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ZIG–ZAG MODULES: COSHEAVES AND K-THEORY

RYAN GRADY and ANNA SCHENFISCH

(communicated by Peter Bubenik)

Abstract
Persistence modules have a natural home in the setting of

stratified spaces and constructible cosheaves. In this article,
we first give explicit constructible cosheaves for common data-
motivated persistence modules, namely, for modules that arise
from zig-zag filtrations (including monotone filtrations), and
for augmented persistence modules (which encode the data of
instantaneous events). We then identify an equivalence of cat-
egories between a particular notion of zig-zag modules and the
combinatorial entrance path category on stratified R. Finally,
we compute the algebraic K-theory of generalized zig-zag mod-
ules and describe connections to both Euler curves and K0 of
the monoid of persistence diagrams as described by Bubenik
and Elchesen.

1. Introduction

In this article we aim to demonstrate the utility of viewing persistent phenomena
from the perspective of constructible (co)sheaves. In particular, we demonstrate how
cosheaves provide a convenient interpretation of augmented descriptors of persistence
modules and how cosheaves are a convenient setting for constructing invariants via
algebraic K-theory. The present is in the same spirit of the program we first employed
in [15], namely, applying stratified mathematics and higher algebra to topological
data analysis (TDA).

The use of cosheaves in TDA goes back at least to Curry [13]. The work of Curry
and collaborators (e.g., work with Patel [12]), serves as an inspiration for our own per-
spectives. The key idea interpolating between persistence modules and constructible
cosheaves is that of a stratified space. A persistence module {Vi}i∈I is obtained by
sampling (or otherwise selecting a discrete subset of) a larger parameter space. For
concreteness, consider I ⊂ R⩾0 as a selection of “instances” in our one-dimensional
ray of “time.” As our persistence module only changes at elements of I, it is locally
constant on R \ I, which is the defining property of a constructible cosheaf.

Constructible cosheaves are particularly nice mathematical objects for several rea-
sons, chief among them is their equivalence to representations of the so called entrance
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path category ; this is known as “the” Exodromy Theorem. Any stratified space has
an associated entrance path category and in good cases (e.g., when the space is a
combinatorial manifold), the entrance path category is a straightforward combinato-
rial object – in many cases it’s simply a poset. The idea of exodromy goes back to
MacPherson and proofs in different settings appear in work of Curry and Patel [12],
Treumann [24], Lurie [19], and Barwick with Glasman and Haine [3].

Given a parameter space (and a choice of sampling instances), exodromy allows us
to consider all persistence modules/constructible sheaves on that space as a category
of functors. Such categories of functors then inherit desirable properties from the
target category. For instance, if we consider modules valued in vector spaces, the
category of persistence modules is naturally an Abelian category. Abelian categories
are the home of homological and homotopical algebra, so we are free to apply the tools
of algebraic topology/homotopy theory, e.g., algebraic K-theory. The combinatorial
nature of the entrance path category makes K-theory computations tractable and
allows us to consider connections with other persistent invariants such as Euler curves
and persistence diagrams.

In the present article, we are mainly concerned with one-dimensional parameter
spaces. The resulting persistence modules are the zig-zag persistence modules of Carls-
son and de Silva [10], which includes the more typically seen monotone (standard)
modules.

Readers familiar with the persistent homology transform (PHT) may be interested
to note that the PHT is a special type of persistence module itself. Our computation
of K-theory for zig-zag persistence modules has an interpretation in the setting of
the PHT where the sphere of directions is S1. Thus, the results of this paper may be
useful for future work in the computation of other invariants of the PHT. See [25]
for further background on the PHT.

1.1. Why K-theory?

In the later part of this article, we compute the K-theory of the category of zig-zag
modules. Here, we briefly overview why K-theory is a useful invariant.

K-theory began as simply as group completion of a monoid. Indeed, let (M,⊕) be
a commutative monoid and define K0(M,⊕) to be the unique (up to isomorphism)
Abelian group, equipped with a choice of monoid homomorphism from M , satisfying
the universal property: for any Abelian group A and homomorphism (of monoids)
φ : M → A, there exists a unique group homomorphism extension to K0(M,⊕). This
universal property is described as the universal Euler characteristic and is conveyed
diagrammatically as follows:

(M,⊕)

��

∀ // A

K0(M,⊕)
∃!

;; .

For instance, let V be the isomorphism classes of finite dimensional vector spaces
over the field R (with direct sum) and φ : V → Z the rank function, then we have
an induced map K0(V)→ Z, which happens to be an isomorphism. Expanding this
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example to complexes, let C denote isomorphism classes of bounded complexes of R-
vector spaces. The natural extension of the rank function is the Euler characteristic,
which again factors uniquely through K0(C). (In the topological setting, the Chern
character of a vector bundle is an example of such an additive map.) The universal
property of K0 extends to categories equipped with a symmetric monoidal structure,
as isomorphism classes of objects in such a category form a commutative monoid.

K-theory is more than just a single Abelian group, but rather a spectrum, K(C),
associated to a category (equipped with additional structure). Recall that spectra
are the central objects of homotopy theory. The homotopy groups of K(C) define
the K-groups of C, i.e., Kn(C) := πn(K(C)). To first approximation, spectra can be
thought of as the objects that parametrize cohomology theories. As such, they, so
K-theory in particular, admit a wealth of computational tools, refined structures,
and interpretations from algebraic topology. Cohomology theories are also the natural
home for obstruction/anomaly theory and in this way, K-theory has become a central
tool in topology (index theory, finiteness obstructions) and algebraic number theory
(class field theory).

When refined to the level of spectra, K-theory has a remarkable additive struc-
ture with respect to split short exact sequences of categories. (We discuss this in
Appendix A, see also [7].) Combined with its property as the universal Euler charac-
teristic, K-theory is the universal additive invariant of (Waldhausen) categories.

1.1.1. Flavors and history of K-theory
There are several flavors and constructions of K-theory; we trace here the history to
the two we use in the present article: Waldhausen’s construction and Zakharevich’s
theory of assemblers. See the canonical texts of Rosenberg [21] and Weibel [27] for
historical references and more details on the development of K-theory.

The genesis of K-theory came in the late 1950’s and early 1960’s through the
work of Grothendieck in complex (algebraic) geometry and Atiyah and Hirzebruch in
topology. Algebraic K-theory—the kind relevant to the present work—is an extension
of Grothendieck’s ideas to build a family of functors from rings to Abelian groups
Ki : Ring→ Ab. While Grothendieck only defined K0, suitable definitions for K1 and
K2 were found by the mid 1960’s; the contributions of Bass, Schanuel, and Milnor are
most notable. (Bass and Karoubi also gave definitions of negative K-theory, K−n(R).)
Definitions of higher K-groups was a major open problem in the early 1970’s, which
was first solved by Dan Quillen: the +-construction. (Milnor had given a definition of
higher K-groups as well, though this Milnor K-theory is only a summand of the now
accepted definition of higher K-theory.) Given a ring, R, Quillen produced a space,
BGL(R)+, whose homotopy groups recovered/defined the K-theory of R.

Quillen quickly followed his +-construction with the Q-construction. The Q-con-
struction takes as input an exact category, C, e.g., the category of finitely generated
projective modules for a ring, and outputs a space, ΩBQC, whose homotopy groups
define K-theory. Quillen used the Q-construction to prove many fundamental results
in algebraic K-theory that restricted to those for rings, as he also proved that + = Q,
that is, the Q-construction is a strict generalization of +-construction for rings.

The next revolution in algebraic K-theory came through Waldhausen’s work in
manifold topology [26]. Published in 1985, Waldhausen gave a construction that takes
as input categories with structure that generalizes that of exact categories—nowadays
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called Waldhausen categories—and outputs a spectrum (the basic building block of
homotopy theory) whose homotopy groups define the corresponding K-groups. (Segal
some 15 years earlier used his Γ-objects to produce a K-theory spectrum in certain
cases.) Waldhausen’s construction is often referred to as the S•-construction and we
give a brief overview in Appendix A. The S•-construction is a strict extension of the
Q-construction. Perhaps most significantly, the S•-construction satisfies an additivity
result for split short exact sequences; this result has become a central tool in algebraic
K-theory.

Finally, we note that there has been an extension of K-theory to the higher cat-
egorical/homotopical algebraic setting as well. The work of Blumberg, Gepner, and
Tabuada [7] proves that K-theory satisfies certain universal properties, such as addi-
tivity, (and hence is essentially uniquely defined by such properties) in this setting.

1.1.2. K-theory and persistence

Through the work of Patel, Bubenik and collaborators, K-theoretic considerations
have started to appear in the TDA literature. Patel considered the Grothendick group,
i.e., K0, of one-dimensional persistence modules valued in symmetric monoidal cate-
gories [20].

Subsequently, in [9], Bubenick and Milićević show that the category of persistence
modules over any preorder is Abelian. The key idea—which we use below as well—is
that functor categories inherit many of the properties of the target category, so if
the target is Abelian or Grothendieck, i.e., AB5 with a generator, then the functor
category with domain a preorder (or any small category) is Abelian or Grothendieck.
It would be interesting to apply Quillen’s Q-construction to these categories of per-
sistence modules and compare the resulting K-theories to our computations below.
(We note that [9] contains much more than we just outlined, e.g., the authors prove
an embedding theorem in the vein of the Gabriel–Popescu Theorem.)

