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. prime numbers “grow like weeds among the natural
numbers, seeming to obey no other law than that of chance,
and nobody can predict where the next one will sprout.”

Don Zagier

In my talk I will pose several questions about prime
numbers. We will see that on the one hand some of them
allow an answer with a proof of just a few lines, on
the other hand, some of them lead to deep questions
and conjectures not yet understood. This seems to
represent a general pattern in mathematics: your curiosity
leads to a study of “easy” questions related with quite
deep structures. I will give examples, suggestions and
references for further study. This elementary talk was
meant for freshman students; it is not an introduction
to number theory, but it can be considered as an
introduction: “what is mathematics about, and how can
you enjoy the fascination of questions and insights?”

Introduction

In this talk we study prime numbers. Especially we are
interested in the question “how many prime numbers are
there, and where are they located”? We will make such
questions more precise. For notations and definitions see
Section 2.

The essential message of this talk on an elementary
level: mathematicians are curious; we like to state prob-
lems, find structures and enjoy marvelous new insights.
Below we ask several questions, and we will see that for
some of them there is an easy an obvious answer, but for
others, equally innocent looking, we are completely at loss
what the answer should be, what kind of methods should
be developed in order to understand possible approaches:
fascinating open problems.

(0.1) Definition. For every x € R we define 7(x) as the num-
ber of prime numbers at most equal to x:

n(x) =#({p | pis a prime number, p <x}), 7:R—Z;

here #(V) denotes the number of elements of the set V.

This is a “step function”: for 0 < x < 2 we have 7(x) =0;
then the function jumps to 7(y) = 1 for 2 <y < 3, and so on;
in this way this function climbs this staircase with steps of
height one.

* Talk at Dept. of Math., National Taiwan University (NTUmath),
Institute of Mathematics, Academia Sinica (IoMAS), 17-XII-2012.

Drawing the graph of m(x) for x < 100 (i.e. on a small
scale) we see the steps:

a weird and seemingly irregular shape;

however seeing the graph of 7(x) for x < 50,000 it seems
as if this concerns a smooth function (which we know it
isn't).

This gives the suggestion that we should be able to say
something about the global behavior of m(x) (always fol-
low daring ideas); indeed Gauss had this idea long ago; he
made notes (never published) in his table of logarithms:

“Im Jahr 1792 oder 1793 ... Primzahlen unter a(= o) )
as he communicated in 1849 to his friend Encke, see [12].
This idea was also conjectured by Legendre (1797/1798),
see [27].

This idea/conjecture/result, the prime number the-
orem (abbreviated as PNT) was proved by Chebysheyv,
Hadamard and De la Vallée-Poussin (results published in
the period starting 1848, final complete proof in 1896).
This is an astonishing (and also deep) result: without know-
ing all prime numbers, without being able to compute them
all, still we can say something whether somewhere (above
a given number, or how many approximately on a given
interval) they can be found (without explicitly computing
any of them);

we see a “regular” behavior of an irregular function.

In Section 7 we cite this result (but we are not able to give
a proof on an elementary and simple level); however we
will also see that some weaker statements are very easy to
prove, and these can be used to obtain amazing results (we
will see examples).

(0.2) What is the structure underlying a question? Be-
low I start by asking questions. Please try for every ques-
tion to decide whether you understand the question, and
whether an answer would be obvious and easy or diffi-
cult. We will see that some of them have a quick and sim-
ple answer; however some others are difficult, and hide
unsolved problems where some of the great mathemati-
cians in the past in vain tried to reveal secrets hidden in
these gems of mathematical exploration. All of a sudden
we are confronted with our lack of knowledge (and so often
I had and still have that feeling in mathematical research).
It makes this field a rich source for inspiration and chal-
lenges.
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This is characteristic for mathematical research: a
question triggers your curiosity. Sometimes you see (or
somebody else tells you) that this “of course” is simple.
However the next question, equally easy in its formula-
tion, escapes a solution, and the more you contemplate,
the more you feel that you basically have no understand-
ing of the true structure involved.

We will see that (sometimes) computing examples
gives you insight, but (as we have experienced) it may give
completely wrong suggestions and ideas; see Section 9.
Also we see that abstract methods can give astonishing
insight and results.

We should try to find the structure underlying a ques-
tion. The mathematician Yuri Manin recently said in his
interview “Good proofs are proofs that make us wiser”:

“I see the process of mathematical creation as a kind of rec-
ognizing a preexisting pattern”;

see [29]. And I agree with this belief: what we are trying
to discover exists already, we “just” have to find the right
language, the key to the secret.

Therefore, in everything below try to find the underly-
ing pattern, the basic idea of the questions discussed.

Understanding notions and questions in “elementary
number theory” may lead to deep theory, may reveal beau-
tiful structures in algebra, geometry and analysis, and usu-
ally quite other disciplines in mathematics are necessary
to proceed, and to solve “easy” questions.

(0.3) How can you use this paper?

e Start reading questions posed in Section 1. Try to un-
derstand these, and look for an answer (and for the
hidden structures). Which of these have an easy solu-
tion? Keep such questions in mind.

e This paper contains only a very small part of this
interesting field. If you want to learn more, google
any of the following words, and you will find much
more information: prime number, prime number the-
orem, Fermat primes, Mersenne primes, Sophie Ger-
main primes, twin primes, prime number races, Cheb-
otarev density theorem, heuristic argument, Riemann
hypothesis, ABC conjecture, 3x+ 1 problem, odd per-
fect number, scientific calculator, factoring calcula-
tor, prime constellations, .... For example you google
<prime number> and you obtain the site http://en.
wikipedia.org/wiki/Prime_number. Or <prime num-
ber theorem> and the site http://en.wikipedia.org/
wiki/Prime-number-theorem surfaces.

e Many problems about prime number were born out
of completely different questions in geometry, num-
ber theory, or other fields of mathematics; e.g. see
Sections 5-6. Be alert in doing mathematics for such
“cross-fertilizations”.

e Section 8 is strange. Some arguments used are defi-
nitely wrong (you could try to prove with those “meth-
ods” that “there are infinitely many even prime num-
bers” ... is that a correct statement?);

“the chance that a given positive integer N is prime is
equalto...”
is nonsense: a given number is a prime number or it is
not.

However the essence of “heuristics” can give you a
feeling, an intuition what kind of answers certain
questions should have. After you have understood
Section 8 try this method out on problems you want
to consider.

e In Section 11 you will find four exercises. After you
have seen many difficult questions and conjectures
you might have fun in solving some easy problems
yourself.

e Try to make computations connected with some of
the problems posed. You can try to see whether you
obtain some insight. Sometimes it will lead you to cor-
rect expectations. Sometimes you will get nowhere. In
this way you feel how mathematicians are thinking
and trying to find new structures and answers. An-
drew Wiles in his BBC documentary (1996) said:

Perhaps I could best describe my experience of doing
mathematics in terms of entering a dark mansion. One
goes into the first room and it’s dark, completely dark,
one stumbles around bumping into the furniture and then
gradually you learn where each piece of furniture is, and
finally after six months or so you find the light switch, you
turn it on suddenly it’s all illuminated, you can see exactly
where you were.

http://www.cs.wichita.edu/~chang/fermat.html.

e In Section 10 we mention some open problems, still
unsolved, even great mathematicians even have no
idea where to start, what is the theory to be devel-
oped? which new directions in mathematics do we
have to explore? For young mathematicians a nice idea
that still so many things are waiting for you.

e A small warning. It is nice to make many computa-
tions. And indeed, we are in good company (in his
younger years Gauss spend free time in computing
prime numbers, thus getting a feeling for “how many
there are”). However, computations can “go on for-
ever”. Know where to proceed making computations,
and know where to stop and start thinking. (Example:
you can try to write even numbers as sums of primes:
4=242,6=3+3,8=3+5,10=3+7,...,and do you
want to go on “forever”?)

e For me, here are the big surprises in this field:
“simple” questions can be very hard; as long as we
have no description of underlying theory, most prob-
lems are out of reach of exact methods;
however, we can give exact approximations (e.g. for
the number of primes in a given interval), without
computing any of the relevant cases, and these meth-
ods are usually easy.

What to read. The books [8, 18, 26] are books of fiction,
very interesting to read. Also [32] is fiction; this beauti-
ful book tries to describe the (mathematical) childhood
of Sophie Germain; very nice to read. See http://kasmana.
people.cofc.edu/MATHFICT/default.html for many more
suggestions.
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To obtain an idea about elementary number theory see
[19] and [4]. For basic knowledge about algebra there are
many books; we mention: [25].

(0.4) Some sites you can use for computing,

a scientific calculator, e.g.:

http://web2.0calc.com/#

factoring numbers, e.g.:
http://eng.numberempire.com/factoringcalculator.php
finding the Nth prime (for N < 10'2):
http://primes.utm.edu/nthprime/

finding Collatz trees:
http://www.nitrxgen.net/collatz.php

finding a sequence of integers, once you know how it starts
http://oeis.org/.

1. Some Questions

(1.1) Question 1. Is the set of all prime number finite or
infinite?
[Where do you start? Just computing and making a (fi-
nite) list of prime numbers, would that help? Or should
we rather start thinking?]

For an answer, see Section 3.

We study whether consecutive prime numbers are far
apart, or close together.

We say N is the length of a gap in the sequence of prime
numbers if there are two consecutive prime numbers p < g
with N =¢q—p.

(1.2) Questions 2. Is the length of gaps in the sequence of
prime numbers bounded or unbounded?
[What do you try? Think, or make examples?

See (4.1) and Section 7.

We study whether (many) primes can be as close to-
gether as possible.

We say we have a pair of twin primes if there are prime
numbers p < g with g—p = 2.

