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THE CATEGORY OF SILVA SPACES IS NOT INTEGRAL
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(communicated by Charles A. Weibel)

Abstract
We establish that the category of Silva spaces, aka LS-spaces,

formed by countable inductive limits of Banach spaces with
compact linking maps as objects and linear and continuous
maps as morphisms, is not an integral category. The result
carries over to the category of PLS-spaces, i.e., countable pro-
jective limits of LS-spaces—which contains prominent spaces
of analysis such as the space of distributions and the space of
real analytic functions. As a consequence, we obtain that both
categories neither have enough projective nor enough injective
objects. All results hold true when ‘compact’ is replaced by
‘weakly compact’ or ‘nuclear’. This leads to the categories of
PLS-, PLSw- and PLN-spaces, which are examples of ‘inflation
exact categories with admissible cokernels’ as recently intro-
duced by Henrard, Kvamme, van Roosmalen and the second-
named author.

1. Introduction

Integral categories were introduced by Rump [16] in 2001 and have since caught
attention on the one hand in representation theory, see, e.g., Brüstle, Hassoun, Tat-
tar [2], or Nakaoka [15], and on the other hand in functional analysis, see Has-
soun, Shah, Wegner [11]. By definition, a pre-abelian category A is right integral, if
monomorphisms pushout to monomorphism, meaning whenever f : X → Y is monic
and g : X → Z is arbitrary, then in the diagram below

X Y

Z P

f

g PO j

h

the morphism h is again monic. Left integral categories are defined dually.
The aim of this paper is to establish that the categories LS, PLS, LSw, PLSw, LN

and PLN, whose definitions will be given in due course, are all neither right nor left
integral, and to outline consequences of this. The latter categories have proved to be
very important in functional analysis as they arise naturally when Ext1-techniques
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are used to solve linear partial differential equations, see, in particular, Wengenroth
[21] and Dierolf, Sieg [6]. We will also put the above categories in the context of
inflation exact categories that were introduced recently by Henrard, Kvamme, van
Roosmalen, Wegner [12].

To keep this article short, we only recall the main implications

quasi-abelian

abelian semi-abelian pre-abelian

integral

between major types of additive categories. For details we refer to [11] where also a
long list of examples and non-examples is given. These show in particular that none
of the above implications are equivalences and that in general no implication between
‘quasi-abelian’ and ‘integral’ holds true.
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2. Core result

A Hausdorff locally convex space X is said to be an LS-space (named after José
Sebastião e Silva [17]), if there exists a spectrum of Banach spaces

X1 → X2 → X3 → · · ·

linked by linear, injective and compact maps, such that X = indn∈NXn is the locally
convex inductive limit of the spectrum. We denote by LS the category which has
the LS-spaces as objects and linear and continuous maps as morphisms. Since the
LS-property inherits to closed subspaces, to quotients by closed subspaces, as well
as to finite products (Floret [8, table on p. 182]), one gets that LS is a full additive
subcategory of the category HD-LCS formed by all Hausdorff locally convex spaces,
and that it reflects the kernels and cokernels of HD-LCS. As HD-LCS is quasi-abelian,
it follows from the latter that LS is quasi-abelian, too (use, e.g., Frerick, Sieg [10,
Prop. 4.20]).

More concretely, in the category LS the kernel of a morphism f : X → Y is the
space f−1(0) ⊆ X endowed with the subspace topology and the cokernel in the cate-
gory LS is the quotient Y/f(X) furnished with the locally convex quotient topology.
Consequently, the pullback is a closed subspace of a product and the pushout is a
quotient of a product. Moreover, a morphism in LS is a kernel if and only if it is
injective and has a closed range, and it is a cokernel if and only if it is surjective (use
the open mapping theorem, e.g., Meise, Vogt [14, 24.30]). Having this, one can check
also directly that LS is quasi-abelian [21, p. 96].

Our main result is the following.
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Theorem 2.1. The category of LS-spaces is neither left nor right integral.

