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Abstract
The self-closeness number of a connected CW complex is

the least integer n such that any of its self-maps inducing an
isomorphism in π∗ for ∗ ⩽ n is a homotopy equivalence. We
prove that under a mild condition, the self-closeness number of
a non-simply-connected finite complex coincides with that of its
universal cover whenever the universal cover is a finite H0-space
or a finite co-H0-space. We give several interesting examples to
which the result applies.

1. Introduction

Let X be a (pointed) connected CW complex. The subset E(X) of a pointed
homotopy set [X,X] consisting of homotopy equivalences is a group, which is called
the group of self-homotopy equivalences of X. The group E(X) has been broadly
studied for a long time. See [2] for its basics. Recently, the following approach to the
groups of self-homotopy equivalences was proposed by Choi and Lee [5]. For n ⩾ 0,
let An

♯ (X) denote the subset of [X,X] consisting of self-maps inducing isomorphisms
in the homotopy groups π∗ for ∗ ⩽ n. Then An

♯ (X) is a monoid such that there is a
sequence of submonoids

A1
♯ (X) ⊃ · · · ⊃ An

♯ (X) ⊃ An+1
♯ (X) ⊃ · · · ⊃ A∞

♯ (X) = E(X)

which captures properties of E(X) that classical results cannot do, where the last
equality follows from the J.H.C. Whitehead theorem. In this approach, it is of par-
ticular importance to find whether or not there is an integer n satisfying

An
♯ (X) = E(X). (1)

For instance, if X is a connected n-dimensional CW complex, then An
♯ (X) = E(X)

as in [5, Theorem 2]. Moreover, An
♯ (X) can coincide with E(X) for n much smaller

than dimX as we can see from complex projective spaces. So finding the smallest
such integer is of particular interest, and so we are led to the following definition.

Definition 1.1. The self-closeness number NE(X) of a connected CW complex X is
defined as the least integer n such that the equality (1) holds.
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We can alternatively say that NE(X) is the least integer n such that any self-
map of X is a homotopy equivalence whenever it is an isomorphism in π∗ for ∗ ⩽ n.
For a simply-connected CW complex, we can use (co)homology for evaluating its self-
closeness number as we did above, and the self-closeness numbers of simply-connected
CW complexes were intensely studied in [5, 11, 13, 14, 15, 16]. However, the
self-closeness numbers of non-trivial non-simply connected CW complexes were only
studied for real projective spaces and lens spaces, by the ways that only apply to these
cases. Then at the moment, there is no general result on the self-closeness numbers
of non-simply-connected CW complexes.

In this paper, we study the self-closeness number of a non-simply-connected CW
complex by assuming conditions on its universal cover. To state the main theorem,
we set notation and terminology. A simply-connected space is called an H0-space if
its rationalization is an H-space. Note that an H0-space needs not be an H-space.
For example, every odd sphere of dimension ̸= 1, 3, 7 is not an H-space but it is an
H0-space (see Proposition 4.4). For a graded algebra A, let d(A) denote the maximal
degree of generators of A. Now we are ready to state the main theorem, which is
the first general result on the self-closeness numbers of non-simply-connected CW
complexes.

Theorem 1.2. Let X be a finite complex such that the universal cover X̃ is a finite
H0-space. If d(H

∗(X̃;Z)) = d(H∗(X̃;Q)) and π1(X) acts trivially on H∗(X̃;Q), then

NE(X) = NE(X̃) = d(H∗(X̃;Q)).

We will give in Section 2 several interesting examples to which Theorem 1.2 applies.
We will also prove the dual version of Theorem 1.2. To state it, we set notation and
terminology. Dually to an H0-space, a simply-connected space is called a co-H0-space
if its rationalization is a co-H-space. Recall that the cohomological dimension of X is
defined by

cd(X) = sup{n | Hn(X;M) ̸= 0 for some π1(X)-module M}.

Now we state the dual version of Theorem 1.2.

Theorem 1.3. Let X be a finite complex such that the universal cover X̃ is a finite
co-H0-space. If cd(X) = d(H∗(X̃;Q)) and π1(X) acts trivially on H∗(X̃;Q), then

NE(X) = NE(X̃) = d(H∗(X̃;Q)).

The paper is structured as follows. Section 2 gives examples to which Theorem 1.2
applies. Section 3 gives some upper bounds for self-closeness numbers that will be
needed. Section 4 recalls the p-universality introduced by Mimura, O’Neill and Toda
[12] and shows properties of (co-)H0-spaces that we will use. Sections 5 and 6 prove
Theorems 1.2 and 1.3.
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2. Example

We give interesting examples of non-simply-connected CW complexes to which
Theorem 1.2 applies.

