
Homology, Homotopy and Applications, vol. 25(1), 2023, pp.287–318

CYCLIC A8-ALGEBRAS AND CYCLIC HOMOLOGY
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(communicated by Claude Ciblis)

Abstract
We provide a new description of the complex computing

the Hochschild homology of an H-unitary A8-algebra A as a
derived tensor product Ab8

Ae A such that: (1) there is a canon-
ical morphism from it to the complex computing the cyclic
homology of A that was introduced by Kontsevich and Soibel-
man, (2) this morphism induces the map I in the well-known
SBI sequence, and (3) H0ppAb8

Ae Aq#q is canonically isomor-
phic to the space of morphisms from A to A# in the derived
category of A8-bimodules. As direct consequences we obtain
previous results of Cho and Cho–Lee, as well as the fact that
Koszul duality establishes a bijection between (resp., almost
exact) d-Calabi–Yau structures and (resp., strong) homotopy
inner products, extending a result proved by Van den Bergh.

1. Introduction

In their very interesting article [16], the authors provided a new description of
Hochschild and cyclic (co)homology, based on noncommutative (formal) geometry. In
particular, they showed that, in characteristic zero, the complex computing the cyclic
cohomology of a homologically unitary A8-algebra A is quasi-isomorphic to a(n even
shift of) complex Ω2

cyc,clpAr1sq of closed cyclic 2-forms. By combining this result with a
formal version of Darboux’s theorem, they showed that a closed cyclic 2-form induces
an isomorphism class of symplectic structures on the minimal model H‚pAq of A, if
H‚pAq is finite dimensional. On the other hand, as noted by Cho in [4], a constant
closed cyclic 2-form on a finite dimensional A8-algebra A is precisely the same as a
strict isomorphism of A8-bimodules between A and its dual A#. Moreover, he found
an equivalent description for the existence of a symplectic structure on a minimal
model (see [4], Thm. 4.1, but also [5], Thm. 3.6). In their pursuit of understanding
the results in [16], Cho and Lee found an explicit description of the quasi-isomorphism
of A8-bimodules between H‚pAq and its dual H‚pAq# stated in [16], that they called
strong homotopy inner product (see [5]). Their proof is however somehow ad hoc as
well as computationally highly involved, and the proof of several steps are omitted.

The goal of this article is to show that the mentioned results by Cho in [4], and
Cho and Lee in [5] can be directly deduced from a new description of the complex

Received October 29, 2021, revised April 1, 2022; published on April 26, 2023.
2020 Mathematics Subject Classification: 16E05, 16E40, 16E45, 16T15.
Key words and phrases: dg (co)algebra, A8-algebra, Calabi–Yau, Koszul duality.
Article available at http://dx.doi.org/10.4310/HHA.2023.v25.n1.a15
Copyright © 2023, International Press. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v25/
http://intlpress.com/HHA/v25/n1/


288 ESTANISLAO HERSCOVICH

computing the Hochschild homology of A, which is closer to the complex Ω2
cyc,clpAr1sq

in [16]. In order to express our results more clearly, we consider the dual noncommu-
tative Cartan calculus of A: in this case, the complex computing the cyclic homology
is a quotient of a(n even shift of) space ℧2

cycpAr1sq, dual to Ω2
cycpAr1sq. Inspired by

[18], given an A8-algebra A and two A8-bimodules M and N , we introduce the
tensor product M b8

Ae N , and prove that if A is H-unitary, then Ab8
Ae A computes

the Hochschild homology HH‚pAq of A (see Proposition 4.4). Moreover, from the
explicit expression of the complex Ab8

Ae A we directly obtain a map from it to
℧2

cycpAr1sq, since the latter is a symmetrized version of the former, and we show that
this morphism induces the map I in the SBI sequence (see Proposition 4.5, cf. [5],
Prop. 6.1). Furthermore, the explicit expression of Ab8

Ae Ards easily tells us that the
space of morphisms of A8-bimodules from A to the shift of the graded dual A#r´ds

in the derived category is in clear correspondence with H0pAb8
Ae Ardsq# (see Propo-

sition 5.1, cf. [5], Lemma 6.5). The results from Cho and Lee are just obtained by
combining the previous two statements (see Theorem 5.3; cf. [4], Thm. 4.1, or [5],
Thm. 3.6, as well as the results in [5], Section 7). As another application, we also
obtain that a strongly smooth pseudo-compact local augmented dg algebra is (resp.,
almost exact) d-Calabi–Yau if and only if its Koszul dual has a (resp., strong) homo-
topy inner product, extending Thm. 11.1 in [25], but with a completely different
proof (see Theorem 6.6).

The structure of the article is as follows. Section 2 is devoted to provide the basic
material we will use. This includes the noncommutative Cartan calculus in Subsec-
tion 2.2, as well as the basic definitions concerning A8-algebras, their A8-bimodules
and the associated Hochschild and cyclic homologies in Subsection 2.3. All these
results are by no means new, with the possible exception of some previously unno-
ticed results in Subsection 2.3 (e.g. Lemma 2.5). In the first part of Section 3 we
recall the proof of the mentioned theorem of [16], and we provide then the notion of
homotopy inner products and some basic results.

In Section 4, we prove the first two main results of this article. First, if A is
an H-unitary A8-algebra and M a right H-unitary A8-bimodule, then M b8

Ae A
computes the Hochschild homology H‚pA,Mq (see Proposition 4.4). Secondly, we
construct a morphism from Ab8

Ae A to ℧2
cycpAr1sq inducing the map I in the SBI

sequence (see Proposition 4.5). In Section 5, we show that H0ppM b8
Ae Nq#q is in

correspondence with the space of morphisms from M to the graded dual N# of N in
the derived category DpAeq of A8-bimodules (see Proposition 5.1). We deduce from
this the main result in [4], namely Thm. 4.1 (see Theorem 5.3), as well as the explicit
relations in [5], Section 6 (see Propositions 4.5 and 5.1).

To be completely fair, one might argue that the complex Ab8
Ae A that we introduce

in this article and that computes the Hochschild homology of A is not completely new,
for it is built from well-known constructions. Moreover, it might be well-known to
some experts, but we have not seen it used before in the literature. For example,
in case A is a unitary (dg) algebra, Ab8

Ae A is precisely the complex obtained by
applying the functor AbAe p´q to the resolution of A in the category of A-bimodules
given by the tensor product of the bar resolution of A with itself over A.