More relevant for us is the recent article [8] by Bubenik and Elchesen. In this
work, the group completion of the monoid of persistence diagrams is described, i.e.,
K0(Diag) is defined (semi-)explicitly. Points in diagrams are counted with multiplicity,
so the binary operation is simply induced by +: N0 × N0 → N0. The input data for
the construction of Bubenik and Elchesen is pretty flexible, so one can talk about
diagrams (and their group completions) indexed by the entire first quadrant, the
integers, etc. We make contact with this work in Section 5.2 below.

1.2. What we do

We have aimed to illustrate the connection between persistence modules and
cosheaves and the utility of this interplay. To this end, we accomplish the follow-
ing.

1.2.1. coSheaves from filtrations

The relevance of cosheaves in TDA has been advocated by Curry and others for a
number of years. In Section 3, we give explicit constructions of constructible cosheaves
associated to persistence modules. We are particularly interested in persistence mod-
ules arising from index filtrations of spaces. In Section 3.2.3, we describe the aug-
mented filtration cosheaf, which records both non-instantaneous and instantaneous
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events. (We flag the recent work of Berkouk, Ginot, and Oudot [5] where level-set
persistence is recast in terms of sheaves over R.)

1.2.2. Equivalence theorem

We prove an equivalence of categories between a localization of the category of zig-zag
modules a la Carlsson and de Silva and constructible cosheaves on R. The explicit
statement of the result is Theorem 3.19. This result is stated in passing (Example 6.3)
in the recent work of Curry and Patel [12], and we make it explicit with proof. We
hope the proof is as interesting to the reader as the result, though it uses techniques
that are different from the rest of the paper so we relegate it to Appendix B.

One motivation for this result is to argue that our K-theoretic computations which
follow deserve to be called the K-theory of zig-zag modules.

1.2.3. K-theory of zig-zag modules

In Section 4, we define and compute K-theory of persistence modules, viewed as
constructible cosheaves on a stratified parameter space. We use Waldhausen’s S•
construction of K-theory. A key input is additivity, in this case with respect to strata.
For instance, in the case that our parameter space is one-dimensional, e.g., monotone
or zig-zag persistence, the group K0 is the free abelian group on the strata of param-
eter space (Theorems 4.7 and 4.12). This result is true for both Vect valued modules
and modules valued in pointed sets.

The higher K-groups do not vanish but rather are given by the algebraic K-theory
of fields and/or the sphere spectrum. In forthcoming work, we aim to interpret these
higher K-groups as arising from data.

The constructions and techniques we present apply to parameter spaces of arbitrary
dimension.

1.2.4. Euler curves and virtual diagrams

We conclude the body of the paper by connecting our K-theoretic work back to some
recent work in TDA. First, we show how the Euler curve of a persistence module has
a natural interpretation as a class in K-theory. (This is as expected, e.g., Kashiwara
and Schapira [18] prove that K0 is isomorphic to constructible functions via a local
Euler index.) With this observation, we define an Euler class for arbitrary persistence
modules regardless of dimension; this is Definition 5.3. Lastly, Section 5.2 builds a
group homomorphism from K0 of persistence modules to Bubenik and Elchesen’s
Abelian group of virtual persistence diagrams.

Conventions

We assume the reader has some familiarity with algebraic topology, and freely use
concepts from Hatcher’s standard text [16].

Throughout, we will let VectF be the category of finite dimensional vector spaces
over the field F and linear maps. Much of our work doesn’t depend on making a choice
of field and we simply use the notation Vect.

Unless otherwise noted, we will assume all stratified spaces are combinatorial man-
ifolds equipped with their native stratification, notions we define in the next section.
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2. Constructible coSheaves

This section is a terse introduction to terminology and notation we will use through-
out the sequel. Examples and further details are abundantly available, e.g., [12] or
[15].

2.1. Stratified/constructible basics
Definition 2.1. Let (P,⩽) be a poset. The upward closed topology on (P,⩽) is
defined as follows: U ⊆ P is open if and only if for all u ∈ U ,

Pu⩽ := {p ∈ P | u ⩽ p} ⊆ U.
The upward closed topology is also known as the Alexandrov topology.

Definition 2.2. A stratified topological space is a triple (X
ϕ−→ P) consisting of

• a paracompact, Hausdorff topological space, X,

• a poset P, equipped with the upward closed topology, and

• a continuous map X
ϕ−→ P.

Note that any topological space is stratified by the terminal poset consisting of
a singleton set. Moreover, the simplices of a simplicial complex, K, come equipped
with the structure of a poset, and we call the resulting stratification of K the native
stratification which will denote by Nat(K).

Definition 2.3. Given a stratified topological space ϕ : X → P, and any p ∈ P, the
p-stratum, Xp, is defined as

Xp := ϕ−1(p).

Example 2.4. For n ∈ N, let [n] denote the totally ordered set {0 < 1 < · · · < n}.
Consider a stratified circle, S1 → [1], stratified by v, a single vertex, and α, the arc
which is the complement of v. This example is illustrated in Figure 1. (So the map
ϕ : S1 → [1] is given by v 7→ 0 and α := S1 \ {v} 7→ 1.) The 0-stratum is the vertex v
and the 1-stratum is the arc α, i.e., S1

0 = {v} and S1
1 = S1 \ {v} = α.

Definition 2.5. A map of stratified topological spaces (ϕ : X → P) to (ψ : Y → Q) is
a pair of continuous maps (f1, f2) making the following diagram commute.

X
f1 //

ϕ

��

Y

ψ

��
P

f2 // Q.
A map of stratified spaces is a stratified homeomorphism if it admits a two-sided
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0 < 1

Figure 1: A stratified circle, S1 → [1] as in Example 2.4, where v 7→ 0 and α 7→ 1.

(stratified) inverse.

Definition 2.6. Let X → P be a stratified space and x ∈ Xp ⊆ X a point. The space
X is conically stratified at x if there exists an open neighborhood, Ux, of x and a
stratified homeomorphism Ux ∼= Z × CY where Z is a topological space and CY is
the cone on a space Y stratified by P>p. A space is conically stratified if it is conically
stratified at all of its points.

Definition 2.7. Let L be a polyhedron, so every point admits a neighborhood which
is a finite union of simplices. Recall that a map f : L→ Rn is piecewise linear (PL)
if there exists a triangulation of L such that restricted to each simplex f is linear.

Definition 2.8. A piecewise linear (PL) manifold is a topological manifold which
admits an atlas where transition functions are piecewise linear1.

Completely analogously to smooth manifolds, PL manifolds form a category with
morphisms being PL maps and isomorphisms being PL homeomorphisms.

Definition 2.9. A combinatorial manifold X is a triangulated PL manifold. That is,
a combinatorial manifold is a PL manifold X along with a simplicial complex K and
a PL homeomorphism K → X. The manifold X inherits a native stratification from
the simplicial complex K.

Remark 2.10. As discussed in [2], every Whitney stratified manifold is conically strat-
ified. In particular, a combinatorial manifold X is conically stratified.

For further details on PL and combinatorial manifolds, see [22] or Section 3.9 of
[23].

Definition 2.11 ([15]). Let (S
φ−→ Q) be a stratified space, S ↪→ X a topological

embedding, and π0(X \ S) = A. Define the poset, Q∧∧, as the set Q⨿A, subject to
the following generating relations:

1. The relations of Q;
2. For ℓ ∈ Q and α ∈ A, ℓ ⩽ α if and only if φ−1

S (ℓ) ⊆ α, i.e., the ℓ-stratum is in
the closure of the connected component indexed by α.

1Admitting a PL atlas is equivalent to specifying a class of triangulations of the underlying manifold
which is stable under subdivision.
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There is an obvious extension of the map φ, ψS : X → Q∧∧ and we call this stratifi-
cation the connected ambient stratification. We often denote this stratified space by
(X,S)∧∧.

A typical (easy) example of the preceding is considering a discrete subset I ⊂ R.
The resulting stratified space, (R, I)∧∧, is a combinatorial manifold.

Definition 2.12. Let X be a topological space, Op(X) the poset of open sets in X,
and V a category. A precosheaf on X valued in V is a functor F : Op(X)→ V. A
precosheaf is a cosheaf if for each open U ⊆ X and any open cover of U , {Ui → U},
there is an equivalence (in V )

colim

∐
i,j

F(Ui ∩ Uj) ⇒
∐
i

F(Ui)

 ∼−→ F(U).

For what remains, we will assume V is a nice category, so that cosheafification
exists. (Cosheafification is quite subtle, even compared to its dual notion of sheafifi-
cation.) In particular, we will later focus on the case that V = Set or V = Vect.

Lemma 2.13. Let B be a basis for the topology of the space X and let F be a cosheaf
on the poset determined by B. There is a unique (up to isomorphism) extension of F
to a cosheaf on X.

The idea of the lemma can be thought of in terms of a Kan extension diagram:

B F //� _

��

V

Op(X)

∃!

<< .

Definition 2.14. Let M → P be a stratified space (not nec. conical or simplicial)
and F a cosheaf on M . The cosheaf, F , is constructible if it is locally constant when
restricted to any stratum of M → P, i.e., given p ∈ P and x ∈Mp there exists a
neighborhood p ∈ U ⊆Mp such that F|U is constant.

Definition 2.15. Let F be a (pre)cosheaf on X and p ∈ X. The costalk of F at p is
defined by

Fp := lim
U∋p
F(U).

2.2. Operations on coSheaves
Given a continuous map ξ : X → Y , there is in an induced functor on the posets

of opens ξ̂ : Op(Y)→ Op(X) given by preimages with respect to ξ.