2.1. Topological spherical space form

Recall that a topological spherical space form is the quotient space of a sphere by
a free action of a finite group. Simplest examples are real projective spaces and lens
spaces.

Proposition 2.1. Let X be a topological spherical space form of dimension 2n− 1.
Then

NE(X) = 2n− 1.

Proof. The case n = 1 is trivial, and so we assume n ⩾ 2. Let G be a finite group
acting freely on S2n−1 such that X = S2n−1/G. By the Lefschetz fixed point theorem,
every orientation reversing map of S2n−1 must have a fixed point. Then the action of
G on H∗(S2n−1;Q) is trivial. Clearly, we have

d(H∗(S2n−1;Z)) = d(H∗(S2n−1;Q)) = 2n− 1.

Thus since S2n−1 is a finite H0-space by Proposition 4.4 below, the proof is done by
Theorem 1.2.

If a topological spherical space form X is of dimension 2n, then the action of
π1(X) on the universal cover S2n is orientation reversing, so that Theorem 1.2 does
not apply. However, it is known that X is homotopy equivalent to RP 2n, so that
NE(X) = NE(RP 2n) = 2n as in [15]. Kishimoto and Oda [10] determined the monoid
[X,X] for every topological spherical space form X, which also proves Proposition 2.1
and NE(X) = 2n for dimX = 2n.

2.2. Product of spheres

First, we consider an explicit free action of the symmetric group Σ3 on a product
of two spheres given by Blaszczyk [4, Proposition 5.1]. Let S2m+1 be the unit sphere
of Cm+1. Since there is a presentation

Σ3 = ⟨a, b | a2 = b3 = (ab)2 = 1⟩,

we get an action of Σ3 on S2m+1 × Sn by

a(x, y) = (x̄,−y), b(x, y) = (e2π
√
−1/3x, y)

for (x, y) ∈ S2m+1 × Sn. It is easy to see that this action is free.

Proposition 2.2. Consider the above free action of Σ3 on S2m+1 × Sn. If m is even
with m > 0 and n is odd with n ⩾ 3, then

NE((S2m+1 × Sn)/Σ3) = max{2m+ 1, n}.

Proof. Since m > 0 and n is odd with n ⩾ 3, S2m+1 × Sn is a finite H0-space by
Proposition 4.4 below. By definition, the action of Σ3 is trivial in cohomology if m is
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even and n is odd. Clearly,

d(H∗(S2m+1 × Sn;Z)) = d(H∗(S2m+1 × Sn;Q)) = max{2m+ 1, n}.

Thus the proof is finished by Theorem 1.2.

We can easily generalize the above free action of Σ3 on S2m+1 × Sn to a free action
of the dihedral group

D2q = ⟨a, b | aq = b2 = (ab)2 = 1⟩

on S2m+1 × Sn. Then quite similarly to Proposition 2.2, we can prove:

Proposition 2.3. Consider the above free action of D2q on S
2m+1 × Sn. If m is even

with m > 0 and n is odd with n ⩾ 3, then

NE((S2m+1 × Sn)/D2q) = max{2m+ 1, n}.

Next, we consider an abstract free action of a finite group on a product of odd
spheres.

Proposition 2.4. Suppose that the canonical action of a finite subgroup G of U(n)
on U(n)/U(n−m) is free and the order of G is prime to (n− 1)!. Then for m ⩾ 1,
G acts freely on X =

∏n
i=n−m+1 S

2i−1 such that

NE(X/G) = 2n− 1.

Proof. Since m ⩾ 1, X is a finite H0-space. Clearly,

d(H∗(X;Z)) = d(H∗(X;Q)) = 2n− 1.

Adem, Davis and Ünlü [1] proved that there is a free action of G on X, which is
trivial in rational cohomology. Thus the proof is done by Theorem 1.2.

Yet more free actions of finite groups on products of spheres are given in [6].

2.3. Lie group

Let K be a compact simply-connected Lie group. Then every element of K is
connected to the unit by a path, implying that the canonical action of every subgroup
of K is trivial in rational cohomology. If K has no torsion in homology, then

H∗(K;Z) = Λ(x1, . . . , xn).

In particular, d(H∗(K;Z)) = d(H∗(K;Q)) = max{|x1|, . . . , |xn|}. Thus as a conse-
quence of Theorem 1.2, we get:

Proposition 2.5. Let K be a compact simply-connected Lie group having no torsion
in homology, and let G be a finite subgroup of K. Then

NE(K/G) = NE(K) = d(H∗(K;Q)).