We say we have a 3-sequence of prime numbers (not a
standard terminology ...)if wehave p < g < rwithg—p =2
and r—g =2.

(1.3) Question 3.

(1) Is the set of twin primes finite or infinite?

(2) What is the set of 3-sequences of prime numbers?
[Making (many) examples would that help? How do we ob-
tain any insight?]

See (4.4).

(1.4) Question 4. Consider the set of numbers
Fh=3, FF=5 F =17, F5=257, F,=65537, ..., 17,-:22i+1.

Are all numbers in this sequence prime?

If not, is the number of prime numbers in this sequence
finite or infinite?

[Note that even for small i the number F; is large; how can
you make computations? Or do you want to think first?

What else are you going to do, in order to understand these
numbers?|
See Section 5 and (10.6).

(1.5) Question 5. We write
P1=2<pp=3< < pi<pig1 <

for the ascending sequence of all prime numbers.
Is there a formula which for every choice i allows you to
compute the i-th prime number p;?
[Did we formulate the question in the right way? Does this
make sense?]

See (4.5); see Section 7.

(1.6) Question 6. We see:
4=2+42,6=3+3,8=3+5,...,36=5+31=7+29,...(?)

Can every even number N = 2n > 4 be written as sum of

two prime numbers?

[Where do you start? Just start computing until you find a

counter example? Is there another approach possible?]
See: the Goldbach Conjecture (10.2). See (10.3).

(1.6)(bis). Another question.
2=5-3,4=47-43,6=13-7, ..., 18=47-29, ...

Can every even number as the difference of two prime
numbers?
See (10.5).

(1.7) Question 7. Does there exist a prime number with
2013 decimal digits?

[How to start? Just write down any number between 10?1
and 10%°13 and try whether that choice gives a prime num-
ber? Is the chance big or small by just an “ad random
choice” to construct such a prime number? What else could
you try?]

See (4.9). See (7.4), (7.8).

(1.8) Question 8. Try to find A,a,D,d € Z>, with
A4+ 1 =D

“I.e. can pure powers differ by one?” Wesee 2 +1=8+1=
9 = 32 is one solution. Are there any other solutions?
[Write pure powers 4,8,9,16,25,27,32,36,... and try to see
whether anywhere the difference 1 appears. Is this a good
method? What else should we try? Does this question have
an easy, or a difficult, or no answer? A “pure power” is an
integer of the form A with A,a € Z>,.]
See (4.10).

(1.9) Question 9. We say a prime number p is a Sophie Ger-
main prime number if also g :=2p+ 1 is a prime number.
Is the number of Sophie Germain prime numbers finite or
infinite?

See (10.8).
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(1.10) Question 10. Define the function
C: Z>0 — Z>0

by:

C(2m):=m, C(2m+1)=32m+1)+1

(i.e., for even n choose C(n) =n/2, for odd n choose C(n) =
3n+ 1). Start with an arbitrary a; € Z-o and produce the
sequence {ay,...,a;+ :=C(a;),...}. Does the number 1 ap-
pear in such a sequence for every choice of a;?

See (10.9).

We can pose many more of such questions. However
these 10 already give enough material to think about, and
to develop a feeling for this kind of mathematics. Try to
decide which problem has an easy answer, which one fol-
lows from general theory, and perhaps you get stuck at
some of them (that happens to every mathematician con-
templating about nice questions). (In your mathematical
life, do not get discouraged by problems you cannot solve:
it is part of the beauty of our profession. Once I was work-
ing on a hard problem, got stuck for long time, thought I
had a solution, found the mistake in my arguments, and
was not unhappy with the idea probably I would never see
a solution; however, as a bonus after 7 years I solved the
problem.)

Below I will discuss answers, and the final outcome
(for this moment) is listed in (10.11).

2. Some Definitions

(2.1) We write Z=1{...,—-2,-1,0,1,2,3,...} for the set of
integers.

For a,b € Z we say a is a divisor of n = b if there exists
d € 7Z with da = b.

Notation: a | b.

A number p € Z-, is called a prime number in case 1
and p are the only positive divisors of p. In other terms: if
every i with 1 <i < p is not a divisor of p.

Examples: 2,3,5,7,11,13,17,19,...,61,67,71,...,613,
617,619,... etc.

Remark. In modern terminology the integer 1 is not a
prime number (although Euler called the number 1 also
a prime number).

(2.2) The largest common divisor. Suppose given m,n € Z
with m # 0. Consider the set of common divisors:

{deZ|1<d,d|m, d|n}.

Because m # 0 this set is finite. As 1 | m en 1 | n this set
is not empty. The largest number in this set we write as
gcd(m,n), called the greatest common divisor.

Remark. We can show: for gcd(m,m) = d there exist x,y € Z
with xm+yn =d.

Remark. We can show that gcd(m,m) = d is the smallest
non-negative integer in the set {xm+yn | x,y € Z}. See Sec-
tion 12.

If ged(m,n) = 1 we say “m and n are relatively prime”.

(2.3) The logarithm. Logarithms are defined and com-
puted with a base number. For a € R, we write:

‘loglx) =y = x=d.

1! We write

’ log(x) := “log(x) |; here e the Euler constant.

Probably you were/are accustomed to write In(x) = “log(x)
and log(x) = '%log(x). However mathematicians (and also
in this paper we) write log(x) = “log(x).

3. A Proof by Euclid

(3.1) Theorem (Euclid). There are infinitely many prime
numbers.

Proof. We know there exists at least one prime number
(e.g. p = 37). Suppose given a finite set of prime numbers
{P,...,B,} with m > 0 (i.e. this set is non-empty); using
this set we construct a prime number P not appearing in
this list. If we can show this it proves that the set of all
prime numbers in non-finite.

Construction. Consider
M=P x---xP,+1.

Note that M > 1. Choose P as the smallest divisor of M with
P > 1. We show P is a prime number; indeed, any divisor
d | Pwith 1 <d < Pis also a divisor of M; hence d = P: this
shows P is a prime number.

Claim. The prime number P is not contained in the set
{P,...,P,}.

Assume the contrary, assume P = P, for some 1 <i <m.
Then

BP+1=BP.+1=M=AP with
B:=P X - XP_{ XPyg X XPp;

hence
(A—B)P=1.

This shows B—A = +1, and P = =+1; this is a contradic-
tion with P > 1. This shows P is a prime number with
PE{P,....P,}. O

Remark/advice. Just remember this proof. Isn't it re-
markable that you can say something about an infinite set
in a finite set of arguments? That you say there are in-
finitely many prime numbers without constructing them
all. Here lies the strength of mathematical reasoning. If
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someone is truly interested why we should do mathemat-
ics, this is the first example of our beautiful profession you
can present.

See (5.1) for another proof there exist infinitely many
prime numbers.

(3.2) A variant. For a set of prime numbers {P,,...,P,}
andM =P, x---xPB,+1as above we can define P, 1, ..., P,
all prime numbers appearing in the factorization of M
(use (12.2)), continue inductively with {P,...,P,,...,P.}
and finish the proof of (3.1) in this way.

Remark. We did not claim the number M considered in
the proof is a prime number. E.g. starting with p =P, =2
we construct =3, and s, =2x3+1=7,and P, =2x3 x
7+4+1=43, however 2x3x7x43+1=1807 =13 x139.In
fact, the number of primes of the form N!+ 1 (for all N up
to a given bound) should be relatively small, see [5, 4.6].

We did not show we can construct all prime numbers
this way. Indeed I expect:

starting with any non-empty set of prime numbers and
proceeding inductively as in (3.2), the infinite set of prime
number we eventually obtain this way is not equal to the
set of all prime numbers; can we prove this?

4. Some Answers

(4.1) Gaps in the sequence of prime numbers. Here is an
answer for (1.2).
We show: for every N € Zx; there exists a pair of con-
secutive prime numbers (p;, p;1) with
piy1—pi =N

(i.e. the length of gaps in the sequence of all prime num-
bers is unbounded.)
We give a simple proof. Consider

M:=N!=2x---x(N—1)xN.
Let p; be the largest prime number with p; < M + 1. Note:
M+2, M+3,.... M+N—1, M+ N are not prime.

Indeed any j with 2 < j < N is a divisor of M. Hence the
next prime number p;. | has the property p;.1 >M+N+1.
From

pir1>M+N+1 and p;<M+1 we deduce

pi_H—p,‘SM—FN—Fl—M—l:N. D

Although the proof is really short, in many cases it

does not give the lowest case of constructing large gaps.
Example. For 1 < j <33 the number 1327+ j is not a prime
number, and we see a gap of (at least) length 34; note that

341 2~ 2.95 x 10

and hence the gap of length 34 starting at 1327 comes
much earlier than the one constructed by the proof.

Example. For p; = 31397 we have p;;; — p; = 72, while
721~ 6.12 x 10",

See http://en.wikipedia.org/wiki/Prime-gaps. Also see
[13, page 10]. Also see the last page of this paper.

Remark. Here is another proof of the fact that the length
of gaps in the sequence of prime numbers is unbounded.

Suppose every gap has length at most N. This would
imply that in any interval of length N there is at least
one prime number. This would imply 7 (x) > x/N for ev-
ery x € R. However we will see in Section 7 that m(x) <
Bx/(log(x)) for some constant B (and a proof, e.g. for the
case B = 3 is easy). We derive a contradiction for every x
with B/(log(x)) > N.

We can wonder which gaps do appear. Does every pos-
itive integer appear as the length of a gap? (A simple ques-
tion, and we will see the answer is partly very easy.)

Remark. There are no prime numbers p and g with g —
p=T1.
Proof. In case p and g are even their difference is even,

hence not equal to 7. For p =2 the number ¢ :=2+7 =9
is not a prime number. O

See (11.3) for odd length. See (10.5) for even length.