Definition 2.16. Let ξ : X → Y be a continuous map and F a (pre)cosheaf on X.

The pushforward of F , ξ∗F , is the (pre)cosheaf on Y given by ξ∗F := F ◦ ξ̂.

There is a contravariant functor as well associated to a map ξ : X → Y : the pullback
ξ∗ : coShv(Y)→ coShv(X). As a continuous map is not necessarily an open map, ξ∗ is
(slightly) more involved to define: it is the limit over opens containing ξ(U) for U ⊆ X
an open. Only pushforwards appear below.
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Example 2.17. Let p ∈ X be a point in the topological space X and i : p ↪→ X the
inclusion map. Let F be a cosheaf on X, then i∗F is the costalk at p of F , Fp. Let
W be a cosheaf on p, then i∗W is a skyscraper cosheaf on X.

Example 2.18. Let ξ : (ϕ : X → P)→ (ψ : Y → Q) be a stratified map and F a con-
structible cosheaf on X. Although the pullback of a constructible cosheaf is always
constructible, it is not necessarily the case that ξ∗F is constructible on Y .

• Consider the inclusion ι : [0, 1/2) ↪→ [0, 1) and let V be a nonzero constant
cosheaf on [0, 1/2). Further stratify [0, 1/2) and [0, 1) with zero-stratum {0}
and one-stratum (0, 1/2) (resp. (0, 1)). The cosheaf ι∗V is not locally constant
on (0, 1) as

ι∗V (0, 1/4) = V, while ι∗V (3/4, 1) = 0.

• Constructibility is preserved by pushforwards in certain cases. Choose for our
C : [0, 4]→ [0, 3] the “elementary collapse” of the interval [2, 3], i.e.,

C(t) =


t, if 0 ⩽ t < 2

2, if 2 ⩽ t ⩽ 3

t− 1, if 3 < t ⩽ 4

.

The map C is a stratified map with respect to the (connected) ambient strati-
fications induced by {0, 1, 2, 3, 4} ⊂ [0, 4] and {0, 1, 2, 3} ⊂ [0, 3]. Let F be any
constructible cosheaf on [0, 4]. It is straightforward to verify that C∗F is con-
structible on [0, 3].

2.3. Entrance paths and their representations
Given a stratified space,M → P, an entrance path is a continuous path inM such

that it for all time it stays in a stratum or enters into a deeper (with respect to P)
stratum.

Definition 2.19. Let M → P be a stratified space. The entrance path category of
M → P, Ent(M,P) has objects the points of M and morphisms (elementary) homo-
topy classes of entrance paths.

Exodromy Theorem (Theorem 6.1 of [12]). Let M → P be a conically stratified
space and V a category. There is an equivalence of categories

cShvVcbl(M,P)
∼−→ Fun(Ent(M,P),V)

between constructible cosheaves on M and representations of its entrance path cate-
gory.

Definition 2.20. Let M → P be a combinatorial manifold. The combinatorial
entrance path category, Ent∆(M,P) has as objects the strata of M and a morphism
σ → τ whenever τ is a face of σ.

Proposition 2.21. Let M → P be a combinatorial manifold. There is an equivalence
of categories Ent(M,P) ∼−→ Ent∆(M,P).

Proof. Define a functor F : Ent(M,P)→ Ent∆(M,P), where the image of a point
x ∈ Ob(Ent(M,P)) is unique simplex σ containing x, and the image a morphism
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x→ y is the combinatorial entrance path from F (x)→ F (y) (well-defined since the
simplex containing y must be a face of the simplex containing x in order to be an
entrance path). We claim that F is fully faithful and essentially surjective. Again, let
x ∈ σ, y ∈ τ , so that τ is a face of σ. Since τ and σ are face-coface pairs of a non-
degenerate triangulation, the subspace τ ∪ σ deformation retracts onto τ , meaning
there is a unique homotopy class of entrance paths x→ y. Furthermore, there is a
unique morphism σ → τ in Ent∆(M,P), i.e., F is fully faithful. Next, we observe that,
for any simplex σ ∈ Ob(Ent∆(M,P)), we can always find a point x so that F (x) = σ
(for example, let x be the barycenter of σ). That means we have shown F is also
essentially surjective, and thus gives an equivalence of categories.

Remark 2.22. One might hope that there is an equivalence of entrance and combi-
natorial entrance path categories for a larger class of stratifications. However, even
when a space is stratified by a “degenerate” triangulation, this equivalence does not
generally hold. For instance, consider the stratified space shown in Figure 1, S1 → [1],
stratified by v, a single vertex, and its complement α, an open arc. Let x ∈ α. Then
there are two distinct homotopy classes of entrance paths from x→ v in Ent(M,P),
but only one combinatorial entrance path given by the face relation in Ent∆(M,P).

One useful interpretation of the preceding proposition is that the data of a con-
structible cosheaf on a combinatorial manifold is just a specification of costalks on
the stratifying poset and linear maps between them.

3. Persistence modules, persistence cosheaves, and filtrations

We now introduce our main actors: persistence modules and persistent cosheaves.
To start, we consider constructible cosheaves that arise from common types of per-
sistence modules and/or filtrations. We construct these cosheaves in a way that is
compatible with traditional models of the specific filtration or module in question.
We finish the section with an equivalence result relating zig-zag modules to one-
dimensional constructible cosheaves.

3.1. Persistent definitions
Definition 3.1. A persistence module is a functor P : P→ Ω, where P is some poset
category. Specifically, we may refer to these as P-indexed persistence modules. P-
indexed persistence modules define a category: the functor category, whose morphisms
are natural transformations between the functors.

Hereafter, we take Ω to be VectF, the category of vector spaces over a field F, and
by Fi, we mean a vector space of dimension i in VectF.

The previous definition is general – in what follows, we will mostly restrict our
attention to single-parameter persistence modules. There are two flavors of such
modules common in the literature: zig-zag [10] and monotone (standard) persistence
modules [30]. We note that monotone persistence modules are most commonly called
simply ‘persistence modules;’ we have added the word ‘monotone’ to emphasize their
distinction from more general modules.

To any poset there is an associated undirected graph: its Hasse diagram. Properties
of the Hasse diagram, e.g., if a Hasse diagram is planar, are used in order theory as
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they are often more accessible than the abstract poset. We will find it useful to
consider the Hasse diagram of a poset as a one-dimensional simplicial complex.

Definition 3.2. Let P be a poset.

• The poset P is zig-zag if its Hasse diagram is homeomorphic to the closed
interval, half-closed interval, or R.

• A representation of a zig-zag poset P : P→ Vect is a zig-zag persistence module.

• If P is a linear order, then a representation P : P→ Vect is a monotone persis-
tence module.

Consider a zig-zag persistence module P : I → Vect, where the objects of I are
a discrete subset of real numbers (with potentially non-standard ordering). This, in
turn, defines a stratification of R, the connected ambient stratification (R, I)∧∧ (where
we have a zero-stratum for every object of I and a one-stratum for every connected
component of R \ I, as in [15]). To define a cosheaf on R, it suffices to define its values
on a basis of the topology on R.

First, we give a cosheaf theoretic interpretation of the notion of zig-zag modules
found in [10]. We call this cosheaf propagated because the functor is entirely deter-
mined by the ordering of and assignments to zero strata; the value over a one-stratum
is propagated from either endpoint depending on the ordering of the relevant poset.

Construction 3.1.1 (The Propagated Persistence Cosheaf on R). Given a choice of
P : I → Vect with I ⊂ R discrete, we define the the propagated persistence cosheaf
FP : Opens(R)→ Vect as follows. Let Bϵ ⊂ R be a metric ϵ-ball so that 2ϵ > 0 is less
than the distance between any pair of zero-strata. Then Bϵ either contains a single
zero-stratum or no zero-stratum, and we assign values for FP as follows:

FP (Bϵ) =

{
P (i), if i ∈ Bϵ with i ∈ I or if Bϵ ⊂ (−∞, i) for i ∈ I
P (k), if Bϵ ⊂ (i, j) for i ̸= j ∈ I ∪ {∞} and k = minI{i, j}

.

Next, we describe the assignment of morphisms. If Bϵ contains a zero-strata, i, or
if B′

ϵ is entirely contained in some one-strata (i, j), then FP (Bϵ ↪→ B′
ϵ) = IdF (Bϵ).

Suppose instead that B′
ϵ contains the vertex i but Bϵ ⊂ (i, j). Then

FP (Bϵ ↪→ B′
ϵ) = (P (i)→ P (j)) if i < j (or (P (j)→ P (i)) if j < i).

See Figure 2.

The cosheaf FP is locally constant on strata, so it defines a constructible cosheaf
on the stratified space (R, I)∧∧.

Example 3.3. Suppose that I is the poset k > i > j < l, where k, i, j, and l are ordered
with the standard ordering on R as in Figure 2. Then

FP (B2 ↪→ B1) = IdFP (B2) = IdP (k),

FP (B4 ↪→ B3) = (P (j)→ P (i)),

and

FP (B6 ↪→ B5) = IdP (ℓ).
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Figure 2: Examples of open intervals occurring in Construction 3.1.1.

3.2. Filtered spaces and cosheaves
Next, we discuss how persistence-modules and persistence module cosheaves relate

to filtrations of spaces.

Definition 3.4 (Filtration). Let K be a simplicial complex. A filtration of K is a
sequence of subcomplexes {Ki}i∈I such that, for every i, there is an inclusion of
spaces Ki ↪→ Ki+1 and so that K0 = ∅ and Kmax{i∈I} = K.