This proposition can be generalized to certain homogeneous spaces, including com-
plex Stiefel manifolds and U(2n)/Sp(n), as follows.
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Proposition 2.6. Let K be a compact simply-connected Lie group having no torsion
in homology, and let H be a closed subgroup of K such that the projection K → K/H
is injective in cohomology. If the action of a finite subgroup G on K induces a free
action on K/H, then

NE(G\K/H) = NE(K/H) = d(H∗(K/H;Q)).

Proof. By assumption, the cohomology of K/H is an exterior algebra generated by
elements of odd degrees. Then K/H is a finite H0-space by Proposition 4.4 such that
d(H∗(K/H;Z)) = d(H∗(K/H;Q)). Since the action of G on the cohomology of K is
trivial and the projectionK → K/H is compactible with the action of G and injective
in cohomology, the action of G on the cohomology of K/H is trivial too. Thus by
Theorem 1.2, the proof is complete.

3. Upper bound

This section considers some upper bounds for self-closeness numbers, which will
be used later. First, we consider a relation among self-closeness numbers of a total
space and a base space of a covering.

Lemma 3.1. Let E → B be a covering, where E and B are connected CW complexes.
Then

NE(B) ⩽ max{NE(E), 1}.

Proof. Let NE(E) = n. If n= 0, then π∗(E) = 0 for each ∗, implying B =K(π1(B), 1).
Thus NE(B) ⩽ 1, so that the inequality in the statement holds. Now we suppose
n ⩾ 1. Let f : B → B be a map which is an isomorphism in π∗ for ∗ ⩽ n. Then it lifts
to a self-map f̃ : E → E, and by the homotopy exact sequence, f̃ is an isomorphism in
π∗ for ∗ ⩽ n. Hence f̃ is a homotopy equivalence, implying that f is an isomorphism
in π∗ for each ∗ by the homotopy exact sequence. Thus by the J.H.C. Whitehead
theorem, f is a homotopy equivalence, and so NE(B) ⩽ n. Therefore, the inequality
in the statement is proved.

We will use the following inequality later.

Proposition 3.2. Let X be a connected CW complex of finite dimension, and let X̃
denote its universal cover. If π1(X) is finite, then

NE(X) ⩽ NE(X̃).

Proof. By Lemma 3.1, NE(X) ⩽ max{NE(X̃), 1}. It remains to show NE(X̃) ⩾ 1. If

NE(X̃) = 0, then X = K(π1(X), 1) as in the proof of Lemma 3.1. So since π1(X) is

finite, X is of infinite dimension, which is a contradiction. Thus we obtain NE(X̃) ⩾ 1,
completing the proof.

Next, we consider a cohomological upper bound for the self-closeness number of
a simply-connected CW complex. Oda and Yamaguchi [15] defined the homological
self-closeness number of a path-connected space X, denoted N∗E(X), as the least
integer n such that a self-map of X is an isomorphism in the integral homology of
all dimensions whenever it is an isomorphism in the integral homology of dimensions
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⩽ n. If X is a simply-connected CW complex of finite type, then by the Hurewicz
theorem and the J.H.C. Whitehead theorem, we have

NE(X) = N∗E(X).

However, this equality fails, in general, if X is non-simply-connected; non-trivial
acyclic spaces are typical examples. As in [15], we can define the cohomological self-
closeness number of a path-connected space X, denoted N∗E(X), quite similarly to
the homological self-closeness number N∗E(X). Cohomological self-closeness numbers
are more useful practically than homological ones because cohomology has products.
We prove a basic property of cohomological self-closeness numbers.

Proposition 3.3. Let X be a connected CW complex of finite type. Then

NE(X) ⩽ N∗E(X).

Proof. Suppose that a self-map f : X → X is an isomorphism in π∗ for ∗ ⩽ n. Then
since X is a connected CW complex of finite type, it follows from [15, Proposition
40] that f is an isomorphism in H∗ for ∗ ⩽ n. By the naturality of the universal
coefficient theorem, there is a commutative diagram

0 // Ext(H∗−1(X;Z),Z)

(f∗)
∗

��

// H∗(X;Z) //

f∗

��

Hom(H∗(X;Z),Z) //

(f∗)
∗

��

0

0 // Ext(H∗−1(X;Z),Z) // H∗(X;Z) // Hom(H∗(X;Z),Z) // 0

where rows are split exact. Since f is an isomorphism in H∗ for ∗ ⩽ n, the left and
the right vertical maps are isomorphisms for ∗ ⩽ n. Then by the five lemma, f is an
isomorphism in H∗ for ∗ ⩽ n, completing the proof.

The inequality in Proposition 3.3 can be strict. For example,

NE(S2 ∪2 e
3) = 2 < 3 = N∗E(S2 ∪2 e

3).

We give a computable upper bound for cohomological self-closeness numbers.