Proof. Since the category of LS-spaces is quasi-abelian, it is right integral if and only
if it is left integral by [16, Cor. on p. 173] (see also [11, Prop. 2.6]). We provide
a counterexample to show that LS is not right integral. For a decreasing sequence
V = (vn)n∈N of strictly positive functions vn : N → R we denote by

k1(V ) := ind
n∈N

ℓ1(vn)

the Köthe co-echelon space of order one. The steps in the inductive limit are the
Banach spaces

ℓ1(vn) :=
{
x ∈ KN ∣∣ ∥x∥vn :=

∞∑
j=1

vn(j)|x(j)| <∞
}

and the linking maps are the inclusions. Due to a classic result by Köthe, see Bierstedt
[1, Proposition 14], the space k1(V ) is an LS-space if and only if the sequence V
satisfies condition

(S) ∀ n ∃m > n : lim
j→∞

vm(j)
vn(j)

= 0.

We now define two concrete sequences V = (vn)n∈N and W = (wn)n∈N by putting
vn(j) := j−n and wn := e−jn. Then both sequences enjoy (S) and since e−jn ⩽ j−n

holds for all n, j ∈ N we get

∀ x ∈ ℓ1(vn) : ∥x∥wn
=

∞∑
j=1

e−jn |x(j)| ⩽
∞∑
j=1

j−n|x(j)| = ∥x∥vn <∞.

This means that ℓ1(vn) ⊆ ℓ1(wn) ⊆ k1(W ) holds for every n ∈ N with continuous
inclusion. But then k1(V ) ⊆ k1(W ) must also hold with continuous inclusion by the
universal property of the inductive limit, see, e.g., [14, Prop. 24.7]. Let us denote the
inclusion map by i : k1(V ) → k1(W ).

Next, we define the map

θ : k1(V ) → K, θ(x) :=
∞∑
j=1

e−j · x(j)

which is well-defined and continuous: Indeed, for n ∈ N we choose C > 0 such that
e−j ⩽ Cj−n holds for all j ∈ N. Then we get

∀ x ∈ ℓ1(vn) : |θ(x)| ⩽
∞∑
j=1

e−j |x(j)| ⩽ C
∞∑
j=1

j−n|x(j)| = C∥x∥vn <∞

which means that θ : ℓ1(vn) → K is well-defined and continuous. Now we again use
[14, Prop. 24.7].

We continue by forming the pushout of i along θ which leads, in view of what we
noted about cokernels in LS right before Theorem 2.1, to the diagram

k1(V ) k1(W )

K k1(W )⊕K
ran[i 9θ]T

i

θ PO ψ

φ

(1)

where φ and ψ are the natural maps. We claim now that φ is not injective and thus
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not a monomorphism in LS. This can be seen by considering the sequence

(x(k))k∈N ⊆ k1(V ) defined by x(k)(j) = (e1/k, e2/k, . . . , ek/k, 0, . . .).

Applying θ to each member of the sequence leads to

θ(x(k)) =
∞∑
j=1

e−j · x(k)(j) =
k∑
j=1

e−j · ej/k =
k∑
j=1

1/k = 1.

Applying i means considering (x(k))k∈N ⊆ k1(W ), and since the sequence has only
finitely many non-zero entries, it is contained in every step space. We consider it in
ℓ1(w2), where we obtain

∥x(k)∥w2
=

∞∑
j=1

e−2j |x(k)(j)| =
k∑
j=1

e−2j · ej/k ⩽ 1/k ·
∞∑
j=1

e−j
k−→∞−−−−→ 0

from whence it follows that (x(k))k∈N converges to zero in k1(W ). Combining the
above implies [

0
91

]
∈
{[

i
9θ

]
(x) ∈ k1(W )⊕K

∣∣ x ∈ k1(V )
}

which means that φ(91) =
[

0
91

]
+ ran[i 9θ]T = 0 and establishes the claim.