Example 3.5. If we take I ⊂ R to be the indexing set of a filtration, then there is a
natural way to view I as a poset with the standard ordering of R. Passing to homology
in degree n defines an associated monotone persistence module via the assignment
i 7→ Hn(Ki). The propagated persistence cosheaf on R (see Construction 3.1.1) is
easy to describe. Indeed, for a single one-stratum, we have F (i, j) = Hn(Ki) and that
the costalk of F at a zero-stratum i is Hn(Ki).

3.2.1. Monotone and index filtrations
Let f : K → R be a monotone function on simplices. That is, whenever τ is a face
of σ, we have f(τ) ⩽ f(σ). Let m1 < m2 < . . . < mp be the ordered set of minimum
values in R for which each f−1(−∞,mi] is a distinct non-empty simplicial complex.
Setting Km0=0 = ∅ and Kmi = f−1(−∞,mi], we define the (monotone) filtration of
K by f as

∅ = Km0
⊂ Km1

⊂ . . . ⊂ Kmp
= K.

Notice that, by construction, all inclusion maps are in the direction of increasing
index. Furthermore, if K has n non-empty simplices, p ⩽ n+ 1.

Next, suppose that ∅ = σ0 ≺ σ1 ≺ σ2 ≺ . . . ≺ σn is a total order of the simplices
of K so that if either f(σi) < f(σj), or if σi is a face of σj , then i < j. Letting
K ′
j = {σi | i ⩽ j}, the increasing sequence of n+ 1 subcomplexes {K ′

i} is an index
filtration compatible with the monotone filtration.

In what follows, we will use n to denote the number of non-empty simplices in a
simplicial complex K and p to denote the number of steps in a monotone filtration.

Remark 3.6. Index filtrations are themselves monotone. Index filtrations are compat-
ible with themselves, but to no other index filtrations.

3.2.2. From index to monotone
Suppose {Kmj

}mj∈M is a monotone filtration with filter function f and {K ′
i}i∈[1,n] is

a compatible index filtration. Then for everymj ∈M \ {m0}, there is some maximum
interval [ℓ, r) for ℓ, r ∈ {1, 2, . . . , n} ∪ {±∞} such that f(σℓ) = f(σr) = mj (where,
whenever r =∞ or r = −∞, we define σ∞ := σn and σ−∞ = σ0, respectively). These
intervals cover R, and every interval corresponds to a unique mj ∈M . Then we
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define a map of stratified spaces, C : (R,Nat([1, n])∧∧)→ (R,Nat(M \ {m0})∧∧) that
maps intervals with a particular value under the filter function f to intervals with
that same value under f .

Definition 3.7. Suppose that a ∈ [ℓ, r), where [ℓ, r) is the associated interval for
some mj ∈M . Three cases arise: if −∞ < ℓ, r <∞, we assign

C(a) =

{
mj , if a < r − 1

mj(r − a) +mj+1(a− (r − 1)), if a ⩾ r − 1,
(1)

if [ℓ, r) = [−∞, 1), we assign

C(a) = am1 (2)

and if [ℓ, r) = [n,∞), we assign

C(a) =
amp

n
. (3)

Lemma 3.8. C is a stratified map.

Figure 3: An example of the map C. The relevant interval for the point, e.g., m2

is [2, 7), since the image of each simplex added in that interval under the filter func-
tion f is m2. Then [2, 6) is mapped to m2 and [6, 7) is mapped to [m2,m3).

3.2.3. Augmented descriptors via index filtrations
Let {Kmj

}mj∈M , f , and {K ′
i}i∈[0,n] be a monotone filtration and compatible index

filtration, respectively (as in the previous section).
Given a monotone filtration, we are perhaps interested in the so-called instan-

taneous events that are captured in augmented topological descriptors, a remnant
of the fact that many standard algorithms to produce descriptors for monotone
filtrations are often actually employing compatible index filtrations. For example,
an instantaneous n-dimensional homology event at time mj records the presence
of an n-boundary that was not mapped from a boundary or cycle in the inclusion
Kmj−1

↪→ Kmj
.

Note that many applications of TDA, such as the classic application of mani-
fold learning through a Vietoris-Rips filtration, discard events with a short lifespan
because they may be attributed to noise, so non-augmented persistence diagrams are
the traditional tool of choice (see [11]). However, recent developments in areas such
as shape comparison and inverse TDA problems (see, e.g., [4]) rely on instantaneous
events for efficient representation of simplicial or cubical complexes, particularly when
the filtration used is directional (e.g., height filtration, lower-star filtration, etc.)
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We aim to track both instantaneous and non-instantaneous events at every step
of a monotone filtration. We introduce An to account for instantaneous events (the
extra data of an augmented module). Let βmj denote the free group on n-dimensional
boundaries of Kmj and let κmj−1 denote the kernel of the map on n-dimensional
homology induced by the inclusion Kmj−1

↪→ Kmj
. Since κmj−1

corresponds to all
cycles of Kmj−1

that become boundaries in Kmj
, i.e., all cycles of Kmj−1

that map to
elements of βmj

, the subgroup κmj−1
can naturally be identified with a subgroup of

βmj
. Furthermore, since boundaries of Kmj−1

are mapped injectively to boundaries of
Kmj , the subgroup βmj−1 is also naturally identified with a subgroup of βmj . Then,
we define:

An(Kmj ) = βmj/(βmj−1 + κmj−1). (4)

Note that, since An(Kmj
) is a quotient of free groups, and since the generators of

βmj−1 and κmj−1 are subsets of the generators of βmj , An(Kmj ) is free. It may be
helpful to think of An(Kmj ) as the free group on n-boundaries of Kmj that are not
the images of boundaries or cycles in Kmj−1

. An instantaneous event in a monotone
filtration is the appearance of an n-boundary that was not a boundary or cycle in the
previous step of the filtration, meaning the rank of An(Kmj

) is the number of points
(counting multiplicity) on the diagonal (mj ,mj) in the corresponding standard n-
dimensional augmented persistence diagram. We can also view An as a repackaging of
the “entire” information in index filtrations, independent of the choice of compatible
index filtration. The connection to compatible index filtrations is made explicit in the
following lemma.

Lemma 3.9. Suppose that {Kmj
}mj∈M is a monotone filtration corresponding to a

filter function f and {K ′
i}i∈[0,n] is any compatible index filtration. Let κ′i denote the

kernel of the map induced on homology in degree n by the inclusion K ′
i ↪→ K ′

i+1.
Furthermore, let κ′↪→ denote the kernel of the map induced on homology in degree n
by the composition of inclusions K ′

(minC−1(mj))−1 ↪→ . . . ↪→ K ′
maxC−1(mj)

, where C is

as in Definition 3.7 and Figure 3. Then:

An(Kmj
) ∼=

( maxC−1(mj)⊕
i=(minC−1(mj))−1

κ′i

)
/κ′↪→. (5)

Proof. Recall that An as defined in Equation 4 is a free group, so we first show the
right side of Equation 5 is also a free group, and then show the desired isomorphism
through a counting argument.

We observe that generators of κ′↪→ correspond to cycles of K ′
(minC−1(mj))−1 that

become boundaries somewhere along the composition of inclusions. Consider such a
cycle and suppose that K ′

i is the last subcomplex in the filtraton where this cycle is
still not a boundary – then the cycle is naturally identified with a generator of κ′i,
since the cycle becomes a boundary in K ′

i ↪→ K ′
i+1. This is true for each generator of

κ′↪→, so we may view κ′↪→ as a subgroup of the sum in Equation 5. Since the right side
of Equation 5 is a quotient of free groups, where the generators of κ′↪→ are a subset of
generators of the sum, the right side of the equation is a free group. We may therefore
proceed by showing the left and right side of Equation 5 have equal rank.

Each step in an index filtration adds a single simplex, so either κ′i
∼= F0 (if the

simplex added does not fill in any n-cycle) or κ′i
∼= F1 (if the simplex added in
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K ′
i ↪→ K ′

i+1 fills in an n-cycle). Thus, the direct sum in the equation above has
nontrivial terms only for values of i such that K ′

i ↪→ K ′
i+1 witnesses the death of

n-cycles in the index filtration. Recall that [minC−1(mj),max(C−1(mj)) + 1) is the
maximum interval whose image under the filter f is mj . This means that, shift-
ing to the left, we can identify K ′

(minC−1(mj))−1 = Kmj−1
and K ′

maxC−1(mj)
= Kmj

.

Thus, every boundary of Kmj that was not present as a boundary in Kmj−1 is
introduced or becomes a boundary in some step of the index filtration between the
values (minC−1(mj))− 1 and maxC−1(mj), which means terms of the direct sum
above are nontrivial only when boundaries are created. This is exactly the count of
boundaries introduced in the inclusion Kmj−1

↪→ Kmj
, i.e., it is βmj

/βmj−1
, using

the notation previously introduced in the paragraph above and Equation 4. How-
ever, recall that An(Kmj ) does not account for boundaries that fill in a cycle from a
previous step in the filtration. Thus, we quotient out by the kernel of the composi-
tion of maps between minC−1(mj) and max(C−1(mj)) + 1. This kernel is generated
by boundaries and cycles of Kmj−1

that are mapped to boundaries in Kmj
. Since

K ′
(minC−1(mj))−1 = Kmj−1

and K ′
maxC−1(mj)

= Kmj
, and since the index filtration is

compatible with the monotone filtration, we see that κ′↪→
∼= κmj−1

. Thus, the rank of
the right side of Equation 5 is exactly the rank of the An as defined in Equation 4,
and as both are free groups, we have shown the desired isomorphism.