Finally, after reviewing some basic results concerning pseudo-compact local dg
algebras in Section 6, as well as their Hochschild homology (see Proposition 6.3), we
use our previous results to show that Koszul duality establishes a bijection between
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(resp., almost exact) d-Calabi–Yau structures and (resp., strong) homotopy inner
products (see Theorem 6.6).
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2. Preliminaries

2.1. Basic notation
In this article, we work over a fixed field k. We write N for the set of (strictly)

positive integers and N0 for the set of nonnegative integers. Given ī P Zp, also written
pi1, . . . , ipq, we set |̄i| “ i1 ` ¨ ¨ ¨ ` ip. We recall that, if V “ ‘n̄PZpV n̄ is a multigraded
vector space (or just graded, for short), V rm̄s is a graded vector space over k whose
n̄-th homogeneous component V rm̄sn̄ is given by V m̄`n̄, for all n̄, m̄ P Zp, and it is
called the shift of V . For d̄ P Zp, sV,d̄ : V Ñ V rd̄s is the suspension morphism, whose

underlying map is the identity of V , and has degree ´d̄. Moreover, V rp1, 0, . . . , 0qs

and sV,p1,0,...,0q will be simply denoted by V r1s and sV (or s if V is clear from the
context), resp., whereas V rp0, 1, 0, . . . , 0qs and sV,p0,1,0,...,0q will be denoted by ΣV
and tV (or just t if V is clear), resp. All morphisms between vector spaces will be k-
linear (satisfying further requirements if they are so decorated). All unadorned tensor
products b would be over k. If V is a graded vector space, V # will denote its graded
dual. Moreover, all the signs appearing in this work are obtained from the Koszul
sign rule in the symmetric monoidal category of (differential) graded vector spaces
with the (symmetric) braiding

τV,W : V bW Ñ W b V (2.1)

given by v b w ÞÑ p´1qn̄¨m̄w b v, where v P V n̄, w P V m̄ and n̄ ¨ m̄ “
řp
i“1 nimi.

1 The
first component n1 of n̄ “ pn1, . . . , npq P Zp of v P V n̄ will be called cohomological
degree, and it will also be written |v|, whereas the second n2, if it exists, will be called
weight. If f : pM,dM q Ñ pN, dN q is a closed morphism of dg vector spaces, also called
a morphism of complexes, i.e. f has zero degree and f ˝ dM “ dN ˝ f , the cone of f
is by definition the dg vector space Copfq “ M r1s ‘N with differential B given by
B|N “ dN and B|Mr1s “ ´sM ˝ dM ˝ s´1

M ` f ˝ s´1
M .

We recall that if W is a graded vector space, then T cW “ ‘nPN0W
bn (resp.,

T̄ cW “ ‘nPNW
bn) is the cofree cocomplete coaugmented graded coalgebra (resp.,

cofree cocomplete noncounitary graded coalgebra) cogenerated by W , where the
coproduct is given by deconcatenation. We denote by πW : T cW Ñ W the canoni-
cal projection. If A is a nonunitary dg algebra, then, its augmentation A` “ k ‘A is
the unique augmented dg algebra such that the canonical inclusion A Ñ A` is a mor-
phism of nonunitary dg algebras, the canonical inclusion k Ñ A` is its unit and the
canonical projection of A` Ñ k is the augmentation. The correspondence A ÞÑ A` is

1The authors of [16] never explicitly stated which precise braiding the Koszul sign rule should be
applied to. One can check that the “correct” signs cannot be obtained by using the usual braiding
associated to the total degree.
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clearly functorial and it induces an equivalence between the categories of nonunitary
dg algebras and that of augmented dg algebras, the quasi-inverse being the map that
associates the kernel of the augmentation to each augmented dg algebra. Analogously,
if C is a noncounitary dg coalgebra, we define similarly a structure of coaugmented
dg coalgebra on C` “ k ‘ C, called the coaugmentation of C. All the corresponding
dual results also hold in this case.

2.2. Basics on noncommutative Cartan calculus
We mainly present the definitions given in [16], but in coalgebra terms. All the

results there can be obtained by taking the dual of the ones we provide here. The
reason for doing so is to facilitate the comparison to Hochschild and cyclic homology
from [10].

Let V “ ‘nPZV
n be a cohomologically graded vector space. We will regard it as

a bigraded vector space, concentrated in weight zero. Define ℧‚V “ T cpV ‘ ΣV q,
where ΣV “ V rp0, 1qs. Recall that t “ tV : V Ñ ΣV is the morphism whose underly-
ing map is the identity of V . It has cohomological degree 0 and weight ´1. Note that
℧‚V “ ‘mPN0℧mV , where ℧mV is the subspace of ℧‚V formed by all homogeneous
elements of weight ´m. Let

d
DR : ℧‚V Ñ ℧‚V be the unique coderivation satisfying

that πV‘ΣV ˝
d
DR is the composition of πV‘ΣV and the map V ‘ ΣV Ñ V ‘ ΣV

given by v ‘ tV pwq ÞÑ w, for all v, w P V . Explicitly,
d
DR

`

ū1tV pv1q ¨ ¨ ¨ ūntV pvnqūn`1

˘

“

n
ÿ

i“1

p´1qi´1ū1tV pv1q ¨ ¨ ¨ ūi´1tV pvi´1qūiviūi`1tV pvi`1q ¨ ¨ ¨ ūntV pvnqūn`1,
(2.2)

for all ū1, . . . , ūn`1 P T cV , v1, . . . , vn P V and n P N. It is clear that
d
DR has coho-

mological degree 0 and weight 1, and that
d
DR ˝

d
DR “ 0. Set

d
DRm “

d
DR|℧mV .

Given a morphism of coaugmented graded coalgebras F : T cV Ñ T cV , we define
F̂ : ℧‚V Ñ ℧‚V as the unique morphism of coaugmented graded coalgebras such
that pV ˝ πV‘ΣV ˝ F̂ is the composition of the projection T cpV ‘ ΣV q Ñ T cV and
πV ˝ F , and pΣV ˝ πV‘ΣV ˝ F̂ is tV ˝ pV ˝ πV‘ΣV ˝ F̂ ˝

d
DR, where the canonical pro-

jections are denoted pV : V ‘ ΣV Ñ V and pΣV : V ‘ ΣV Ñ ΣV . It is clear that F̂
is an automorphism of coaugmented graded coalgebras if F is so, and it satisfies that
F̂ ˝

d
DR “

d
DR ˝ F̂ . Indeed, this equality is verified if and only if composing it with

πV‘ΣV holds, which trivially follows from the definitions.
Given X P CoderpT cV q, define the contraction ι

X : ℧‚V Ñ ℧‚V as the unique
coderivation satisfying that πV‘ΣV ˝

ι
X is equal to the composition of the projec-

tion T cpV ‘ ΣV q Ñ T cV , X, πV , tV and the canonical inclusion of ΣV Ñ V ‘ ΣV .
It is clear that ιX has cohomological degree d and weight ´1, if X has (cohomological)
degree d. It is also easy to verify that

r
ι
X ,
ι
Y s “

ι
X ˝

ι
Y ` p´1q|X|.|Y |ι

Y ˝
ι
X “ 0,

for allX,Y P CoderpT cV q homogeneous. Note that the sign in the graded commutator
is determined using the Koszul sign rule associated to (2.1). Given a morphism of
coaugmented graded coalgebras F : T cV Ñ T cV and X,X 1 P CoderpT cV q such that
X 1 ˝ F “ F ˝X, then the induced morphism F̂ : ℧‚V Ñ ℧‚V of coaugmented graded
coalgebras satisfies that F̂ ˝

ι
X “

ι
X1 ˝ F̂ . Indeed, this equality is verified if and only
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if composing it with πV‘ΣV holds, which is true if and only if the restriction of the
latter equality to TV holds, because the restriction to ℧mV vanish if m P N. Since
the mentioned restriction to TV is precisely tV ˝ πV ˝X 1 ˝ F “ tV ˝ πV ˝ F ˝X, the
claim follows.

