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Introduction

In 1839, Dirichlet gave his remarkable proof that there
are infinitely many primes of the form an+b (n = 1,2, . . .),
where a,b are any pair of positive integers with (a,b) = 1.
His proof used L-functions in a fundamental way for the
first time in number theory, as well as proving the above
result on primes in arithmetic progressions. In particular,
his work established the first exact formula in number the-
ory for the class number of an imaginary quadratic field.
Let p be a prime > 3 with p ≡ 3mod4 and let h(Q(

√−p))
be the class number of Q(

√−p).

Theorem 1 (Dirichlet). If p≡ 3mod4 and p > 3, then

h(Q(
√−p)) =− 1

p

p−1

∑
a=1

a

(
a
p

)
.

No proof of this formula, or even that the right hand side
is an integer > 0, which does not involve L-functions, has
ever been found.

About 120 years after Dirichlet, Birch and Swinnerton-
Dyer [1] discovered by numerical calculations that there
seems to be a similar deep connection between the arith-
metic of elliptic curves defined over Q and their associated
complex L-functions. This is the so-called “Conjecture of
Birch and Swinnerton-Dyer”, and is the topic of this short
and informal course of lectures, given at Tsinghua Univer-
sity and the Chinese Academy of Sciences in Beijing, China,
and Tsinghua University in Hsinchu, Taiwan in the sum-
mer of 2013. This conjecture is still largely unproven. We
will begin by briefly explaining what was known about it
until recently. By beautifully generalizing some old work
of Heegner [8], Ye Tian [12, 13] has very recently made
important progress on this conjecture for one family of
elliptic curves (the quadratic twists of the elliptic curve
y2 = x3− x), and it is now an important question to gen-
eralize his method to the quadratic twists of all elliptic
curves defined over Q. In the latter part of the lectures,
I will discuss joint ongoing work (see [2]) with Yongxiong
Li, Ye Tian and Shuai Zhai, which makes a first step in this
direction by establishing analogous results for the elliptic
curve E = X0(49) with equation y2 + xy = x3− x2−2x−1.

For a beautiful and elegant summary of the back-
ground on the arithmetic of elliptic curves which we will
need, Tate’s old article [11] is still the best introduction to
the subject.

I am extremely grateful to Baoshan Wang for his in-
valuable help in preparing the tex file of these lecture
notes, and to Ming-Lun Hsieh and Ye Tian for their very

careful proof reading of the final manuscript. I also want to
warmly thank Professor Ming-chang Kang, without whose
kind assistance, and infinite patience with my corrections,
these lecture notes would never have been published.

Finally, we give below a list of some of the basic nota-
tion, which will be used later in the lectures, without com-
ment.

• A – an abelian group.

• n > 1, A[n] = Ker( A
n �� A ).

• p – prime, A(p) =
⋃

m≥1 A[pm].
• F – a field, Fs – its separable closure; if A is a Gal(Fs/F)-

module, we write Hi(F,A) for Hi(Gal(Fs/F),A).
• E – an elliptic curve, which will nearly always be as-

sumed to be defined over Q.
• E(F) – group of F-rational points for any extension

F/Q

Classical Descent Theory

We briefly recall the main facts without proofs. Let E
be any elliptic curve over Q. By beautifully generalizing
Fermat’s proof that 1 is not a congruent number, Mordell
proved:

Theorem 2 (Mordell). E(Q) is a finitely generated abelian
group.

In practice, we can virtually always determine E(Q) for
a given numerical example, but theoretically no algorithm
for calculating E(Q) in a finite number of steps has ever
been proven.

Definition 3. Define gE = dimQ(E(Q)⊗Z Q), the rank of
E(Q).

Example 4. Let E : y2 = x3 − 82x. Then gE = 3, and gen-
erators modulo torsion are given by (−9,3), (−8,12), and
(−1,9).

In classical descent theory, we take an integer m > 1,
and take Gal(Q/Q)-cohomology of the exact sequence

0 �� E[m] �� E(Q)
m �� E(Q) �� 0

obtaining the exact sequence

0 �� E(Q)/mE(Q) �� H1(Q,E[m])
jm �� H1(Q,E)[m] �� 0.

Definition 5. Define X(E) = Ker(H1(Q,E) → ⊕
v H1(Qv,

E)), called the Shafarevich-Tate group of E , where v runs
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over all places of Q, and Qv denotes the completion of Q
at v.

Definition 6. Define Selm(E) = j−1
m (X(E)[m]), the m-Sel-

mer group of E .

Hence we have the basic exact sequence

0 �� E(Q)/mE(Q) �� Selm(E) �� X(E)[m] �� 0.

Theorem 7. The group Selm(E) is finite for all m > 1.

There are many ingenious classical techniques for cal-
culating Selm(E) for small m. But, as we shall see later, it is
a subtle question even to calculate Sel2(E) in many cases.
Only one deep theoretical result is known about X(E). Let
X(E)div be the maximal divisible subgroup of X(E).

Theorem 8 (Cassels-Tate). There is a canonical non-
degenerate alternating bilinear form on X(E)/X(E)div.

Corollary 9. The vector space (X(E)/X(E)div)[p] has even
Fp-dimension.

Corollary 10. If X(E)div(p) = 0, then �(X(E)(p)) is a
square.

Classical Galois cohomology shows that, for some in-
teger tE,p ≥ 0, we have

X(E)(p) = (Qp/Zp)
tE,p

⊕
(a finite group),

so that X(E)(p)div = (Qp/Zp)
tE,p .

Conjecture. The group X(E) is finite.

To settle this conjecture is unquestionably one of the
major problems of number theory. However, it has never
been proven so far for a single elliptic curve with gE ≥ 2.
It would of course imply that tE,p = 0 for every p. To date,
only one deep fact is known about the tE,p as p varies over
all primes.

Theorem 11 (T. & V. Dokchitser). The parity of tE,p, i.e. tE,p
mod 2, does not depend on p.

If we combine this result with the second corollary
above of the Cassels-Tate theorem, we obtain the following
lemma.

Lemma 12. Assume that Sel2(E)/ Im(E(Q)tors) has order 2.
Then either (i) gE = 1 and X(E)(2) = 0, or (ii) gE = 0,
X(E)(2) = Q2/Z2, and X(E)(p) ⊃ Qp/Zp for every odd
prime p.

Of course, we want to prove that the second possibil-
ity can never occur. Until recently, this problem seemed
largely inaccessible. But Tian [12, 13] has introduced a
beautiful new idea which should enable us to eventually
prove this for many elliptic curves.

We end this section by recalling another open prob-
lem about the Tate-Shafarevich groups of elliptic curves
defined over Q. Presumably, there do exist arbitrarily large
primes p such that there exists some elliptic curve E/Q
with X(E)(p) 	= 0, but this has never been proven. At

present, the largest prime p for which this is known to
occur is p = 1627. Indeed, calculations of Z. Liang and D.
Wei show that X(E)(1627) is finite of order 16272 for the
elliptic curve

E : y2 = x3− (7173305747)2x.

L-Functions

Although the above questions only involve purely
arithmetic phenomena, it seems that there is no way to
attack them without the use of L-functions. We briefly re-
call the definitions and key facts about these, without any
proofs. Let E be an elliptic curve over Q, and take any
global minimal Weierstrass equation for E :

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6.

Let Δ be the discriminant of this equation. We recall that
the conductor C(E) of E is defined by

C(E) = ∏
p|Δ

p fp ,

where fp = 1 if E has multiplicative reduction at p (i.e. the

reduction Ẽ at p has a node), and fp = 2+ δp if E has ad-

ditive reduction at p (i.e. Ẽ has a cusp). Moreover, δp = 0
when p≥ 5.

Example 13. Let E : y2+xy = x3−x2−2x−1, then Δ =−73,
j =−33 ·53 and C(E) = 49. In fact, E has complex multipli-
cation by the ring of integers of Q(

√−7).

For each prime p, define Ap by letting Ap− 1 denote
the number of solutions of the congruence

y2 +a1xy+a3y≡ x3 +a2x2 +a4x+a6 mod p,

and then define

tp = p+1−Ap.

If (p,Δ) = 1, we have |tp| ≤ 2
√

p by Hasse’s theorem. If p
divides Δ, then tp = 1 if E has multiplicative reduction at p
with tangents at the node defined over Fp, tp =−1 if E has
multiplicative reduction at p with tangents at the node not
defined over Fp, and tp = 0 when E has additive reduction
at p. The complex L-series of E is then defined by the Euler
product

L(E,s) = ∏
p|Δ

(
1− tp p−s

)−1 ∏
(p,Δ)=1

(
1− tp p−s + p1−2s

)−1
.

This Euler product defines a Dirichlet series

L(E,s) =
∞

∑
n=1

cnn−s,

where cp = tp for every prime p, and which converges in the
half plane Re(s) > 3

2 . To prove the analytic continuation
and functional equation for L(E,s), we need the following
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deep theorem. Let Γ0(C(E)) be the subgroup of SL2(Z) con-
sisting of all matrices

(
a b
c d

)
with c ≡ 0 mod C(E). Let H

be the upper half complex plane, and put q = e2πiτ with
τ ∈H . Define

fE(τ) =
∞

∑
n=1

cnqn.

Theorem 14 (Wiles [14] et al). The holomorphic function
fE(τ) is a primitive cusp form of weight 2 for Γ0(C(E)).

The key corollary of this theorem for us is the follow-
ing. Define

Λ(E,s) =C(E)s/2(2π)−sΓ(s)L(E,s).

Corollary 15. The function Λ(E,s) can be analytically con-
tinued to an entire function of s, and satisfies the functional
equation

Λ(E,s) = wEΛ(E,2− s),

where wE =±1.

The root number wE =±1, which can be computed as a
product of purely local factors, is important for us because
we see immediately from the above functional equation
that L(E,s) has a zero at s = 1 of even or odd multiplicity,
according as wE =+1 or −1.

A second corollary of the above theorem is of great
importance. Define the modular curve X0(C(E)) by

X0(C(E)) = Γ0(C(E))\(H ∪P1(Q)),

where P1(Q) denotes the projective line over Q. Then
X0(C(E)) is the set of complex points of a projective curve
defined over Q, which we also denote by X0(C(E)). Let [∞]
be the cusp at ∞ (i.e. corresponding to ∞ ∈ P1(Q)).

Corollary 16. There is a non-constant rational map defined
over Q

ϕ : X0(C(E))→ E

with ϕ([∞]) =O.

Example 17. Take E : y2 = x3−x, C(E) = 32. One can show
that there exists

ϕ : X0(32)−→ E

with ϕ([∞]) =O and ϕ of degree 2.

Example 18. Take E : y2 + xy = x3− x2−2x−1, C(E) = 49.
One can show in this case that we have an isomorphism

ϕ : X0(49)−→ E

with ϕ([∞]) =O.

Finally, we remark that, in the special case when E ad-
mits complex multiplication, there is a totally different
method for proving the analytic continuation and func-
tional equation for L(E,s), which goes back to Eisenstein
and Kronecker in the 19th century (and which probably
motivated the later work of Hecke). We will discuss this in

detail later, when we come to apply it. Indeed, it turns out
to be very useful in studying certain aspects of the conjec-
ture of Birch and Swinnerton-Dyer. There seems to be no
analogue of this method for elliptic curves without com-
plex multiplication.