Example 3.10. Suppose that {Kmi} and {K ′
i} are monotone and index filtrations as in

the bottom and top of Figure 3. Then A0(Km2
) ∼= βm2

/(βm1
+ κm1

) ∼= F2/F0 ∼= F2.
Computed using the identification of Lemma 3.9, we see that this is the same as⊕6

i=1 κ
′
i/κ

′
↪→
∼= (F0 ⊕ F1 ⊕ F1/F0) ∼= F2.

The following cosheaf organizes the information of both instantaneous and non-
instantaneous events.

Definition 3.11 (Augmented Filtration Cosheaf on R). Let {Kmj}mj∈M be a mono-
tone filtration of a simplicial complex K, with R stratified by Nat(M \ {m0})∧∧. We
define the augmented filtration cosheaf on R, FA : Opens(R)→ Vect, on metric ϵ-balls
as follows.

FA(U) =


Hn(Kmj )⊕An(Kmj ), if mj−1 ∈ U
Hn(Kmj

) if U ⊂ (mj ,mj+1) or U ⊂ (mj = mp,∞)

Hn(Km1
) if U ⊂ (−∞,m1)

.

Observe that the above definition implies that the costalk at a zero-stratum mj−1

of (R,Nat(M \ {m0})∧∧) is Hn(Kmj−1
)⊕An(Kmj

).

Remark 3.12. For an index filtration {K ′
i}i∈I , any new n-cycles introduced through

the map K ′
i−1 ↪→ K ′

i are not n-boundaries, since the boundaries and interiors of
simplices are added at distinct filtration events. Thus, An(K

′
i) is trivial, i.e., the

augmented filtration cosheaf that arises from an index filtration is equivalent to its
(non-augmented) filtration cosheaf.

An instance of the previous remark is illustrated by following example.

Example 3.13. Let {K ′
i} be the index filtration in the top of Figure 3. Notice that the

one-dimensional costalk of the non-augmented filtration cosheaf at 7 is H1(K
′
7)
∼= F0,

which is isomorphic to H1(K
′
7)⊕A1(K

′
7)
∼= F0 ⊕ F1/F1 ∼= F0.
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The stratified map C define above provides a clean interpolation between the
augmented, non-augmented, and index cosheaves associated to a filtration.

Proposition 3.14. Let FM and FA be the non-augmented and augmented filtra-
tion cosheaves for some monotone filtration {Kmj}mj∈M and let FI be the filtration
cosheaf for a compatible index filtration {Ki}i∈[0,n]. Let

C : (R,Nat([1, n])∧∧)→ (R,Nat(M \ {m0})∧∧)

be the map of stratified spaces as above. Then,

(i) We have an isomorphism of cosheaves C∗FI ∼= FM ;

(ii) Let U ⊂ R be open such that U ∩M = ∅, then FM (U) ∼= FA(U).

Proof. That FM and FA agree on one-strata follows directly from their definitions
(they can differ at zero-strata). In claim (i), there are two parts: that C∗FI is con-
structible and that C∗FI is isomorphic to FM . To prove the first, note that C is a
composition of “elementary collapses” as described in Example 2.18, so by functo-
riality C∗FI is constructible. The second part of (i) is an explicit unwinding of the
definition of the pushforward.

3.3. An equivalence result
In this subsection we make explicit the relationship between zig-zag modules as put

forth by Carlsson–Zamorodian and representations of the entrance path category of
R stratified by the natural numbers. In the process we will need to equip our zig-zag
modules with additional structure, which we call “markings.”

Let PosetI be the category of posets with Hasse diagrams homeomorphic to the
interval, half-closed interval or R and whose underlying set is at most countable.
Morphisms in PosetI are surjective maps of posets. So from above, the category of
zig-zag modules is the category of pairs (P, ρ) with P ∈ PosetI and ρ : P → Vect a
representation of P.

Definition 3.15. Define the poset ZZN to have objects 1
2N with non-identity mor-

phisms

a

2
⩽
a+ 1

2
and

a

2
⩽
a− 1

2
for all a ∈ N, with a odd.

The poset ZZN arises naturally when considering R stratified (ambiently) by the
natural numbers.

Lemma 3.16. There is a canonical isomorphism of categories

ZZN ∼= Ent∆(R,Nat(N)∧∧).

We wish to “mark” our posets by passing to the under category of ZZN, Poset
ZZN/
I ,

i.e., we will consider posets equipped a map from ZZN. Passing to marked objects/the
under category has the effect of replacing a given poset by all possible labelings of
that poset by the natural numbers. (The notion of marking persistence modules
is not at all unusual. For instance, in most applications, the passage from persis-
tence modules to barcodes or diagrams depends on an explicit marking, e.g., the
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event times/parameters.) Morphisms in the under category are commutative trian-
gles. As we will use later, passage to the under category introduces an initial object:
Id : ZZN → ZZN. Note that the under category is an example of a comma category
and are also known as coslice categories.

Definition 3.17. Define the category of marked zig-zag modules, ZZmod, to be the
category of pairs

(ZZN ↠ P, ρ) with ZZN ↠ P ∈ Poset
ZZN/
I and ρ : P → Vect a representation.

A morphism is a pair

(f, φ) : (ZZN ↠ P, ρ)→ (ZZN ↠ Q, η)

with f : P ↠ Q defining a morphism in the under category and φ : ρ⇒ f∗η a natural
transformation.

It turns out that isomorphism in ZZmod is too strong to capture our preferred
notion of “sameness,” so we introduce a notion of weak equivalence. An example of
an operation that creates a weakly equivalent module is “subdividing” a vertex in
a poset into several vertices provided that all of the new maps in the corresponding
representation are isomorphisms.

Definition 3.18. A morphism (f, φ) : (ZZN ↠ P, ρ)→ (ZZN ↠ Q, η) in ZZmod is a
weak equivalence if φ : ρ⇒ f∗η is a natural isomorphism. LetW denote the collection
of weak equivalences.

We caution the data-analytically oriented reader here; notice that weakly equiva-
lent objects of ZZmod do not generally have the same indices of “events,” i.e., vertices
at which the corresponding image of the representation changes. That is, the stan-
dard map from ZZmod to persistence diagrams (as described in [10]) does not factor
through ZZmod[W−1]. However, the order and number of events is preserved.

Theorem 3.19. The category of (marked) zig-zag modules localized at weak equiva-
lences is equivalent to the category of constructible cosheaves on R stratified by the
natural numbers. That is, we have an equivalence of categories

ZZmod[W−1] ∼= Fun(Ent∆(R,Nat(N)∧∧),Vect) ≃ cShvVect
cbl ((R,N)∧∧).

The second equivalence is just an example of the exodromy equivalence. The first
equivalence, which is actually an isomorphism of categories, is proved in Appendix B.
There are some technicalities in proving the previous theorem, but the main idea of the
equivalence is as follows. Let φ : P → Vect be a representation of P. Pullback φ along
the map ZZN → P to obtain a representation of ZZN so that, via Lemma 3.16, we
have a representation of the corresponding entrance path category, i.e., a constructible
cosheaf.

4. K-theory of zig-zag modules

We now shift gears and compute the K-theory of the category of zig-zag modules.
The category in which our modules take values plays a central role and we consider two
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different constructions: one for modules valued in vector spaces and one for set-valued
modules. To begin, we work with an arbitrary combinatorial manifold as parameter
space and only later specialize to the case where it is one-dimensional. When our
parameter space is one-dimensional, it’s combinatorial entrance path category is a
zig-zag poset and hence a representation is a zig-zag module.

Motivated by the Exodromy Theorem and our equivalence result above, we make
the following definition.

Definition 4.1. Let (X
ϕ−→ P) be a combinatorial manifold with its native stratifica-

tion, Ent∆(X,P) its combinatorial entrance path category, and V any category. The
category of V -valued persistence modules parameterized by X, pModV (X), is given by

pModV (X) := Fun(Ent∆(X,P), V ).

Hence, the K-theory of V valued persistence modules (parametrized by X) is the
K-theory spectrum (whenever it exists) of the category above: K(pModV (X)).

4.1. K-Theory of Vect-valued coSheaves
The category of finitely generated modules for a commutative ring is an Abelian

category, so we define/compute K-theory using the work of Quillen and Waldhausen.
(If our ring is a field, we recover our old friend Vect). In this section we will freely
use the material of Appendix A.

Lemma 4.2. Let R be a commutative ring, M the associated Waldhausen category
of finitely generated modules, X a combinatorial manifold, and x0 ∈ X a connected
zero-dimensional stratum, i.e., a point that is a stratum. The following sequence is
split short exact sequence of Waldhausen categories

Fun(Ent∆(X \ x0),M)
j∗
// Fun(Ent∆(X),M)

i∗
//

j∗

ss
Fun(Ent∆(x0),M),

i∗
ss

where i : x0 ↪→ X and j : X \ x0 ↪→ X are the inclusion maps.

Proof. The content of Lemma A.2 is precisely that the three categories appearing
are Waldhausen. We next observe that the inverse and direct image functors (in this
setting) are compatible with the equivalences and cofibrations, so indeed we have a
sequence of exact functors.

