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The Gauss-Bonnet theorem and the Cohn-Vossen in-
equality show that the only complete surface with positive
curvature is either the sphere, RP2, or the plane.

In higher dimension, the curvature tensor is far more
complicated. There are several commonly used partial
components of the curvature tensor that had been studied
for the whole century. The simplest one is the scalar cur-
vature which is the average of all curvatures at one point.
It appeared in the Hilbert action for general relativity. This
was studied extensively in connection with general relativ-
ity.

Manifolds with Positive Scalar Curvature

The basic technology to understand spaces with posi-
tive scalar curvature consist of the following topics:

1. Conformal deformation under the name of Yamabe
problem [34, 35]. The Yamabe constant, which is ob-
tained by minimizing the total scalar curvature in the
conformal class of the metric with a fixed volume, is
a conformal invariant. If it is nonnegative, the metric
is conformal to a metric with nonnegative scalar cur-
vature.

2. The theory of Dirac equation in conjunction with
the Lichnerowicz vanishing theorem [22] which states
that non-zero harmonic spinor does not exist for com-
pact spin manifolds with a metric of positive scalar
curvature. Hitchin [17] observed how to use the van-
ishing theorem of Lichnerowicz to prove that the α
invariant vanishes for 8k + 1 and 8k + 2 spin mani-
folds admitting a metric of positive scalar curvature
from the Atiyah-Singer mod 2 index theorem. In 1974,
Lawson-Yau [20] proved that manifolds with effective
compact continuous nonabelian group action must
admit metrics with positive scalar curvature: hence
the vanishing of the above KO characteristic numbers.

3. The theory of minimal hypersurfaces based on the
second variational formula. The basic observation is
that: if the ambient manifold admits a metric with
positive scalar curvature, then the induced metric on
a stable minimal hypersurface can be conformally
deformed to one with positive scalar curvature. The
strategy is to first use information from topology to
construct stable minimal hypersurfaces and then to
apply the above observation to do induction on di-
mensions. When the dimension is reduced to two, we

know the problem is settled by Gauss-Bonnet theo-
rem. This theory was due to Schoen and Yau [31],
where they also used it to prove the existence of black
hole if there is enough matter concentrated in a re-
gion with fixed size. The existence of stable minimal
hypersurface can be used to find topological obstruc-
tion to existence of metrics with positive scalar cur-
vature when dimension is not greater than seven. The
dimension restriction comes from regularity of mini-
mal hypersurface. Schoen and I believe that we should
be able to remove the dimension constraint now.

4. Schoen-Yau [40] made the important observation that,
by conformal deformation technology, it is possible to
perform surgery on spheres with trivial normal bun-
dle and codimension ≥ 3 in a manifold with posi-
tive scalar curvature so that the resulting manifold
still admits a metric with positive scalar curvature.
A year later, Gromov-Lawson [41] reproved the same
result using a more direct construction. Some of the
key formula was found to be wrong and was claimed
to be corrected in [39], except that another authors
[36] claimed to find mistakes again. In any case, the
Schoen-Yau surgery result reduces the problem of
existence of metrics with positive scalar curvature
to spin cobordism as was carried out by Gromov-
Lawson, Stolz [47] and others.

5. Gromov-Lawson [11] extended the work of Lichnerow-
icz vanishing theorem [22] to those manifolds which
admit covering space that is expanding (a terminol-
ogy introduced in their paper). Hence they proved that
compact manifolds with nonpositive sectional curva-
ture cannot admit metrics with positive scalar curva-
ture. (For dimension ≤ 7, the result was first proved
by Schoen-Yau mentioned in the above paragraph.)
It was conjectured by Schoen-Yau that if besides the
fundamental group, all higher homotopy groups of a
manifold vanish, then the manifold does not admit a
metric with positive scalar curvature. Schoen-Yau [30]
proved this conjecture if the manifold has dimension
not greater than 4.

6. Marques [48] proved that the space of metrics with
positive scalar curvature is connected for a three di-
mensional manifold, while Hitchin [49] proved that
metrics with positive scalar curvature is not con-
nected in seven dimension, based on the diffeomor-
phism group of the seven sphere is not standard.
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7. Connes [50] used the method of noncommutative ge-
ometry to derive a topological obstruction for a man-
ifold to have a spin foliation with leaves of positive
scalar curvature. It is an interesting question whether
such a manifold must itself admit a metric of positive
scalar curvature.

