-time crisis: mathematical 
research is not showing any signs of slowing down. 

One possible answer to this question is to leave the 
teaching of any recently developed area of mathematics to 
later in the education, to Masters and PhD programs. The 
trouble with this approach is that many educated people 
will never meet the mathematics of the last 200 years, 
which will contribute to the unfortunate but persistent 
misconception that mathematics is a closed subject. Many 
of the new areas of mathematics are important for un-

derstanding developments in technology and science, and 
by not teaching them we give up illuminating the in-
creasing role of mathematics in modern life. 

The other possible answer is to remove from the 
curriculum traditional material that is deemed less im-
portant. This approach has the negative effect of eroding 
well-established methods for teaching mathematical 
thinking. For example, elementary geometry has been 
purged from the curriculum in many countries. While this 
kind of geometry is indeed peripheral in modern 
mathematical research, it is of course still important in 
applications, and, perhaps even more important, its study 
is very instrumental in the development of spatial con-
ception, and, perhaps even more significantly, in under-
standing the real nature of mathematical proofs, the 
“Aha” event when an incomprehensible connection be-
comes clear through looking at it the right way. 

I have no easy answer to this question. Probably one 
must concentrate on mathematical competencies like 
problem solving, abstraction, generalization and spe-
cialization, logical reasoning and use of mathematical 
formalism, along with the non-traditional skills men-
tioned above (see e.g. [10]). One could select a mixture of 
classical and more modern mathematical topics that are 
best suited to develop these competencies and (of course) 
basic skills, and at the same time give some sort of picture 
of the historical roots as well as contemporary applica-
tions. 

Another question raised by the increasing complexity 
of the world of mathematics is whether exposition style 
mathematics has any place in education. One aspect of 
this is teaching students to explain mathematics to “out-
siders”, teaching them how to summarize results without 
getting lost in the details. This is not easy to do, but to 
teach such skills would be very useful indeed. 

A more heretical thought is to do some expository 
style teaching. In most sciences like chemistry or as-
tronomy, it is natural to teach in high school or even col-
lege the facts without explaining all the technical details 
of their discovery (or even of their exact meaning). Some 
of this is done in mathematics too: many students learn 
that the regular pentagon can be constructed with ruler 
and compass but the regular heptagon cannot, or that 
equations of degree 5 or more cannot in general be solved 
by radicals. But these examples are almost 200 years old! 
Can we solve the problem of exposing students to modern 
mathematics by working out appropriate non-exact but 
still mathematical blocks of material? I hesitate to answer 
“YES”, but the question is valid. 

New areas of application, and their 
increasing significance 

The traditional areas of application of mathematics 
are physics and engineering. The branch of mathematics 
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used in these applications is analysis, primarily differen-
tial equations. 

But in the boom of scientific research in the last 50 
years, many other sciences have come to the point where 
they need serious mathematical tools, and quite often the 
traditional tools of analysis are not adequate. 

For example, biology studies the genetic code, which 
is discrete: simple basic questions like finding matching 
patterns, or tracing consequences of flipping over sub-
strings, sound more familiar to the combinatorialist than 
to the researcher of differential equations. A question 
about the information content, redundancy, or stability of 
the code may sound too vague to a classical mathemati-
cian but a theoretical computer scientist will immediately 
see at least some tools to formalize it (even if to find the 
answer may be too difficult at the moment). 

Even physics has its encounters with unusual discrete 
mathematical structures: elementary particles, quarks 
and the like are very combinatorial; understanding basic 
models in statistical mechanics requires graph theory and 
probability. 

Economics is a heavy user of mathematics—and much 
of its need is not part of the traditional applied mathe-
matics toolbox. The success of linear programming in 
economics and operations research depends on condi-
tions of convexity and unlimited divisibility; taking indi-
visibilities into account (for example, logical decisions, or 
individuals) leads to integer programming and other 
combinatorial optimization models, which are much more 
difficult to handle. 

Finally, there is a completely new area of applied 
mathematics: computer science. The development of 
electronic computation provides a vast array of 
well-formulated, difficult, and important mathematical 
problems, raised by the study of algorithms, data bases, 
formal languages, cryptography and computer security, 
VLSI layout, and much more. Most of these have to do 
with discrete mathematics, formal logic, and probability. 