Given a coderivation X P CoderpT cV q of degree d, the Lie derivative is the mapL
X : ℧‚V Ñ ℧‚V defined via

L
X “ r

d
DR,

ι
X s “

d
DR ˝

ι
X `

ι
X ˝

d
DR. It is easy to

see that
L

X is a coderivation of cohomological degree d and weight zero, and that

πV‘ΣV ˝
L

Xpūq “ xpūq, πV‘ΣV ˝
L

X

`

ūtV pvqū1
˘

“ tV
`

xpūvū1q
˘

, (2.3)

and πV‘ΣV ˝
L

X |℧mV “ 0, for all m P Nzt1u, ū, ū1 P T cV and v P V , where we write
x “ πV ˝X. From the two previous paragraphs we see that, given a morphism of
coaugmented graded coalgebras F : T cV Ñ T cV and X,X 1 P CoderpT cV q such that
X 1 ˝ F “ F ˝X, then F̂ : ℧‚V Ñ ℧‚V satisfies that F̂ ˝

L
X “

L
X1 ˝ F̂ .

The following result is easy to verify.

Fact 2.1. Let X,Y P CoderpT cV q. Then,

r
d
DR,

L
X s “ 0, r

L
X ,
ι
Y s “

ι
rX,Y s, and r

L
X ,

L
Y s “

L
rX,Y s.

We recall that, given a coaugmented graded coalgebra C with coproduct ∆C ,
one defines the graded vector space C6 “ Kerp∆C ´ τC,C ˝ ∆Cq Ď C. Note that any
coderivation d P CoderpCq satisfies that dpC6q Ď C6. We shall usually denote the
induced map d|C6 : C6 Ñ C6 simply by d. Set ℧‚

cycV “ p℧‚V q6, which is a dg vector
subspace of ℧‚V for the differential

d
DR by the previous comments. Moreover, the

coderivations ιX and
L

X also induce maps from ℧‚
cycV to itself. Analogously, note

that if f : C Ñ D is a morphism of coaugmented graded coalgebras, then fpC6q Ď D6.
We also set ℧mcycV “ ℧‚

cycV X ℧mV , for all m P N0.
We recall the following well-known result, called the (formal) Poincaré lemma.

Lemma 2.2. Let V be a cohomologically graded vector space over a field k of zero
characteristic. Then, the complex p℧‚

cycV,
d
DRq is quasi-isomorphic to k (in zero coho-

mological degree and weight).

Proof. Consider Xeu P CoderpT cV q defined as follows. For n P N0, set Xeu|V bn as
the composition of nidV bn and the canonical inclusion V bn Ñ T cV . The explicit
expression (2.3) of

L
Xeu implies that πV‘ΣV ˝

L
Xeu |V‘ΣV “ idV‘ΣV , which in turn

tells us that
L

Xeu |pV‘ΣV qbn “ nidpV‘ΣV qbn , for all n P N0. This gives in particular
that Kerp

L
Xeu

q “ k. Moreover, the identity
L

Xeu
“ r

d
DR,

ι
Xeu

s and the assumption
charpkq “ 0 tell us that p℧‚

cycV,
d
DRq is quasi-isomorphic to pKerp

L
Xeu

q,
d
DRq, and

the result follows.

Assume that the field k has characteristic different from 2. Given ω P p℧2
cycV q#,

where p´q# denotes the graded dual, we write the formal infinite sum ω “
ř

ℓPN0
ωℓ,

where

ωℓ P

ˆ

´

à

p`q`r“ℓ

V bp b ΣV b V bq b ΣV b V br
¯

cyc

˙#

Ď p℧2
cycV q#, (2.4)

for all ℓ P N0, and the last inclusion is given by extending ωℓ by zero on the direct
summands indexed by ℓ1 ‰ ℓ. The sum is well defined, since, given α P ℧2

cycV , for all
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but a finite number of indices ℓ P N0, ωℓpαq vanishes. Set ωą0 “
ř

ℓPN ωℓ. Note that
ω0 P ppΣV b ΣV qS2q# » ppΣV b ΣV q#qS2 Ď ppΣV qb2q#, where the total map sends
ω0 to tpvq b tpwq ÞÑ ω0ptpvq b tpwq ´ p´1q|v|.|w|tpwq b tpvqq{2, for v, w P V .

A pre-symplectic structure of degree d on a graded vector space V is a homogeneous
element ω P p℧2

cycV q# of cohomological degree 2 ´ d such that ω ˝
d
DR “ 0. Denote

by PSpncpV q the graded vector subspace of p℧2
cycV q# spanned by the homogeneous

pre-symplectic structures on V . A pre-symplectic structure ω is nondegenerate if the
graded symmetric bilinear form ΣV b ΣV Ñ k induced by ω0 is nondegenerate, i.e.
it induces an isomorphism of graded vector spaces ΣV Ñ pΣV q#, where we write as
before ω “ ω0 ` ωą0. Note that a graded vector space V provided with a nondegen-
erate pre-symplectic structure ω is necessarily locally finite dimensional. Notice also
that any element ω0 P ppΣV b ΣV qS2q# Ď p℧2

cycV q# satisfies that ω0 ˝
d
DR “ 0. We

remark that if ω is a (resp., nondegenerate) pre-symplectic structure of degree d on
V and F : T cV Ñ T cV is an automorphism of coaugmented graded algebras, then
ω1 “ ω ˝ F̂ is also a (resp., nondegenerate) pre-symplectic structure of degree d, and
if X : T cV Ñ T cV is a coderivation of degree N , then ω ˝

L
X is a pre-symplectic

structure of degree d´N .
The next result is the well-known (formal) Darboux theorem.

Theorem 2.3. Let V be a graded vector space over a field k of zero characteristic
and ω P ℧2

cycV a nondegenerate pre-symplectic structure of degree N on V . There
exists an automorphism F : T cV Ñ T cV of coaugmented graded coalgebras such that
ω1 “ ω ˝ F̂ satisfies that ω1

ą0 vanishes.

Proof. It suffices to show that if ω “ ω0 `
ř

ℓěℓ0
ωℓ is a pre-symplectic structure of

degree N , for ℓ0 ě 1, there exists an automorphism F : T cV Ñ T cV of coaugmented
graded coalgebras such that ω1 “ ω ˝ F̂ satisfies that ω1 “ ω1

0 `
ř

ℓěℓ0`1 ω
1
ℓ. To prove

this latter statement, note that ω ˝
d
DR “ 0 implies in particular ωℓ0 ˝

d
DR vanishes.