It is standard that i∗ is right adjoint to i∗ and in this case, the counit of the
adjunction is a natural isomorphism. Because our domain categories are discrete
(finite even), j∗ is indeed left adjoint to j∗ and the unit is a natural isomorphism; j∗
is the extension by zero map. The composition i∗ ◦ j∗ is manifestly the zero functor
and i∗ presents Fun(Ent∆(x0),M) as the cokernel of j∗. In summary, the sequence is
short exact and the adjointness properties we observed further show it is split.

Remark 4.3. The preceding lemma is straightforward as we are considering con-
structible cosheaves on the complement of a point (which is open). One could try
to prove a version of the lemma above where x0 is replaced by an arbitrary stratum
and at the level of non-combinatorial entrance path categories, but—in general—this
fails as j∗ will not have the appropriate adjointness properties. There is, however, a
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corresponding lemma for an arbitrary closed/open complement decomposition that
is compatible with the stratification.

Lemma 4.4. The split short exact sequence of Lemma 4.2 is standard.

Proof. Condition (3) of Definition A.4 holds for categories of modules (see Remark
2.18 of [14]) and by the same reasoning, our category of functors valued inM.

Let F ∈ Fun(Ent∆(X),M). Then each component of the natural transformation
(j∗ ◦ j∗) (F)→ F is an isomorphism, except for the component corresponding to x0.
The component corresponding to x0 is the inclusion of zero, which is a cofibration.
Therefore, (j∗ ◦ j∗) (F)→ F is a cofibration in the functor category.

Finally, let φ : F → F ′ be a cofibration in Fun(Ent∆(X),M). We need to check
that unique map

ψ : F
∐
j∗j∗F

j∗j
∗F ′ → F ′

is a cofibration. By definition, we must check this condition componentwise. For a
component corresponding to x0 ̸= S ⊂ X, the kernel of ψ is exactly the submodule
of F(S)⊕F ′(S) by which we quotient when constructing pushouts in categories of
modules; that is, the S component of ψ is a monomorphism. For the x0 compo-
nent, the pushout is identified with F(x0) and ψx0

= φx0
, so by hypothesis it is a

monomorphism.

We require one final observation/lemma before assembling the proof of Theo-
rem 4.7. From the definition of entrance paths and the fact that K-theory preserves
colimits, it immediately follows that K-theory is additive with respect to connected
components of our parameter space. That is:

Lemma 4.5. Let X = Xa ⨿Xb be a stratified space, then there is an equivalence of
spectra

K(pModM(X)) ∼= K(pModM(Xa)) ∨K(pModM(Xb)).

Although the strata of a one-dimensional stratified space are not generally disjoint,
we still have an additivity result similar to the previous lemma, as we will now show.

Lemma 4.6. Let X be a one-dimensional combinatorial manifold. There is an equiv-
alence of spectra

K(pModM(X)) ∼=
∨

x0∈X0

K(pModM(x0)) ∨
∨

x1∈X1

K(pModM(x1)),

where Xi is the set of i-strata of X.

Proof. We proceed by induction over the number of zero-strata. As our base case, note
that when there are no zero-strata, we have X0 = ∅ and x1 = X1 = X, so the claim
holds. Now suppose that the claim holds whenever X contains n− 1 zero-strata, for
all n− 1 ⩾ 0. Then consider the case that X contains n zero-strata. For an arbitrary
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zero-stratum x∗0 ∈ X0, we know by Lemma 4.2 that

Fun(Ent∆(X \ x∗0),M) // Fun(Ent∆(X),M) //
ss

Fun(Ent∆(x
∗
0),M)

ss

is a split short exact sequence of Waldhausen categories. Then by Theorem A.5, we
see that there is an equivalence of spectra

K(pModM(X)) ∼= K(pModM(X \ x∗0)) ∨K(pModM(x∗0)).

SinceX \ x∗0 is itself a one-dimensional combinatorial manifold with n− 1 zero-strata,
our inductive hypothesis allows us to write

K(pModM(X)) ∼=
( ∨
x0 ̸=x∗

0∈X0

K(pModM(x∗0)) ∨K(pModM(X1))

)
∨K(pModM(x∗0)).

Since the zero-strata are disjoint, by Lemma 4.5, we may reindex by absorbing the
last term into the first and we have the desired result.

Utilizing the preceeding lemma, we now prove the following theorem which com-
putes the K-theory of zig-zag modules parametrized by a given 1-manifold.

Theorem 4.7. Let X be a one-dimensional combinatorial manifold. There is an
equivalence of spectra

K(pModVectF(X)) ∼=
∨
X0

K(F) ∨
∨
X1

K(F),

where Xi is the set of i-strata of X and where K(F) denotes the K-theory spectrum
of the field F.

Proof. First, we identify the K-theory of components of the stratification, i.e., we
identifyK(pModVect(x0)) andK(pModVect(x1)) for x0 ∈ X0 and x1 ∈ X1, respectively.
We begin with the former.

By Definition 4.1, we have K(pModVectF(x0)) = K(Fun(Ent∆(x0),VectF)). Since
Ent∆(x0) is the terminal category (with a single object and an identity morphism),
Fun(Ent∆(x0),VectF) is isomorphic to the category of VectF itself. Thus, we have
K(pModVect

F (x0)) = K(Vect). Now, the category of finite dimensional vector spaces
over F is exactly the category of finitely generated projective modules over F (con-
sidered as a ring). Hence, K(VectF) is just the algebraic K-theory of F.

We observe that Ent∆(x1) is also a single object category, so the proof that
K(pModVect

F (x1)) ∼= K(F) is identical. Thus, we have shown the K-theory of each
strata is a copy of K(F). We know by Lemma 4.6 that K(pModVectF(X)) is additive
over strata, so the result follows.

Remark 4.8. An alternative approach to proving the preceding theorem could be to
use Serre subcategories and Abelian Localization. This approach has a number of its
own subtleties so we have presented the proof above.
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Corollary 4.9. For X a one-dimensional combinatorial manifold, we have

K0(pModVectF(X)) ∼=
⊕
X0

Z⊕
⊕
X1

Z,

and

K1(pModVectF(X)) ∼=
⊕
X0

F× ⊕
⊕
X1

F×,

where Xi is the set of i-strata of X and F× is the group of units of F.

The higher K-theory of fields contains interesting torsion and other phenomena.
We refer the reader to Chapter IV of [27] for an in-depth description.

4.2. Pointed set valued coSheaves
While persistence modules are most often assumed to take values in vector spaces,

there are interesting modules/cosheaves that take values in other categories. Of par-
ticular interest to us is the Leray–Reeb cosheaf, Lf , associated to a map f : Y → X,
see [12]. Let us consider a simple situation: let f : Y → R be a Morse function on
a closed manifold Y . Now, given U ⊆ R, let Lf (U) := π0f

−1(U). It is standard that
the critical values of f stratify R and that Lf is constructible with respect to this
stratification. So the Leray–Reeb cosheaf defines a persistence module taking values
in the category of finite sets Set.

For technical convenience we prefer our sets to be pointed/based. Let us consider
Set∗, the category of finite pointed sets and base point preserving functions. The
category Set∗ is Waldhausen (cofibrations are injections and weak equivalences are

bijections), and as a consequence, given a combinatorial manifold (X
ϕ−→ P) we can

compute the K-theory of the associated (Waldhausen) category of persistence mod-
ules pModSet∗(X).

Note that the proof Lemma 4.2 goes through for Set∗ valued functors mutatis
mutandis. Similarly, Lemma 4.5 is easily adapted to the case at hand. The following
version of Lemma 4.4 requires only slightly more care.

Lemma 4.10. Let X be a combinatorial manifold and x0 ∈ X a connected zero-
dimensional stratum, i.e., a point that is a stratum. The following split short exact
sequence of Waldhausen categories is standard

Fun(Ent∆(X \ x0),Set∗)
j∗
// Fun(Ent∆(X),Set∗)

i∗
//

j∗

ss
Fun(Ent∆(x0),Set∗),

i∗
ss

where i : x0 ↪→ X and j : X \ x0 ↪→ X are the inclusion maps.

Proof. Condition (3) of Definition A.4 is inherited from Set∗ where a cofibration is an
injection and a cofiber sequence of finite pointed sets S ↪→ T → ∗ requires a bijection
S ∼= T .

Let F ∈ Fun(Ent∆(X),Set∗). As before, each component of the natural transfor-
mation (j∗ ◦ j∗) (F)→ F is an isomorphism, except for the component corresponding
to x0. The component corresponding to x0 is the inclusion of zero (the singleton set
∗), which is a cofibration. Therefore, (j∗ ◦ j∗) (F)→ F is a cofibration in the functor
category.
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Finally, let φ : F → F ′ be a cofibration in Fun(Ent∆(X),Set∗). We need to check
that the unique map

ψ : F
∐
j∗j∗F

j∗j
∗F ′ → F ′

is a cofibration. The same (componentwise) argument works as before. That is, for
the stratum x0 the pushout is identified with F(x0) and ψx0

= φx0
. If we know the

stratum x0 ̸= S ∈ Ent∆(X), we are left to consider the commutative diagram below,
where the square is a pushout,

F(S)
φS //

Id

��

F ′(S)

�� Id

��

F(S) //

φS

//

F(S)
∐
φ F ′(S)

ψS

''
F ′(S).

Hence, as φS is injective, so is ψS .

Arguing as in the preceding subsection, we deduce the following.

Lemma 4.11. Let X be a one-dimensional combinatorial manifold. There is an
equivalence of spectra

K(pModSet∗(X)) ∼=
∨

x0∈X0

K(pModSet∗(x0)) ∨
∨

x1∈X1

K(pModSet∗(x1)),

where Xi is the set of i-strata of X.