The Conjecture of Birch and Swinnerton-
Dyer

The conjecture asserts that there is a remarkably close
link between the arithmetic of E (i.e. the groups E(Q) and
X(E)), and the behaviour of L(E,s) at s = 1, including a
beautiful exact formula. All aspects of the conjecture have
been tested numerically more extensively than any other
conjecture in the history of mathematics, and have always
confirmed every aspect of the conjecture. But, as we shall
see, our knowledge as far as proofs of theoretical results
is much more limited.

Definition 19. rE = ords=1 L(E,s).

We recall that gE = rank of E(Q).

Weak Birch-Swinnerton-Dyer Conjecture. For all elliptic
curves E/Q, we have

rE = gE .

Before discussing what is known about this statement,
let us discuss its parity implications. Indeed this weak
Birch-Swinnerton-Dyer Conjecture would immediately im-
ply the

Strong Parity Conjecture. For all elliptic curves E/Q, we
have

rE ≡ gE mod 2.

Recall that the parity of rE is determined by the func-
tional equation

Λ(E,s) = wEΛ(E,2− s)

which gives immediately that wE = (−1)rE . Thus we see
that the strong parity conjecture would imply, in particu-
lar, that we must have E(Q) infinite when wE =−1. Very lit-
tle in general is still known about this assertion, although
Ye Tian’s method, which we will discuss later, should even-
tually enable us to prove it in many more cases than before.

Example 20. Let N be a square free positive integer, and
let E(N) : y2 = x3−N2x. Then a classical computation shows
that wE(N) = +1 if N ≡ 1,2,3 mod 8, and wE(N) = −1 if N ≡
5,6,7 mod 8.

We recall that an integer N ≥ 1 is said to be congruent
if it is the area of a right-angled triangle all of whose sides
have rational length. It is easy to see that gE(N) > 0 if and
only if N is congruent. The smallest three congruent num-
bers are N = 5,6,7. In fact, we see that the strong parity
conjecture implies:

Conjecture. Every positive integer N ≡ 5,6,7 mod 8 is a
congruent number.
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The only general result known about the strong parity
conjecture is the following. Recall that the integer tE,p ≥ 0
is defined by

X(E)(p)div = (Qp/Zp)
tE,p .

Weak Parity Theorem (T. Dokchitser & V. Dokchitser [5]).
For all elliptic curves E/Q, and all primes p, we have

rE ≡ tE,p +gE mod 2.

Corollary 21. The parity of tE,p is independent of p.

For any prime number p, define

Sp(E) = Selp(E)/ Im(E(Q)tors).

Corollary 22. Let p be any prime number. Then the Fp-di-
mension of Sp(E) is even if and only if the root number wE

of E is equal to +1.

Proof. Let A(p) = X(E)(p)/X(E)(p)div. Then, writing sp

for the Fp-dimension of Sp(E), we see immediately that

sp = gE + tE,p +mp,

where mp denotes the Fp-dimension of the kernel of mul-
tiplication by p on A(p). But, as mentioned earlier, the
Cassels-Tate pairing shows that mp is necessarily even, and
so the assertion follows immediately from the Dokchitser
brothers’ theorem.

Corollary 23. If wE = −1 and gE = 0, then necessarily
tE,p ≥ 1 for all primes p.

Of course, we believe that one can never have tE,p ≥ 1 for
even one prime p, and it remains one of the major chal-
lenges of number theory to prove it.

The best result to date in the direction of the weak
Birch-Swinnerton-Dyer Conjecture is the following deep
theorem:

Theorem 24 (Kolyvagin [9], Gross-Zagier [7]). Assume
rE ≤ 1. Then rE = gE and X(E) is finite.

However, while it is usually easy to decide in numer-
ical examples whether or not rE ≤ 1, very little is still
known about establishing this assertion theoretically for
large families of elliptic curves.

The Exact Birch-Swinnerton-Dyer Formula

The full Birch-Swinnerton-Dyer Conjecture is the weak
Birch-Swinnerton-Dyer Conjecture that rE = gE , together
with an exact arithmetic formula for the constantLE such
that

L(E,s) =LE(s−1)rE +higher order terms.

The formula for LE involves the following arithmetic in-
variants. Firstly, there is a regulator term coming from the
Neron-Tate height. If α = m

n , with m and n relatively prime
integers, is any rational number, we define its height to

be h(α) = log(max(|m|, |n|)). Then Néron and Tate proved

that there is a unique real-valued function ĥ on E(Q) such

that, for all P in E(Q), we have (i) ĥ(2P) = 4ĥ(P), and (ii) the

difference ĥ(P)−h(x(P)) (for any fixed generalized Weier-
strass equation for E) is bounded. We then define the bi-
linear form

Definition 25. 〈P,Q〉= 1
2

(
ĥ(P⊕Q)− ĥ(P)− ĥ(Q)

)
.

This bilinear form can be shown to be positive definite
on E(Q)⊗R. Thus, if P1, . . . ,PgE are any basis of E(Q) mod
torsion, we can define

Definition 26. R∞(E) = det〈Pi,Pj〉.
By positive definiteness, R∞(E) 	= 0. The next, and

somewhat unexpected, ingredient in the formula for LE

are the so called Tamagawa factors cv(E) for v = ∞, and
finite primes v dividing C(E). We again suppose that we
have fixed a minimal generalized Weierstrass equation for
E , and we write ΩE for the least positive real period of the
Néron differential on E , which is given by

ω =
dx

2y+a1x+a3
=

d℘(z)
℘′(z)

= dz.

Definition 27. c∞(E) = δEΩE , where δE is the number of
connected components of E(R).

Next assume that p divides C(E). Let E0(Qp) be the
subgroup of points of E(Qp) with non-singular reduction
modulo p. The minimality of our generalized Weierstrass
equation guarantees that the index [E(Qp) : E0(Qp)] is fi-
nite.

Definition 28. If p divides C(E), define cp(E) = [E(Qp) :
E0(Qp)].

Tate gave a simple algorithm for computing cp(E)
by working laboriously with an explicit Weierstrass equa-
tions. We also have

Lemma 29. If E has split multiplicative reduction at p, then
cp(E) = ordp(Δ). In all other cases cp(E)≤ 4.

We shall establish some results about the computation
of cp(E) for primes p additive reduction a little later in
these lectures.

Full Birch-Swinnerton-Dyer Conjecture. We have rE = gE ,
X(E) is finite, and

LE

c∞(E)
=

�(X(E))R∞(E)
�(E(Q)tors)2

· ∏
p|C(E)

cp(E).

Example 30. Take E : y2 + xy = x3− x2− 2x− 1, then E =
X0(49), C(E) = 49, E(Q) = Z/2Z, and rE = 0. We have

c∞(E) = ΩE =
Γ( 1

7 )Γ(
2
7 )Γ(

4
7 )

2π
√

7
(Chowla-Selberg),

LE

c∞(E)
=

L(E,1)
ΩE

=
1
2
, R∞(E) = 1, c7(E) = 2.
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Hence we get

1
2
=

�(X(E))
4

×2,

and so the full Birch-Swinnerton-Dyer conjecture is valid
for E provided �(X(E)) = 1. In fact, this is known to be
true in this case.

The above exact formula has been tested numerically
in a vast number of cases. We now explain our much more
limited theoretical knowledge about this exact formula,
discussing first rationality questions. Of course, this con-
jecture predicts, in particular, that

Conjecture. For all elliptic curves E/Q, we have

LE

c∞(E)R∞(E)
∈Q.

The difficult case of the following theorem, in which
rE = 1, is due to Gross and Zagier [7]

Theorem 31. If rE ≤ 1, then LE/(c∞(E)R∞(E)) ∈Q.

Note that Kolyvagin [9] proved the deep result that
rE ≤ 1 implies that rE = gE and X(E) is finite. But we stress
it is unknown at present how to prove that gE ≤ 1 implies
that rE = gE . If we make the stronger hypothesis that gE ≤ 1
and X(E) is finite, then some results about rE = gE can be
proven using Iwasawa theory (e.g. it is true when E admits
complex multiplication). When rE ≥ 2 (in particular, when
gE ≥ 2), we stress that it has never been proven for a single
elliptic curve E thatL∞/c∞(E)∈Q. Of course, numerically
it seems always to be true, but no proof is known for a
single E .

We now discuss what is known about the exact Birch-
Swinnerton-Dyer formula when we assume rE = 0. Recall
that, by Kolyvagin, rE = 0 implies that E(Q) and X(E) are
both finite. In this case, LE = L(E,1) and R∞ = 1. Define

L(alg)(E,1) =
L(E,1)
c∞(E)

,

which has long been known to be a rational number in ac-
cord with the Birch-Swinnerton-Dyer conjecture. But, even
in this special case, the full exact Birch-Swinnerton-Dyer
formula is only known in a few isolated examples, despite
much loose talk to the contrary in the literature! In view
of this, it is convenient to break the exact formula up into
a p-part for all primes p. Put Tam(E) = ∏q|C(E) cq(E). Then
we have the following p-part of the Birch-Swinnerton-Dyer
conjecture:

Conjecture. Assuming rE = 0, we have, for all primes p,

ordp

(
L(alg)(E,1)

)
= ordp (Tam(E))−2ordp (�(E(Q)))

+ordp (�(X(E))) .

A considerable amount is known about this p-part of
the Birch-Swinnerton-Dyer conjecture using Iwasawa the-
ory (see [10]).

Theorem 32 (Rubin). Assume that L(E,1) 	= 0 and that E
has complex multiplication. Then the p-part of the Birch-
Swinnerton-Dyer conjecture holds for all primes p 	= 2 (in
addition, if E has complex multiplication by Q(

√−3), we
must exclude p = 3 as well as p = 2).

When E does not have complex multiplication, we only
have the far weaker statement:

Theorem 33 (Kato, Skinner-Urban). Assume that L(E,1) 	=
0. Then the p-part of the Birch-Swinnerton-Dyer conjecture
holds for all good ordinary primes p except those in some
specified list, which certainly includes p = 2.

Hence we conclude that the 2-part of the Birch-
Swinnerton-Dyer conjecture is largely unknown, even
though it has been verified numerically in vast numbers
of cases. However, the work of M. Razar and C. Zhao
(see [15, 16, 17, 18]) has proved the 2-part of the Birch-
Swinnerton-Dyer conjecture for certain infinite families of
E with complex multiplication and having rE = 0.

There are two very important reasons why are we in-
terested in this 2-part of the Birch-Swinnerton-Dyer con-
jecture. Firstly, much of the time when one looks at nu-
merical data on L-values (see, for example, the tables in
[3]), one sees that the 2-part is “most” of L(alg)(E,1). This
is presumably because it seems that usually X is either
trivial, or has very small order. Secondly, a knowledge of
the 2-part of the conjecture is vital to generalize Tian’s ar-
guments so as to eventually prove, for many elliptic curves
E , that there are large infinite families of quadratic twists
of E , with root number −1, whose complex L-series have
a simple zero at s = 1.