(4.2) If we wold know enough about the length of gaps,
perhaps we could decide upon:

Conjecture (Legendre, 1798). For everyn € Z~ there exists
a prime number p such that

n<p<m+1)r ()
See [27]; see http://arxiv.org/pdf/1201.1787v3.pdf.

(4.3) Twin primes. Do we know an answer to (1.3)(2)?
Many pairs of twin primes are known. We expect there are
infinitely many, see (10.4). Very large pairs are known, e.g.
see the first few lines of [5]. Heuristics are very convincing.
These give asymptotic estimates that fit with great preci-
sion every time we can actually compute the exact number
of twin primes up to a certain bound. Hence we strongly
believe there are infinitely many. However the question is
still unsolved, and I think we basically do not understand
which structure lies behind this question.

There are two ways to generalize the concept of
twin primes. Either we can study pairs of primes further
apart (and this wil be done in two ways: either consecu-
tive primes, or the possible differences between arbitrary
primes). Or we can study longer chains of given length be-
tween consecutive primes. In all these cases we obtain in-
teresting questions, a lot of partial results, and interesting
expectations, none of which have been settled.

(4.4) 3-sequences
to (1.3)(3).

We show: {3,5,7} is the only 3-sequence of prime num-
bers.

of prime numbers. An answer
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Proof. Suppose {p,p+2,p+4} is a 3-sequence of prime
numbers. We can write p =3i,or p=3i+1 or p =3i+2.

In case p = 3/ we obtain the sequence {3,5,7}.

In case p = 3i+ 1 we see that p+ 2 is divisible by 3,
hence equal to 3, and we would have p = 1: however that
is not a prime number.

In case p = 3i+ 2 we see that p+4 is divisible by 3,
hence we would have p = —1, also a contradiction. O

In short: in any sequence of integers {n,n+2,n+4}
exactly one of these is divisible by 3.

We see the notion of a “3-sequence of prime numbers”
is not a very interesting one; we dismiss this. There is a
much better notion.

Definition. A set of prime numbers {p,q,r} is called a
prime triplet if

either g = p+2 and r = g+ 4, eg. {57,11},...,
{41,43,47},...,{857,859,863},...

or gq=p+4 and r = g+ 2, eg. {7,11,13},...,
{613,617,619},....

You can easily produce many prime triplets. See http://
en.wikipedia.org/wiki/Prime-triplet.

Expectation. The number of prime triplets is infinite.(?)

This question has not been
http://en.wikipedia.org/wiki/Prime_triplet;

answered. See
http://
primes.utm.edu/glossary/xpage/PrimeTriple.html.

We can go much further: prime quadruples: a string of
consecutive primes

{p = pi,Piv1,Piv2, piv3 = p+8}.

We expect there are infinitely many prime quadruples.
Prime constellations of length four (prime quadruples)
fit the single pattern (p,p +2,p + 6,p + 8). (Examples:
(5,7,11,13), (11,13,17,19).)

If the length is five or six we have the patterns:
(p,p+2,p+6,p+8,p+12),(p,p+4,p+6,p+10,p+12),
and (p,p+4,p+6,p+10,p+12,p+ 16). It is expected
that there are infinitely many of each admissible
prime constellation. None of these questions have
been solved.
Quadruple.html; http://primes.utm.edu/glossary/xpage/
PrimeConstellation.html.

http://primes.utm.edu/glossary/xpage/

(4.5) Does there exist a formula which for every i com-
putes the i-th prime number p;? Unfortunately the for-
mulation of the question is not precise enough. What do
we expect from such a formula? We show such a formula
exists in case we already know all prime numbers

(4.6) Example. There exists a number o € R with the prop-
erty:

Pn = |~101+"'+n.aJ — 10" L101+"'+(n71)'aJ;

notation: for B € R we write || for the largest integer
smaller or equal §:

Bl=meZ = m<B<m+l.

Indeed, such an o € R exists. Write

o = 0.203005000700011000013... = Y p, x 10/™

n=1

where f(n) is equal to 142+ --- +n-(the number of deci-
mal digits of p,). We use that p, < 10" (which can be easily
seen). It is clear that the formula above indeed gives p; for
every i.

Is this useful? In order to know o you need precise
information about all prime numbers:

knowing py,..., p, precisely, you can compute p,;

not very astonishing: it is easy to find a formula giv-
ing all prime number if you know already all prime
numbers .... See http://primes.utm.edu/glossary/xpage/
FormulasForPrimes.html. In [47] the question is raised:
what is the difference between a formula and a good for-
mula? Also see [20].

(4.7) Example. Euler showed that substituting 7 =i into
T? +T +41 for every 0 < i < 39 a prime number appears.
Does there exist a polynomial “which gives all prime num-
bers”?

Matiyasevich showed in 1971 the existence of a poly-
nomial such that every positive value is a prime number.
Later an explicit example of a polynomial in 26 variables of
degree 25 with such a property was constructed, see [21].

Does this help? Yes, from an abstract point of view.
This theorem was of great importance in logic. Can we
compute easily prime numbers in this way? It turns out
to be difficult to compute a single prime number in this
way. And, I do not see how to use this method to decide
whether a give number is prime. See http://primes.utm.
edu/glossary/xpage/MatijasevicPoly.html.

(4.8) Modern technology and the internet allow us to
determine every prime number wanted under 10'2, see
http://primes.utm.edu/nthprime/.

For example Ploo = 541, P500 = 3,571, P10,000 = 104,729,
pirooooo0 = 15,485,863,  piroooooooo = 2,038,074,743,
D100,000,000,000 = 2,760,727,302,517,....

Is this interesting? On that site you can also compute
n(x) for every x < 3-103.

On the following site you can check whether a given
integer (at most 16 digits) is a prime number: http://
primes.utm.edu/curios/includes/primetest.php.

(4.9) Does there exist a prime number with exactly 2013
digits? Is there a table we can consult to find such a prime
number? No, certainly not: the number of prime numbers
up to 1022 is about 10%74; we think the number of elemen-
tary particles in the universe to be around 107%. Hence no
such table can be made.

So, how can we answer the question? We have given
the function 7 : Z — Z counting the number of primes,
see (0.1). In Section 7 we show 7(10%°!2) < 7£(10?13) (sim-
ple considerations, no deep theorems used). Conclusion:
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indeed there exists a prime number with exactly 2013 dig-
its (however we do not give a single precise example, we
just show existence). See (7.4), (7.8).

(4.10) The Catalan conjecture.
A+1=D', ADEZ., a,d € Ls.

Eugeéne Charles Catalan formulated in 1844 the conjec-
ture that 8 +1 =9 is the only solution to this equation
withA,D € Z-, and a,d € Z>,. Indeed, computing through
small values of the variables this sounds reasonable. Then
many computations were done, but no counterexamples
were found. Tijdeman showed in 1976 that there is an
upper bound for the solutions. However as the bound is
large, something like exp(exp(exp(exp(730)))) (where the
notation exp(a) := ¢” is used), a solution using computers
was still impossible; this bound was improved upon, but
still reality was far out of reach of direct computation. See
http://en.wikipedia.org/wiki/Tijdeman’27s_theorem.

We thought this was one of those problems too dif-
ficult for us. However it became clear that existing alge-
braic methods were sufficient to solve the problem: in-
deed 8 +1 =9 is the only solution, and the Catalan con-
jecture was proved as Preda Mihilescu showed in 2004; see
[31]. No big computers, just pure thought and “easy” the-
ory. To some of us this came as a surprise. See http://
en.wikipedia.org/wiki/Catalan\%27s-conjecture.

5. Fermat (Prime) Numbers

Consider the numbers
F=2" 41, i€Zs.

These are called Fermat numbers. Pierre de Fermat won-
dered whether all of these numbers are prime. We see that
F=3, F =5, B =17,

Fy =257, Fy=65537

indeed are prime numbers. However Euler proved in 1732:
Fs = 2% 41 = 4294967297 = 641 x 6700417

hence F5 is not a prime number. Also see (13.7).

A lot of research and a huge amount of computational
search has been done to find new Fermat prime numbers.
See http://en.wikipedia.org/wiki/Fermat-number.

At present we do not know a single Fermat prime num-
ber with i > 4. For many values of i we know F; is not
a prime number; see: http://www.prothsearch.net/fermat.
html.

(5.1) Exercise. Show:

(1) For every i > 0 we have F; = Fy X --- X F;_1 +2.

(2) For every 0 < i < j we have ged(F;, F;) = 1.

(3) Write P; for the smallest prime divisor of F;. Show
that {P, | i € Z-o} is an infinite set.

Conclude: the set of prime numbers is infinite (and we
obtain another proof of (3.1)).

(5.2) Exercise. Assume 2" + 1 is a prime number. Then
there exists i with m = 2. .

Hint: use the equality Y+ 1 = (Z’;g_] (=1)/Y/)(Y +1) for
odd a > 3.

[The question of primality of numbers of the form 2" =
(2°)* where m = ba has an odd divisor a bigger than one in
not very interesting ...]

(5.3) Construction of regular n-gons. Since mathematics
in Greek antiquity it was known that a construction with
ruler and compass could be carried out for a regular 3-gon
(a triangle), and a regular 5-gon; also bisection of angles
could be carried out with with ruler and compass. What
is the list of all n € Z>3 such that a regular n-gon can be
thus constructed? This question remained unanswered for
many centuries. - Before you read on, please contemplate:
is this a geometric question, or does it have its natural
place in another branch of mathematics?