8. In the paper by Witten-Yau [57], they studied the ques-
tion of existence of metrics with positive scalar cur-
vature on a compact manifold which is a conformal
boundary of an asymptotically hyperbolic complete
Einstein manifold. They proved that the manifold is
connected. Based on this result and the surgery result
of Schoen-Yau, Yau proposed the conjecture in [51]
that it is possible to do surgery on such class of mani-
folds. Yau also asserted that it is easy to do connected
sum of such manifolds. The result was communicated
by Daniel Pollack to Mazzeo who wrote a paper with
Pacard in [55].

Manifolds with Positive Ricci Curvature

The variation of the Hilbert action gives rise to the Ein-
stein equation, where the Ricci curvature shows up. The
theory of Ricci curvature is important in relation to the
theory of Einstein metric. After modding out choice of
gauge, this is a deterministic system where the number
of unknown variables is the same as number of equations.
Manifolds with positive Ricci curvature are manifolds with
positive scalar curvature. Hence it encounters similar topo-
logical obstructions. However, the splitting theorem of
Cheeger-Gromoll shows that compact manifold with non-
negative Ricci curvature has a finite cover given by the
product of the torus with a simply connected compact
manifold. Hence the fundamental group of such manifold
is rather restrictive. One can construct complete manifolds
with positive Ricci curvature by taking bundles over other
manifolds with positive Ricci curvature. This was carried
out by John Nash in [54]. Mckenzie Wang, and Wolfgang
Ziller [52] and others. Sha and Yang [53] constructed met-
rics with positive Ricci curvature on the connected sums
of products of spheres and complex projective spaces.

However, Kähler geometry provides the richest class
of metrics with positive Ricci curvature.

The following important consequence of the Calabi
conjecture is related to metrics with positive Ricci curva-
ture.  Given  any   closed  (1.1)  form  which   represents
the first  Chern form  on a  Kähler manifold,  it  can be
represented as Ricci curvature form of some Kähler metric.
Hence if the first Chern form is positive, we have Kähler
manifolds with positive Ricci curvature. The noncompact
version of the Calabi conjecture was studied by Yau and
announced in the Helsinki congress in 1978. Some detail
was written up with Tian in [45, 46] to non-compact Kähler
manifolds. One can also construct a large set of example of
orbifolds with positive Ricci curvature. Bundles over such
orbifolds may become nonsingular manifolds with posi-
tive Ricci curvature.

Manifolds with Quarter-Pinched Positive
Sectional Curvature, Manifolds with
Positive Curvature Operator, Manifolds
with Isotropic Positive Curvature and
Kähler Manifolds with Positive Bisectional
Curvature

The full curvature tensor enables us to define differ-
ent inequalities for various curvature components. First
of all, we know that on the Grassmannian of two-planes
in the tangent space at any point of the manifold, we can
associate a curvature function called sectional curvature.
It is observed by Killing in 1891 and by H. Hopf in 1926
that if this function is constant, the manifold is covered
by the round sphere, the Euclidean space, or the hyper-
bolic space.

Hopf and later H. E. Rauch were interested in a suitable
stability statement: when the sectional curvature is close
to be a constant, does the manifold resemble a space form?

Rauch was a student of Bochner whose idea of vanish-
ing theorem led to the work of Lichnerowicz on vanishing
of harmonic spinors on metrics with positive scalar curva-
ture.

Rauch developed the comparison theorems while To-
ponogov [37] proved his triangle inequalities. These pro-
vided powerful tools to make definite progress on the
problem of Hopf. In 1951, Rauch [28] proved that if the sec-
tional curvature is between a constant around 0.75 and 1,
the manifold is homeomorphic to the sphere if it is simply
connected.

Klingenberg in 1961 [19] finally proved that if the sec-
tional curvature is greater than 1/4 and not greater than 1,
the manifold is homeomorphic to the sphere if it is sim-
ply connected. (The crucial injectivity radius estimate was
finished by Cheeger and Gromoll [5] much later for odd di-
mensional manifolds.) The case when the lower bound 1/4
is included, was settled by Berger [1], in which symmetric
spaces of rank one are allowed.

After Milnor [24] found the exotic sphere, it is clear
that one wants to prove the manifold is diffeomorphic to
the sphere under the same curvature assumption. This is a
much more difficult problem. Calabi and D. Gromoll (in his
thesis [8]) proved that when 1/4 is replaced by a constant
close to one, the manifold is indeed diffeomorphic to the
sphere.