By Lemma 2.2, which can be applied since ℓ0 ą 0, there exists

θℓ0`1 P

ˆ

´

à

p`q“ℓ0`1

V bp b ΣV b V bq
¯

cyc

˙#

such that ωℓ0 “ θℓ0`1 ˝
d
DR. Define fℓ0`1 : V

bℓ0`1 Ñ V by means of

θℓ0`1

`

v1 ¨ ¨ ¨ vℓ0`1tV pwq
˘

“ ω0

´

tV
`

fℓ0`1pv1 ¨ ¨ ¨ vℓ0`1q
˘

tV pwq

¯

,

for all homogeneous v1, . . . , vℓ0`1, w P V . Since ω0 is nondegenerate, then the map
fℓ0`1 is uniquely determined by the previous equality. Let F : T cV Ñ T cV be the
unique morphism of coaugmented graded coalgebras satisfying that πV ˝ F |V “ idV ,
πV ˝ F |V bℓ0`1 “ ´fℓ0`1 and πV ˝ F |V bn vanishes if n P Nzt1, ℓ0 ` 1u. The reader can
easily verify that ω1 “ ω ˝ F̂ satisfies the required property.

2.3. A8-algebras and their bimodules
For the basics on dg algebras we refer to [1] (see also [12]). For A8-algebras

and their bimodules we refer to [18] (see also [21]), even though we follow the sign
convention in [15] (see also [13]). We give the basic definitions needed in the sequel
as well as some probably well-known results on weak units that we couldn’t find in
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the literature. For the rest of this section we consider cohomologically graded vector
spaces, so the braiding (2.1) coincides with the usual one.

2.3.1. Basic definitions
A nonunitary A8-algebra A is a coderivation BA of cohomological degree 1 on the
noncounitary graded tensor algebra T̄ cpAr1sq “ ‘nPNAr1sbn provided with the decon-
catenation coproduct, such that BA ˝BA “ 0. The previous noncounitary dg coalge-
bra is called the (nonunitary) bar construction of A and is denoted by BpAq. By
the equivalence between noncounitary and coaugmented dg coalgebras, a nonuni-
tary A8-algebra can also be defined as a coderivation B`

A of cohomological degree
1 on the coaugmented graded tensor algebra T cpAr1sq “ ‘nPN0

Ar1sbn provided with
the deconcatenation coproduct, such that B`

A ˝B`
A “ 0 and both B`

A |k and the
composition of B`

A with the counit T cpAr1sq Ñ k vanish. If n P N we will denote
an element spa1q b ¨ ¨ ¨ b spanq P Ar1sbn by ra1| ¨ ¨ ¨ |ans, where a1, . . . , an P A and
s “ sA : A Ñ Ar1s is the suspension on A, whereas rs will denote the unit element
of k Ď T cpAr1sq. From now on, we will usually drop the adjective nonunitary if there
is no risk of ambiguity.

By [18], Lemme 1.1.2.2, there is a linear bijection between the vector space of
coderivations of T̄ cpAr1sq and the space of linear maps from T̄ cpAr1sq to Ar1s, given by
sending a coderivation B to πAr1s ˝B, where πAr1s : T̄

cpAr1sq Ñ Ar1s is the canonical

projection. Hence, BA is uniquely determined by πAr1s ˝BA “
ř

iPN b
A
i for maps of

the form bAi : Ar1sbi Ñ Ar1s. Then, this collection of maps satisfies the identities
ÿ

pr,s,tqPIn

bAr`1`t ˝ pidbr
Ar1s

b bAs b idbt
Ar1s

q “ 0, (SIpnq)

for n P N, where In “ tpr, s, tq P N0 ˆ N ˆ N0 : r ` s` t “ nu. Reciprocally, starting
from a collection of maps bAi : Ar1sbi Ñ Ar1s fulfilling the previous properties we
obtain an A8-algebra structure. Note that H‚pA,´s´1

A ˝ b1 ˝ sAq is a (nonunitary)
graded algebra for the product induced by ´s´1

A ˝ b2 ˝ sb2
A . A (strictly) unitary A8-

algebra A is an A8-algebra provided with a (necessarily unique) map ηA : k Ñ A

of cohomological degree 0 such that bAi ˝ pidbr
Ar1s

b psA ˝ ηAq b id
bpi´r´1q

Ar1s
q “ 0, for all

i P Nzt2u and r P t0, . . . , i´ 1u, and ηA is a unit for the (nonassociative) product
´s´1

A ˝ b2 ˝ sb2
A on A. A homologically unitary A8-algebra A is an A8-algebra such

that the graded algebra H‚pA,´s´1
A ˝ b1 ˝ sAq is unitary. Moreover, an A8-algebra A

is calledH-unitary if the underlying complex of BpAq is quasi-isomorphic to zero. Any
unitary A8-algebra is clearly homologically unitary, and any homologically unitary
A8-algebra is H-unitary (see [18], Cor. 4.1.2.7).

Given two A8-algebras pA, bA‚ q and pA1, bA
1

‚ q, a morphism of A8-algebras from A
to A1 is a morphism of noncounitary dg coalgebras from BpAq to BpA1q. By [18],
Lemme 1.1.2.2, such a morphism is uniquely determined by its composition with
the canonical projection πW : T̄ cpW q Ñ W . As a consequence, any morphism F̃ of
noncounitary dg coalgebras from BpAq to BpA1q is uniquely determined by the map
πA1r1s ˝ F̃ “

ř

iPN Fi, where Fi : Ar1sbi Ñ A1r1s. The fact that F̃ is a morphism of
noncounitary dg coalgebras means exactly that tFiuiPN satisfies that

ÿ

pr,s,tqPIn

Fr`1`t ˝ pidbr
Ar1s

b bAs b idbt
Ar1s

q “
ÿ

qPN

ÿ

īPNq,n

bA
1

q ˝ pFi1 b ¨ ¨ ¨ b Fiq q, (MIpnq)
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for n P N, where Nq,n is the subset of Nq of elements ī “ pi1, . . . , iqq satisfying that
|̄i| “ i1 ` ¨ ¨ ¨ ` iq “ n. If A and A1 are unitary, one further requires the condition

that F1 ˝ sA ˝ ηA “ sA1 ˝ ηA1 and Fi ˝ pidbr
Ar1s

b psA ˝ ηAq b id
bpi´r´1q

Ar1s
q “ 0, for all i P

Nzt1u and r P t0, . . . , i´ 1u. A morphism F‚ is called strict if Fi “ 0 for all i P Nzt1u.
The notions of identity and composition of morphisms of A8-algebras are clear. If
A is an A8-algebra, A` “ k ‘A is canonically an augmented A8-algebra, i.e. it has
a unique structure of unitary A8-algebra with unit k Ñ A` such that the canonical
projection ϵA` : A`r1s Ñ kr1s, called the augmentation of A`, is a strict morphism of
unitary A8-algebras. As for the case of dg algebras, the category of nonunitary A8-
algebras with morphisms of A8-algebras is equivalent to the category of augmented
A8-algebras provided with morphisms of unitary A8-algebras commuting with the
augmentations.