Gauss proved on 29-March-1796 (in the morning lying
in bed, he was 18 years old) that a regular 17-gon could be
constructed with ruler and compass. Later he published in
[11], Chapter VII the following result:

Theorem (Gauss, 1796). A regular n-gon can be con-
structed with ruler and compass if and only if n > 3 can
be written as

n=2%xP x---xP

witho € Z>y and P, < --- < B, are mutually different Fermat
prime numbers.

Discussion. We do not know whether Gauss indeed had
an actual proof for this result. He never published a proof.
The case n = 17 was proved in [11] by a direct computation
(giving the length of a side of a regular 17-gon explicitly).
A complete proof was published in 1837 by Pierre Wantzel.

A modern proof can be given by using Galois theory,
a method not yet known in the time of Gauss. I would like
to know what Gauss had in mind. Did he foresee this impli-
cation of Galois theory? (Here the Galois group is abelian.)
Was he close to that result, e.g. in the abelian case, but did
not further develop his ideas? Perhaps we never can decide
this. Interesting historical material and questions.

We see that a problem (which regular n-gons can be
constructed with ruler and compass) is a problem in num-
ber theory (which Fermat numbers are prime; still un-
solved), and not a geometric problem, as we might have
thought earlier. See http://www.prothsearch.net/fermat.
html for the known factoring status of Fermat numbers.
You find information such as: no Fermat prime F; is known
for i > 4, and 269 Fermat numbers are known to be com-
posite, F>s43548 is not prime, and much more.

6. Mersenne (Prime) Numbers

We introduce Mersenne numbers:
M, =2"—1.

Which of these numbers are prime?
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(6.1) Exercise.

M, is a prime number = nis een prime number.

Hint: give a factorization of Y** — 1 with a,b € Z-,.
(6.2) However the opposite implication is not correct:
11 is a prime number, but 23 divides M;.
Indeed: M;; =2'"!' — 1 =2047 =23 x 89.
(6.3) For a prime number g = 2n+ 1 we have
27 —1=(2"—1)(2"+1);

hence ¢ divides either 2" — 1 or 2" 4 1. Here are two exam-
ples:

11 divides 2° + 1 = 33;
221 11 =43 x48771.

Here is a general statement for Sophie Germain prime
numbers:

Suppose p is a prime number, with p=3 (mod 4)
and q :=2p+1 is also a prime number; in that case q is
a divisor of 27 — 1.

(6.4) Exercise. The number 219,975,517 is a prime num-
ber; is it a Sophie Germain prime number?

Hint: what is the remainder after division by 6 of a Sophie
Germain prime number?

At present we know 48 Mersenne prime numbers, see
http://en.wikipedia.org/wiki/Mersenne-prime; http://
primes.utm.edu/largest.html#largest.

Does this give any evidence whether there are only fi-
nite or infinitely many Mersenne prime numbers? Exam-
ple: there are (only) exactly 20 Mersenne prime numbers
Ali<1102m6;Seehttp://primes.utm.edu/mersenne/

Give an estimate of the density of the density of
Mersenne prime numbers on this interval. (Does this con-
vince you there are very few Mersenne prime numbers?)

(6.5) Originally the interest in Mersenne number came
from a very classical topic:

Definition (Greek antiquity). A number N € Z+ is called
a perfect number if the sum of the positive divisors of N
equals 2N, or, if the sum of the divisors 1 <d < N equals N-:

def
<& N= Y d
1<d<N, d|N

N is perfect

We see:
6 = 2-M, is a perfect number, 28 = 22-M; is perfect,
496 = 2*.Ms is perfect; can we continue ...?
Show 219.M, is not perfect.

(6.6) Theorem (Euclid, Book IX, Proposition 36, and Euler).
A number N = 2m is perfect if and only is there is a prime
number p such that

M, is prime, and N =27""- (2" — 1) =27"'.M,.

Examples: p = 2,3,5,7,13,17,.... Warning: the theo-
rem treats even perfect numbers.
We show one implication, already proved by Euclid:
M, is prime = N:=27"'.M, is perfect.
Define o(N) to be the sum of divisors d of N with 1 <d <N.
Check:

o(2r"''M,) = (2'")-0(M,)
= (14244+-+271)-(1+M,)

:(2p—1)~2p:2N. O=
(6.7) Exercise. Give a proof of the other implication in this
theorem.

(6.8) A new Mersenne prime number was found in 2013:

237885161 _ 1 jg a prime number,

discovered on January 25, 2013 by Curtis Cooper at the
University of Central Missouri. This is an amazing result;
the organization needed for using many private comput-
ers is impressive. However did we get “any wiser”? This
number has 17,425,170 digits. See http://www.isthe.com/
chongo/tech/math/digit/m57885161/prime-c.html.

(6.9) Exercise. In 1603 Pietro Cataldi claimed (amongst
others) that 22° — 1 and 23! — 1 are prime numbers; can you
decide how far he was correct?

We see that interest in Mersenne primes originated in
the quest to find perfect numbers. However at present the
main interest in this topic is to see how efficient factoriza-
tion programs are. And it would be a great achievement if
we can find the underlying structure here.

For the history of Mersenne and his quest for (what
we now call) Mersenne prime numbers, see http://primes.
utm.edu/glossary/page.php?sort=MersennesConjecture

(6.10) Where are Mersenne primes located? See [5,
Figure 1 on page 15]: the ratio of 2log(*log(n-th Mersenne
prime number)) versus n is very close to linear, as far as we
can see for known Mersenne primes. Again an example of
“regularity” of the irregular behavior of prime numbers.
See http://primes.utm.edu/mersenne/heuristic.html
http://primes.utm.edu/notes/faq/NextMersenne.html

(6.11) Exercise. Mersenne thought that Mg; is a prime
numbers. Was he correct?
Hint: wuse a scientific
web2.0calc.com/# and
factoringcalculator.php.

calculator, e.g. http://

http://eng.numberempire.com/
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(6.12) Exercise. Is the number 25364758967463524364875
6834 a perfect number? (Underlying structure: you might
want to decide first what can be the last digit of a perfect
number, prove your result by pure thought, and then finish
the exercise.) See (13.8).

We have seen that a geometric problem (construction
of regular n-gons) gave rise to the further study of Fer-
mat numbers (and the problem remains basically open),
while the search for even perfect numbers is equivalent to
finding Mersenne prime numbers (and also here the final
outcome is basically open).

7. The Prime Number Theorem PNT

(Please remember that log(x) stands for the logarithm
with base e, see (2.3).)

As we saw in the introduction we like to have insight
in the “function” #(—) : R — Z. After ideas by Gauss and by
Legendre mathematicians thought it would be difficult to
prove their conjecture, untill Chebyshev in 1852 proved
the first result, astonishingly simple and powerful. Then
Hadamard and De la De la Vallée-Poussin proved in 1896
this deep theorem.

(7.1) The Prime Number Theorem (Chebyshev, Hada-
mard en De la Vallée-Poussin).

x
m(x) ~ Togx”

This says:

lim (n’(x)/x> =1

X—poo logx
Here is another formulation: Ve € R~y N € Z with:

x>N = (14)1L <)< (1+e)—.

ogx logx
Or: for real numbers A,B with 0 < A < 1 < B there exists
N € Z such that

A < m(x) <B—— VYx>N.
logx logx

(7.2) A slightly better estimate is

7(x)

X

- log(x) —1 ;

see [37, 2.19].
The history is that Chebyshev proved that for large x

we have

92 X 111

700 < (”W logx) <100’
see [6], before PNT was proved to be correct. Clearly this is
not enough to show that a limit exists, leave alone that the
limit would be equal to 1. However it was a breakthrough.
For a description of a simple and elementary proof giving
such a result, see [48]. It took another more than 40 years
before the beautiful and deep theorem PNT was proved,
see [16, 17, 42, 43]. Afterwards many new proofs were

given. Some were “elementary” (though not easy nor sim-
ple). For this fascinating story and many references (which
we have also used), see [7].

Sylvester showed in 1982

0.95695 < <7t(x) ) < 1.04423 x>0

X
/logx
refining the result by Chebyshev, using his methods.

In the literature we find many effective versions (fixing
one triple A, B, N), basically weaker than the PNT, but which
are very useful. We cite (and will use) the following

(7.3) Theorem (an effective version, weaker than PNT).

5

X
— < > 17, < =
w(x) x m(x) 1 Togx

x> 113.6,
logx

see [37, Coroll. 1 and Coroll. 2 on page 69].

Also see http://en.wikipedia.org/wiki/Prime-
number-theorem. For example:
x 4
x>55 =

— < < —.
log(x) +2 7 () log(x) —4
(7.4) An example. Because

2013 < 8 x 2012

we conclude:

5 102012
102012 < 2.
7(1075) < 3 3012 Tog 0 <

102013

2013-log 10

< m(10%"7).

Hence there exists a prime number with 2013 decimal dig-
its. Note that we showed existence, thus answering (1.7),
but we did not give a single example of such a prime num-
ber.

Remark. Also the much weaker version x/(3log(x)) <
m(x) < 3x/log(x)/x (easy to prove) gives the result just
proved.

(7.5) Corollary of PNT. The sequence {p, | n € Z~o} of all
prime numbers with p; < p;.1 Vi satisfies

pn ~ nlogn.

In other terms: for real numbers 0 < C < 1 < D there
exists N such that

n>N = C-nlogn < p, <D-nlogn.
A more refined version:
pn ~ n(log(n) +log(log(n)) — 1),

see [37, 2.19].
We can give an effective (weaker) version as follows

(7.6) Effective weak form. For n > 6 we have:
logn < Pn logn+log(logn).
n

See http://en.wikipedia.org/wiki/Prime-number-theorem;
see [37, Coroll. of Th. 3 on page 69].
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(7.7) An example. A calculation shows
D100,000,000,000 = 2,760,727,302,517.
For n = 100,000,000, 000 we have

nlog(n) ~ 2,532,843,602,293 and
log(n) +log(log(n)) ~ 2,856,036,374,098.