Proposition 3.4. Let X be a connected CW complex of finite type. Then

N∗E(X) ⩽ d(H∗(X;Z)).

Proof. If f : X → X is an isomorphism in H∗ for ∗ ⩽ d(H∗(X;Z)), then it is surjec-
tive in H∗ for each ∗ because f induces an algebra homomorphism in cohomology.
Since X is of finite type, H∗(X;Z) is finitely generated for each ∗. Then since a
surjective endomorphism of a finitely generated abelian group is an isomorphism, the
proof is finished.

4. p-Universality

This section recalls the p-universality introduced by Mimura, O’Neill and Toda
[12] and shows properties of (co-)H0-spaces that we are going to use. Throughout
this section, let p denote a prime or 0. Following [12], we say that a map of spaces
X → Y is a p-equivalence if it is an isomorphism in mod p homology for p odd and
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in rational homology for p = 0. A 0-equivalence is often called a rational equivalence,
alternatively. By [9, Chapter 2, Theorem 1.14], a map between simply-connected CW
complexes of finite type is a p-equivalence if and only if it is a p-local homotopy
equivalence. Note that a p-equivalence needs not have an inverse, or even a reverse
p-equivalence. Then the following notion was introduced in [12].

Definition 4.1. A simply-connected finite complex K is called p-universal if for any
p-equivalence f : X → Y and a map g : K → Y , there is a homotopy commutative
diagram

K
h //

��

K

g

��
X

f // Y

where h is a p-equivalence.

Let Y = K and g = 1 in the above definition. Then we can understand a p-universal
space as a space having a “partial right inverse” for any p-equivalence into it. Then
it is natural to ask whether or not a p-universal space has a “partial left inverse” for
any p-equivalence out of it. To answer this question, the following is proved in [12,
Theorem 2.1]

Proposition 4.2. Let K be a p-universal space. For any p-equivalence f : X → Y
and a map g : X → K, there is a homotopy commutative diagram

X
f //

g

��

Y

��
K

h // K

where h is a p-equivalence.

A simply-connected space is called a mod p H-space if its p-localization is itself an
H-space. Note that a mod p H-space itself is not an H-space in general. For instance,
an odd sphere of dimension ̸= 1, 3, 7 is a mod p H-space for any odd prime p and
p = 0 while the sphere itself is not an H-space. Dually, a simply-connected space is
called a mod p co-H-space if its p-localization is a co-H-space. We say that a mod p
(co-)H-space is finite if it is a finite complex. Mimura, O’Neill and Toda [12, Theorem
4.2] proved:

Proposition 4.3. Every mod p finite (co-)H-space is p-universal.

A mod 0 (co-)H-space is called a (co-)H0-space. The following characterization
given in [17] of a finite H0-space is quite useful.

Proposition 4.4. Let X be a simply-connected finite complex. Then the following
conditions are equivalent:

1. X is an H0-space;

2. there is a rational equivalence

S2n1+1 × · · · × S2nr+1 → X.



28 YICHEN TONG

A similar characterization of a finite co-H0-space is also proved by Arkowitz and
Curjel [3, Theorem 2.5].

Proposition 4.5. Let X be a simply-connected finite complex. Then the following
conditions are equivalent:

1. X is a co-H0-space;

2. there is a rational equivalence

X → Sn1 ∨ · · · ∨ Snr .

Now we prove a key lemma on finite (co-)H0-spaces.

Lemma 4.6. Let X be a finite (co-)H0-space. If H∗(X;Q) has an indecomposable
element of degree n, then there are maps

f : Sn → X and g : X → Sn

such that g ◦ f : Sn → Sn is a rational equivalence.

Proof. We only prove the case that X is a finite H0-space since the co-H0-case is
proved quite similarly. By Proposition 4.4, there is a rational equivalence

f̄ : Y → X

for Y = S2n1+1 × · · · × S2nr+1, and by Proposition 4.3, there is also a rational equiv-
alence

ḡ : X → Y

such that ḡ ◦ f̄ is a rational equivalence. Since H∗(X;Q) has an indecomposable
element of degree n, we may assume n = 2n1 + 1. Let F,G ∈ GL(r,Q) represent
the induced maps f̄∗ : QH∗(X;Q) → QH∗(Y ;Q) and ḡ∗ : QH∗(Y ;Q) → QH∗(X;Q),
where QA denotes the module of indecomposables of an augmented algebra A and
a basis of QH∗(Y ;Q) is a collection of the Kronecker duals of the Hurewicz images
of inclusions S2ni+1 → Y . Clearly, there is an integer c ̸= 0 such that c(FG)−1 is an
integer matrix. Then we can easily construct a self-map h : Y → Y inducing c(FG)−1

in cohomology. So the composite h ◦ ḡ ◦ f̄ : Y → Y induces the multiplication by c in
QH∗(Y ;Q). Let f and g be the composites

Sn
incl−−→ Y

f̄−→ X and X
h◦ḡ−−→ Y

proj−−→ Sn.