Given an A8-algebra A, a nonunitary A8-bimodule over A is a graded vector space
M equipped with a bicoderivation BM on the graded counitary BpAq`-bicomodule
BpAq` bM r1s bBpAq` such that BM ˝BM “ 0. We shall denote the previous bico-
module by BpA,M,Aq, and call it the bar construction of M . As usual, we will drop
the adjective nonunitary if it causes no confusion. Since BpAq` bM r1s bBpAq` is
a cofree graded counitary bicomodule, a bicoderivation is uniquely determined by its
composition with ϵBpAq` b idMr1s b ϵBpAq` (see [18], Lemme 2.1.2.1), which is a sum

of mappings of the form bMp,q : Ar1sbp bM r1s bAr1sbp Ñ M r1s, for p, q P N0. Then,

the collection of maps tbMp,qup,qPN0
satisfies the following identities

ÿ

pr,s,tqPIn1`n2`1

b̃Mr,t ˝ pidbr
b b̃s b idbt

q “ 0 (BIpn1, n2q)

in HompAr1sbn1

bM r1s bAr1sbn2

,M r1sq for all n1, n2 P N0, where b̃s is interpreted
as the corresponding multiplication map bs of A if either r ` s ď n1 or s` t ď n2,
and it is understood as bMn1´r,n2´t else. In the first case, b̃Mr,t is b

M
n1´s`1,n2 if r ` s ď n1

or bMn1,n2´s`1 if s` t ď n2, and it is bMr,t else. Moreover, idbr is idbr
Ar1s

and idbt is

id
bpn1

´r´sq

Ar1s
b idMr1s b idbn2

Ar1s
if r ` s ď n1; idbr is idbn1

Ar1s
b idMr1s b id

bpn2
´s´tq

Ar1s
and

idbt is idbt
Ar1s

if s` t ď n2; and idbr is idbr
Ar1s

and idbt is idbt
Ar1s

else. Reciprocally, given

any collection of maps bMp,q : Ar1sbp bM r1s bAr1sbq Ñ M r1s fulfilling the previous
properties, it defines an A8-bimodule structure on M over A. If A is unitary, one
further imposes that

bMp,q ˝
`

idbr
Ar1s

b psA ˝ ηAq b id
bpp´r´1q

Ar1s
b idMr1s b idbq

Ar1s

˘

“ bMp,q ˝
`

idbp
Ar1s

b idMr1s b idbs
Ar1s

b psA ˝ ηAq b id
bpq´s´1q

Ar1s

˘

“ 0,
(2.5)

for all pp, qq P N2
0ztp0, 1q, p1, 0qu, r P t0, . . . , p´ 1u and s P t0, . . . , q ´ 1u, and also

that bA1,0 ˝ ppsA ˝ ηAq b sM q “ ´sM “ bM0,1 ˝ psM b psA ˝ ηAqq. Note that a nonunitary
(resp., unitary) A8-algebra is also a nonunitary (resp., unitary) A8-bimodule over
itself for the structure maps bp,q “ bp`q`1, where p, q P N0. In this case, the under-
lying complexes of BpA,A,Aq and BpAq are identical. Moreover, given a nonunitary
A8-bimoduleM over a nonunitary A8-algebra A, it can be canonically regarded as a
unitary A8-bimodule over A` uniquely extending the A8-bimodule structure over A.
There are obvious versions of left (resp., right) A8-module, for which all the previous
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definitions as well as the ones below (together with the all results in this subsection)
also hold.

Given two nonunitary (resp., unitary) A8-bimodules M and N over a nonuni-
tary (resp., unitary) A8-algebra A, a morphism from M to N is a morphism of
counitary dg bicomodules F : BpA,M,Aq Ñ BpA,N,Aq, which is uniquely deter-
mined by its composition with ϵBpAq` b idNr1s b ϵBpAq` , which we will simply write
as

ř

p,qPN0
Fp,q : Ar1sbp bM r1s bAr1sbq Ñ N r1s. The collection of these morphisms

Fp,q : Ar1sbp bM r1s bAr1sbq Ñ N r1s satisfies
ÿ

pr,s,tqPIn1`n2`1

Fr1,t1 ˝ pidbr
b b̃s b idbt

q

“
ÿ

pa,k,l,bqPN0,n1,n2

bNa,b ˝ pidba
Ar1s

b Fk,l b idbb
Ar1s

q
(MBIpn1, n2q)

for all n1, n2 P N0, where N0,n1,n2 is the subset of N4
0 of elements pa, k, l, bq such

that a` k “ n1 and l ` b “ n2, and where we should understand b̃s as bAs if either
r ` s ď n1 or s` t ď n2, or as bMn1´r,n2´t else. The indices pr1, t1q are completely
determined from the previous cases. Furthermore, in the unitary case we have that
Fp,q ˝ pidbr

Ar1s
b psA ˝ ηAq b idbt

Ar1s
q vanishes for r ‰ p and pp, qq R tp0, 0qu. Recipro-

cally, given any collection of maps Fp,q : Ar1sbp bM r1s bAr1sbq Ñ N r1s fulfilling
the previous properties, it defines a morphism of A8-bimodules fromM to N over A.
We say that it is strict if Fp,q vanishes for all pp, qq ‰ p0, 0q, and a quasi-isomorphism
if F0,0 is a quasi-isomorphism from pM r1s, bM0,0q to pN r1s, bN0,0q.

We say that an A8-bimodule M over a homologically unitary A8-algebra is
homologically unitary if H‚pM,´s´1

M ˝ bM0,0 ˝ sM q is a unitary graded bimodule over

H‚pA,´s´1
M ˝ bA1 ˝ sAq. Similarly, an A8-bimodule M over a nonunitary A8-algebra

A is H-unitary if the underlying complex of BpA,M,Aq is quasi-isomorphic to zero.
A right (resp., left) A8-module M is called right (resp., left) H-unitary if the under-
lying complex of the corresponding bar construction BpM,Aq (resp., BpA,Mq) is
quasi-isomorphic to zero. Since any A8-bimodule is in particular a right and left A8-
module, this definition also applies to it. An A8-bimodule M over a homologically
unitary A8-algebra is H-unitary if and only if it is homologically unitary (see [18],
Lemme 4.1.3.7).

Fact 2.4. Let A be an H-unitary A8-algebra. Then, the A8-bimodule (resp., right
A8-module, left A8-module) A is H-unitary (resp., right H-unitary, left H-unitary).

Proof. It is clear that the underlying complexes of BpA,A,Aq and of BpAq coincide,
proving the result in the A8-bimodule case. The same comments apply to the bar
constructions of the right A8-module (resp., left A8-module) A.