Quadratic Twists of an Elliptic Curve

Given an elliptic curve E/Q, and a non-zero integer
N which is not a square, we define E(N) to be the twist
of E by the quadratic extension Q(

√
N)/Q. Thus E(N) is

the unique elliptic curve defined Q, which is not isomor-
phic to E over Q, but which becomes isomorphic to E
over Q(

√
N). Moreover, we then have that E(N)(Q)

∼−→
E(Q(

√
N))−, where this latter group is the subgroup of

points in E(Q(
√

N)) on which the non-trivial element of
the Galois group of Q(

√
N)/Q acts like −1. As N varies,

the E(N) provide the simplest infinite families of elliptic
curves. Let wE(N) be the root number of of the complex
L-series of E(N). Roughly half the time wE(N) = +1, and half
the time wE(N) = −1, as N varies. More precisely, let χN be
the Dirichlet character corresponding to the quadratic ex-
tension Q(

√
N)/Q. Then it is well known that wE(N) is given

explicitly by

wE(N) = χN(−C(E))wE ,

provided the conductor of χN is prime to C(E).

Example 34. Let E = X0(49) : y2 +xy = x3−x2−x−1. Take
N > 1, square free, and (N,7) = 1. Then wE(N) = +1. Liang
(see [3] for more extensive Tables) calculated the L(E(N),1)
for quite a large range of N using MAGMA. Recall that
L(alg)(E,1) = 1

2 .
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N L(alg)(E(N),1)
29 2
37 2

113 8
137 2
185 16
233 18
265 36
449 32
969 16

We see most of the time L(alg)(E(N),1) is a power of 2, with
only occasionally other small primes occurring (here p = 3
for N = 233 and 265).

Behaviour of Tamagawa Factors Under
Twisting

If we want to understand the 2-part of the Birch-
Swinnerton-Dyer conjecture for the E(N), we have to un-
derstand how the 2-part of the cp(E(N)) varies for primes
p dividing N. For simplicity, in the discussion which fol-
lows, we will always assume that N is square free, odd,
and (N,C(E)) = 1. Hence we know that for p dividing
such N, the curve E(N) has additive reduction at p, and so
cp(E(N))≤ 4, whence

ord2(cp(E
(N))) = 0,1,2.

When do these different options occur? For the curve E :
y2 = x3 − x, we have C(E) = 32, and E(N) : y2 = x3 −N2x.
In this case, it is well known (for example, from Tate’s al-
gorithm) that c2(E(N)) = 2, and it is an immediate conse-
quence of the results proven below that cp(E(N)) = 4 for
all primes p dividing N. However, for other elliptic curves
E , the situation is not so simple, as is shown by the follow-
ing example.

Example 35. Let E : y2 + y = x3 − x2 − 7x + 10, so that
C(E) = 112, and gE = rE = 1. We have E(Q) = Z and a gen-
erator is (4,5). We consider E(−M), where M is any positive
integer satisfying M ≡ 3 mod 4, and (M,11) = 1. It then
turns out to be true that c11(E(−M)) = 2, cp(E(−M)) = 2 if p
divides M and p is inert in Q(

√−11) (thus p≡ 2,6,7,8,10
mod 11). For most of the primes p which split in K (thus
p≡ 1,3,4,5,9 mod 11), we have cp(E(−M)) = 1 for p divid-
ing M. However, there is a sequence of split primes, start-
ing with

53,257,269,397,401,421,617,757,773,929, . . .

for which cp(E(−M)) = 4 when p divides M. What is the the-
oretical significance of these exceptional primes? Recall
that tp = p+1−Ap is the trace of Frobenius of E at p. The
key point is that the above exceptional primes p are those
with p≡ 1 mod 4, and for which we have tp ≡ 0 mod 2.

We now explain how the ord2(cp(E(N))), for p dividing
N, can be calculated theoretically in many cases. Put

Dp(E) = E(Qp)/E0(Qp).

Lemma 36. Assume E has bad additive reduction at p.
Then, for all integers m with (m, p) = 1, we have

(∗) Dp(E)[m] = E(Qp)[m].

Proof. We have the exact sequence

0 �� E1(Qp) �� E0(Qp) �� Fp
�� 0 .

Since (m, p) = 1, it follows that multiplication by m is an au-
tomorphism of E0(Qp). It then follows by the snake lemma
applied to the sequence

0 �� E0(Qp) �� E(Qp) �� Dp(E) �� 0

that (∗) is valid.

Lemma 37. Assume that N is an odd square free integer
with (N,C(E)) = 1. Then, for all primes p dividing N, we
have

ord2(cp(E
(N))) = ord2(E(Qp)[2]).

In particular, the left hand side depends only on p and not
on N.

Proof. Since the j-invariant of E(N) is integral at p, it fol-
lows from the usual table of reduction types that Dp(E(N))
has 2-primary subgroup which is one of 0, Z/2Z, Z/2Z×
Z/2Z. Moreover, E(N) has bad additive reduction at p, and
p is odd because N is odd. Hence by the above lemma

ord2(cp(E
(N)))= ord2(�(Dp(E

(N))[2]))= ord2(�(E
(N)(Qp)[2])).

But clearly E(N)(Qp)[2] = E(Qp)[2], and the assertion fol-
lows.

We can use this lemma to compute cp(E(N)) in many
cases.

Lemma 38. Let N be an odd square free integer with
(N,C(E)) = 1, and let p be any prime dividing N. Assume
first that E has supersingular reduction at p. If p≡ 1mod 4,
then cp(E(N)) = 2, and if p > 3 with p ≡ 3mod 4, then
cp(E(N)) is equal to 2 or 4. Assume next that E has ordinary
reduction at p, and let tp = p+ 1−Ap, where Ap denotes
the number of points on the reduction of E modulo p. Then
ord2(cp(E(N))) = 0 if tp is odd, and cp(E(N)) is equal to 2 or
4 if tp is even.

Proof. As p is odd, reduction modulo p gives an isomor-
phism

(1) E(Qp)[2] = Ẽ(Fp)[2].

But Ẽ(Fp) has cardinality Ap = p+ 1− tp. Recall also that
cp(E(N)) ≤ 4. Assume first that p > 3, and that p is super-
singular for E . Then tp = 0 and Ap = p + 1, and the the
assertions of the lemma in this case now follow immedi-
ately from (1) and the previous lemma. Suppose next that
p is ordinary for E . If tp is odd, then ord2(Ap) = 0. On the
other hand, if tp is even, then ord2(Ap) > 0, but we cannot
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say more about the kernel of multiplication by 2 on Ẽ(Fp)
other than it has order 2 or 4. This gives the remaining
assertions of the lemma, and the proof is complete.

Lemma 39. Assume E has complex multiplication by the
maximal order of an imaginary quadratic field K, and good
reduction at 2. Let N be an odd square free integer with
(N,C(E)) = 1. If p is a prime of good ordinary reduction for
E with p dividing N and tp even, then cp(E(N)) = 4.

Proof. We have to show that, under the above hypotheses,
we have E(Qp)[2] = E[2]. Since E has good reduction at
p 	= 2, the extension Qp(E[2])/Qp is unramified, and we
must show it is trivial. Let σp denote a Frobenius automor-
phism at p. Since p splits in K, we can view σp ∈Gal(K/K),
and we write φp for its image in AutOK (E[2]). Now the char-
acteristic polynomial of φp is

X2− tpX + p mod 2 = X2−1

because tp is even. Hence φp has order 1 or 2. But, as E has
good reduction at 2, it follows that 2 does not ramify in K.
Hence AutOK (E[2]) = (OK/2OK)

× has no element of order
2. Thus we must have φp = 1. This shows that E(Qp)[2] =
E[2], as required.

Example 40. Let E = X0(49) : y2 +xy = x3−x2−x−1. Then
E has complex multiplication by the maximal order of
K =Q(

√−7). Take N to be any odd square free integer with
(N,7) = 1, and let p be any prime dividing N. Then, by the
theory of complex multiplication, E has supersingular re-
duction at p when p is inert in K, and E has ordinary reduc-
tion at p when p splits in K. Moreover, since E(Q)) =Z/2Z
and p is odd, it follows that we always have tp even. Hence
the above lemmas give the following values for the Tam-
agawa factors. When p splits in K, we have cp(E(N)) = 4.
Suppose next that p is inert in K. If p ≡ 1mod 4, we have
cp(E(N)) = 2, and if p≡ 3mod 4 with p 	= 3, then cp(E(N)) is
equal to 2 or 4.

We end this section with the following general re-
marks. The long term goal of the material discussed in
these lectures is to prove, given any E/Q, that there is al-
ways an explicit infinite set of quadratic twists of E , say
{E(N) : N ∈PE}, with wE(N) =−1, such that L(E(N),s) has a
zero at s = 1 of exact order 1. Tian recently succeeded in
doing this for E : y2 = x3−x, which, as usual, turns out to be
the first elliptic curve for which a deep new arithmetic the-
orem is proven. We would like to generalize Tian’s method
to other E . For utterly mysterious reasons which we still
do not understand yet, this requires us to prove a weak
form of the 2-part of the Birch-Swinnerton-Dyer conjecture
for a related infinite family of quadratic twists of E , say
{E(N) : N ∈ ZE} with wE(N) = +1. So far, two methods are
known for proving weak forms of the 2-part of the Birch-
Swinnerton-Dyer conjecture for these infinite families of
quadratic twists. They are:

1. Zhao’s method,
2. Waldspurger’s method.

Zhao’s method (see [15, 16, 17, 18]) really requires E to
have complex multiplication. The hope is that one can
eventually adapt Waldspurger’s method so that it works
for all E . In the next lectures, I want to discuss a variant
of Zhao’s method which leads to an interesting set of re-
sults for the 2-part of the Birch-Swinnerton-Dyer conjec-
ture for twists of an E/Q, with good reduction at 2, and
having complex multiplication. Later in the lectures, I will
explain some joint work with Tian, Shuai Zhai, and Yongx-
iong Li (see [2]) which will carry out this full programme
for the elliptic curve E = X0(49).

Basic Facts About a Class of Elliptic Curves
with Complex Multiplication (Following
Deuring)

Let K be an imaginary quadratic field with class num-
ber 1, and let OK be the ring of integers of K. We now
briefly recall the definition and basic properties of the
Grossencharacter attached to elliptic curves with complex
multiplication by the maximal order of K. Thus we assume
that we are given an elliptic curve E/K together with an iso-
morphism OK

∼−→ EndK(E). Let SE be the set of primes of
K where E has bad reduction. For each v 	∈ SE , we have the
reduced elliptic curve Ẽv/kv, where kv is the residue field
of v. We also have a reduction map α �→ α̃ from EndK(E)
to Endkv(Ẽv). Let ϕv be the Frobenius endomorphism of

Ẽv/kv, i.e.

ϕv(x,y) = (xNv,yNv), where Nv = �(kv).

A key elementary fact is the following:

Lemma 41. For each v 	∈ SE , there exists a unique πv ∈ OK

such that π̃v = ϕv.