Indeed

2,532,843,602,293 < 2,760,727,302,517
< 2,856,036,374,098,

and we see that pure thought plus very little computation
gives a lower bound off less than 5% and an upper bound
off less than 4%.

(7.8) An application. Choose n =22 x 10%7, We see

log (10**7) ~ 4621.288281639 and
log(n) = 22-1og(10**"7) ~ 101668.342196059;

hence
1.01 x 102 < nlogn < p,.
Also we have log(logn) =~ 8.439097441; hence

pn < n(logn+1log(logn)) <22 x 10*°"7.(4621.29 + 8.44)
~ 101854.06 x 107 < 1.02 x 1022,

Conclusion:
102012+102010 <pn < 102012_’_2_102010.

We see this prime number is situated in the interval given,
hence py, g7 has exactly 2013 decimal digits. However
we do not the exact value of this prime number. Can
you give a reasonable guess? Can you give an exact lower
bound?

How many prime numbers are situated on the given in-
terval (10212 4102919102012 4+ 2.10%°1%)? Can you give a rea-
sonable guess, or an estimate? Can you give an exact lower
bound? However I think it is difficult (impossible?) to com-
pute the exact number by abstract methods. As these num-
bers seem too large to do exact calculations, it seems there
is no way to decide upon the exact number of prime num-
bers in this interval (and, would we really care to know?).

8. Heuristics

“Clearly, no one can mistake these probabilistic arguments
for rigorous mathematics and remain in a state of grace. Nev-
ertheless, they are useful in making educated guesses as to how
numbertheoretic functions should “behave'.” See [1, page 248].

We will discuss “heuristic arguments”, see http://
primes.utm.edu/glossary/xpage/Heuristic.html.

Such “educated guesses” usually do not prove any-
thing. However, as we will see our intuition can be guided

by it. Moreover we will see that they lead to expected re-
sults which many times fit very well with reality as soon
as we can do the necessary, cumbersome computations.
Hence it gives us the firm belief we are on the right track.
Please try to digest these ideas below. However (again),
please be aware that you do not prove anything this way.
Apply these intuitive methods on whatever problem you
feel attracted to (and we will give many examples).
Consider the statement:

“the chance that a given number n € Z- is a prime number
equals —L-.”

logn*

This is shear nonsense. The “chance that n = 1000 is a
prime number” is zero, and the “chance that 997 is a prime
number” is equal to 1. So what are we talking about? How-
ever this approach turns out to be useful.

There are basically two merits. Suppose you consider
n € Z~o and an interval of positive integers containing n of
length A. The number of primes in this interval is about
A/logn. We see in Section 7 this can be made precise: we
can give exact upper and lower bounds for this number
(not a guess, no statistics involved, but concrete results
which can be proved). In this way we have access to proofs.

We can also use this (dubious) method to obtain a feel-
ing for a possible answer. As long as we realize this is just
guessing (and we realize it does not prove anything), there
is nothing wrong with it. Here is an example (Fermat num-
bers):

(8.1) The chance (?) that F; is a prime number equals
1/10g(2%) = (1/2")(1/log?2); let us assume Fermat num-
bers are “randomly chosen” (whatever that is; also it is not
quite correct; these numbers are all odd, so have a bigger
“chance” to be prime, and also two different Fermat num-
bers are relatively prime, so they are not completely “at
random”). However let us not bother about such details
and sum these chances:

1 1 1 1

03"@ log(2?) log2 7.2 log?2
Hence there is a reasonable guess that the number of Fer-

mat prime numbers should be finite.

(8.2) Here is an example to show we have to be very care-
ful. Let us “prove” “there are infinitely many even prime
numbers” (??)

“Proof.” The “chance” that 2n is a prime number equals
1/1og(2n) (?), and clearly the sum Y 1/log(2n) diverges (the
last statement is right as Euler proved long ago).

(8.3) Exercise. Use this heuristic method on Mersenne
numbers. Although we only know very few Mersenne
primes, we have the firm belief that there are infinitely
many Mersenne prime numbers. Using the heuristics, we
can predict where approximately the next undiscovered
Mersenne prime number should be located, and every time
such predictions turn out to be rather accurate.

Try to give an estimate where the n-th Mersenne prime
number can be found, and confirm (6.10). See http://
primes.utm.edu/mersenne/heuristic.html.
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(8.4) Exercise. Use this heuristic method on the set of twin
primes; also here this method suggests a final outcome
(which we belief to be true).

Such methods have been refined. One can use heuris-
tic methods to predict the number of twin primes below a
given bound. Once this process of pure thought has been
carried out, an easy computation predicts this number.
Then one can try to compute the actual number (a hard
and long computation to obtain the exact number). We see
that, e.g. up to 10", the expected value is less than 1/10°
apart from the exact value, see [5, Table 1]. (In actual life, or
in court, this would immediately be accepted as “proof”).

(8.5) Exercise. Use a heuristic method to convince your-
self there should be infinitely many Sophie Germain prime
numbers; see (10.8).

(8.6) Exercise. Use a heuristic method to convince your-
self there should be infinitely many prime triplets.

(8.7) Exercise. Use a heuristic method to get a feeling for
Polignac’s conjecture, see (10.5)(1).

Methods mentioned in this section should be taken
with a grain of salt, as long as we insist on true facts, and
proved results. However we use these methods for getting
a feeling in which direction we should look for resutls.

See [5] for a discussion of heuristic methods, and for
many tables which show that such considerations can give
predictions with an amazing precision when compared
with the actual numbers computed.

(8.8) Exercise. Consider all primes of the form p =n? + 1
for all n € Z > 0. Is this number finite or infinite? What do
you expect if you apply heuristics? See [5, 3.8].

9. Computations Can Create Wrong
Expectations

As a little warning, we mention some cases of (a finite
number of) computations that can give a totally wrong im-
pression. Questions can be asked, and we could try to ob-
tain a feeling what might be the general answer by comput-
ing special cases. That can be a useful approach. However
sometimes we observe that the result suggested could be
wrong. Sometimes it even appears that the expected con-
clusion is false in infinitely many cases. There are exam-
ples that an abstract argument shows the expectation is
wrong, but that a computation that would show this is out
of reach (e.g. cases where numbers should be considered
with many more digits than the expected number of ele-
mentary particles in our universe).

(9.1) One can ask whether the sum

1
2 ]
p<N p
taken over all prime numbers with p < N is bounded or un-
bounded for N — . Performing computations, even cen-
turies long on a fast computer, could give a wrong impres-
sion. It would take longer than the age of the universe to

reach a sum above 6. However we know that Euler already
long ago showed that

1
Y — s divergent, i.e. unbounded.
p

See http://en.wikipedia.org/wiki/Proof_that_the_sum_
of _the_reciprocals_of_the_primes_diverges; http://en.
wikipedia.org/wiki/Meissel’,E2%80%93Mertens_constant;
http://primes.utm.edu/infinity.shtml.

On can show:

lim< Y p—log(log(x))) = By,
xmree p prime<x

as conjectured by Gauss in 1796 and proved by Mertens
in 1874; note that this sum indeed diverges very slowly.
The “Mertens constant” is B; ~ 0.261497. For example,
a machine computing 1000 prime numbers every second,
and adding 1/p to the previous sum needs something like
25 x 10% years to reach ¥, 1/p > 6.

(9.2) The Chebyshev’s bias. In 1835 Chebyshev per-
formed computation which suggested that (under every
upper bound x) the number 74 3(x) of prime numbers p =3
(mod 4) is larger than the number 74 ; (x) of prime numbers
g=1 (mod 4); also see (13.6). This (finite) number of com-
putations gave a certain suggestion. However Littlewood
showed that 7, 3(x) — ms,1(x) changes sign infinitely often
for x — oo, Even in the capable hands of Chebyshev the
wrong conclusion was suggested. Also see (13.6).

(9.3) In 1895 Hermite computed:
enxm.

He knew that this is not an integer. An approximation for
this number is:

™ V103 5 262537412640768743.99999999999925007 ... .

Suppose we should start this computation not knowing
theory behind this phenomenon. Seeing so many numbers
9 appearing (twelve in number) we could easily jump to the
conclusion this indeed could be an integer. See “The French
paper of Hermite (1859) ‘Sur la théorie des equations mod-
ulaires’ freely available at Google books” (google: <hermite
163>). In [39], A4 on page 192 we find an explanation how
you could come to the idea just computing this number.

(9.4) Li and pi. In the PNT as discussed in Section 7 we
see estimates for the function 7(x) which is counting the
number of prime numbers below x. We discussed the ap-
proximation x/log(x). A different one is given by the func-
tion Li(x):
x ]
Li(x):= [ -dm;

J2  t
see http://en.wikipedia.org/wiki/Prime_number_theorem
for details. This could be a better approximation for 7(x).
For “small” values of x we have:

Li(x) > m(x);
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Gauss and Riemann expected this inequality to hold for
all x. However, Littlewood proved in 1914:

e there do exist x with Li(x) < m(x);

e however the smallest one where this happens could
very well somewhere close to 103!6;

e the sign of Li(x) — m(x) changes infinitely often for
X — oo,

Concrete examples seem out of reach of actual computa-
tions. We see again that a finite amount of computations
can be misleading.

(9.5) The Mertens conjecture. We say k € Z- is square-
free if for every d € Z- the number d? does not divide .

We say that k € Z~ is not square-free in case there is
some d € Z-, where d? divides k.