We also have the following sufficient criterion.

Lemma 2.5. A right (resp., left) H-unitary A8-bimodule M is H-unitary.

Proof. We prove the case of a right H-unitary A8-bimodule M , since the other
is analogous. Let tF‚BpAq`u‚PN0 be the usual primitive filtration of BpAq`, i.e.
FnB

`pAq “ ‘n
m“0Ar1sbm. This is clearly an exhaustive increasing filtration of the dg

coalgebra BpAq`. Consider the filtration tF‚BpA,M,Aqu‚PN0
of BpA,M,Aq given by
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F‚BpA,M,Aq “ pF‚BpAq`q bM bBpAq`. Then, tF‚BpA,M,Aqu‚PN0
is an increas-

ing exhaustive filtration of dg comodules of BpA,M,Aq. It is clear that the underlying
complex of the associated graded construction is BpAq` bBpM,Aq. Since BpM,Aq

is quasi-isomorphic to zero, the Künneth formula implies that the associated graded
of BpA,M,Aq is quasi-isomorphic to zero, so the same holds for BpA,M,Aq.

Remark 2.6. The converse of the previous lemma is in general false, and, more gen-
erally, there are H-unitary A8-bimodules that are neither right nor left H-unitary.
Indeed, note first that a right (resp., left) module M over a nonunitary algebra A is

right (resp., left) H-unitary if and only if TorA
`

‚ pM,kq “ 0 (resp., TorA
`

‚ pk,Mq “ 0).

In case of a bimodule M , it is H-unitary if and only if TorpA`
q
e

‚ pM,kq “ 0. Let B

be the quotient of the quiver algebra kQ, where Q is the quiver
e1
‚

α
Ð

e2
‚

β
Ð

e2
‚ , mod-

ulo the relation αβ. Define A “ k.e1 ‘ k.α ‘ k.e3 ‘ k.β. It is an H-unitary algebra
(this is the example k.pe1,1, 0q ‘ k.pe1,2, 0q ‘ k.p0, e1,1q ‘ k.p0, e2,1q Ď M2pkq ˆM2pkq

given in [26], p. 607, by identifying e1, e3, α and β with pe1,1, 0q, p0, e1,1q, pe1,2, 0q

and p0, e2,1q, resp., where ei,j P M2pkq is the matrix with pa, bq-th entry δi,aδj,b), and
A` » B. It is easy to see that the dual B-bimodule A˚ has a projective resolution
pP‚q‚PN0

of length 2, with

P0 “ Be.pe3 b eop2 q‘Be.pe2 b eop1 q, P1 “ Be.pe2 b eop2 q‘2,

and P2 “ Be.pe2 b eop3 q ‘Be.pe1 b eop2 q,

where Be.pei b eopj q denotes the submodule of Be generated by ei b eopj P Be. From
the canonical isomorphism k bBe M » M{pA.M `M.Aq for any B-bimodule M and
a simple computation, we get that k bBe Pj vanishes for all j, so A

˚ is an H-unitary
bimodule over A, but it is neither rightH-unitary nor leftH-unitary, since A˚ bB k »

A˚{pA˚.Aq ‰ 0 and k bB A
˚ » A˚{pA.A˚q ‰ 0.

2.3.2. Duals and suspensions
Given an A8-bimodule pM, bM‚,‚q over an A8-algebra A and d P Z, we define the shifted
A8-bimodule M rds as follows. The underlying graded vector space is the usual shift
M rds and the bicoderivation BMrds is the unique one satisfying that

BpA,M,Aq BpA,M,Aq M r1s

BpA,M rds, Aq BpA,M rds, Aq M rd` 1s

BM

idBpAq` bsMr1s,dbidBpAq`

ϵBpAq` bidMr1sbϵBpAq`

idBpAq` bsMr1s,dbidBpAq` sMr1s,d

p´1q
dBMrds

ϵBpAq` bidMrd`1sbϵBpAq`

(2.6)

commutes. Indeed,

bMrds
p,q : Ar1sbp bM rd` 1s bAr1sbq Ñ M rd` 1s

is uniquely defined by

bMrds
p,q ˝ pidbp

Ar1s
b sMr1s,d b idbq

Ar1s
q “ p´1qdsMr1s,d ˝ bMp,q,

for all p, q P N0. It is easy to verify that the maps tb
Mrds
p,q up,qPN0 satisfy the unitary

condition if tbMp,qup,qPN0
do and they indeed provide a structure of A8-bimodule over

A. The previous shift construction is functorial. Indeed, if F‚,‚ : M Ñ N is a morphism
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of A8-bimodules over the A8-algebra A, then it defines a morphism F‚,‚rds : M rds Ñ

N rds of A8-bimodules by

Fp,qrds ˝ pidbp
Ar1s

b sMr1s,d b idbq
Ar1s

q “ sNr1s,d ˝ Fp,q,

for all p, q P N0. We leave the reader to verify that F‚,‚rds is indeed a morphism
of A8-bimodules over A, and that the shift induces a covariant functor from the
category of A8-bimodules over A to itself. Note that the F‚,‚rds : M rds Ñ N rds is a
quasi-isomorphism if F‚,‚ : M Ñ N is so.

Since the suspension functor is a self-equivalence, from now on we will equivalently
describe an A8-bimoduleM by its unshifted bar construction BupA,M,Aq, defined as
BpA,M r´1s, Aq. The composition of its bicoderivation BMr´1s, denoted by BuM , with
ϵBpAq` b idM b ϵBpAq` is a sum of ubp,q : Ar1sbp bM bAr1sbq Ñ M for p, q P N0.
Moreover, given a morphism F : BpA,M,Aq Ñ BpA,N,Aq of A8-bimodules, we set
uF : BupA,M,Aq Ñ BupA,N,Aq as F r´1s. Its composition with the tensor product
ϵBpAq` b idN b ϵBpAq` is also a sum of maps uFp,q : Ar1sbp bM bAr1sbq Ñ N , for
p, q P N0.

We recall that, given an A8-bimodule M over an A8-algebra A, its (graded) dual
A8-bimodule M# is defined as follows. The underlying graded space is given by the
usual graded dual M# of M and the bicoderivation BuM# is the unique one satisfying
that the diagram

M# bBupA,M,Aq M# bBupA,M,Aq M# bM

k

BupA,M#, Aq bM BupA,M#, Aq bM M# bM

id
M#bBu

M

S1234

id
M#bϵBpAq` bidMbϵBpAq`

evM

´Bu

M#bidM ϵBpAq` bid
M#bϵBpAq` bidM

evM

commutes, where S1234:M
# bBpAq` bM bBpAq` ÑBpAq` bM# bBpAq` bM

is the map defined by

λb bbmb b1 ÞÑ p´1qϵb1 b λb bbm and ϵ “ |b1|p|λ| ` |b| ` |m|q,

for homogeneous b, b1 P BpAq`, λ P M# and m P M , and evM : M# bM Ñ k is the

evaluation map. More explicitly, ubM
#

p,q : Ar1sbp bM# bAr1sbq Ñ M# is defined by

ubM
#

p,q psa1, . . . , sap,λ, sa
1
1, . . . , sa

1
qqpmq

“ ´p´1qσ
1

λ
`

ubMq,ppsa1
1, . . . , sa

1
q,m, sa1, . . . , sapq

˘

,

where σ1 “ |λ| `
`

řp
j“1 |saj |

˘`

|m| ` |λ| `
řq
i“1 |sa1

i|
˘

, for all homogeneous m P M ,

λ P M# and a1, . . . , ap, a
1
1, . . . , a

1
q P A. It is clear that the maps tubM

#

p,q up,qPN0
satisfy

the required unitary conditions if the maps tubMp,qup,qPN0
do so.