Then g ◦ f : Sn → Sn is of degree c ̸= 0, completing the proof.

5. Proof of Theorem 1.2

First, we characterize the triviality of an action of a finite group in rational coho-
mology.

Lemma 5.1. Let X be a finite G-complex, where G is a finite group. The following
statements are equivalent:

1. the quotient map X → X/G is an isomorphism in rational cohomology;

2. the action of G on H∗(X;Q) is trivial.
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Proof. By [7, Proposition 3G.1], there is an isomorphism H∗(X/G;Q) ∼= H∗(X;Q)G

such that the map H∗(X/G;Q) → H∗(X;Q) induced from the natural quotient map
X → X/G is identified with the inclusion H∗(X;Q)G → H∗(X;Q). Then the two
statements are equivalent.

For the rest of this section, let X be a finite H0-space, and let G be a finite group
acting freely and cellularly on X. Then Theorem 1.2 is equivalent to the following
theorem, and so we aim to prove it.

Theorem 5.2. If d(H∗(X;Z)) = d(H∗(X;Q)) and G acts trivially on H∗(X;Q),
then

NE(X/G) = NE(X) = d(H∗(X;Q))

For the rest of this section, we assume that d(H∗(X;Z)) = d(H∗(X;Q)) and G
acts trivially on H∗(X;Q). By Proposition 4.4, d(H∗(X;Q)) is an odd integer, which
we set 2n− 1 for the rest of this section. By Lemma 4.6, there are maps

ϵ : S2n−1 → X and ρ : X → S2n−1

such that ρ ◦ ϵ : S2n−1 → S2n−1 is of degree M ̸= 0. By composing a degree -1 map
with ϵ if necessary, we may assume M > 0.

We determine NE(X). Let (Y,B)k denote the k-skeleton of a relative CW complex
(Y,B).

Lemma 5.3. For some positive integer N , there is a homotopy commutative diagram

X ∨ S2n−1 1∨Nϵ //

incl
��

X

X × S2n−1 µ // X.

Proof. The first obstruction for extending 1 ∨ kϵ : X ∨ S2n−1 → X with k ∈ Z over
X × S2n−1 is given by

o(k) ∈ Hm+1(X × S2n−1, X ∨ S2n−1;πm(X)).

Since there is a natural isomorphism

Hm+1(X × S2n−1, X ∨ S2n−1;πm(X)) ∼= Hm+1(X ∧ S2n−1;πm(X)),

the naturality of obstruction classes implies

o(k) = ko(1).

Since X is an H0-space, the obstruction o(1) becomes trivial after rationalization,
so that N1o(1) = 0 for some positive integer N1. Then 1 ∨N1ϵ : X ∨ S2n−1 → X
extends over (X × S2n−1, X ∨ S2n−1)m+1, so that the first obstruction for extend-
ing 1 ∨N1ϵ : X ∨ S2n−1 → X over X × S2n−1 belongs to

H l+1(X × S2n−1, X ∨ S2n−1;πl(X)).

for l > m. Arguing as above, we can see that 1 ∨N1N2ϵ : X ∨ S2n−1 → X extends
over (X × S2n−1, X ∨ S2n−1)l+1 for some positive integer N2. Then since X is finite
dimensional, the induction shows that there are positive integers N1, . . . , Nr such that
1 ∨N1 · · ·Nrϵ : X ∨ S2n−1 → X extends over X × S2n−1, completing the proof.
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Proposition 5.4. NE(X) = d(H∗(X;Q)).

Proof. Let f : X → X denote the composition of maps

X
∆X−−→ X ×X

1×ρ−−→ X × S2n−1 µ−→ X,

where ∆X denotes the diagonal map of X and µ is as in Lemma 5.3. Then f is the
identity map in π∗ for ∗ < 2n− 1. We also have

f ◦ ϵ = µ ◦ (1× ρ) ◦∆X ◦ ϵ
= µ ◦ (1× ρ) ◦ (ϵ× ϵ) ◦∆S2n−1

= µ ◦ (ϵ×M) ◦∆S2n−1

= µ ◦ (ϵ ∨M) ◦ ∇
= (1 +MN)ϵ,

where∇ is the comultiplication of S2n−1 andN is as in Lemma 5.3. Since ϵ is of infinite
order in π2n−1(X), f is not an isomorphism in π2n−1, implying NE(X) ⩾ 2n− 1. On
the other hand, by Propositions 3.3 and 3.4,

NE(X) ⩽ N∗E(X) ⩽ d(H∗(X;Z)) = d(H∗(X;Q)) = 2n− 1.