This leads us to the definition of the Grossencharac-
ter ψE of E/K. We first remark that it is easy to see that
πvOK = v.

Definition 42. Let ISE be the group of fractional ideals of K
prime to SE . For v 	∈ SE , define ψE : ISE −→K× by ψE(v) = πv,
and extend it by multiplicativity to the whole of ISE .

Theorem 43 (Deuring). There exists an integral ideal f of
K such that ψE((α)) = α for all α in K× with ordv(α−1)≥
ordv(f) for all v dividing f.

In other words, ψE is a Grossencharacter of K in the
sense of Hecke. The proof uses the fact that K(E(K)tors)/K
is an abelian extension, and applies Artin’s reciprocity law
to a suitable finite sub-extension. Of course, the smallest
integral ideal f of K satisfying the property of this theorem
is called the conductor of ψE . It is an important theorem
that the prime divisors of the conductor of ψE are precisely
the bad primes for E/K.

Example 44. Let E : y2 = x3−x so that K =Q(i), p2 = (1+ i),
and f = p3

2. Then ψE(a) = α , where α is the unique genera-
tor of a which is ≡ 1 mod f.
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Fix an embedding K ↪→ C. The great importance of
the Grossencharacter is that we can recover the complex
L-function of E/K from the Hecke L-functions of ψE and
its complex conjugate Grossencharacter, which we recall
are defined by the Euler products

L(ψE ,s)=∏
v

(
1− ψE(v)

(Nv)s

)−1

, L(ψE ,s)=∏
v

(
1− ψE(v)

(Nv)s

)−1

.

The following theorem then follows easily from the defi-
nition of the Grossencharacter.

Theorem 45. We have L(E/K,s) = L(ψE ,s)L(ψE ,s). If E
is defined over Q, then ψE(a) = ψE(a), and L(ψE ,s) =
L(ψE ,s) = L(E,s), where this latter L-series is the complex
L-function of E/Q.

We also need to mention two key facts about the
abelian extensions of K generated by points of finite or-
der on E . Let g be any integral ideal of K, say g = gOK .

Definition 46. Eg = Ker(E(K)
g−→ E(K)).

Plainly Eg is isomorphic to OK/gOK as an OK -module.
The action of Gal(K(Eg)/K) on Eg commutes with the
OK -action, and gives an injection

j : Gal(K(Eg)/K) ↪→ AutOK (Eg) = (OK/g)
×.

Proposition 47. If g is divisible only by good primes for
E/K, then j is an isomorphism.

Proof. First take g = vn, where v is a good prime and n≥ 1.
Then Evn lies on the formal group of E at v, and this formal
group is a Lubin-Tate group because E has good reduction
at v. Thus, by Lubin-Tate theory, the extension Kv(Evn)/Kv

is totally ramified and has Galois group isomorphic to
(OK/vnOK)

×. The general case now follows easily.

The next result shows that there is always degeneracy
in this Galois group when g is a multiple of the conductor
of ψE .

Proposition 48. Assume that g is divisible by the conductor
f of ψE . Then K(Eg) coincides with the ray class field of K
modulo g. In particular, j is not surjective, and its image al-
ways has index equal to �(μK), where μK denotes the group
of roots of unity of K.

Proof. By the classical theory of complex multiplication,
the ray class field of K modulo g is always contained in the
field K(Eg). On the other hand, no prime of K which does
not divide g is ramified in K(Eg). Let a= (α) be an integral
ideal of K, where ordv(α−1)≥ ordv(g) for all v dividing g.
Then the Artin symbol of a for the extension K(Eg)/K acts
on Eg by multiplication by ψE(a). But, since g is divisible
by f, we have ψE(a) = α , whence the Artin symbol of a acts
trivially on Eg, because ordv(α − 1) ≥ ordv(g). Thus K(Eg)
is contained in the ray class field of K modulo g. Note fi-
nally that, if ζ is a root of unity in K with ζ ≡ 1mod g, then
necessarily ψ(ζOK) must be equal to both ζ and 1, and so
it follows that ζ = 1.

Example 49. Let E : y2 = x3− x, so that K = Q(i), f = p3
2,

where p2 = (1+ i)OK , and μK = μ4. If we take g = f, then
we have K(Ef) = K, because the order of Gal(K(Ef)/K) is
equal to �((OK/p

3
2)
×)/4 = 1. If we take g = 4OK = p4

2, then
�Gal(K(E4)/K) = �((OK/4OK)

×)/4 = 2. In fact, it is easily
seen that, in this case, we have K(E4) = K(μ8) = K(

√
2).

Finally, we state without proof the following well
known relationship between conductors. Assume that E
is defined over Q, but has complex multiplication by the
ring of integers of K. Let C(E) be its conductor as an ellip-
tic curve defined over Q, and let f be the conductor of its
Grossencharacter ψE , when E is viewed as a curve defined
over K.

Proposition 50. We have C(E) = |dK |NK/Qf, where dK de-
notes the discriminant of K.

Example 51. Let E := X0(49) : y2 + xy = x3 − x2 − 2x− 1.
It has complex multiplication by the ring of integers of
Q(
√−7). Let f be the conductor of its Grossencharacter.

Then 49 = 7 · NK/Qf. This immediately tells us that f =√−7OK . The above proposition then shows that the field
K(Ef) has degree 3 over K, because the group of roots of
unity of K has order 2.

Expression for the L-Series in Terms
of Eisenstein Series

We shall now use the 19-th century expression, go-
ing back to Eisenstein and Kronecker, for the L-function
of an elliptic curve with complex multiplication in terms
of Eisenstein series, to study the 2-part of the conjec-
ture of Birch and Swinnerton-Dyer for the quadratic twists,
with root number +1, of our fixed elliptic curve with com-
plex multiplication. This method was pioneered by Zhao
[15, 16, 17, 18] for the quadratic twists of the curve y2 =
x3− x, and we shall use a variant of it. However, later we
will use the quite different modular parametrization of our
curve to study the conjecture of Birch and Swinnerton-
Dyer for the quadratic twists of E with root number −1,
following Tian’s [12, 13] method.

Let K be an imaginary quadratic field, and OK the ring
of integers of K. We assume for the whole of this section
that we are given an elliptic curve E/K with EndK(E) =OK .
Thus, by the theory of complex multiplication, K necessar-
ily has class number 1. Fix a generalized global minimal
equation for E

y2 +a1xy+a3 = x3 +a2x2 +a4x+a6 (ai ∈ OK).

We assume K ↪→ C, and let L be the period lattice of the
Néron differential dx/(2y+a1x+a3) on E . ThenL is a free
OK -module of rank 1, and so we can find Ω∞ ∈ C× such
thatL = Ω∞OK . Let f be the conductor of ψE , and let g be
some integral multiple of f. Let S be the set of primes of
K dividing g. We consider the (usually) imprimitive Hecke
L-function

LS(ψE ,s) = ∑
(a,g)=1

ψE(a)

(Na)s
.
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We want to express this L-function in terms of Kronecker-
Eisenstein series. We now recall the definition of these
Kronecker-Eisenstein series (see [6]). Let L be any lattice
in the complex plane.

Definition 52. Let

H(z,s,L) = ∑
w∈L

z+w
|z+w|2s

;

here, of course, we exclude −z from the sum if z ∈ L.
This series converges for Re(s) > 3

2 . It is well-known that
H(z,s,L) has an analytic continuation to the whole com-
plex plane (see, for example, [6]).

Let R = K(Eg), so that R is the ray class field of K
modulo g, because of our hypothesis that g is divisible by
the conductor f of ψE . Let B be any set of integral ideals of
K, prime to g, whose Artin symbols give rise precisely to
Gal(R/K). Fix any generator g of g, so that g = gOK .

Theorem 53. We have

LS(ψE ,s) =
|Ω∞/g|2s

Ω∞/g
∑
b∈B

H

(
ψE(b)

Ω∞

g
,s,L

)
.

Proof. By a remark made earlier, we have b = ψE(b)OK

for (b,g) = 1. Thus, as R is the ray class field mod g, the
Artin map shows that Gal(R/K)

∼−→ (OK/g)
×/μ̃K . As the

ψE(b)(b ∈ B) are representatives of generators of ideals
in B, we see that the ideals (ψE(b) + c), with b running
over B, and c running over g, give all integral ideals of K
prime to g. Hence

LS(ψE ,s) = ∑
b∈B

∑
c∈g

ψE((ψE(b)+ c))
|ψE(b)+ c|2s

.

But

(ψE(b)+ c) = (ψE(b))

(
1+

c
ψE(b)

)
= b

(
1+

c
ψE(b)

)
.

Hence, as f divides g, we obtain

ψE((ψE(b)+ c)) = ψE(b)

(
1+

c
ψE(b)

)
= ψE(b)+ c.

Hence

LS(ψE ,s) = ∑
b∈B

∑
c∈g

ψE(b)+ c
|ψE(b)+ c|2s

= ∑
b∈B

H(ψE(b),s,g).

We now renormalize the right hand side in the obvious
fashion to get the desired result.

Before going further, we digress to discuss the Eisen-
stein series of weight 1 for an arbitrary lattice L in the com-
plex plane. If we naively put s = 1 in the series for H(z,s,L)
we get the non-convergent series

∑
w∈L

1
z+w

.

In order to avoid the difficulties with convergence, we
therefore define:

Definition 54. E ∗1 (z,L) = H(z,1,L), where we have now
taken the value of analytic continuation of H(z,s,L) at
s = 1.

Write L =Zu+Zv with Im(v/u)> 0. We then define the
positive real number A(L) by A(L) = ūv−uv̄

2πi . Also let

s2(L) = lim
s→0,s>0

∑
w∈L\{0}

w−2|w|−2s.

Let σ(z,L), ζ (z,L), ℘(z,L) be the respective Weierstrass
σ -function, zeta function, and ℘-function attached to L.
Hence

ζ (z,L) =
d
dz

logσ(z,L), ℘(z,L) =−ζ ′(z,L).

The following theorem goes back to Eisenstein (for a mod-
ern treatment, see [6]).

Theorem 55. We have E ∗1 (z,L) = ζ (z,L)− zs2(L)− z̄A(L)−1.

In particular, we see that E ∗1 (z,L) is not holomorphic
as a function of z. However, it is obviously periodic, that is
E ∗1 (z+w,L) = E ∗1 (z,L) for w ∈ L. But naturally it cannot be
written as a rational function of ℘(z,L),℘′(z,L).

For each integer m≥ 2, we define

2Bm(z,L) =
℘′′(z,L)
℘′(z,L)

+
m−1

∑
k=2

℘′(kz,L)−℘′(z,L)
℘(kz,L)−℘(z,L)

.

Lemma 56. For all integers m≥ 2, we have

Bm(z,L) = E
∗

1 (mz,L)−mE ∗1 (z,L).

Proof. Using E ∗1 (z,L) = ζ (z,L)−zs2(L)− z̄A(L)−1, we imme-
diately obtain

E ∗1 (mz,L)−mE ∗1 (z,L) = ζ (mz,L)−mζ (z,L).