Moreover, the previous (graded) dual construction is in fact functorial. To wit, if
uF‚,‚ : M Ñ N is a morphism of A8-bimodules over the A8-algebra A, then it defines

a morphism uF#
‚,‚ : N# Ñ M# of A8-bimodules between the corresponding graded
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duals, given as the unique morphism of graded bicomodules such that

N# bBupA,M,Aq N# bBupA,N,Aq N# bN

k

BupA,N#, Aq bM BupA,M#, Aq bM M# bM

id
N#b

uF

S1234

id
N#bϵBpAq` bidNbϵBpAq`

evN

uF#
bidM

ϵBpAq` bid
M#bϵBpAq` bidM

evM

commutes. More explicitly, the maps tuF#
p,qup,qPN0

are defined by

uF#
p,qpsa1, . . . , sap,λ, sa

1
1, . . . , sa

1
qqpmq

“ p´1qρ
1

λ
`

uFq,ppsa1
1, . . . , sa

1
q,m, sa1, . . . , sapq

˘

,

where ρ1 “
`

řp
j“1 |saj |

˘`

|m| ` |λ| `
řq
i“1 |sa1

i|
˘

, for all homogeneous λ P N#,m P M

and a1, . . . , ap, a
1
1, . . . , a

1
q P A. It is clear that the collection of maps tuF#

p,qup,qPN0

satisfies the required unitary conditions, for the maps tuFp,qup,qPN0
do so, and that

the graded dual induces a contravariant functor from the category of A8-bimodules
over A to itself. If M and N are locally finite dimensional, uF#

‚,‚ : N# Ñ M# is a
quasi-isomorphism if uF‚,‚ : M Ñ N is so.

Fact 2.7. If M is an H-unitary A8-bimodule over an A8-algebra and d P Z, then
M rds also.

Proof. The statement is a direct consequence of the commutativity of the left square
in diagram (2.6).

Remark 2.8. The previous constructions can be carried out also for right (resp., left)
A8-modules over an A8-algebra. In this case, the graded dual sends right (resp.,
left) A8-modules to left (resp., right) A8-modules. All the definitions are directly
obtained from the previous ones by dropping the tensor factor BpAq` from the side
of BupA,M,Aq that is not involved, in order to obtain BupM,Aq (resp., BupA,Mq).
Moreover, the previous fact also holds in that situation, with the analogous proof.

Remark 2.9. Note that the graded dual M# of an H-unitary A8-bimodule is in
general not H-unitary, as the following example shows. Let ℓ ě 2 be an integer and
set Bℓ to be the nonunitary algebra given as the direct colimit YnPN0

tℓ
´n

.krtℓ
´n

s of
the diagram of nonunitary algebras obtained from the obvious inclusions

tℓ
´n

.k
“

tℓ
´n‰

ÝÑ tℓ
´pn`1q

.k
“

tℓ
´pn`1q ‰

of nonunitary algebras, for all n P N0. Finally, define the nonunitary algebra Aℓ given
by Bℓ{pBℓ.tq. This is Example 4.7, (3), in [26], where it is also shown that Aℓ is an
H-unitary algebra. Moreover, it is easy to see that the set

ttp{ℓn : n, p P N0 and 1 ď p ď ℓnu

is a basis of Aℓ. We claim that the Aℓ-bimodule given by the dual A˚
ℓ is not H-unitary.

Since k b
pA`

ℓ qe
A˚
ℓ » A˚

ℓ {pAℓ.A
˚
ℓ `A˚

ℓ .Aℓq, it suffices to show that A˚
ℓ ‰ Aℓ.A

˚
ℓ , for Aℓ

is commutative. This follows directly from the assertion that any λ P Aℓ.A
˚
ℓ satisfies
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that λptq “ 0. Indeed, it suffices to prove it for λ of the form tp{ℓn .µ, where µ P

A˚
ℓ , t

p{ℓn , n P N0 and p P t1, . . . , ℓnu, since any λ P Aℓ.A
˚
ℓ is a linear combination of

elements of the previous type. Finally, we note that ptp{ℓn .µqptq “ µpt.tp{ℓnq “ µp0q “

0, which proves our last assertion, and, as a consequence, A˚
ℓ is not an H-unitary

bimodule over Aℓ.

LetM be an A8-bimodule over an A8-algebra A. Define ιM : M Ñ pM#q# as the
map given by ιM pmqpλq “ p´1q|λ|λpmq, for all m P M and λ P M#. Then, ιM is a
strict morphism of A8-bimodules, that is natural inM . Using the previous definitions
it is rather long but straightforward to check the following result.

Fact 2.10. Let M be an A8-bimodule over an A8-algebra A and let d P Z. Then,
the canonical map θM,d : M

#rds Ñ pM r´dsq# defined by

θM,dpsM#,dλqpsM,´dmq “ p´1qd|λ|λpmq,

for all λ P M# and m P M , is a strict isomorphism of A8-bimodules, natural in M .

2.3.3. Basics on Hochschild and cyclic homology
2.3.3.1. The Hochschild homology of an A8-algebra We follow [10], Sec-
tion 3. Given a dg bicomodule N over a coaugmented dg coalgebra C, with left and
right coactions ρl : N Ñ C bN and ρr : N Ñ N b C, define N 6 “ Kerpρl ´ τN,C ˝

ρrq. It is easy to verify that N 6 is a complex with the induced differential, and that
p´q6 defines a functor from the category of dg bicomodules over C to the category
of dg vector spaces. Moreover, it is clear that p´q6 sends a homotopy h between
endomorphisms F,G : N Ñ N of dg bicomodules (i.e. a morphism h : N Ñ N of the
underlying graded bicomodules such that F ´G “ dN ˝ h` h ˝ dN ) to a homotopy
of the corresponding endomorphisms of dg vector spaces. Note that, if C is a coaug-
mented dg coalgebra, C6 defined in Subsection 2.2 coincides with the one here if C
is regarded as a dg bicomodule with left and right coactions given by its coproduct.
Moreover, notice that the canonical inclusion

jM : pM, ubM0,0q Ñ
`

BupA,M,Aq, BuM
˘

(2.7)

is a morphism of complexes with image included in BupA,M,Aq6.
The next result gives a more usual way of regarding the underlying graded vector

space of the complex BupA,M,Aq6. For a proof, see [10], Prop. 3.6.