The Barratt–Priddy–Quillen–Segal Theorem (see Chapter 4 of [27]) proves that
there is an equivalence of spectra

S ∼= K(Set∗) ∼= K(pModSet∗(x0)),

for x0 ∈ X a connected zero stratum in a combinatorial manifold X, and where S is
the sphere spectrum. Recall that the homotopy groups of S are the stable homotopy
groups of spheres. Consequently, by assembling our work to this point, we have proven
the following.

Theorem 4.12. Let X be a one-dimensional combinatorial manifold. There is an
equivalence of spectra

K(pModSet∗(X)) ∼=
∨
X0

S ∨
∨
X1

S,

where Xi is the set of i-strata of X and where S denotes the sphere spectrum. In
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particular,

K0(pModSet∗(X)) ∼=
⊕
X0

Z⊕
⊕
X1

Z,

and

K1(pModSet∗(X)) ∼=
⊕
X0

Z/2⊕
⊕
X1

Z/2.

As it is the central object in homotopy theory, much is known about S, though
mysteries remain. A remarkable theorem of Serre implies that πn(S) is finite for n > 0
and these groups are known up to around n = 100.

Remark 4.13. If one wants to avoiding pointed sets/basepoints, one can consider the
plain old category of sets Set and functions. This category does not have a zero object
as the initial object is the empty set, while a final object is a singleton set. Hence, Set
does not define a Waldhausen category in a straightforward manner. If one considers
the subcategory Seti consisting of the same objects, but where a morphism must
be injective, one can define K(pModSeti(X)). Indeed, Seti and the resulting functor
category can be equipped with the structure of an assembler and Zakharevich defines
K-theory for assemblers in [28] and [29]. It is again a consequence of the Barratt–
Priddy–Quillen–Segal Theorem that for each n we have an isomorphism

Kn(pModSeti(X)) ∼= Kn(pModSet∗(X)).

5. Euler curves and virtual diagrams

In this section, we give two applications of our K-theoretic work.

5.1. Euler curves and K0

Let {Vi} be a monotone persistence module of vector spaces, with indexing set I.
We choose an embedding I ↪→ N and—in what follows—identify I with its image in
the natural numbers. The propagated persistence cosheaf, FV , is constructible on R
stratified by N.

Definition 5.1. The (scaled) Euler curve of {Vi} refers to the constructible function
χV : R→ Z given by χ(x) = rank(FV )x, the rank of the costalk at x ∈ R. If {Vi} is
a module of graded vector spaces, then χV is the alternating sum of the ranks of the
graded vector space that is the costalk.

Note that any constructible Z-valued function on R naturally defines a class in K0.
As noted in the proof of Theorem 4.7, the class in K0 of a cosheaf only depends on
its dimension, so we have the following.

Proposition 5.2. Let V∗ be a standard, finite persistence module of vector spaces
and R stratified ambiently by its subset N. Then,

[FV ] = [χV ] ∈ K0(pModVect(R)).

While the statement of the proposition feels obvious, it does contain content.
Indeed, one of the classical motivations for simplicial homology is fixing the func-
toriality of the Euler characteristic. In general, a map of complexes f : X• → Y• does
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not induce a map between χ(X•) and χ(Y•); only if f is covering map is there a multi-
plicative relationship between Euler characteristics. The categorification of the Euler
characteristic to homology fixes this functoriality issue. Given any (co)homological
setting there is an analogue of Euler class (in topology, this can be achieved by con-
sidering orientations for cohomology theories). The preceding proposition witnesses
a K-theoretic Euler class.

One consequence of realizing Euler curves/classes K-theoretically is that there is
an obvious extension to arbitrary (finite) persistence modules: zig-zag, higher dimen-
sional, etc. (As before, we only see the scaled/standardized curve/class.) This con-
struction is an explicit realization of the yoga that K-theory is the universal Euler
characteristic.

Definition 5.3. Let X be a combinatorial manifold, V a category, and then choose
F ∈ pModV (X) a persistence module. The Euler class, χ(F), of F is the K-class

χ(F) := [F ] ∈ K0(pModV (X)).

5.2. Virtual diagrams
In [8], Bubenik and Elchesen describe the group completion of a monoid of persis-

tence diagrams. The resulting equivalence classes are called virtual persistence dia-
grams and can be realized by extending the diagrams to include arbitrary points in
the (extended) first quadrant, i.e., not just points above the diagonal. We will denote
Bubenik and Elchesen’s Abelian group of virtual persistence diagrams by K0(Diag).
We now describe a homomorphism (and its image)

δ : K0(pModVect
fin (R)→ K0(Diag),

where R is stratified by its subset N, i.e., the parameter space is (R,N)∧∧.
To begin, let pModVect

fin (R) denote the category of Vect-valued constructible co-
sheaves on our stratified R that are eventually constant, i.e., there exists N ∈ N
such that beyond N the cosheaf is constant. This category has a monoidal structure
induced by ⊕ in Vect, so the objects in the category form a (commutative, unital)
monoid.

We require a small tweak to the category Diag from [8]. As we allow features to
persist for all future time, our persistence diagrams are built from the extended real
line R ∪ {∞}; this is a minor point and we suppress it from notation.

Now, as noted above, we have an identification of Ent∆(R,Nat(N)∧∧) with the
poset ZZN. Hence, an object F ∈ pModVect

fin (R)) is simply a representation of ZZN
(which is eventually finite). Following [10], we use indecomposables of the associated
representation of ZZN to associate a diagram to F . More explicitly, we have the
following assignment of a multi-set of points to a cosheaf

δ̌ : pModVect
fin (R)→ Diag ⊂ K0(Diag), F 7→ {(bi, di)},

where each bi and di correspond to the left and right indices (respectively) of an
indecomposable element of the associated representation of ZZN.

Note that δ̌ can easily be adapted to be a map into barcodes, where, instead of
a point (b, d), we draw a bar between b and d. This map δ̌ (and the adaptation to
signed barcodes) is nearly identical to the one described in Definition 2.6 of [10]
with two notable differences. Firstly, the diagrams of ibid have points only on the
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Figure 4: The result of applying δ to the cosheaf shown on the top of the figure is
the persistence diagram shown on the bottom. In the middle, we have drawn the
associated barcode. In the spirit of [10], we have shown all bars as closed intervals
to emphasize that they do not necessarily arise from a monotone filtration. Note the
presence of length-zero barcodes and on-diagonal points, corresponding to indecom-
posable elements with a single vector space.

integer lattice, whereas our diagrams have points on the 1/2-integer lattice. This is a
consequence of us additionally considering edges of the stratification rather than only
vertices, and of our convention to then index vertices by non-integers. Furthermore,
the diagrams of ibid contain on-diagonal points only when the maps to a particular
vertex both have a nontrivial kernel. Our diagrams allow for these type of on-diagonal
points, but additionally allow for on-diagonal points when the maps from an edge to
its endpoints both have a nontrivial kernel.

In general, these differences may be attributed to beginning with persistence mod-
ules (the starting place for the map in [10]) or beginning with persistence module
cosheaves (the starting place for our map δ̌). When one begins with persistence mod-
ules, the resulting cosheaf is a specific type – importantly, each edge has an identity
morphism to at least one of its endpoints (see Construction 3.1.1). This allows ibid to
only consider a poset on vertices, which may be obtained from our poset of vertices
and edges by collapsing these identity morphisms. The language of ibid is therefore
more compatible with an explicit connection to filtrations, whereas our setting is
generalized.

Returning to our primary goal, we note that our diagram map δ takes direct sums
to sums of multisets.

Lemma 5.4. The map

δ̌ : pModVect
fin (R)→ K0(Diag)
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is a monoid homomorphism.

By the universal property of K0 we obtain our desired homomorphism.

Corollary 5.5. There is a homomorphism of Abelian groups

δ : K0(pModVect
fin (R))→ K0(Diag)

such that the following diagram commutes

pModVect
fin (R) δ̌ //

��

K0(Diag)

K0(pModVect
fin (R))

δ

77
.

Because we have scaled/standardized our modules—as reflected by the parameter
space (R,N)∧∧—the map δ has zero chance of being surjective (let alone an isomor-

phism). Following [8], let Diag
((

1
2Z

)2
,
(
1
2Z⩾0

)2)
be monoid of (classical) persistence

diagrams with half-integer (or infinite) coefficients. This monoid is a submonoid of
the monoid of all (classical) persistence diagrams, Diag, and we let G < K0(Diag)
denote the subgroup it generates. The following is clear from construction.

Proposition 5.6. The subgroup G < K0(Diag) is isomorphic to the image of the
homomorphism

δ : K0(pModVect
fin (R))→ K0(Diag).

Appendix A. Waldhausen’s K-theory

In this appendix we outline Waldhausen’s construction of algebraic K-theory. In
particular, we build to a fundamental additivity result: Waldhausen Additivity. The
work of Waldhausen was first published in 1985 [26]. Our notation follows the much
more recent article of Fiore and Pieper [14].

Definition A.1. A Waldhausen category, C, is a category equipped with a subcat-
egory of weak equivalences, w(C), a subcategory of cofibrations, co(C), and a distin-
guished zero object. Further, the triple (C, co(C), w(C)) must satisfy

1. Every isomorphism in C is a cofibration;

2. Each object c ∈ C is cofibrant, i.e., the unique map 0→ c is a cofibration;

3. Cokernels exist and define cofibration sequences; and

4. Weak equivalences glue along cofibrations.

Waldhausen categories are a more general setting for algebraic K-theory than
Abelian and exact categories. In particular, if R is a commutative ring and M is
the category of finitely generated modules, then declaring weak equivalences to be
isomorphisms and cofibrations to be monomorphisms makes M into a Waldhausen
category. The following is straightforward verification.