Now we have the addition formula

ζ (z1 + z2,L) = ζ (z1,L)+ζ (z2,L)+
1
2

℘′(z1,L)−℘′(z2,L)
℘(z1,L)−℘(z2,L)

.

Letting z1→ z2, we get the above formula for m= 2. For any
m≥ 2, the addition formula shows that

ζ ((m+1)z,L)− (m+1)ζ (z,L)

= ζ (mz,L)−mζ (z,L)+
1
2

℘′(mz,L)−℘′(z,L)
℘(mz,L)−℘(z,L)

,

and so the lemma clearly follows by induction on m.

The next lemma is attributed to Swinnerton-Dyer
in [4].

Lemma 57. Let u be a complex number such that u+L has
exact finite order m≥ 3 in C/L. Then

E ∗1 (u,L) =−Bm−1(u,L)/m.
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Proof. By the previous lemma, we have, since m≥ 3,

Bm−1(u,L) = E
∗

1 ((m−1)u,L)− (m−1)E ∗1 (u,L).

But E ∗1 (−u,L) =−E ∗1 (u,L), and E ∗1 (z,L) is periodic with re-
spect to L. Hence, as mu ∈ L, we have

E ∗1 ((m−1)u,L) = E ∗1 (−u,L) =−E ∗1 (u,L),

and the assertion now follows from the previous lemma.

Corollary 58. Let EL = C/L, and let F be any field of defi-
nition of EL. Assume u∈C is such that u+L has exact order
m≥ 3 in C/L. Then

E ∗1 (u,L) ∈ F(EL[m]).

We now return to our elliptic curve E/K with complex
multiplication. Putting s = 1 in the earlier Theorem 53, we
get:

Theorem 59. We have

LS(ψE ,1)
Ω∞

= g−1 ∑
b∈B
E ∗1

(
ψE(b)

Ω∞

g
,L

)
.

It is more convenient to write this result in a slightly
different form

Theorem 60. We have that E ∗1 (
Ω∞
g ,L ) lies in the field R,

and

LS(ψE ,1)
Ω∞

= g−1 TrR/K

(
E ∗1

(
Ω∞

g
,L

))
.

Proof. The first assertion follows immediately from the
above corollary applied to E/K, sinceR=K(Eg). For b∈B,
let σb be the Artin symbol of b in Gal(R/K). Then, essen-
tially from the definition of the Grossencharacter, we have

σb

(
℘
(

Ω∞

g
,L

)
, ℘′

(
Ω∞

g
,L

))
=

(
℘
(

ψE(b)Ω∞

g
,L

)
, ℘′

(
ψE(b)Ω∞

g
,L

))
.

It then follows form the lemma 57 that

σb

(
E ∗1

(
Ω∞

g
,L

))
= E ∗1

(
ψE(b)Ω∞

g
,L

)
,

whence the result follows immediately.

We now consider the twisting of E by certain quadratic
extensions of K.

Lemma 61. Let M be a non-zero and non-unit element of
OK , such that (i) M is square free, (ii) M is prime to the dis-
criminant of K, and (iii) M ≡ 1 mod 4. Then the extension
K(
√

M)/K has conductor equal to MOK .

Proof. Since M is square free and not divisible by a prime
above 2, the extension K(

√
M)/K is totally and tamely ram-

ified at all primes dividing of K dividing M. Thus we need
only show that the primes of K above 2 are not ramified
in this extension. Let v be a place of K above 2. Let w be
such that w2 = M, and put z = w−1

2 . Then z is a root of the

polynomial f (X) = X2−X− (M−1)
4 , so that z is an algebraic

integer. But f ′(z) = 2z− 1, whence f ′(z) is a unit at v, and
thus K(

√
M)/K is unramified.

Let M be as in the lemma above, and assume, in ad-
dition, from now on that (M, f) = 1. Let E(M) be the twist
of E by the quadratic extension K(

√
M)/K, and let XM de-

note the abelian character of K defining this extension. The
following lemma is then immediate, the second part be-
ing valid because (M, f) = 1. To simplify notation, we shall
from now on denote the Grossencharacter of E by ψ .

Lemma 62. Let ψM denote the Grossencharacter of E(M)/K.
Then ψM = ψXM . Moreover, ψM has conductor Mf.

What is the period lattice of E(M)? Recall that we have
fixed a global minimal Weierstrass equation for E/K with
coordinates x,y. Then

℘(z,L ) = x+(a2
1 +4a2)/12, ℘′(z,L ) = 2y+a1x+a3,

where L = Ω∞OK .

Lemma 63. A period lattice for E(M) over C is given by

LM =
Ω∞√

M
OK .

Proof. Suppose E has classical Weierstrass equation

Y 2 = 4X3−g2(L )X−g3(L )

where X =℘(z,L ), Y =℘′(z,L ). Then E(M) has classical
Weierstrass equation

Y 2 = 4X3−M2g2(L )X−M3g3(L ),

and so

LM =
Ω∞√

M
OK .

We now establish the key averaging lemma, from
which all of our later induction arguments to study the
2-part of the Birch-Swinnerton-Dyer conjecture will follow.
Let n be any integer≥ 0, and suppose that we are given n el-
ements π1, . . . ,πn ofOK (we take the empty set of elements
if n = 0), which generate distinct prime ideals in OK , and
which satisfy

(i) (π j,dK) = 1,
(ii) (π j, f) = 1, and

(iii) π j ≡ 1 mod 4 (1≤ j ≤ n).

Recalling that f = fOK , we then define

Mn = π1 · · ·πn, gn = Mn f , gn = gnOK .
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Definition 64. LetRn be the ray class field of K modulo gn.

Since π j ≡ 1 mod 4, and (π j,dK) = 1, the quadratic
extension K(

√π j)/K has conductor π jOK by our earlier
lemma. Hence, as its conductor divides gn, we see that
K(
√π j)⊂Rn.

Definition 65. Dn = set of all divisors of gn which are given
by any product of the elements in a subset of {π1, . . . ,πn}.

Finally, define

Definition 66. Jn = K(
√

π1, . . . ,
√

πn).

Hence, by the above remark,Jn is a subfield ofRn. Let
Sn be the set of prime ideals {(π1), . . . ,(πn)}. For M ∈ Dn,
we write LSn(ψM,s) for the Hecke L-function of ψM , with
the Euler factors for the places of K in Sn removed from
its Euler product. The following averaging lemma is fun-
damental for our subsequent arguments.

Theorem 67. For all sequences π1, . . . ,πn as above, we have

∑
M∈Dn

LSn(ψM,1)/Ω∞ = 2n TrRn/Jn

(
g−1

n E
∗

1

(
Ω∞

gn
,L

))
.

Proof. We have

LSn(ψM,1)
Ω∞√

M

= TrRn/K

(
g−1

n E
∗

1

(
Ω∞√
Mgn

,LM

))
.

But we have E ∗1 (z,L) = λE ∗1 (λ z,λL) for any λ ∈C×. Taking
λ = (

√
M)−1, and writing Gn = Gal(Rn/K), we obtain

LSn(ψM,1)
Ω∞

= ∑
σ∈Gn

(
√

M)σ−1g−1
n

(
E ∗1

(
Ω∞

gn
,L

))σ

.

All is now clear from the following lemma:

Lemma 68. Let Hn = Gal(Rn/Jn). If σ ∈ Gn, then

∑
M∈Dn

(
√

M)σ−1 =

{
2n, if σ ∈ Hn;
0, if σ 	∈ Hn.

The first assertion of this lemma is clear. Take
σ 	∈ Hn, and suppose that σ maps k ≥ 1 elements of
{√π1, . . . ,

√
πn} to minus themselves. Let V (σ) be the sub-

set of {√π1, . . . ,
√

πn} which are mapped to minus them-
selves. If M ∈ Dn, then σ will fix

√
M if and only if it is a

product of an even number of elements of V (σ). Hence the
total number of M in Dn with

√
M fixed by σ is

2n−k

((
k
0

)
+

(
k
2

)
+

(
k
4

)
+ · · ·

)
= 2n−1.

Similarly, the total number of M in Dn such that σ
√

M =
−√M is

2n−k

((
k
1

)
+

(
k
3

)
+ · · ·

)
= 2n−1.

Since these last two expressions are equal, the second as-
sertion of the lemma follows.

CM Elliptic Curves Defined over K Having
Good Reduction at Primes above 2

From now on, we shall only be concerned with elliptic
curves E/K with EndK(E) =OK , and having the additional
property that E has good reduction at all places v of K di-
viding 2. We denote the Grossencharacter of E/K simply
by ψ , and f will always denote its conductor. Much of the
material we discuss in this section, in particular the proof
of Theorem 72, is taken from [3].

Example 69. Let E = X0(49) : y2 + xy = x3− x2− 2x− 1, so
K = Q(

√−7), C(E) = 49. The prime 2 splits in Q(
√−7),

which implies that E has good ordinary reduction at 2

Example 70. Let E : y2 + y = x3 − x2 − 7x + 10, so K =
Q(
√−11), C(E) = 121. The prime 2 is inert in Q(

√−11),
which implies that E has good supersingular reduction
at 2.

As earlier, {π1, . . . ,πn} will always be n ≥ 0 distinct
prime elements of K satisfying

(2) (π j,dK) = 1, (π j, f) = 1, π j ≡ 1 mod 4 (1≤ j ≤ n),

and we put gn = π1 · · ·πn f , where f = fOK . Again Rn

will be the ray class field of K modulo gn, which we
recall coincides with the field K(Egn). Again put Jn =
K(
√

π1, . . . ,
√

πn), which we showed earlier is a subfield of
Rn. For simplicity, we assume in what follows that K 	=
Q(
√−1),Q(

√−2), so that 2 is not ramified in K. If v is
any prime of Q above 2, we always normalize ordv so that
ordv(2) = 1. We write a1 for the coefficient of xy in our fixed
global minimal Weierstrass equation for E/K.

Definition 71. Λn(E) = TrRn/Jn
(g−1

n E
∗

1 (
Ω∞
gn
,L )).

Theorem 72. Assume E has good reduction at the primes
of K above 2. Then, for all n≥ 0

ordv(Λn(E))≥−1

for all primes v of Jn above 2. Moreover, ordv(Λn(E)) ≥ 0
if 2 divides a1 in O.

Note that, when n = 0, we have L(ψ,1)/Ω∞ = Λ0(E).
Hence we immediately obtain the following special case of
this theorem.

Corollary 73. For all places v of K above 2, we
have ordv(

L(ψ,1)
Ω∞

) ≥ −1. Moreover, if 2 divides a1, then

ordv(
L(ψ,1)

Ω∞
)≥ 0.

This result is best possible. For example, if we take
E = X0(49), we have a1 = 1, and L(ψ,1)/Ω∞ = 1

2 .

For the proof of the above theorem, it is simplest to
find an alternative expression for Bm(z,L), where (m ≥ 2)
for any lattice L in C. Recall that Bm(z,L) is defined by

Bm(z,L) =
1
2

℘′′(z,L)
℘′(z,L)

+
1
2

m−1

∑
k=2

℘′(kz,L)−℘′(z,L)
℘(kz,L)−℘(z,L)

.
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Lemma 74. For all m≥ 2, we have

Bm(z,L) =
m−1

∑
k=1

(℘((k+1)z,L)+℘(kz,L)+℘(z,L))
1
2 ,

with an appropriate choice of the square root in each case.