Remark 2.2. The method used in the proof above is a refinement of that one applied
in [11, Thm. 3.2] and was developed by the first-named author in her thesis [13]. We
would like to point out the following two observations to the reader:

(i) That we were able to construct, as a counterexample, a pushout diagram with
the most simple (non-trivial) LS-space K in the lower left corner, was not a
happy coincidence, but virtually possible ‘without loss of generality’: Let us
assume that we are given any counterexample, i.e., a diagram

X Y

Z P

f

g PO j

h

in which f is monic and h is not. We pick 0 ̸= ζ ∈ Z with h(ζ) = 0. Next, we
apply the Hahn-Banach theorem which gives us a morphism ζ∗ : Z → K with
ζ∗(ζ) ̸= 0. Finally, we form the pushout of h and ζ∗ to obtain the following
diagram

X Y

Z P

K P ′

f

g j

ζ∗

h

PO j′

h′

where the outer rectangle is a ‘new’ counterexample, now with K in the lower
left corner. Notice that the above argument works in any full subcategory of the
category of Hausdorff locally convex spaces that contains K as an object and
which has arbitrary pushouts.
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(ii) There is no counterexample in which the monomorphism f is a topological
embedding: Indeed, using that LS-spaces are always complete (see Floret, Wloka
[9, Kor. on p. 146]), X being isomorphic to f(X) implies that f(X) ⊆ Y is
closed, and thus f is a kernel. Since LS is quasi-abelian, h is a kernel and
therefore in particular monic.

3. Consequences and further results

A Hausdorff locally convex space X is a PLS-space if X = projn∈NXn is the pro-
jective limit of a strongly reduced spectrum

· · · → X3 → X2 → X1

of LS-spaces. We denote by PLS the category with PLS-spaces as objects and linear
and continuous maps as morphisms. For a morphism f : X → Y the kernel is com-
puted by the same formula as in LS but the cokernel is the completion of Y/f(X), see
Sieg [18, Proof of Prop. 3.1.3]. Since LS ⊆ PLS reflects cokernels we can nevertheless
recycle our counterexample from Theorem 2.1 as well as the dual counterexample
(which must exist as LS is quasi-abelian) and obtain:

Corollary 3.1. The category of PLS-spaces is neither left nor right integral.

Applying Buan, Marsh [3, Prop. 3.9] (see also [11, Prop. 5.2]) leads to:

Corollary 3.2. The categories of LS-spaces and PLS-spaces neither have enough pro-
jective objects nor do they have enough injective objects.

In contrast to LS, the category PLS is not even left semi-abelian [18, Prop. 3.1.6]. It
thus follows from [16, p. 169, Cor. 1] (see also [11, Prop. 2.5]) that PLS does not have
enough quasi-projectives (replace ‘epimorphism’ with ‘cokernel’ everywhere in the
definition). It is open if PLS has enough quasi-injectives, or, taking its natural exact
structure E := Emax = Etop, see [18, Prop. 3.2.1], into account, enough E-injectives
in the notation of [2, 4] (‘inflation’ instead of ‘monomorphism’).

Replacing ‘compact’ with ‘weakly compact’ or with ‘nuclear’ in the definition of
LS-spaces leads to the categories of LSw-spaces, and LN-spaces, respectively. Taking
strongly reduced countable projective limits of spaces in the two classes gives rise to
PLSw-spaces and PLN-spaces. We have the following full inclusions

PLN ⊆ PLS ⊆ PLSw

⊆ ⊆ ⊆

LN ⊆ LS ⊆ LSw

(2)

of pre-abelian categories. Indeed, in LN and PLN kernels and cokernels are computed
by the same formulas as in LS and PLS, respectively (for kernels this follows from
Domański, Vogt [7, Prop. 1.2], for cokernels in LN use [7, Prop. 1.3], and for cokernels
in PLN proceed as in [18, Proof of Prop. 3.1.3]). Since the Köthe matrices V and W ,
which we employed in Theorem 2.1, satisfy condition

(N) ∀ n ∃m > n :
∞∑
j=1

vm(j)
vn(j)

<∞,

it follows from a classic result by Grothendieck, see Bierstedt [1, Prop. 15], that k1(V )
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and k1(W ) are indeed LN-spaces. The diagram (1) is thus a pushout in LN and in
PLN. Since LN ⊆ LS reflects kernels and cokernels, LN is quasi-abelian and thus there
exists a dual counterexample in LN. Since LN ⊆ PLN reflects kernels and cokernels
the example applies in PLN, too. We thus get:

Corollary 3.3. The categories of LN-spaces and PLN-spaces are neither left nor
right integral. Furthermore, they neither have enough projective objects nor enough
injective objects.