The pinching constant was improved in the early sev-
enties by Sugimoto-Shiohama-Karcher [33] (1971), Ruh
[29] (1973), Grove-Karcher-Ruh [13] (1974), Hof-Ruh [18]
(1975), where the pinching constant was reduced to the
order of 0.68. In the mean while, Gromoll and Meyer [9]
(1974) found a metric with curvature positive in an open
dense set on the Milnor exotic sphere. Recently, Petersen
and Wilhelm [27] claimed that they found a metric which
has positive curvature everywhere. But this has not been
checked thoroughly.

Before Hamilton found his equation, there was no bet-
ter tools to study the quarter pinching problem for the
smooth sphere theorem with optimal constant. A good test
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of the Ricci flow was observed by Hamilton [14] (1982) that
if the initial metric is of positive Ricci curvature in dimen-
sion three, it will continue to be so under the flow. Then he
showed that the flow will converge to a metric with con-
stant curvature, hence the proof of the Poincaré conjecture
in this case.

In 1986, Hamilton [15] observed that his flow pre-
serves the positivity of curvature operator in all di-
mension. Based on this, he proved that four-manifolds
with positive curvature operator are diffeomorphic to the
sphere or projective space. These were known previously
to be homotopic to spheres. In 2008, Böhm and Wilking [2]
proved this theorem of Hamilton in all dimensions.

The final settlements of the famous 1/4 pinching
smooth sphere theorem was by Brendle and Schoen [3] in
2007, using the Ricci flow. In fact, the pinching condition
is replaced by a much weaker pointwise condition: that the
ratio of the smallest sectional curvature to the largest one
is larger than 1/4 everywhere.

The method used by Brendle and Schoen is rather in-
genuous: the 1/4 pinching is not preserved by the Ricci
flow and one has to overcome this problem.

First of all, let us discuss the concept of isotropic cur-
vature introduced by Micallef and Moore [23] in 1988 to
study the sphere theorem. It comes up in the second vari-
ational formula for minimal surfaces as was formulated by
Siu-Yau [32] in higher dimensional manifold.

In fact, in 1980, when Siu-Yau [32] proved the Frenkel
conjecture that every Kähler manifold with positive bisec-
tional curvature is biholomorphic to complex projective
spaces, they minimized the area of a sphere in a fixed ho-
mology class. They then proved that the sphere is either a
holomorphic or antiholomorphic curve. In doing so, they
complexified the normal bundle and solved the Cauchy-
Riemann equations to find a complex holomorphic normal
vector field. (Here special features of complex geometry in
one dimension is used.) After such holomorphic section
is found, the left over terms in the second variational for-
mula was the bisectional curvature when the ambient man-
ifold is Kähler.

When the manifold is Riemannian, the argument that
Siu-Yau used still works, except the curvature of the am-
bient manifold needs to be changed to isotropic curvature
which we explain now.

We complexity the tangent space at each point of the
manifold, both the metric and the curvature tensor can be
extended complex linearly. For any two complex null vec-
tors u and v with zero complex inner product, we require
the curvature R(u,v, ū, v̄) in the null plane to be positive.
This is called isotropic positivity.

Making use of the second variational formula as was
formulated in Siu-Yau [32] in the proof of Frankel con-
jecture, Micallef and Moore [23] proved that for minimal
spheres in manifolds with positive isotropic curvature, the
index must be greater than the integral part of n−2

2 . When
the manifold is simply connected, one can use Poincaré du-
ality to prove that simply connected manifolds with posi-
tive isotropic curvature must be homotopic spheres. How-

ever, this proof cannot tell whether they are diffeomorphic
to sphere or not.

Hamilton [15] managed to prove that a simply con-
nected four dimensional manifold with positive isotropic
curvature is diffeomorphic to the standard sphere. This
was a warm up for his program to prove the Poincaré con-
jecture in three dimension. Recently, B. Chen, S. Tang and
X. Zhu [6] (2008) proved that any four dimensional mani-
fold with positive isotropic curvature is diffeomorphic to
the connected sum of S4 or RP4 or a quotient of S3×R.

In 2007, Brendle-Schoen [3] proved that isotropic pos-
itivity is preserved under Ricci flow for all dimension (also
by Nguyen [25]). In addition to the arguments of Hamilton,
they need some delicate algebraic inequalities for curva-
ture tensor with nonnegative isotropic curvature.

Then Brendle-Schoen found a remarkable curvature
condition: the isotropic nonnegativity on the product of
the manifold M with the two dimensional Euclidean plane,
is equivalent to the nonnegativity of R(u,v, ū, v̄) for all u, v
on the complexified tangent space of M.