Proof. We have the addition formula

℘(z1+z2,L)+℘(z1,L)+℘(z2,L)=
1
4

(
℘′(z1,L)−℘′(z2,L)
℘(z1,L)−℘(z2,L)

)2

.

Letting z1→ z2, and taking square roots, we get the formula
for m = 2. If k ≥ 2, we also obtain

℘((k+1)z,L)+℘(kz,L)+℘(z,L)=
1
4

(
℘′(kz,L)−℘′(z,L)
℘(kz,L)−℘(z,L)

)2

,

and so the assertion of the lemma follows by induction
on m.

We recall that if u is a complex number such that
u has finite exact order m ≥ 3 in C/L, then E ∗1 (u,L) =
− 1

m Bm−1(u,L).

Corollary 75. Assume u has exact order m≥ 3 in C/L. Then

E ∗1 (u,L) =−
1
m

m−2

∑
k=1

(℘((k+1)u,L)+℘(ku,L)+℘(u,L))
1
2 .

Proof of Theorem 72. Take L = L , and u = Ω∞/gn. Let m
be the least positive rational integer in gn = gnOK . Since f
must be divisible by at least one prime of K, and no prime
divisor of f lies above 2, we must have m≥ 3. Let P be the
point on E corresponding to u = Ω∞/gn on C/L . Recalling
that

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6

is our global minimal generalized Weierstrass equation
for E , we make the following key observation. For all places
v of Q above 2, we have ordv(x(P))≥ 0 and ordv(y(P))≥ 0.

Indeed, if ordv(x(P)) < 0, then P would necessarily lie
on the formal group of E at v since there is good reduction
at v. But this is impossible because P has finite order m,
which is odd. Recalling that

℘(ru,L ) = x(rP)+
a2

1 +4a2

12
(r = 1, . . . ,m−1).

The assertion of Theorem 72 is now clear from the above
corollary.

Our next goal is to establish the following stronger re-
sult.

Theorem 76. Assume that E has good reduction at all
places of K above 2. If n≥ 1, we have

ordv(Λn(E))≥ 0

for all places v ofJn above 2.

Before embarking on the proof, we need a preliminary
lemma.

Lemma 77. Let v be any place of K where E has good reduc-
tion, and let πv = ψ(v). Then the formal group of E at v is a
Lubin-Tate formal group over Kv, with local parameter πv.

Proof. The parameter on the curve of the formal group is
t =−x/y, and the assertion of the lemma then follows eas-
ily from the fact that π̃v(x,y) = (xNv ,yNv) on the reduction
of E modulo v.

The next corollary is an immediate consequence of
Lubin-Tate theory.

Corollary 78. Let v be any place of K where E has good
reduction. Then the action of Gal(K(Eπn

v
)/K) on Eπn

v
gives

an isomorphism from this Galois group onto (OK/vnOK)
×.

Moreover, v is totally ramified in the extension K(Eπn
v
)/K.

We now use a consequence of these results the field
Rn = K(Egn). Put F = K(Ef ).

Lemma 79. The action of the Galois group ofRn/F on EMn

defines an isomorphism,

jn : Gal(Rn/F)
∼−→ (OK/MnOK)

×.

Proof. By the above lemma, since each (πi) is totally
ramified in K(Eπi)/K, we see that K(EMn) ∩ F = K, and
that Gal(K(EMn)/K)

∼−→ (O/MnO)×. The assertion of the
lemma is then clear.

We now define τ to be the element of order 2 in
Gal(Rn/F) defined by

τ = j−1
n (−1 mod Mn).

WritePn for the fixed field of this element τ in Gal(Rn/F).
Hence we have [Rn :Pn] = 2.

Lemma 80. The element τ fixes the field F(
√

π1, . . . ,
√

πn).

Proof. It suffices to show that τ fixes K(
√

πi) for i =
1, . . . ,n. Since πi ≡ 1 mod 4, (OK/πiOK)

× is a cyclic
group whose order is divisible by 4. Thus −1 is a
square in (OK/πiOK)

×, and so it must fix the unique
quadratic subfield K(

√π j) when viewed as an element of
Gal(K(Eπ j)/K).

In order to establish Theorem 76, it clearly suffices to
establish the following result.

Proposition 81. When n≥ 1, the element TrRn/Pn
(g−1

n E
∗

1 ×
(Ω∞

gn
,L )) is integral at all places ofPn above 2.

Note first that, since ( f ,Mn) = 1, we can find α,β in
OK such that 1 = αMn +β f . It follows immediately that,
for all n≥ 1,

TrRn/Pn

(
g−1

n E
∗

1

(
Ω∞

gn
,L

))
= g−1

n (E ∗1 (u1 +u2,L )+E ∗1 (u1−u2,L )) ,
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where u1 = αΩ∞/ f , u2 = βΩ∞/Mn. We now simplify the
right hand side by using the following general identity. Let
L be any lattice in C, and let z1,z2 be arbitrary complex
variables.

Lemma 82. E ∗1 (z1 + z2,L) + E ∗1 (z1 − z2,L) = 2E ∗1 (z1,L) +
℘′(z1,L)

℘(z1,L)−℘(z2,L)
.

Proof. Using E ∗1 (z,L) = ζ (z,L)−zs2(L)− z̄/A(L), we deduce
that

E ∗1 (z1 + z2,L)+E
∗

1 (z1− z2,L) = ζ (z1 + z2,L)+ζ (z1− z2,L)

−2z1s2(L)−2z̄1/A(L).

We then use that identity

ζ (u+ v,L) = ζ (u,L)+ζ (v,L)+
1
2

℘′(u,L)−℘′(v,L)
℘(u,L)−℘(v,L)

for u = z1, v = z2, and for u = z1, v = −z2. Noting that
ζ (−z2,L) = −ζ (z2,L), the assertion of the lemma fol-
lows.

We now return to our curve E = C/L . Let P1 be the
point on E given by u1 = αΩ∞/ f , and P2 the point on E
corresponding to u2 = βΩ∞/Mn. Recall that the classical
Weierstrass functions can be written in terms of the x and
y coordinates of the generalized Weierstrass equation for
E by

℘(z,L ) = x+
a2

1 +4a2

12
, ℘′(z,L ) = 2y+a1x+a3.

Hence we conclude from the above lemma that
TrRn/Pn

(E ∗1 (
Ω∞
gn
,L )) is given by

(∗∗) 2E ∗1 (u1,L )+
2y(P1)+a1x(P1)+a3

x(P1)− x(P2)
.

Let v be any place ofPn above 2. Since gn is odd, it suffices,
in order to prove Theorem 76, to show that ordv of the
expression (∗∗) is ≥ 0. Now exactly the same argument as
used to prove Theorem 72 shows that we always have

ordv (2E
∗

1 (u1,L ))≥ 0.

Moreover, the fact that E has good reduction at v, and that
( f ,2) = (Mn,2) = 1 shows again that we have

ordv(x(P1))≥ 0, ordv(y(P1))≥ 0, ordv(x(P2))≥ 0.

Hence, to complete the proof of Theorem 76, it suffices to
prove

Lemma 83. ordv (x(P1)− x(P2)) = 0.

Proof. Suppose, on the contrary, that ordv (x(P1)− x(P2))>
0. Let Ẽ denote the reduction of E modulo v. Then, under

reduction modulo v, we would have x̃(P1) = x̃(P2). But, by
the explicit group law on Ẽ , this last equation implies that
P̃1 =±P̃2. Hence either P1−P2 or P1+P2 must lie on the for-
mal group of E at v, and so they would have to be 2-power
torsion. But this is clearly impossible since ( f ,Mn) = 1 and
( f ,2) = (Mn,2) = 1.

On the 2-part of the Conjecture of Birch
and Swinnerton-Dyer

We assume in this section that our elliptic curve E
is defined over Q, has good reduction at 2, and complex
multiplication by the ring of integers OK of K. As C(E) =
|dK |Nf, we automatically have K 	= Q(

√−1),Q(
√−2). For

reasons which will become clear below, we shall also as-
sume that K 	=Q(

√−3). Thus K must be one of the fields
K =Q(

√−q), with q = 7,11,19,43,67,163. Our goal now is
to use our theorem asserting that, for all n≥ 1, we have

∑
M∈Dn

LSn(ψM,1)
Ω∞

= 2nΛn,

with ordv(Λn)≥ 0 for all primes v above 2, to prove various
weak forms of the 2-part of Birch-Swinnerton-Dyer conjec-
ture for twists of E .

We will work with a subset of the set of quadratic
twists, which we will call admissible twists of E , and which
we will denote by Ad(E). By definition, N ∈ Ad(E) if N is
a square free element of Z satisfying the following condi-
tions:

(i) (N,C(E)) = 1;
(ii) wE(N) = +1;

(iii) N can be written in OK as N = π1 · · ·πn, where n ≥ 1
and the πi are distinct prime elements ofOK satisfying
πi ≡ 1 mod 4 (1≤ i≤ n).

We make the following remarks. Under our assumptions, it
is easily seen that the conductor C(E) is always the square
of an integer in Z. Hence to achieve (ii) we take N > 0 and
N ≡ 1 mod 4 if wE = +1, and N < 0 with |N| ≡ 3 mod 4
if wE = −1. It turns out that (iii) is far more restrictive.
Of course if πiOK = piOK for a rational pi, we can choose
πi =±pi so that πi≡ 1 mod 4. But if πiπ̄i = pi, then we must
necessarily have pi ≡ 1 mod 4. But this is not in general
sufficient, and so we are led to the following definition.

Definition 84. A prime p with p≡ 1 mod 4 and p split in
K is said to be a special split prime if we can write p = ππ̄
with π ∈ OK satisfying π ≡ 1 mod 4.

We leave the following lemmas as an easy exercise.

Lemma 85. Let p be a prime ≡ 1 mod 4 which splits in K,
say p = ππ̄ in OK . Then (i) if K = Q(

√−7), all such p are
special, and (ii) if K = Q(

√−q), with q = 11,19,43,67,163,
then p is special if and only if π + π̄ ≡ 2 mod 4.

We note that, by Lemma 39, if p is a special spit prime
of K with p dividing N and (N,C(E)) = 1, then the Tama-
gawa factor cp(E(N)) = 4, because tp is equal to ±(π + π̄).
This is the reason why special split primes play an impor-
tant role in Tian’s induction argument for Heegner points,
which is discussed in the last part of these notes.

Example 86. Take K = Q(
√−11), p ≡ 1 mod 4 and p ≡

1,3,4,5,9 mod 11. Then the special split primes < 1000 for
K are

53,257,269,397,401,421,617,757,773,929.
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Here is another way of constructing special split
primes.

Lemma 87. Assume that (p,C(E)) = 1 and that p splits
completely in K(E[4]). Then p is a special split prime for K.
In particular, there is always a positive density of special
split primes for K.