One must add that which branches of mathematics 
will be applicable in the near future is utterly unpredict-
able. Just 30 years ago questions in number theory 
seemed to belong to the purest, most classical and com-
pletely inapplicable mathematics; now many areas in 
number theory belong to the core of mathematical cryp-
tography and computer security. 

A very positive development in recent decades is the 
decreasing separation between pure and applied mathe-
matics. I feel that the mutual respect of pure and applied 
mathematicians is increasing, along with the number of 
people contributing to both sides. The diversity of appli-
cations should also strengthen the flow of information 
across all of mathematics. 

No field can retreat into its ivory tower and close its 
doors to applications; nor can any field claim to be “the” 
applied mathematics any more. 

How to give a glimpse of the power of these new ap-
plications to our students? Perhaps some nonstandard 
mathematical activities like programming and modeling 
(to be discussed later) can be used here. 

New tools: computers and information 
technology 

Computers, of course, are not only sources of inter-
esting and novel mathematical problems. 

They also provide new tools for doing and organizing 
our research. We use them for e-mail and word processing, 
for experimentation, and for getting information through 
the web, from the MathSciNet database, Wikipedia, the 
Arxives, electronic journals and from home pages of fel-
low mathematicians. 

Are these uses of computers just toys or at best 
matters of convenience? I think not, and that each of 
these is going to have a profound impact on our science. 

It is easiest to see this about experimentation with 
Maple, Mathematica, Matlab, or your own programs. These 
programs open for us a range of observations and ex-
periments which had been inaccessible before the com-
puter age, and which provide new data and reveal new 
phenomena. 

Electronic journals and databases, home pages of 
people, companies and institutions, Wikipedia, and e-mail 
provide new ways of dissemination of results and ideas. 
In a sense, they reinforce the increase in the volume of 
research: not only are there increasingly more people 
doing research, but an increasingly large fraction of this 
information is available at our fingertips (and often in-
creasingly loudly and aggressively: the etiquette of e-mail 
is far from solid). But we can also use them as ways of 
coping with the information explosion. 

Electronic publication is gradually transforming the 
way we write papers. At first sight, word processing looks 
like just a convenient way of writing; but slowly many 
features of electronic versions become available that are 
superior to the usual printed papers: hyperlinks, colored 
figures and illustrations, animations and the like. 

The use of computers is an area where often we learn 
from our students, not the other way around. The ques-
tion here is: how to use the interest and knowledge in 
computing, present in most students today, for the pur-
poses of mathematical education? Most suitable for this 
seem to be some nonstandard mathematical activities, 
which I discuss next. 
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New forms of mathematical activity 

Algorithms and programming 

The traditional 2500 year old paradigm of mathe-
matical research is defining notions, stating theorems and 
proving them. Perhaps less recognized, but almost this 
old, is algorithm design (think of the Euclidean Algorithm 
or Newton’s Method). While different, these two ways of 
doing mathematics are strongly interconnected (see [6]). It 
is also obvious that computers have increased the visi-
bility and respectability of algorithm design substantially. 

Algorithmic mathematics (put into focus by com-
puters, but existent and important way before their de-
velopment!) is not the antithesis of the “theorem–proof” 
type classical mathematics, which we call here structural. 
Rather, it enriches several classical branches of mathe-
matics with new insight, new kinds of problems, and new 
approaches to solve these. So: not algorithmic or struc-
tural mathematics, but algorithmic and structural 
mathematics! 

What does this imply in math education? As we dis-
cussed above, mathematical education must follow, at 
least to some degree, what happens in mathematical re-
search; this is especially so in those (rare) cases when 
research results fundamentally change the whole 
framework of the subject. So set theory had to enter 
mathematical education (one would wish with more 
moderation and less controversy than happened with 
“new math”). Algorithmic mathematics is another one of 
these. 

However, the range of the penetration of an algo-
rithmic perspective in classical mathematics is not yet 
clear at all, and varies very much from subject to subject 
(as well as from lecturer to lecturer). Graph theory and 
optimization, for example, have been thoroughly 
re-worked from a computational complexity point of view; 
number theory and parts of algebra are studied from such 
an aspect, but many basic questions are unresolved; in 
analysis and differential equations, such an approach may 
or may not be a great success; set theory does not appear 
to have much to do with algorithms at all. 

Our experience with “New Math” warns us that drastic 
changes may be disastrous even if the new framework is 
well established in research and college mathematics. 
Some algorithms and their analysis could be taught about 
the same time when theorems and their proofs first occur, 
perhaps around the age of 14. Of course, certain algo-
rithms (for multiplication and division etc.) occur quite 
early in the curriculum. But these are more recipes than 
algorithms; no correctness proofs are given (naturally), 
and the efficiency is not analyzed. 