They proved that if the strict inequality holds, the Ricci
flow will deform the metric to one with constant curva-
ture, after normalization. The pointwise quarter pinching
condition on a manifold implies the above condition and
hence the proof of the quarter pinching theorem.

There is also rigidity theorem for such statements.
Brendle observed that using the above arguments and the
holonomy group, one can prove that a simply connected
irreducible manifold with nonnegative isotropic curvature
is either homeomorphic to the sphere, a Kähler manifold
or a symmetric space. For manifolds with pinching slightly
less than 1/4, there is work of Peter Peterson and Terry Tao
[26] who proved that simply connected manifolds of this
type must be diffeomorphic to a sphere or a symmetric
space of rank one.

Throughout the entire proof of the smooth quarter
pinching sphere theorem, either theory of minimal sur-
faces are used or Hamilton’s equation was used. Both of
them required deep geometric analysis. The analysis em-
bedded in the works of Hamilton is very deep; they are not
only geometric, but also analytic in nature. A very impor-
tant gradient estimate was used throughout the proof, It
was derived by Hamilton [16] on a tensor inequality mod-
eled after the Li-Yau inequality for heat equation [21].

There are constructions of manifolds with nonnega-
tive sectional curvature based on continuous group ac-
tions on manifolds with positive curvature. There is also
the double coset construction used by Gromoll and Meyer
[9] to construct metrics with positive sectional curvature
on an open dense set of the exotic spheres.

Concerning topological obstructions for manifolds
with positive sectional curvature, there is a theorem of
Gromov [10] who proved that there are upper bounds for
their Betti numbers depending only on the dimension of
the manifolds. But the bound is far from sharp. The con-
jecture is that the Betti numbers are not greater than the
corresponding Betti number of the torus with the same di-
mension.
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On the other hand, we know little about the structure
of their fundamental group, the ring structure of their co-
homology, the Betti number of their loop space, or their
homotopic types. In fact, we do not know any manifolds
with positive sectional curvature for dimension greater
than 24, which are not symmetric spaces. It would be nice
to prove that there are only finite number of diffeomor-
phic types of such manifolds, each of them should admit
some smooth circle group action. Perhaps we may also be
reminded of the unsolved Hopf problem on the existence
of metrics with positive sectional curvature on the product
of spheres.

For complete noncompact manifolds with nonneg-
ative sectional curvature, there is the famous theorem
of Gromoll-Meyer-Cheeger-Perelman which says that such
manifold is diffeomorphic to a vector bundle over a com-
pact totally geodesic submanifold. This compact manifold
is a point if the curvature of the manifold is positive. Hence
complete noncompact manifolds with positive sectional
curvature are diffeomorphic to the euclidean space (a fact
proved by S. Cohn-Vossen for surfaces). It is still an open
question to find out which vector bundles over a com-
pact manifold with nonnegative sectional curvature admit
a complete metric with nonnegative sectional curvature on
their total space.

Kähler Manifolds with Positivity on
Curvatures Related to the Complex
Structure

One natural curvature constraint on a Kähler manifold
is the positivity of the holomorphic sectional curvature,
which is the sectional curvature spanned by any planes
spanned by vectors X and JX . It is known that the scalar
curvature is the average of holomorphic sectional curva-
ture. Hence manifolds with positive holomorphic sectional
curvature must have positive scalar curvature and it en-
joys the constraints given by such curvature. But there is
one more important property that can be derived easily
from the second variational formula of geodesics. The fun-
damental group of such manifolds must be trivial. Since
the plurigenera of such manifolds must be trivial, I expect
compact manifolds with positive holomorphic sectional
curvature are rational manifolds. Conversely, it will be in-
teresting to know which rational manifolds admit Kähler
metrics with positive holomorphic sectional curvature. For
algebraic surfaces, Hitchin observed that this is always
true. But the structure of rational surfaces are rather sim-
ple. We probably cannot expect such statements to be true
in higher dimension.

In the proof of the Calabi conjecture, a curvature term
appeared that is weaker than positive bisectional curva-
ture for Kähler manifolds: For any two complex vectors V
and W that are orthogonal to each other, the bisectional
curvature determined by them is non negative. This was
studied Damin Wu, Fang Yang Zheng, and myself [7] at the
beginning and later by Albert Chau and Tam [4]. It turns
out that certain C space defined by H. C. Wang satisfy such

conditions. It remains a problem to classify such mani-
folds.

At this point my conjecture that such complete non-
compact Kähler manifold are biholomorphic to Cn is still
not solved. Progress was made by Shi, X. Zhu, Chen, Chau
and Tam, using Kähler Ricci flow.
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