Proof. Assume (p,C(E)) = 1 and that p splits completely
in K(E[4]). Then p ≡ 1 mod 4 because μ4 ⊂ K(E[4]). Also
pO = vv̄. Take π = ψ(v), so that π̄ = ψ(v̄) because E is de-
fined over Q. Now v is unramified in K(E[4]) because E has
good reduction at v, and the Frobenius automorphism of
v, which we denote by Frobv, acts on E[4] by multiplication
by ψ(v). But Frobv = Frobv̄ = 1 because p splits completely
in K(E[4]), and we conclude that π ≡ π̄ ≡ 1 mod 4, as re-
quired.

The following remark on Euler factors is crucial for
the induction arguments which follow. Suppose, as earlier,
that we have n ≥ 1 elements π1 · · ·πn satisfying the condi-
tions 2, and put Mn = π1 · · ·πn. If π denotes one of these
elements, put vπ = πOK . Then, if M ∈ Dn, and vπ divides
Mn/M, then

1− ψM(vπ)

Nvπ
=

ψM(vπ)−1
ψM(vπ)

because Nvπ = ψM(vπ)ψM(vπ). Also ψM(vπ) = ±π because
K 	=Q(

√−3),Q(
√−1). Hence

ord2

(
1− ψM(vπ)

Nvπ

)
≥ 1,

and

ord2

(
1− ψM(vπ)

Nvπ

)
≥ 2 if ψM(vπ) = π.

Note also that

LSn(ψM,1)
Ω∞

=
L(ψM,1)

Ω∞
× ∏

π|Mn
M

(
1− ψM(vπ)

Nvπ

)
.

We shall also make use of the following notation. If N ∈
Ad(E), let n(N) denote the number of prime factors of N
inOK , and k(N) number of prime factors of N in Z. We also
put ΩN = Ω∞/

√|N|.
Suppose first that ord2(L(E,1)/Ω∞) = −1. Using the

calculation of cp(E(N)), for p dividing N, given earlier, it
is not difficult to see that the 2-part of the conjecture of
Birch and Swinnerton-Dyer then predicts that, provided
L(E(N),1) 	= 0, we have

(3) ord2

(
L(E(N),1)

ΩN

)
= n(N)−1+ord2 (�(X(E))) .

Theorem 88. Assume that E has good reduction at 2, and
that ord2(L(E,1)/Ω∞) = −1. Then, for all N ∈ Ad(E), we
have

ord2

(
L(E(N),1)

ΩN

)
≥ n(N)−1.

Proof. Put R = π1 · · ·πr, with 1≤ r ≤ n(N). We prove by in-
duction on r that

(∗) ord2

(
L(ψR,1)

Ω∞

)
≥ r−1.

This will give the theorem when r = n(N). Let D(R) be the
set of all divisors of R given by products of subsets of
{π1, . . . ,πr}. Then

(∗∗) ∑
M∈D(R)

LSR(ψM,1)
Ω∞

= 2rΛr,

where ordv(Λr)≥ 0 for all places v above 2. Now (∗) is valid
for r = 0, and, by induction, we assume it is true for all
r′ < r, where now r ≥ 1. Hence, for M 	= R, we have

ord2

(
L(ψM,1)

Ω∞

)
≥ r(M)−1.

But, as remarked earlier, we have

ord2

⎛⎝∏
v| R

M

(
1− ψM(v)

Nv

)⎞⎠≥ r

(
R
M

)
.

Hence all terms in (∗∗) on the left hand side have 2-order
at least r(R)− 1, except when M = R. The right hand side
has 2-order at least r(R), and so we get (∗) for R. This com-
pletes the proof.

We remark that Liang’s computations show that this
theorem is in general best possible, e.g. when E = X0(49),
N = 29 = π1π2 in OK . Then

L(E(N),1)
ΩN

= 2.

However, we show next that the following stronger re-
sult holds when one imposes additional conditions on the
prime factors of N.

Theorem 89. Assume that E has good reduction at 2, and
that ord2(L(E,1)/Ω∞) = −1. Let N = p1 · · · pk be a product
of k ≥ 1 distinct primes which split completely in Q(E[4]).
Then

ord2

(
L(E(N),1)

ΩN

)
≥ 2k.

Proof. Note first that it is easy to see that K = Q(E[2]) =
Q(
√−7). Hence all of p1, . . . , pk split in K. Moreover, for

every v of K dividing N, we have ψ(v) ≡ 1 mod 4 because
every pi split completely in Q(E[4]). Hence, if R = π1 · · ·πr

with r ≥ 1, we have

ord2

(
LSR(ψ,1)

Ω∞

)
≥ 2r−1≥ r.

The induction argument then proceeds as before.
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Remark. A comparison of the above result with the
prediction of the 2-part of the conjecture of Birch
and Swinnerton-Dyer given by (3) shows that, provided
L(E(N),1) 	= 0, we must have X(E(N))(2) 	= 0, under the hy-
potheses of this last theorem. Then, in fact (3), would even
predict the stronger assertion that

ord2

(
L(E(N),1)

ΩN

)
≥ 2k+1.

We note also that it seems that E = X0(49) and its isoge-
nous curves (there are 4 curves in the isogeny class over
Q of X0(49)) are the only elliptic curves over Q, with
good reduction at 2, having complex multiplication by the

maximal order OK of K, and with ord2(
L(E,1)

Ω∞
) = −1. For

E = X0(49), the primes p < 1000 which split completely in
Q(E[4]) are given by

53,113,149,193,197,277,317,373,421,449,457,541,557,

809,821,953.

Suppose finally that ord2(
L(E,1)

Ω∞
) ≥ 0. The induction

method then leads to the following result by entirely sim-
ilar arguments to those discussed above. We omit the de-
tails of the proof.

Theorem 90. Assume that E has good reduction at 2, and
that ord2(

L(E,1)
Ω∞

)≥ 0. Then, for all N ∈ Ad(E), we have

ord2

(
L(E(N),1)

ΩN

)
≥ n(N),

where n(N) is the number of prime factors of N in OK .

Tian’s Argument for E = X0(49)

The general question posed by Ye Tian’s work on the
congruent number elliptic y2 = x3− x is the following. Let
E be any elliptic curve over Q. If N is a square free integer,
we write as usual E(N) for the twist of E by Q(

√
N)/Q.

General Problem. Find a large (in a sense to be made pre-
cise) explicit infinite family J (E) of square free integers N
with (N,C(E)) = 1 such that L(E(N),s) has a simple zero at
s = 1 for all N ∈ J (E).

Needless to say, the natural largest choice of J (E) would
be the set of all N such that Sel2(E(N))/ Im(E(N)(Q)tors) has
order 2.

In the rest of these lectures I want to describe ongo-
ing joint work with Yongxiong Li, Ye Tian, and Shuai Zhai
which provides an answer to this problem for the curve
E = X0(49), whose equation, we recall, is given by

(4) y2 + xy = x3− x2−2x−1,

and which has complex multiplication by the ring of inte-
gers of K =Q(

√−7). For this curve, we have

Q(E[2]) =Q(
√−7), Q(E[4]) =Q(μ4,

4
√−7).

We shall sketch the proof of the following theorem. The
full details of the proof, as well as some generalizations,
will be appearing in [2].

Theorem 91. Let E = X0(49), and let N = p0 p1 · · · pk be a
product of distinct primes satisfying (i) p0 ≡ 3 mod 4, p0 	=
7, and p0 is a quadratic non-residue modulo 7, (ii) p1, . . . , pk

split completely in Q(E[4]), and (iii) the ideal class group CN

of the field FN =Q(
√−N) has no element of order 4. Then

L(E(−N),s) has a simple zero at s = 1, E(−N)(Q) has rank 1,
and X(E(−N)) is finite of odd order.

We remark that, for N satisfying the hypotheses of the
above theorem, we have wE(−N) =−1 because N ≡ 3 mod 4.
Note also that once we have shown that L(E(−N),s) has a
simple zero at s = 1, Kolyvagin’s theorem implies imme-
diately that E(−N)(Q) has rank 1 and X(E(−N)) is finite.
However, one needs an additional argument by classical
2-descent theory, to show that the 2-primary subgroup of
X(E(−N)) is zero for such N (see [2]).

The curve X0(49) has genus 1 and is defined over Q.
It has precisely two rational cusps, namely [∞] and [0]. We
make the cusp [∞] the zero element for the group law on
X0(49). It is then well known that there is an isomorphism
of elliptic curves f : X0(49)→ E , where E is defined by (4),
which maps [0] to the point (2,−1). We now recall the defi-
nition of Heegner points on X0(49). From the moduli point
of view, the non-cuspidal points of X0(49) correspond to

isogenies {E1
ϕ−→ E2}, where E1 and E2 are elliptic curves,

and the degree of ϕ is 49. As Heegner [8] was the first to
observe and exploit (for other modular curves), the classi-
cal theory of complex multiplication provides us with the
following supply of points on X0(49). Let D be any positive
square free integer with D≡ 3 mod 4. Define

KD =Q(
√−D),

and let AD be the ring of integers of KD. Assume now that
the following condition is valid for KD:

Birch’s Heegner condition The prime 7 splits in KD.

Let a=℘2
7 , where℘7 is one of the two primes of KD above 7.

Then we have a natural isogeny C/AD → C/ADa−1 of de-
gree 49. We define wD = [{C/AD→C/ADa−1}] to be the cor-
responding point on X0(49). It is defined over the Hilbert
class field of KD, which we denote by HD in what follows.
We then define the Heegner point uD on X0(49) by

Definition 92. uD = TrHD/KD
(wD).

Of course, the crucial question now is to decide what
arithmetic conditions on D will guarantee that uD is of in-
finite order, and this is where Tian’s beautiful new idea
enters.

From now on, we write M(E) for the set of all square
free positive integers N of the form N = p0 p1 · · · pk, where
(i) p0 	= 7 is a prime which is inert in Q(

√−7), and p0 ≡ 3
mod 4, and (ii) p1, . . . , pk are primes which all split com-
pletely in Q(E[4]) = Q(μ4,

4
√−7). When it is demanded by

clarity, we will write k(N) instead of simply k. Our goal now
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is to use Tian’s induction method to prove the following
unconditional result. We recall that E(KN)

− denotes the
subgroup of E(KN) consisting of the points on which the
non-trivial element of Gal(KN/Q) acts like −1, and that it
can be identified naturally with E(N)(Q).

Theorem 93. Assume that N ∈M(E). If k(N) = 0, we have
2uN is in E(KN)

−. If k(N)≥ 1, we have

uN ∈ 2k(N)−1E(KN)
−+E(KN)tors.

We now begin the proof of this theorem. Let HN as
before denote the Hilbert class field of KN , so that class
field theory provides an isomorphism

j : Gal(HN/KN)
∼−→CN .

The fixed field of j−1(2CN) is called the genus class field
of KN , and we denote it byJN . Explicitly, we have

JN = KN(
√−p0,

√
p1, . . . ,

√
pk).

Define D(N) to be the set of all positive divisors M of N
which are divisible by p0. Thus, for each M ∈D(N), we have

KN(
√−M)⊂HN .