Thus we obtain NE(X) = 2n− 1.

We prove Theorem 1.2 by constructing a self-map of X/G similar to the self-map
f of X in the proof of Proposition 5.4. First, we construct a map ρ̄ : X/G→ S2n−1

which is compatible with ρ.

Lemma 5.5. For any α ∈ πi(S
2n−1) with i > 2n− 1, there is a positive integer k

such that k ◦ α = 0.

Proof. By assumption, α is of finite order. By [8, Theorem 6.7], m ◦ α = mα for
m ≡ 0 mod 4. Then for k = 4|α|, we have k ◦ α = kα = 0, where |α| denotes the
order of α.

Let q : X → X/G denote the projection.

Lemma 5.6. For some positive integer K, there is a homotopy commutative diagram

X
ρ //

q

��

S2n−1

K
��

X/G
ρ̄ // S2n−1.

Proof. Let Iq denote the mapping cylinder of q : X → X/G. Then it suffices to show
that for some positive integer k, the map k ◦ ρ : X → S2n−1 extends over Iq. A possible
first non-trivial obstruction for such an extension is given by

o(k) ∈ H2n(Iq, X;π2n−1(S
2n−1)).

By the naturality of obstruction classes,

o1(k) = ko1(1).

By Lemma 5.1, we have H2n(Iq, X;π2n−1(S
2n−1))⊗Q ∼= H2n(Iq, X;Q) = 0, imply-

ing o(K1) = K1o(1) = 0 for some positive integer K1. Then the first obstruction for
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extending kK1 ◦ ρ : X → S2n−1 extends over Iq is

o2(k) ∈ Hm(Iq, X;πm−1(S
2n−1))

for m > 2n. By the naturality of obstruction classes,

o2(k) = ko2(1).

Then since πm−1(S
2n−1) is of finite order, it follows from Lemma 5.5 that there

is a positive integer K2 such that o2(K2) = K2o2(1) = 0. Thus the induction on the
skeleton of a relative CW complex (Iq, X) works, and so since Iq is finite dimensional,
there are positive integers K1, . . . ,Kr such that the map K1 · · ·Kr ◦ ρ : X → S2n−1

extends over Iq. Therefore, the proof is complete.

Next, we construct a map

µ̄ : X/G× S2n−1 → X/G

which is an analog of

µ : X × S2n−1 → X.

To this end, we will use the following lemma. Let π∗(X/G) denote the local coefficient
system defined by the natural action of G = π1(X/G) on π∗(X/G).

Lemma 5.7. There is an isomorphism

H∗+1(X/G× S2n−1, X/G ∨ S2n−1;π∗(X/G))

∼= H∗−2n+2(X/G, x̄0;π∗(X/G))⊗H2n−1(S2n−1;Z)

which is natural with respect to a self-map of S2n−1, where x̄0 is the basepoint of
X/G.

Proof. Let W = X/G ∨ S2n−1, and let W̃ denote its universal cover. Since G acts

freely on C∗(X), C∗(X × S2n−1) and C∗(W̃ ) are freeG-modules, where C∗(−) denotes
a cellular chain complex. As in [18, (4.1.4)],

H∗+1(X/G× S2n−1, X/G ∨ S2n−1;π∗(X/G))

is the cohomology of

HomG(C∗+1(X × S2n−1)/C∗+1(W̃ ), π∗(X/G)),

where HomG(−,−) denotes the abelian group of G-homomorphisms between the

specified G-modules. Then we identify a G-module C∗+1(X × S2n−1)/C∗+1(W̃ ). Note

that W̃ is obtained by attaching S2n−1 to X at each x0g ∈ X for g ∈ G, where x0 is
the basepoint of X. Then

C∗+1(W̃ ) = C∗+1(X)⊕ (C0(x0G)⊗ C∗+1(S
2n−1))

so that there is an isomorphism of G-modules

C∗+1(X × S2n−1)/C∗+1(W̃ ) ∼= C∗−2n+2(X,x0G)⊗ C2n−1(S
2n−1).

Thus the proof is done.

Now we prove:



32 YICHEN TONG

Lemma 5.8. For some positive integer L, there is a homotopy commutative diagram

X/G ∨ S2n−1
1∨L(q◦ϵ) //

incl

��

X/G

X/G× S2n−1 µ̄ // X/G.