The Mébius-function. For every k € Z-( we define u (k) €
{-1,0,+1}:

e (k)= —11in case k is square-free and the number of
prime factors in the factorization of k is odd,

e (k) =0if k is not square-free;

e (k) =41 in case k is square-free and the number of
prime factors in the factorization of k is even.

See http://nl.wikipedia.org/wiki/M),C3%B6biusfunctie.
We write

Suggestion. Compute (k) for all 1 <k <50, and compute
M(n) for all 1 <n < 50. What do we see?

The Mertens conjecture, 1897.
M(n)| <vn ¥n>1 (2?); seel[30].

This seems reasonable. Our computation for small n sug-
gests that |[M(n)| does not grow fast. And we can con-
template, and we can “explain” this: the prime numbers
2 and 3 come first, contributing —1, u(4) = 0, and only
for p(6) = 41 we obtain a positive contribution. Does this
vague idea lead anywhere?

For some time this conjecture was unproved (and not
refuted). As Mertens did, and later attempts showed, com-
putations seemed to confirm the conjecture (for “small” x).

Moreover it was shown that the Mertens conjecture
would imply the Riemann hypothesis (but probably not
conversely). We understand the interest in this conjecture.

In 1985 Andrew Odlyzko and Herman te Riele showed
the Mertens conjecture to be false, see [33]. An impressive
result. The proof uses abstract methods combined with ex-
tensive computations. Also we understand why our previ-
ous computations did not reveal the truth in this case:

e there is a number n < 9519 such that [M(n)| > /n;

e for n < 10" we have |M(n)| < \/n;

e a precise value n for which the Mertens conjecture
fails has not been found up to now.

See http://en.wikipedia.org/wiki/Mertens_conjecture.

I think this is a beautiful example how misleading a
finite amount of computations can be.

Postscript. Doing computations in order to obtain a feel-
ing for a mathematical problem can be a valuable ap-
proach. However at the same time we should keep in the
back of our mind that behavior of a finite number of pos-
sibilities need not to give the right suggestion in case an
infinite amount of cases is considered. Especially in num-
ber theory we see misleading situations.

10. Some Open Problems

Warning. Below we record some open problems. They
seem easy (at least in formulation). However many mathe-
maticians have tried hard to crack these nuts. If you want,
do some computations (but please realize that huge com-
puters and intricate algorithms already have been used,
and no concluding evidence has been found as yet). It
might be wise not spend the rest of your (mathematical)
life to solve any of these. (However in case you have a proof
or a counter example to any of the problems below you will
be front page news.)

It seems mathematicians have not yet found the right
angle of view, the decisive technique to tackle these prob-
lems. Often a completely new insight is necessary (and that
is the merit of beautiful open problems).

Here is an example. Fermat’s Last Theorem (formu-
lated around 1637) was an “isolated problem” for a long
period of time. In the 19-th century a new approach
seemed fruitful (ideal theory); indeed it did solve some
cases (and it is wonderful and gave rise to an important
new tool; you see how a question can trigger new devel-
opments). However FLT in general remained out of reach
then.

Here we write FLT for “Fermat’s Last Theorem”:

N

x7y,z,n€Z, n>3, x"er":Z” == xyZZO.

(For n =1 and for n = 2 this equation has many solutions.
Fermat claimed he had proved there are no solutions in
positive integers for n > 3.)

Then large computers were used, no counter examples
were found, and a huge (but finite) list of special cases was
solved.

In 1985 Gerhard Frey indicated a possible connection
with another open problem (elliptic curves and the con-
jecture of Shimura-Taniyama-Weil) and Ribet showed in-
deed STW = FLT. All of a sudden FLT was not anymore
an isolated problem but a corollary of something we all
thought to be true. Andrew Wiles knew the problem FLT
from his childhood, and elliptic curves and the STW con-
jecture were in the heart of his specialty; once this con-
nection was made Wiles started working on this, and the
great triumph (for Wiles, but also for pure mathematics)
was a solutions for both problems; pure thought was win-
ning the match started 350 years before, and computers
were not needed (except for processing and communicat-
ing manuscripts).
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Conjecture or Expectation? We sometimes use the word
“conjecture” for a statement we have the firm idea, but
not yet a proof, that it should be true. Personally I use
this word in a restrictive sense. If there is no structural
evidence, or other indications what kind of underlying
structure would imply the result, but still we are quite con-
vinced this should be true, I tend to use the word “expec-
tation”.

For all questions below “heuristic methods”, as in Sec-
tion 8, hint in the direction of expectations below. Ab-
stract methods, intricate algorithms, extensive computer
searches and many other methods have been used.

(10.1) Odd perfect numbers. See (6.5) for the definition
of a perfect number. We have reasonable insight (but no
definite conclusion) about the problem of all even perfect
numbers.

Does there exist an odd perfect number?

There is a huge amount of partial results, and of literature
about this problem. No odd perfect number is found as yet,
and we know there is no such below a large bound (which
is constantly improved upon); e.g. at present we know that
an odd perfect number, if it exists, has at least 300 decimal
digits and has a prime factor greater that 10?’; this might
discourage you to find an odd perfect number by hand. See
http://mathworld.wolfram.com/0OddPerfectNumber.html.

Expectation. There is no odd perfect number.(?)

Why should this be true? Up to now no examples have
been found. However I fail to see any structure or evi-
dence supporting this expectation. For further references
see http://primes.utm.edu/mersenne/.

Besides “numerical evidence” (they were not found by
many computations up to now), I see very little evidence
for this; also I do not see any heuristics for this. Numer-
ical evidence is a subjective argument; checking a finite
amount of numbers is still 0% of all possible cases.

(10.2) The Goldbach conjecture. In 1762 Christian Gold-
bach wrote a letter to Euler stating a conjecture. (By the
way, this is the first time in history, to my knowledge, that
the word conjecture was used with this meaning.)

Expectation. Every even number N = 2n > 4 can be written
as the sum of two prime numbers.(?)

See http://en.wikipedia.org/wiki/Goldbach27s_
conjecture.

The conjecture has been shown to hold up through
4 x 10'® and is generally assumed to be true, but re-
mains unproven despite considerable effort. See http://
en.wikipedia.org/wiki/Prime-number#0pen-questions.

Heuristic methods indicate Goldbach’s conjecture
should hold (but as we have seen and argued before this
is not a mathematical proof).

It is interesting to consult papers throughout history,
and see that there is a constant shift in terminology, it
resembles the tides, between “Goldbach’s problem” and
“Goldbach’s conjecture”.

(10.3) A variant. We say a prime p is a t-prime if either
p—2or p+2is aprime number (i.e. if p belongs to a twin).

Expectation (Goldbach’s conjecture for t-primes). Every
sufficiently large even integer is the sum of two t-primes.(?)

“The ternairy Goldbach problem says that any odd in-
teger n > 7 can be written as sum of three prime numbers.
This would be implied by a positive solution of the Gold-
bach conjecture. Recently the ternairy Goldbach problem
has been solved by H. A. Helfgott: http://xxx.lanl.gov/
pdf/1305.2897 .pdf.”

(10.4) Twin primes. A twin prime is a pair of prime num-
bers {p,q} with ¢ = p+ 2. There are many examples. Com-
puting twin primes you see that sometimes they are close
together (as close as possible), sometimes consecutive
pairs are relatively far away from each other. We write

m(x) =#({p| p < x, and p and p+2 are prime}).

http://en.wikipedia.org/wiki/
First-Hardy-Littlewood-conjecture.

Expectation. There are infinitely many twin primes.(?)

The function m, (—) again seems to be an example of an
“irregular function which is very regular when considered
on a large scale”.

In fact this can made more precise in the form of the
following expectation

? X
b1 ~2x0.66x ——.
) (fog)?
See http://en.wikipedia.org/wiki/Twin-prime. Numerical
results (a huge amount of computing) fit very well with
this.
An example:

m (10'%) = 808,675,888,577,436,

and
18

2x0.66 X ————
x ><(loglolg)2

~768,418,024,862,131.

The predicted number is 95% of the actual number.

Computation have produced large twin primes: “On
December 25, 2011 PrimeGrid announced that yet another
record twin prime had been found. It is 3756801695685 x
2066669 4 1 The numbers have 200700 decimal digits.”

For the history of the twin prime conjecture see
http://arxiv.org/abs/1205.0774.

Recently we have seen a spectacular new development.
Yitang Zhang showed that the set of gaps between prime
numbers has an accumulation point below 7 x 107; see [50].
(The twin-prime-number conjecture states that 2 appears
infinitely often, i,e, the smallest accumulation point is ex-
pected to be equal to 2.) See the three wonderful papers by
Henryk Iwaniec, Lizhen Ji and William Dunham about this
new result and about the twin-prime-number conjecture in
this journal: ICCM Notices vol. 1 No. 1, July 2013.

The notion of twin primes has been generalized in the
following way.
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(10.5) Gaps in the sequence of prime numbers.

(10.5)(1) Expectation, Polignac conjecture, 1849; see
[34, 35]. For every m = 2n € Z~ there are infinitely many
pairs of consecutive prime numbers (p;, pir1) With piy1 —
pi =m.(?)

This has neither been proved nor disproved for
any even m = 2n > 2. http://en.wikipedia.org/wiki/
Twin-prime.

In 1849 Alponse de Polignac stated the conjec-
ture (10.5) that every even number does appear infinitely
often as a prime gap, see [35]. We have to be cautious
for two reasons. One is that Polignac stated his idea as
“Théoréme”; however from the text we see clearly that he
did not prove anything, but just computed some evidence.
(The word “Théoréme” clearly stood for “statement” and
not for a proved fact.)

The second warning is that Polignac also stated:

Theorem (?!).
Every odd number can be written as the sum of a power
of 2 and a prime number

with the claim that this was verified up to three milion.
However we readily see that (as Euler already noted) that
127 and 959 cannot be written in this way.