The beginning of learning “algorithmics” is to learn to 
design, rather than execute, algorithms [8]. The euclidean 
algorithm, for example, is one that can be “discovered” by 
students in class. In time, a collection of “algorithm de-
sign problems” will arise (just as there are large collec-

tions of problems and exercises in algebraic identities, 
geometric constructions or elementary proofs in geome-
try). Along with these concrete algorithms, the students 
should get familiar with basic notions of the theory of 
algorithms: input-output, correctness and its proof, 
analysis of running time and space, etc. 

In college, the shift to a more algorithmic presenta-
tion of the material should, and will, be easier and faster. 
Already now, some subjects like graph theory are taught 
in many colleges quite algorithmically: shortest spanning 
tree, maximum flow and maximum matching algorithms 
are standard topics in most graph theory courses. This is 
quite natural since, as I have remarked, computational 
complexity theory provides a unifying framework for 
many of the basic graph-theoretic results. In other fields 
this is not quite so at the moment; but some topics like 
primality testing or cryptographic protocols provide nice 
applications for a large part of classical number theory. 

One should distinguish between an algorithm and its 
implementation as a computer program. The algorithm 
itself is a mathematical object; the program depends on 
the machine and/or on the programming language. It is of 
course necessary that the students see how an algorithm 
leads to a program that runs on a computer; but it is not 
necessary that every algorithm they learn about or they 
design be implemented. The situation is analogous to that 
of geometric constructions with ruler and compass: some 
constructions have to be carried out on paper, but for 
some more, it may be enough to give the mathematical 
solution (since the point is not to learn to draw but to 
provide a field of applications for a variety of geometric 
notions and results). 

Let me insert a warning about the shortcomings of 
algorithmic language. There is no generally accepted form 
of presenting an algorithm, even in the research literature 
(and as far as I see, computer science text books for 
secondary schools are even less standardized and often 
even more extravagant in handling this problem.) The 
practice ranges from an entirely informal description to 
programs in specific programming languages. There are 
good arguments in favor of both solutions; I am leaning 
towards informality, since I feel that implementation de-
tails often cover up the mathematical essence. For exam-
ple, an algorithm may contain a step “Select any element 
of set S”. In an implementation, we have to specify which 
element to choose, so this step necessarily becomes 
something like “Select the first element of set S”. But there 
may be another algorithm, where it is important the we 
select the first element; turning both algorithms into pro-
grams hides this important detail. Or it may turn out that 
there is some advantage in selecting the last element of S. 
Giving an informal description leaves this option open, 
while turning the algorithm into a program forbids it. 

On the other hand, the main problem with the in-
formal presentation of algorithms is that the “running 
time” or “number of steps” are difficult to define; this 
depends on the details of implementation, down to a level 
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below the programming language; it depends on the data 
representation and data structures used. 

The route from the mathematical idea of an algorithm 
to a computer program is long. It takes the careful design 
of the algorithm; analysis and improvements of running 
time and space requirements; selection of (sometimes 
mathematically very involved) data structures; and pro-
gramming. In college, to follow this route is very instruc-
tive for the students. But even in secondary school 
mathematics, at least the mathematics and implementa-
tion of an algorithm should be distinguished. 

An important task for mathematics educators of the 
near future (both in college and high school) is to develop 
a smooth and unified style of describing and analyzing 
algorithms. A style that shows the mathematical ideas 
behind the design; that facilitates analysis; that is concise 
and elegant would also be of great help in overcoming the 
contempt against algorithms that is still often felt both on 
the side of the teacher and of the student. 

Problems and conjectures 

In a small community, everybody knows what the 
main problems are. But in a community of 100,000 people, 
problems have to be identifed and stated in a precise way. 
Poorly stated problems lead to boring, irrelevant results. 
This elevates the formulation of conjectures to the rank of 
research results. Conjecturing became an art in the hands 
of the late Paul Erd�s, who formulated more conjectures 
than perhaps all mathematicians before him put together. 
He considered his conjectures as part of his mathematical 
œuvre as much as his theorems. 