Lemma A.2. Let A be a Waldhausen category and D a small category. The category
of functors Fun(D,A) is a Waldhausen category where
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(z) The zero object Z ∈ Fun(D,A) is the constant functor to the distinguished zero
object in A;

(w) A natural transformation η : F ⇒ G is a weak equivalence if and only if for each
d ∈ D, ηd : F (d)→ G(d) is an isomorphism; and

(c) A natural transformation α : F ⇒ G is a cofibration if and only if for each d ∈ D,
αd : F (d)→ G(d) is a monomorphism.

Given a Waldhausen category C, there is an associated simplicial Waldhausen
category denoted S•C and the subcategory, wS•C, of weak equivalences. The K-theory
spectrum of C is defined to be the Ω-spectrum whose nth space is given by

K(C)n := |wS•S• · · ·S•︸ ︷︷ ︸
n iterates

C|,

i.e., the realization of the subcategory of weak equivalences of the n-fold (degreewise)
application of the S• construction.

Definition A.3. Let A,E, and B be Waldhausen categories. A sequence of exact
functors

A
i−→ E

f−→ B

is exact if

1. The composition f ◦ i is the zero map to B;

2. The functor i is fully faithful; and

3. The functor f restricts to an equivalence between E/A and B.2

A sequence, as above, is split if there exist exact functors

A
j←− E

g←− B

that are adjoint to i and f and such that the unit of the adjunction, IdA ⇒ j ◦ i, and
the counit of the adjunction, f ◦ g ⇒ IdB, are natural isomorphisms.

Definition A.4. A split short exact sequence of Waldhausen categories

A
i
// E

f
//

j

}}
B

g

}}

is standard if

1. For each e ∈ E, the component of the counit, (i ◦ j)(e)→ e, is a cofibration;

2. For each cofibration e ↪→ e′ in E, the induced map

e⨿(i◦j)(e) (i ◦ j)(e′)→ e′

is a cofibration; and

3. If a→ a′ → 0 is a cofiber sequence in A, then the first map is an isomorphism.

2Here, E/A is the full subcategory of E on objects e such that for all a ∈ A the hom set E(i(a), e)
is a point.
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The following is one of the fundamental theorems of algebraic K-theory. It is known
as Waldhausen Additivity.

Theorem A.5. Let

A
i
// E

f
//

j

}}
B

g

}}

be a standard split SES of Waldhausen categories. Then the functors i and g induce
an equivalence of spectra

K(i) ∨K(g) : K(A) ∨K(B)
∼−→ K(E).

Appendix B. Proof of Theorem 3.19

The key ideas we use in the proof of the theorem go back to Grothendieck (and
Verdier), specifically SGA4 Exposé VI [1]. The key observation—which we make
precise—is that the category of zig–zag persistence modules is a localization of the
Grothendieck construction on the (pseudo)functor that sends a poset to its category of
representations: R : Posetop → Cat. As we will explain, the Grothendieck construction
is the lax colimit of R. Our domain category has an initial object, ZZN, hence, the
colimit of Φ is isomorphic to the evaluation Φ(ZZN). Finally, in Lemma 3.16 we
recognized ZZN as the poset underlying the (combinatorial) entrance path category
of R stratified with respect to the subset of natural numbers.

Throughout this appendix we will work with bicategories. Recall that any category
can be considered as a bicategory with the only 2-morphisms being identities. The
bicategory of categories, Cat, consists of (small) categories, functors, and natural
transformations. A reader who finds this appendix terse may find the recent book of
Johnson and Yau [17] of great use.

B.1. Pseudo and lax (co)limits
When going from 1-categories to 2-categories there is more flexibility in definitions.

This is already apparent when considering the notion of 2-functor and extends to
limits and colimits as well. Many details of (co)limits in 2-categories were explicated
in the 1980’s by Ross Street and collaborators, for instance [6]. As an orienting
exercise, let us recall the definition of lax and pseudo functors.

Definition B.1. Let A and B be bicategories. A lax functor P : A → B consists of

• A function P : Obj(A)→ Obj(B);
• For each hom-category A(X,Y ) in A, a functor

PX,Y : A(X,Y )→ B(PX , PY );

• For each object X ∈ A a 2-cell PidX : idPX
⇒ PX,X(1X);

• For each triple of objects and morphisms f : X → Y and g : Y → Z , a natural
(in f and g) transformation

Pf,g : PY,Z(g) ◦ PX,Y (f)⇒ PX,Z(g ◦ f).

This data satisfies a sequence of coherence diagrams specifying unity and associativity.
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A lax functor is a pseudofunctor if the 2-cells/natural transformations in the defi-
nition above are invertible. So a pseudofunctor is more strict than a lax functor, but
not yet a strict 2-functor, which would require all higher morphisms to be identities.
Correspondingly we have variable notions of colimit. For details see Chapter 5 of [17]
and/or [6].

Definition B.2. Let Φ: A → B be a lax functor.

• A lax colimit of Φ is an initial object in the category of lax cocones under Φ;

• A pseudocolimit of Φ is an initial object in the category of pseudococones under
Φ.

The lax colimit of Φ is unique up to equivalence, while the pseudocolimit is unique
up to isomorphism. We will use the notation colimΦ for “the” pseudocolimit of Φ.

Lemma B.3. Let Φ: A → B be a lax functor, A an honest 1-category and T ∈ A a
terminal object. Then, we have an isomorphism

colimΦ ∼= Φ(T).

Correspondingly, if Ψ: Aop → B is a lax functor, A an honest 1-category and I ∈ A
is initial, then

colimΨ ∼= Ψ(I).

B.2. The Grothendieck construction

Definition B.4. Let C a category and Φ: Cop → Cat a lax functor. The Grothendieck
construction,

∫
Φ, is the following category:

• An object of
∫
Φ is a pair, (A,X), with A ∈ C and X ∈ Φ(A);

• A morphism (f, p) : (A,X)→ (B, Y ) consists of

– A morphism f : A→ B in the category C; and
– A morphism p : X → Φ(f)(Y ) in Φ(A).

There are (reasonably) clear composition and identities in
∫
Φ and it is standard

to verify that
∫
Φ actually defines a category. The symbol “

∫
” is meant to convey

that the Grothendieck construction is amalgamating the data of Φ “over” the domain
category C. Indeed, projection defines a functor

∫
Φ→ C that is a fibration.

Proposition B.5 (Theorem 10.2.3 of [17]). Let C a category and Φ: Cop → Cat be
a lax functor. The Grothendieck construction,

∫
Φ, is a lax colimit of Φ.

Let U : E→ C be a functor and φ : e→ e′ a morphism in E. Recall that φ is
cartesian if every commutative triangle in C involving U(φ) with a chosen lift of a
2-horn has a unique filler. (This definition is a bit colloquial, see Section 9.1 of [17].)

Corollary B.6. After localizing
∫
Φ at the collection of cartesian morphisms (with

respect to projection
∫
Φ→ C) we obtain a pseudocolimit of Φ, i.e., if Cart denotes

the class of cartesian morphisms in
∫
Φ, then

∫
Φ[Cart−1] ∼= colimΦ.
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B.3. Proving the theorem

Let R : Poset
ZZN/
I → Cat be the pseudofunctor of linear representations, i.e.,

R(ZZN ↠ P) := Fun(P,Vect).

By design, the Grothendieck construction of R recovers the category of marked zig-
zag modules.

Lemma B.7. For R defined above,
∫
R ∼= ZZmod.

Lemma B.8. A morphism

(f, φ) : (ZZN ↠ P, ρ)→ (ZZN ↠ Q, η) in ZZmod

is cartesian if and only if φ is a natural isomorphism.

Proof. Let

(f, φ) : (ZZN ↠ P, ρ)→ (ZZN ↠ Q, η)

be a morphism and

(g, ψ) : (ZZN ↠ R, α)→ (ZZN ↠ Q, η)

a morphism such that h : (ZZN ↠ R)→ (ZZN ↠ P) defines a commutative triangle

in Poset
ZZN/
I . We need to find a (unique) natural transformation χ : α⇒ h∗ρ such

that (h, χ) fills the 2-horn upstairs in ZZmod. This is possible precisely when φ : ρ⇒ η
is an isomorphism. Indeed, g∗ = h∗ ◦ f∗, and ψ : α⇒ g∗η, so if φ is an isomorphism
we define

χ := ψ : α⇒ g∗η ∼= h∗(ϕ∗η) ∼= h∗ρ.

Lemma B.9. The object (ZZN
Id−−→ ZZN) is initial in Poset

ZZN/
I .

Proof. Let (φ : ZZN ↠ P) ∈ Poset
ZZN/
I . A map in the under category to this object

from (ZZN
Id−−→ ZZN) is a commutative diagram in PosetI

ZZN

Id

{{

φ

""
ZZN

ψ
// P.

By commutativity of the triangle, the map ψ = φ, so there is indeed a unique map
in the under category.

The precedings lemmas assemble to a proof of Theorem 3.19. More precisely, we
have shown that

ZZmod[W−1] ∼= ∫ R[Cart−1] ∼= colimR ∼= R(ZZN
Id−−→ ZZN) ∼= Fun(ZZN,Vect).
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