(10.5)(2) Expectation For every positive number m = 2n €
Z- there are infinitely many pairs of prime numbers (p,q)
with g —p =m.(?)

Clearly, if (10.5)(1) holds, then (10.5)(2) holds.

For heuristic evidence for the Polignac conjecture see
[5]; from that paper, Table 2: for m = 210 consider the num-
ber of pairs of primes (p, p+210) with p < 10°; heuristics
predict this number to be equal to 10,960,950; exact com-
putation of this number gives 10,958,370; the prediction
is less than 0.03% off. Just one example of the incredible
precision of such heuristic predictions (for the cases which
can be verified).

Remark. We need to consider gaps of even length; for gaps
of odd length, see (11.3).

For tables of record gaps between prime constellations
(A. Kourbatov), see: http://xxx.lanl.gov/pdf/1309.4053.
pdf.

(10.6) Is the number of Fermat prime numbers
bounded? See Section 5. We write F; =2 for i € Zsy.

Expectation. The number of Fermat prime numbers is fi-
nite.(?)

See [23] for more information.

(10.7) Is the number of Mersenne prime numbers un-
bounded? See Section 6. We write M, =2" — 1 for n € Z-,.
We know that M, is prime implies n is prime.

Expectation. There are infinitely many Mersenne prime
numbers.(?)

Our experience and computations suggest: “most of
the Mersenne numbers are composite”. However we still
do not have an answer to:

(10.7)(bis) Is the number of composite Mersenne numbers
infinite.(?)

(10.8) Is the number of Sophie Germain prime numbers
unbounded? We say a prime number p is a Sophie Germain
prime number if also ¢ :=2p—+1 is a prime number; http://
oeis.org/ gives:

2,3,5,11,23,29,41,53,83,89, 113,131,173, 179, 191,233,239,
251,281,293,359,419,431,443,491,509,593,641,653,659,
683,719,743,761,809,911,953, 1013, 1019, 1031, 1049, 1103,
1223,1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, ...

Further examples:

..., 137211941292195 x 2171960 _ 1
18543637900515 x 2006667 _ 1 .

Expectation. There are infinitely many Sophie Germain
prime numbers.(?)

For p < 10* there are 190 Sophie Germain prime
numbers and for p < 107 there are 56032. See http://
en.wikipedia.org/wiki/Sophie-Germain-prime. See Con-
jecture (3.6) and Table 6 in [5] (a heuristic prediction for
the number of Sophie Germain prime numbers below a cer-
tain bound, which is incredibly precise as far as we can
check up to now).

Sophie Germain had a correspondence (at first un-
der de name Monsieur Le Blanc) with Gauss, and Gauss
was very impressed. For the primes mentioned above she
showed a proof for a case of FLT for such prime exponents.
She did not obtain (as a woman) enough recognition for
her mathematical contributions, but Gauss made a Doctor
Honoris Causa title for her available in Gottingen; however
she died before she knew (and before she could receive
that honor).

(10.9) The Collatz problem, or the 3x + 1 conjecture.
See (1.10). We define a function C: Z~y — Z~¢ by:
C2m):=m, C2m+1)=32m+1)+1;

(for n even we have C(n) = n/2 while for n odd we have
C(n)=3n+1).

Start with an arbitrary a; € Z-( and produce the se-
quence {ay,...,a;1 := C(a;),...}. This is called a Collatz
sequence. For example, starting with ¢; = 17 we obtain

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, ...
Observe that this ends with
42— 1—4—2—1—4etc.

Expectation. Every Collatz sequence sequence ends with
{4,2,1 etc.} (?).
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This has not been solved. We seem not to understand
which mechanism could give access to this problem.

Suggestion. Construct some of these sequences (every
time by choosing a; to start with), and observe the puz-
zling experience indeed the sequence ends as expected (or
do you try to find a counter example? In that case you bet-
ter start with a number with more than 500 decimal digits.)

We find a discussion of this problem and many refer-
ences in J. C. Lagarias The ultimate challenge: the 3x + 1
problem. AMS, 2010. See http://www.math.lsa.umich.edu/
Also  see: http://arxiv.org/pdf/math/

http://wuw.math.grin.edu/~chamberl/

~lagarias/
0608208v6 . pdf;
papers/3x-survey-eng.pdf;
wiki/Collatz-conjecture.

You can go to http://www.nitrxgen.net/collatz.php,
start with a positive integer (at most 500 decimal digits),
and you see the Collatz sequence appear.

Here is an example. Start with 27. After 111 steps we
see the end-tail of the Collatz sequence:

http://en.wikipedia.org/

27,82,41,124,62,31,94,47,142,71,214, 107,322, 161,484,
242,121,364,182,91,274, 137,412,206, 103,310, 155,466,
233,700,350, 175,526,263,790,395, 1186, 593, 1780, 890,
445,1336,668,334,167,502,251,754,377,1132,566,283,
850,425,1276,638,319,958,479, 1438,719,2158, 1079,
3238,1619,4858,2429, 7288, 3644, 1822,911,2734, 1367,
4102,2051,6154,3077,9232,4616,2308, 1154,577, 1732,
866,433, 1300,650,325,976,488,244, 122,61, 184,92, 46,
23,70,35, 106,53, 160,80,40,20, 10,5, 16,8,4,2, 1

Question. Is there a formula that for every a, € Z~y com-
putes the number of steps in the Collatz sequence starting
with a;until the first time 1 appears in this sequence? Ex-
perience shows that this length jumps up and down (in a
rather unpredictable way?) for growing a;.

We have only mentioned a very small part of conjec-
tures about prime numbers. For more see http://
en.wikipedia.org/wiki/Category:Conjectures-about-
prime-numbers.

We should have discussed the most intriguing one
(with many important implications): the Riemann hypoth-
esis. Unfortunately that would lead us much too far.

(10.10) In 1912 at the International Congress of Mathe-
maticians Landau listed four problems:

Goldbach (10.2),

n? <p<(n+1)*4.2),

twin primes (10.4) and

there are infinitely many primes of the form p =
n*>+1 (8.8).

= —

(1
2
3
(4

These were open (old) conjectures then, and still we seem
far from satisfactory answers or results. See [9]; see page 2
of http://arxiv.org/pdf/1205.0774v1.pdf.

Topics which I should have like to discuss, but which
would make this paper much too long:

RSA cryptography, however see [41] and http://
nl.wikipedia.org/wiki/RSA$_-$28cryptografie29 and the
ABC conjecture, however see http://en.wikipedia.org/
wiki/Abc-conjecture; http://wuw.math.leidenuniv.nl/
~desmit/abc/index.php?set=1; http://www.kurims.kyoto-

u.ac.jp/~motizuki/top-english.html.

(10.11) Conclusion We return to the list of 10 questions
in Section 1. I hope that you were surprised by the fact
that some are easy, while other problems are difficult and
remain unsolved. For some we have a feeling about what
the answer should be (but without conclusive proof), and
some of the problems can be answered with the help of
some deep, well-developed theory.

e Questions 1 and 2 have an answer, and proofs are very
easy.

e Questions 3, 4, 5, 6, 9, and 10 lead to difficult open
problems, and we still have no idea even where to
start. However “heuristics” give us a clear clue, with
great precision, what we should expect (I find this
amazing the “regularity” in such irregular processes).

e Questions 7 an 8 have an answer which can be given
now that we understand the underlying structure.

11. Four Easy Exercises

After so many easy and difficult questions, here are
three exercises: problems which you can solve by just be-
ing somewhat clever.

(11.1) Exercise 1. Show the set of prime numbers with

p=3 (mod4)

to be infinite.

Remark. It can be shown there are infinitely many prime
numbers with p =1 (mod 4); see (13.4).

(11.2) Exercise 2. Suppose given n € Z-y. Show there ex-
ists a € Z~( such that in the arithmetic progression

{a,a+n,a+2n,...} ={a+in|i€Zso}

there are infinitely many prime numbers.

Remark. A (deep)result by Dirichlet says that foranya,n €
Z~o with ged(a,n) = 1 in the arithmetic progression

{a,a+n,a+2n,...} ={a+in|i€Zso}

there are infinitely many prime numbers. In the previous
exercise you are supposed to give a(n easy and elementary)
proof of the special case as in the exercise, without using
Dirichlet’s theorem.

(11.3) Exercise 3. Show there exist infinitely many N € Z+
such that N is not the difference between two prime num-
bers.

(11.4) Exercise 4. Is it true that 7190 + [ = 19%6?
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12. Appendix I: Factorization of Integers

We record a result which can be found in (almost) ev-
ery textbook on algebra. You can try to give proofs of state-
ment below just by yourself.

(12.1) Remark. Every a € Z-, is divisible by a prime num-
ber.

(12.2) Theorem. Every a € 7Z~; can be factored a = p; X
.-+ X p, as a product of prime numbers.Once a is given, these
factors are unique up to ordering.

(12.3) Warning. We are so accustomed to uniqueness of
factorization (of integers) that we might overlook this
property does not hold in other number systems. Consider
the ring

T:=7Z[V-5={x+ya|xycZl,

with a? = —5, e.g. as subset of C. Note that
23=6=(1+v=5)-(1—v=5)

holds in T. It is easy to see that the factors 2,3,(1 +
vV=5),(1 —+/=5) € T are irreducible. We see that units in
T are +1,—1 € T. We conclude that factorization in 7 is
not unique (not even up to units, not even up to ordering
the factors).

It might very well be that Fermat overlooked this fact
when stating that his FLT should hold. In any case in
the 19-th century a “proof” of FLT was presented based
on this false assumption, see http://fermatslasttheorem.
blogspot.nl/2006/01/lams-proposed-proof.html although
Kummer already had shown that uniqueness of factoriza-
tion in the ring of integers in an arbitrary cyclotomic field
need not hold.