Proof. SinceX/G× S2n−1 is obtained fromX/G ∨ S2n−1 by attaching cells of dimen-
sions ⩾ 2n, as in [18, Theorem 4.3.7], the first obstruction for extending

1 ∨ l(q ◦ ϵ) : X/G ∨ S2n−1 → X/G

over X/G× S2n−1 is given by

o(l) ∈ H∗+1(X/G× S2n−1, X/G ∨ S2n−1;π∗(X/G))

for ∗ > 2n− 1. By Lemma 5.7,

o(l) = lo(1).

Then since π∗(X/G) is of finite order for ∗ > 2n− 1, there is a positive integer L1

such that o(L1) = L1o(1) = 0. Thus by arguing as in the proof of Lemma 5.3, the
proof is finished.

We are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Define a map f̄ : X/G→ X/G by the composite

X/G
∆X/G−−−−→ X/G×X/G

1×ρ̄−−→ X/G× S2n−1 µ̄−→ X/G,

where ρ̄ and µ̄ are as in Lemmas 5.6 and 5.8. Then f̄ is the identity map in π∗ for
∗ < 2n− 1. We also have

f̄ ◦ q ◦ ϵ = µ̄ ◦ (1× ρ̄) ◦∆X/G ◦ q ◦ ϵ
= µ̄ ◦ (1× ρ̄) ◦ (q ◦ ϵ× q ◦ ϵ) ◦∆S2n−1

= µ̄ ◦ (q ◦ ϵ×KM) ◦∆S2n−1

= µ̄ ◦ (q ◦ ϵ ∨KM) ◦ ∇
= (1 +KLM)(q ◦ ϵ),

where K and L are as in Lemmas 5.6 and 5.8. Thus since q ◦ ϵ is of infinite order
in π2n−1(X/G), f̄ is not an isomorphism in π2n−1, implying NE(X/G) ⩾ 2n− 1.
Therefore, by Propositions 3.2 and 5.4, we obtain

2n− 1 ⩽ NE(X/G) ⩽ NE(X) = 2n− 1 = d(H∗(X;Q)),

completing the proof.

6. Proof of Theorem 1.3

Throughout this section, let X denote a finite co-H0-space, and let G be a finite
group acting on X freely and cellularly. Then Theorem 1.3 is equivalent to the fol-
lowing theorem, so that we will prove it.
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Theorem 6.1. If cd(X/G) = d(H∗(X;Q)) and G acts trivially on H∗(X;Q), then

NE(X/G) = NE(X) = d(H∗(X;Q)).

Theorem 6.1 is proved by dualizing the proof of Theorem 5.2. First, we show an
easy implication of the condition in Theorem 6.1.

Lemma 6.2. If cd(X/G) = d(H∗(X;Q)) and G acts trivially on H∗(X;Q), then

cd(X) = d(H∗(X;Z)).

Proof. Since

H∗(X/G;ZG) ∼= H∗(X;Z), we have cd(X/G) ⩾ cd(X),

where ZG denotes the local coefficient system. Clearly,

cd(X) ⩾ d(H∗(X;Z)) ⩾ d(H∗(X;Q)).

Thus the condition cd(X/G) = d(H∗(X;Q)) implies cd(X) = d(H∗(X;Z)).

Hereafter, we will always assume that cd(X/G) = d(H∗(X;Q)) and the induced
action of G on H∗(X;Q) is trivial. Next, we compute NE(X). Let d(H∗(X;Q)) = n.
Then by Lemma 4.6, there are maps

ϵ : Sn → X and ρ : X → Sn

such that ρ ◦ ϵ : Sn → Sn is of degree M > 0.

Lemma 6.3. There is a homotopy commutative diagram

X
ϕ // X ∨ Sn

incl

��
X

1×ρ // X × Sn.

Proof. We aim to lift a map 1× ρ : X → X × Sn to X ∨ Sn through the inclusion
X ∨ Sn → X × Sn, up to homotopy. The first obstruction for this lift belongs to

H∗+1(X;π∗(X × Sn, X ∨ Sn))

for some ∗ ⩾ 0. By Lemma 6.2, H∗+1(X;π∗(X × Sn, X ∨ Sn)) = 0 for ∗ ⩾ n. On the
other hand, since X × Sn and X ∨ Sn have a common n-skeleton,

π∗(X × Sn, X ∨ Sn) = 0 for ∗ < n,

implying

H∗+1(X;π∗(X × Sn, X ∨ Sn)) = 0 for ∗ < n.

Then we obtain the desired lift, completing the proof.