For M ∈ D(N) with M 	= N, let XM denote the quadratic
character of KN defining the abelian extension KN(

√−M)/
KN ; if M = N, XM will denote the trivial character. We then
define the “non-primitive” Heegner point uN,M by

Definition 94. uN,M = ∑σ∈GXM(σ)σ(wN).

Here G = Gal(HN/KN). Note that uN,N = uN . Clearly,
uN,M ∈ E(KN(

√−M)). However, it is not difficult to see
that it is fixed by the Galois group of KM(

√−N)/KM , and
hence we have uN,M ∈ E(KM). We now use the following
deep and beautiful theorem of Gross and Zagier [7]. Let
ĥ : E(Q)→ R be the absolute canonical Neron-Tate height
on E . Let L(E/KN ,XM,s) be the complex L-series of E/KN ,
twisted by the abelian character XM of KN .

Theorem 95. For each M ∈D(N), we have

L′(E/KN ,XM,1) = 16λ (E)N−1/2ĥ(uN,M),

where λ (E) denotes the Petersson inner product with itself
of the cusp form of weight 2 for Γ0(49) corresponding to E .

For any integer R 	= 0, recall that L(E(R),s) denotes the
complex L-series of E(R) over Q.

Lemma 96. For each M ∈D(N), we have

L(E/KN ,XM,s) = L(E(−M),s)L(E( N
M ),s).

Remark. Note that wE(N/M) = +1, and we studied the 2-part
of the Birch-Swinnerton-Dyer conjecture for its value at s=
1 earlier in our lectures!

Proof. For M = N,XM is the trivial character, and this is
just the usual factorization of L-series. Hence we can as-
sume that M 	= N. Then we have

Q(
√−N,

√−M)

KN =Q(
√−N) Q

(√
N
M

)
Q(
√−M)

Q

Let Δ be the Galois group of this quartic extension of Q.
Let φM denote the Artin character of dimension 2 ob-
tained by inducing XM to Δ. By the functorial properties
of L-functions under induction, we have

L(E/KN ,XM,s) = L(E/Q,φM,s).

But φM = φ1 + φ2, where φ1 is the non-trivial character of
Gal(Q(

√−M)/Q), and φ2 is the non-trivial character of
Gal(Q(

√
N/M)/Q). Hence

L(E/Q,φM,s) = L(E,φ1,s)L(E,φ2,s).

But L(E,φ1,s) = L(E(−M),s) and L(E,φ2,s) = L(E
(

N
M

)
,s), and

the lemma is proven.

Combining the above lemma with the theorems of
Gross-Zagier and Kolyvagin, we obtain the following key
corollary needed in Tian’s induction argument.

Corollary 97. Let M be any element of D(N). If uN,M has
infinite order, then uM has infinite order, E(KM) has rank 1,
and L(E(N/M),1) 	= 0.

Proof. Since uN,M has infinite order, L(E/FN ,XM,s) has
a simple zero at s = 1 by Theorem 95. Hence, by the
above lemma, L(E(−M),s) has a simple zero at s = 1, and
L(E(N/M),1) 	= 0. But applying Theorem 95 again, we con-
clude that uM must then be of infinite order, and so, by
Kolyvagin’s theorem, E(KM) has rank 1.

For any square free integer R, let us define

ΩR = Ω∞/
√
|R|, L(alg)(E(R),1) = L(E(R),1)/ΩR,

where Ω∞ is the usual least positive real period of the
Néron differential on E . In particular, we know that

L(alg)(E,1) =
1
2
.

Of course, it may well happen that the Heegner point uN,M

is torsion for some M ∈D(N). However, if it is not, we im-
mediately obtain from the above deep results the following
theorem, which lies at the heart of Tian’s method.
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Theorem 98. Assume M ∈D(N), and that uN,M is of infinite
order. Then E(KM) has rank 1, and

ĥ(uN,M)

ĥ(uM)
=

L(alg)(E( N
M ),1)

L(alg)(E(1),1)
.

On the other hand, noting that N/M is a product of
distinct primes which split completely in Q(E[4]), and ap-
plying the weak form of the 2-Birch-Swinnerton-Dyer con-
jecture given by Theorem 89, we also have

Theorem 99. If L(E(N/M),1) 	= 0, then

ord2(L
(alg)(E(N/M),1))≥ k(N)− k(M).

Combining the two previous theorems, we now estab-
lish the following result.

Corollary 100. Assume M ∈ D(N). If uN,M is of infinite or-
der, and uM ∈ 2k(M)−1E(KM)

− + E(KM)tors (when k(M) = 0
this means that 2uM ∈ E(KM)

−), then uN,M ∈ 2k(N)E(KM)
−+

E(KM)tors.

Proof. Since uN,M is of infinite order, E(KM)⊗Q has di-
mension 1, and so, using the same symbols to denote the
classes of both Heegner points in this vector space, we
have

uN,M = αuM

for some α ∈Q×. Hence

ĥ(uN,M)

ĥ(uM)
= α2

by the quadraticity of the Néron-Tate height. Thus, by The-
orem 98,

2ord2(α) = ord2

(
L(alg)(E(N/M),1)

L(alg)(E,1)

)
.

Moreover, by Theorem 99, we have ord2(L(alg)(E(N/M),1))≥
2k(N/M) and L(alg)(E,1) = 1

2 . Hence 2ord2(α)≥ 2k(N/M)+
1, and so ord2(α) ≥ k(N/M)+ 1. Thus we see that uN,M ∈
2k(N)E(KM)

−+E(KM)tors, as required.

The reader is referred to [2] for the proof of the fol-
lowing averaging result by the theory of complex multipli-
cation.

Proposition 101. Assume k(N) ≥ 1. For each M ∈ D(N),
uN,M ∈ E(KM)

−, and

∑
M∈D(N)

uN,M = 2k(N)vN ,

where vN = TrHN/JN
(wN). Moreover, we have

(5) v̄N + vN = �(2CN)[0].

Assuming this result, we will now complete the proof
of Theorem 93. We use induction on k(N). We first claim

that the result is true when k(N) = 1. Indeed, when k(N) =
1, we haveJN = KN(

√−p0). In this case, we clearly have

uN = vN + vτ
N , uN,p0 = vN− vτ

N ,

where τ denotes the non-trivial element of Gal(JN/KN).
In particular, it follows that

uN + ūN = vN + v̄N +(vN + v̄N)
τ ,

and the expression on the right is then zero because of
(5). This establishes Theorem 93 for k(N) = 1. Now assume
that k(N)> 1. Our inductive hypothesis is then that, for all
M 	= N with k(M)≥ 1, we have

uM ∈ 2k(M)−1E(KM)
−+E(KN)tors.

It follows from the corollary above that either uN,M is a
torsion or

uN,M ∈ 2k(N)E(KM)
−+E(KM)tors

for all M ∈D(N) with M 	= N. Hence we conclude from the
averaging lemma that

uN ∈ 2k(N)E(JN)+E(JN)tors.

We must deduce from this that

uN ∈ 2k(N)−1E(KN)
−+E(KN)tors.

Lemma 102. E(JN)[2∞]⊂ E[2](Q).

Proof. Since E has good reduction at 2, we have seen ear-
lier that ramification must occur at 2 in the extension
Q(P), where P is any point of order 4 on E , since the for-
mal groups of E at the primes of K above 2 are Lubin-
Tate groups. But the extension JN/Q is unramified at 2
because 2 is not ramified in KN and JN/KN is unrami-
fied. Thus the lemma is clear, on noting that Q(E[2]) =
Q(
√−7) 	⊂JN .

Since the prime to 2 part of E(JN)tors is 2-divisible, we
conclude from the above and this lemma that

uN ∈ 2k(N)E(JN)+E[2](Q).

Hence 2uN ∈ 2k(N)+1E(JN). Now we have the commutative
diagram

0 �� E(JN)/2k(N)+1E(JN) �� H1(JN ,E[2k(N)+1])

0 �� E(KN)/2k(N)+1E(KN)

α
��

�� H1(KN ,E[2k(N)+1])

��

0 �� Kerα

��

�� H1(Gal(JN/KN),E(JN)[2])

��

0

��
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The kernel of the right vertical map is killed by 2, whence
Kerα is also killed by 2. But 2uN ∈ Kerα . Hence 4uN ∈
2k(N)+1E(KN). It follows easily that uN = 2k(N)−1rN modulo
E[2](Q), where rN ∈ E(KN) is given explicitly by

rN = 2vN− ∑
M∈D(N),M 	=N

2zM + t1,

with t1 ∈ E[2](Q) and zM ∈ E(KM)
−. We conclude that

r̄N + rN = 2(v̄N + vN).

Hence r̄N + rN = 0 by (5), and the proof of Theorem 93 is
now complete.

We can now prove Theorem 91. We have shown that if
N = p0 p1 · · · pk(N) belongs to the set M(E) and has k(N)≥ 1,
then the Heegner point uN satisfies

uN ∈ 2k(N)−1E(KN)
−+E(KN)tors.

We want to show that uN is of infinite order if we assume,
in addition, that the ideal class group CN of KN has no el-
ement of order 4, or equivalently that the group 2CN has
odd order. We now give the detailed proof of this asser-
tion when k(N) ≥ 1. We omit the details of a very similar
argument for the case k(N) = 0.

We know from the proof of Theorem 93 given above
that, for all M ∈D(N), excluding M = N, we have

(∗) uN,M ∈ 2k(N)E(KM)
−+E(KM)tors (M 	= N).

Let us assume now that we also have

(∗∗) uN ∈ 2k(N)E(KN)
−+E(KN)tors,

and we will show this leads to a contradiction when 2CN

has odd order. This will certainly prove that uN has infi-
nite order. Recall that we have the identity given by the
averaging lemma, namely

∑
M∈D(N)

uN,M = 2k(N)vN

where vN = TrHn/Jn
(wN), and JN = KN(

√−p0,
√

p1, . . . ,√pk(N)). In view of (∗) and (∗∗), for each M ∈ D(N), we
can write

uN,M = 2k(N)zM + tM,

for some zM ∈ E(KM)
− and some torsion element tM in

E(KM). Since the only torsion in E(Q) is 2-torsion, it fol-
lows that all torsion elements in E(KM) of order prime to
2 must have trace zero to E(Q), and thus lie in E(KM)

−.
Such torsion in E(KM) of order prime to 2 is also clearly
2-divisible. Hence we can suppose in the above equation
that tM belongs to E(KM)[2∞]. It follows from the averaging
lemma that

2k(N)

(
vN− ∑

M∈D(N)

zM

)
∈ E(JM)[2

∞].

But then

vN− ∑
M∈D(N)

zM ∈ E(JM)[2
∞].

But we have already remarked that, by a ramification ar-
gument, we have E(JM)[2∞] = E[2](Q). Hence

vN− ∑
M∈D(N)

zM ∈ E[2](Q),

whence vN + vN = 0 because all zM ∈ E(KM)
−. But, as we

already used earlier (see (5)), the theory of complex multi-
plication shows that

vN + vN = �(2CN)[0].

Since the cusp [0] is a rational point of order 2, we get our
desired contradiction when �(2CN) is odd. This completes
the proof of Theorem 91.
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