In case you want to find a proof you might use:

(12.4) Lemma (division with remainder). Assume given
n,d € Z with d > 0. There exist q,r € Z such that

(12.5) Lemma. Suppose given a,b € 7. Write d := gcd(a,b).
There exist x,y € 7, such that

xa+yb=d.
Give a proof of (12.4), of (12.5), and use these to prove

Theorem (12.2).

13. Appendix II: Integers Modulo ~

This section contains a description of a well-known el-
ementary method.

(13.1) Computing modulo n. Suppose given n € Z-.,. Con-
sider the set of symbols

Z/n:={0,1,....,n—1}.

In this set we define addition, subtraction and multiplica-

tion. We put m = m — in, and we give the map

Z—Z/n, mw— m.
In other words: for m € Z we write m = dn +r with 0 <
r = r(m) < n (division with remainder) and we map m € Z
onto r(m) = 7. We write @+b = a+ b (“addition mod n), and
analogous definitions for ab en a — b.

In technical terms: Z/n is a ring, and the natural map
Z — 7Z/n is a ring-homomorphism. Taking » into account
of the notation, we write 7 = m mod n.

Please distinguish (m mod n) € Z/n (the residue class
of m mod n) on the one hand and ¢ = b (mod n) on the
other hand.

An example. Does the equation 72 = 47440033367001212
have a solution in Z? [Compute mod 3.]

Or: which decimals appear at the end of a square in Z? [Le.
compute mod 10.]

Moreover, as we can see: for every prime number p
every 0 #a € Z/p has an inverse. Can you prove this? In
technical terms: Z/n is a field if and only if n is a prime
number.

We will often use the following theorem.

(13.2) Theorem (The Chinese remainder theorem). For
m,n € Z with gcd(m,n) = 1 there is a natural map

Z/(mn) — Z/mxZ/n
which is an isomorphism (a bijective map respecting + and
x and —).

(13.3) Proposition (Sums of squares). Let A,B € Z-, and
let p be a prime number that divides A> + B but does not
divide A (and hence p does not divide B). Then

pP#E3

For a proof you might want to use the group
structure of the multiplicative group (F,)* :=F, — {0}.
See Th. 5 in http://www.maa.org/editorial/euler/how/,
20euler’20did’%20it%2041%20factoring%20£5. pdf

(mod 4).

Remark. There are infinitely prime numbers with p =3
(mod 4). See (11.1).

(13.4) Corollary. There are infinitely many prime numbers
pwithp=1 (mod 4).

Proof. (We present a variant of the proof of Euclid,
see (3.1).) Assume Py,...,P, are odd prime numbers with
t > 0. We show there exists a prime number P with
P=1 (mod4) en P¢{P,....R}.
This claim would prove the proposition.
Take

M:= (P x---xP)*+4.
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Note that M is odd. From (13.3) we conclude that every
prime number P dividing M has the property P = 1
(mod 4). If we would have P € {P,...,} we would
conclude

P divides M — (P, x --- x P,)* = 4,

a contradiction. Hence P ¢ {P,...,h}. We have con-
structed a new prime number with P=1 (mod 4). O

(13.5) Remark. We proved that any prime of the form =3
(mod 4) is not a sum of squares in Z. Conversely, 2 and
every prime of the form =1 (mod 4) can be written as a
sum of squares.

(13.6) Remark. Write 74 | (x) for the number of prime num-
bers with p =1 (mod 4) and p < x; analogously 4 3(x) for
the number of prime numbers with p =3 (mod 4) and
p <x. Try to compute these numbers for small x. You will
note that these numbers are close. (Which one seems big-
ger?) Indeed, asymptotically, for x — oo they are equal:

b
lim —2! (x)

xve 4 3(X)

as follows form a much more general theorem, Cheb-
otarev’s density theorem; see http://en.wikipedia.org/
wiki/Chebotarev/27s_density_theorem.

In a letter in 1835 Chebyshev writes to Fuss that it
seems that 7 3(x) > 7 (x) for every x. This is now called
“Chebyshev’s bias”. This started a fascinating history, with
beautiful results; see http://arxiv.org/pdf/1210.6946v1.
pdf.

In fact, much later Littlewood showed (1914):

ms3(x) — a1 (x) changes sign infinitely often for x — eo.

See [28]. A more precise result is in [38]. See [14], a beau-
tiful paper on a fascinating subject. It was proved that
Chebyshev was nearly correct: for “many” values of x we
have 43 ()C) > 7'[4’1()6).

An example that an “easy” question can lead to beau-
tiful research, that a simple-minded problem can lead to
deep results (as is the case so often in mathematics). Also
we see that a finite amount of computation (even by a great
mathematician like Chebyshev) may lead to a wrong im-
pression.

(13.7) An example of computing modulo n. We show that
641 divides Fs. We see:

641 =640+1=52"+1=625+16 =5%+2*

This implies

52"=—1 (mod 641), hence 5*2*7 = +1 (mod 641);
hence

—2428 =528 =11 (mod 641);

hence Fs=0 (mod 641). O

Also see: http://www.maa.org/editorial/euler/how},
20euler’20did’%20it%2041%20factoring%20£5 . pdf.

(13.8) Exercise. (1) Show that the last decimal digit of a
number of the form 2" is 2,4,6 or 8.
(2) Show that the last decimal digit of a Mersenne
prime number is 1,3 or 7; show all these cases do occur.
(3) Show that the last decimal digit of an even perfect
number is either 6 or 8.

14. Some Mathematicians

We list some mathematicians mentioned above.
(300 BC) Euclid of Alexandria
(1552-1626) Pietro Antonio Cataldi
(1588-1648) Marin Mersenne
(1601 or 1607/8-1665) Pierre de Fermat
(1690-1764) Christian Goldbach
(1707-1783) Leonhard Euler
(1752-1833) Adrien-Marie Legendre
(1776-1831) Marie-Sophie (Sophie) Germain
(1777-1855) Carl Friedrich Gauss
(1814-1894) Eugene Charles Catalan
(1817-1890) Alphonse de Polignac
(1821-1894) Pafnuty Chebyshev
(1865-1963) Jacques Solomon Hadamard
(1866-1962) Charles Jean de la Vallée-Poussin
(1906-1998) André Weil
(1910-1990) Lothar Collatz
(1927-1958) Yutaka Taniyama
(1943-) Robert Tijdeman
(1930-) Goro Shimura
(1937-) Yuri Ivanovitch Manin
(1944-) Gerhard Frey
(1947-) Yuri Matiyasevich
(1948-) Kenneth Alan Ribet
(1951-) Don Bernhard Zagier
(1953-) Andrew Wiles
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The text by Don Zagier in [48]:

There are two facts about the distribution of prime
numbers of which I hope to convince you so overwhelmingly
that they will be permanently engraved in your hearts.

The first is that, despite their simple definition and role
as the building blocks of the natural numbers, the prime
numbers belong to the most arbitrary and ornery objects
studied by mathematicians: they grow like weeds among
the natural numbers, seeming to obey no other law than
that of chance, and nobody can predict where the next one
will sprout.

The second fact is even more astonishing, for it states
Jjust the opposite: that the prime numbers exhibit stunning
regularity, that there are laws governing their behaviour,
and that they obey these laws with the almost military pre-
cision.

Don Zagier
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This table compare x with 7(x), gives 7(x) — fogr and n(x)/ foex» and the average length of gaps under the bound given.

Copied from: http://en.wikipedia.org/wiki/Prime-number-theorem.

x n(x) () - e | 710/ | 4/a0)
10 4 -0.3 0.921 | 2.500
10? 25 3.3 1.151 | 4.000
103 168 23 1.161 | 5.952
107 1,229 143 1.132 | 8.137
10° 9,592 906 1.104 | 10.425
10° 78,498 6,116 1.084 | 12.740
107 664,579 44,158 1.071 | 15.047
108 5,761,455 332,774 1.061 | 17.357
10° 50,847,534 2,592,592 1.054 | 19.667
1070 455,052,511 20,758,029 1.048 | 21.975
10™ 4,118,054,813 169,923,159 1.043 | 24.283
1012 37,607,912,018 1,416,705,193 1.039 | 26.590
1073 346,065,536,839 11,992,858,452 1.034 | 28.896
10™ 3,204,941,750,802 102,838,308,636 1.033 | 31.202
1015 29,844,570,422,669 891,604,962,452 1.031 | 33.507
10 279,238,341,033,925 7,804,289,844,393 1.029 | 35.812
10" 2,623,557,157,654,233 68,883,734,693,281 1.027 | 38.116
108 24,739,954,287,740,860 612,483,070,893,536 1.025 | 40.420
107 234,057,667,276,344,607 5,481,624,169,369,960 1.024 | 42.725
10% 2,220,819,602,560,918,840 49,347,193,044,659,701 1.023 | 45.028
107 21,127,269,486,018,731,928 446,579,871,578,168,707 1.022 | 47.332
1022 201,467,286,689,315,906,290 | 4,060,704,006,019,620,994 1.021 | 49.636
102 | 1,925,320,391,606,803,968,923 | 37,083,513,766,578,631,309 1.020 | 51.939

Here are the 168 primes under 1,000:

2357111317192329313741434753596167717379838997101103107109113127131137139149151
157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307
311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827

829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997

Some gaps are quite large; copied from: http://www.dms.umontreal.ca/~andrew/PDF/cramer . pdf.

Pn | Pn+1 — Pn

31397 72

370261 112

2010733 148
20831323 210
25056082087 456
2614941710599 652
19581334192423 778
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