Proposition 6.4. NE(X) = n.
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Proof. Define a self-map f : X → X by the composite

X
ϕ−→ X ∨ Sn 1∨ϵ−−→ X ∨X ψ−→ X,

where ϕ is as in Lemma 6.3 and ψ denotes the folding map. Then f is the identity
map in π∗ for ∗ ⩽ n− 1. For a generator u ∈ Hn(S

n;Z), we have

(f ◦ ϵ)∗(u) = (ψ ◦ (1 ∨ ϵ) ◦ ϕ ◦ ϵ)∗(u)
= ψ∗(ϵ∗(u)× 1 + 1× (ϵ ◦ ρ ◦ ϵ)∗(u))
= ψ∗(ϵ∗(u)× 1 + 1×Mϵ∗(u))

= (1 +M)ϵ∗(u).

Then since ϵ∗(u) is of infinite order and in the Hurewicz image, we get NE(X/G) ⩾ n.
On the other hand, it follows from Propositions 3.3 and 3.4 that

NE(X) ⩽ N∗E(X) ⩽ d(H∗(X;Z)) = d(H∗(X;Q)) = n.

Therefore, we obtain NE(X) = n, completing the proof.

Next, we construct maps ρ̄ : X/G→ Sn and ϕ̄ : X/G→ X/G ∨ Sn having proper-
ties analogous to ρ and ϕ.

Lemma 6.5. For some positive integer K, there is a homotopy commutative diagram

X
ρ //

q

��

Sn

K

��
X/G

ρ̄ // Sn.

Proof. We extend k ◦ ρ : X → Sn over the mapping cylinder Iq of q : X → X/G. The
first possible obstruction for such an extension is given by

o(k) ∈ Hn+1(Iq, X;πn(S
n)).

Since Hn+1(Iq, X;πn(S
n))⊗Q ∼= Hn+1(Iq, X;Q) = 0, o(1) is of finite order. By the

naturality of obstruction classes,

o(k) = ko(1).

Then o(K) = Ko(1) = 0 for some positive integer K, and so the first obstruction for
extending K ◦ ρ : X → Sn over Iq belongs to

H∗+1(Iq, X;π∗(S
n))

for ∗ > n. Since cd(X/G) = n and cd(X) = n by Lemma 6.2,

H∗+1(Iq;π∗(S
n)) = 0 and H∗+1(X;π∗(S

n)) = 0

for ∗ > n. Then it follows from the cohomology exact sequence that

H∗+1(Iq, X;π∗(S
n)) = 0 for ∗ > n.

Thus K ◦ ρ : X → Sn extends over Iq, completing the proof.
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Lemma 6.6. There is a homotopy commutative diagram

X/G
ϕ̄ // X/G ∨ Sn

incl

��
X/G

1×ρ̄ // X/G× Sn.

Proof. The first obstruction for lifting

1× ρ̄ : X/G→ X/G× Sn

to X/G ∨ Sn through the inclusion X/G ∨ Sn → X/G× Sn, up to homotopy, belongs
to

H∗+1(X/G;R∗),

where R∗ denotes the local coefficient system defined by the canonical G-action
on π∗(X/G× Sn, X/G ∨ Sn). Since X/G× Sn and X/G ∨ Sn have an n-skeleton in
common, π∗(X/G× Sn, X/G ∨ Sn) = 0 for ∗ ⩽ n, implying H∗+1(X/G;R∗) = 0 for
∗ ⩽ n. Since cd(X/G) = n, we also have H∗+1(X/G;R∗) = 0 for ∗ > n. Then there
is no obstruction for lifting 1× ρ̄ : X/G→ X/G× Sn, completing the proof.

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Define a self-map f̄ : X/G→ X/G by the composite

X/G
ϕ̄−→ X/G ∨ Sn 1∨(q◦ϵ)−−−−−→ X/G ∨X/G ψ−→ X/G.

Then f̄ is the identity map in π∗ for ∗ < n. Let u denote a generator ofHn(S
n;Z) ∼= Z.

Then

(f̄ ◦ q ◦ ϵ)∗(u) = (ψ ◦ (1 ∨ (q ◦ ϵ)) ◦ ϕ ◦ q ◦ ϵ)∗(u)
= ψ∗((q ◦ ϵ)∗(u)× 1 + 1× (q ◦ ϵ ◦ ρ̄ ◦ q ◦ ϵ)∗(u))
= ψ∗((q ◦ ϵ)∗(u)× 1 + 1×K(q ◦ ϵ ◦ ρ ◦ ϵ)∗(u))
= ψ∗((q ◦ ϵ)∗(u)× 1 + 1×KM(q ◦ ϵ)∗(u))
= (1 +KM)(q ◦ ϵ)∗(u).

Since (q ◦ ϵ)∗(u) is of infinite order and in the Hurewicz image, f̄ is not an isomorphism
in πn, implying NE(X/G) ⩾ n. Therefore, by Propositions 3.2 and 6.4, we obtain

n ⩽ NE(X/G) ⩽ NE(X) = n = d(H∗(X;Q)),

completing the proof.
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