In the categories LSw and PLSw cokernels compute again as in LS and PLS, respec-
tively. Kernels, however, do not: Given a morphism f : indn∈NXn → indn∈N Yn of
LSw-spaces the kernel is

ind
n∈N

(f−1(0) ∩Xn) → ind
n∈N

Xn (3)

where the topology on the left is in general strictly finer than the subspace topology
[6, Rmk. 3.1.1 and Cor. 3.1.3(i)]. For morphisms between PLSw-spaces the same has
to be done for every step in the projective limit [6, Prop. 3.1.5]. Nevertheless, in both
categories it is true that a morphism f is monic if and only if it is injective, and
LS ⊆ LSw and PLS ⊆ PLSw reflect kernels (as, for LS-spaces, the topology defined in
(3) coincides with the subspace topology). Moreover, LSw is quasi-abelian [6, p. 1307
and Cor. 3.1.3(i)]. By recycling our example from Theorem 2.1 a third time we arrive
at:

Corollary 3.4. The categories of LSw-spaces and PLSw-spaces are neither left inte-
gral nor right integral. Neither of them have enough projective objects nor enough
injective objects.

We mentioned already that the categories in the bottom row of (2) are quasi-
abelian. For the top row this is not the case and indeed a particular aim of [6, 18]
(see also [5, 19]) was to establish natural exact structures on PLS, PLSw and PLN. We
conclude our article by relating the latter approach to the notion of inflation-exact
categories with admissible cokernels as defined recently in [12]. This new notion allows
for the use of homological algebra with respect to the class Call of all kernel-cokernel
pairs in cases where the latter is not an exact structure in the classical Quillen sense.

Theorem 3.5. Endowed with the class Call of all kernel-cokernel pairs as conflations,
the categories PLS, PLSw and PLN are inflation-exact categories with admissible co-
kernels. The class Call is not an exact structure.

Proof. All three categories are right quasi-abelian but not left quasi-abelian in the
notation of [11, Dfn. 2.3]. For PLSw this follows from [6, Prop. 3.1.9]. For PLS and
PLN the ‘right’ part can be proved in exactly the same way. The ‘not left’ part for
PLS follows from the fact that PLS is not left semi-abelian [18, Prop. 3.1.6]. As the
example uses a quotient of the space D′(Ω), it applies to PLN, too. Using the dual of
[12, Rmk. 4.10(1)] establishes the claim.

We refer to [12] for various implications of Theorem 3.5, including the means for
defining the derived category. The following illustrates the trade-off that comes with
switching from a (natural) exact structure E to the conflation structure Call on the
categories covered by Theorem 3.5:
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Corollary 3.6. Let A ∈ {PLS, PLSw, PLN}.
(i) There is a natural triangle equivalence Db(A,Call) → Db(RH(A)) with RH(A)

being the heart of a natural t-structure on the derived category.

(ii) The natural triangle functor Db(A,E) → Db(A,Call) is neither an equivalence
for the maximal exact structure E = Emax nor for any other exact structure.

Proof. The statements can be proved by copying and dualizing [12, Thm. 9.3] and
[12, Thm. 9.6].

Remark 3.7. From the dual of [12, Thm. 8.8] it follows that the heart RH(A) in
Corollary 3.6 may be replaced by the localization (hMonA)[{pulations}−1]. The latter
might come in handy, as it can be defined without using t-structures. We refer to [20]
for more details and note that it can be checked as in [20, Section 3] that PLS, PLSw
and PLN are what we there called ‘Waelbroeck categories’.

References

[1] K. D. Bierstedt, An introduction to locally convex inductive limits, Geometrical
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