Of course, it is diffcult to formulate what makes a 
good conjecture. (There is even a lot of controversy 
around Erd�s’ conjectures.) It is easy to agree that if a 
conjecture is good, one expects that its resolution should 
advance our knowledge substantially. Many mathemati-
cians feel that this is the case when we can clearly see the 
place of the conjecture, and its probable solution, in the 
building of mathematics; but there are conjectures so 
surprising, so utterly inaccessible by current methods, 
that their resolution must bring something new—we just 
don’t know where. 

In the teaching style of mathematics which empha-
sizes discovery (which I personally find the best), good 
teachers always challenged their students to formulate 
conjectures leading up to a theorem or to the steps of a 
proof. This is time-consuming, and there is a danger that 
this activity too is eroding under the time pressure dis-
cussed above. I feel that it must be preserved and en-
couraged. 

Mathematical experiments 

In some respects, computers allow us to turn 
mathematics into an experimental subject. Ideally, 
mathematics is a deductive science, but in quite a few 

situations, experimentation is warranted: 

(a) Testing an algorithm for efficiency, when the resource 
requirements (time, space) depend on the input in a 
toocomplicated way to make good predictions.1 

(b) Cryptographic and other computer security issues 
often depend on classical questions about the dis-
tribution of primes and similar problems in number 
theory, and the answers to these questions often 
depend on notoriously difficult problems in number 
theory, like the Riemann Hypothesis and its exten-
sions. Needless to say that in such practically crucial 
questions, experiments must be made even if deduc-
tive answers would be ideal. 

(c) Experimental mathematics is a good source of con-
jectures; a classical example is Gauss’ discovery (not 
proof) of the Prime Number Theorem. Among the 
contemporary examples of this, let me mention the 
most systematic one: the graph-theoretic conjec-
ture-generating program GRAFFITI by Fajtlowicz [2, 
3]. 

There are several excellent books about experimental 
mathematics (see e.g. [1]). Programs like Derive, Maple or 
Mathematica offer us, and the students, many ways of 
experimentation with mathematics. A simple example: a 
student can develop a real feeling for the notion of con-
vergence and convergence rate by comparing the com-

putation of the convergent sums 21/ k�  and 1 2/ k� . 

Mathematical experimentation has indeed been used 
quite extensively in the teaching of analysis, number 
theory, geometry, and many other topics. The success 
seems to be controversial; my feeling is that, similarly as 
in the teaching of algorithms, the development of large 
well-tested sets of experimental tasks takes time, and is 
the most crucial element of the success of these teaching 
methods. 

Modeling 

To construct good models is the most important first 
step in almost every successful application of mathe-
matics. The role of modeling in education is well recog-
nized [9], but its weight relative to other material, and the 
ways of teaching it, are quite controversial. Modeling is a 
typical interactive process, where the mathematician 
must work together with engineers, biologist, economists, 
and many other professionals seeking help from mathe-
matics. A possible approach here is to combine teaching 
of mathematical modeling with education in team work 
and professional interaction. 

A good example is the course “Discrete Mathematical 
Modeling” at the University of Washington [4] (similar 

                                                      
1  I do not include here verification of the correctness of a 
program—which is not a mathematical issue, but a matter of 
software engineering. 
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courses are taught at several other universities, e.g. at the 
Eötvös University in Budapest). The main feature of this 
course is that the students, in groups of 2 or 3, must find 
a real-life problem in their environment. They have to 
develop a model, gather data, find and code the algo-
rithms that answer the original question, and give a 
presentation of the results. The real-life problems raised 
are quite broad in scope, from problems on favorite 
games to attempts to help family or friends in their 
business, and some of the answers obtained turn out 
quite useful. 

Exposition and popularization 

The role of this activity is growing very fast in the 
mathematical research community. Besides the tradi-
tional way of writing a good monograph (which is of 
course still highly regarded), there is more and more 
demand for expositions, surveys, minicourses, handbooks 
and encyclopedias. Many conferences (and often the most 
successful ones) are mostly or exclusively devoted to 
expository and survey-type talks; publishers much prefer 
volumes of survey articles to volumes of research papers. 
While full recognition of expository work is still lacking, 
the importance of it is more and more accepted. 

On the other hand, mathematics education does little 
to prepare students for this. Mathematics is a notoriously 
difficult subject to talk about to outsiders (including even 
scientists). I feel that much more effort is needed to teach 
students at all levels how to give presentations, or write 
about mathematics they learned. (One difficulty may be 
that we know little about the criteria for a good mathe-
matical survey.) 
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