Lemma 2.11. The maps

ϵBpAq` b idM b idBpAq` |BupA,M,Aq6 : BupA,M,Aq6 Ñ M bBpAq`

and S123 ˝ pidM b ∆BpAq` q : M bBpAq` Ñ BupA,M,Aq6 are inverse morphisms of
graded vector spaces, where S123 : M bBpAq` bBpAq` Ñ BpAq` bM bBpAq` is
given by mb bb b1 ÞÑ p´1q|b1

|p|m|`|b|qb1 bmb b, for all homogeneous elements m P

M and b, b1 P BpAq`.

We will denote by N 6 the dg vector space defined as the image of N 6 under the
isomorphism of the previous lemma.

Definition 2.12. Let A be an A8-algebra and let M be an A8-bimodule over A.
Define the complex C‚pA,Mq “ BupA,M,Aq 6. If A and M are H-unitary, then
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C‚pA,Mq is called the Hochschild homology complex and its homology H‚pA,Mq

is called the Hochschild homology of A with coefficients in M . They coincide with the
usual definitions for dg algebras and dg bimodules. We usually write HH‚pAq instead
of H‚pA,Aq.

Remark 2.13. We have not defined Hochschild homology for any A8-algebra with
coefficients in any A8-bimodule, and it would be wrong to believe that C‚pA,Mq

computes it in general, as it is already noticed from studying the Hochschild homology
of nonunitary algebras A (with coefficients in the standard bimodule A).

2.3.3.2. The cyclic homology of an A8-algebra Let A be an A8-algebra
and let A` be the augmentation of A. Using the inclusion A Ñ A`, we see that A`

is an A8-bimodule over A. Denote the differential of the complex C‚pA,A`q by b. As
proved in [10], Thm. 3.7, C‚pA,A`q is a dg module over the dg algebra Λ “ krϵs{pϵ2q

with zero differential, where ϵ has cohomological degree ´1. The action of ϵ is given
by an endomorphism B of C‚pA,A`q, which is described as follows. Define the map

σ : BpAq` Ñ BupA,A`, Aq

sending 1k to 1A` , and ra1| ¨ ¨ ¨ |ans to

1A` b ra1| ¨ ¨ ¨ |ans `

n´1
ÿ

i“1

ra1| ¨ ¨ ¨ |ais b 1A` b rai`1| ¨ ¨ ¨ |ans ` ra1| ¨ ¨ ¨ |ans b 1A` ,

as well as the mapping

φ : BupA,A`, Aq Ñ BpAq`

sending ra1| ¨ ¨ ¨ |ans b 1A` b rb1| ¨ ¨ ¨ |bms to zero, and ra1| ¨ ¨ ¨ |ans b ab rb1| ¨ ¨ ¨ |bms to
ra1| ¨ ¨ ¨ |an|a|b1| ¨ ¨ ¨ |bms, if a P A. Set B “ σ 6˝ φ 6. Then, C‚pA,A`q is a dg module
over the dg algebra Λ “ krϵs{pϵ2q with zero differential, where ϵ has cohomological
degree ´1 and the right action of ϵ is given by B. Note that the canonical projection

pA : C‚pA,A`q Ñ k (2.8)

induced by pϵBpAq` b ϵA` b ϵBpAq` q6 is a morphism of dg modules over Λ, where k
has the trivial dg module structure.

Consider the (graded) pseudo-compact algebra kJuK, where u has cohomological
degree ´2, and letW be a graded pseudo-compact left moduleW over kJuK. Consider
the complex C‚pA,A`qJuKb̂kJuKW , with the differential b` uB. The mapping (2.8)

induces a morphism of complexes from C‚pA,A`qJuKb̂kJuKW to kJuKb̂kJuKW » W .
The cohomology of the kernel CC‚pA,W q of this map is denoted by HC‚pA,W q.
If W “ k, then HC‚pA,W q is called the Hochschild homology H‚pA,Aq of A with
coefficients in A. It coincides with the notion considered in Definition 2.12 if A is H-
unitary, since the canonical inclusion C‚pA,Aq Ñ KerppAq is a quasi-isomorphism.
Indeed, its cokernel is isomorphic to BpAq, which is acyclic. If W “ kppuqq (resp.,
W “ kppuqq{ukJuK, W “ kJuK), the complex CC‚pA,W q is denoted CP‚pAq (resp.,
CC‚pAq, CC´

‚ pAq) and its homology is called the periodic cyclic homology HP‚pAq

(resp., the cyclic homology HC‚pAq, the negative cyclic homology HC´
‚ pAq) of A.
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The commutative diagram of short exact sequences

0 kJuK kppuqq kppuqq{kJuK 0

0 k kppuqq{ukJuK kppuqq{kJuK 0

idkppuqq{kJuK (2.9)

of pseudo-compact kJuK-modules (where k » kJuK{ukJuK and the two left vertical
maps are the canonical projections) induces the commutative diagram

¨ ¨ ¨ HC‚´1pAq HC´
‚ pAq HP‚pAq HC‚´2pAq ¨ ¨ ¨

¨ ¨ ¨ HC‚´1pAq HH‚pAq HC‚pAq HC‚´2pAq ¨ ¨ ¨

B1

idHC‚´1pAq

I1

h

S1

p idHC‚´2pAq

B I S

(2.10)

We note that BupA,A,Aq is canonically a subcomplex of BupA,A`, Aq, whose cok-
ernel is isomorphic to BpAq` bBpAq`. By applying the functor p´q 6 we see that
C‚pA,Aq is a subcomplex of C‚pA,A`q, whose cokernel is BpAq`. Moreover, the
complex C‚pA,A`qr1s is isomorphic to the cone of the morphism of complexes

f : BpAq` Ñ C‚pA,Aqr1s

such that f |k is zero, and, for n P N, f |Ar1sbn is given by idAr1sbn ´ tn, where

tnpra1| ¨ ¨ ¨ |ansq “ p´1q|san|
řn´1

i“1 |sai|ran|a1| ¨ ¨ ¨ |an´1s,

for all homogeneous a1, . . . , an P A. Note that f |Ar1s “ 0. One also defines the mor-
phism of complexes N : C‚pA,Aq Ñ BpAqr1s, where N r1s|Ar1sbn is given by the com-

posite sBpAq,2 ˝ p
řn´1
j“0 tnq. It is easy to prove that f ˝N r´1s “ 0 “ N r1s ˝ f .

Set Cλ‚ pAq as the cokernel Cokerpf r´1sq, and denote its homology by Hλ
‚ pAq.

Define the map π̄ : C‚pA,A`qppuqq{ukJuK Ñ Cλ‚ pAq as zero on BpAq`.u´ℓ and on
C‚pA,Aq.u´ℓ´1 for all ℓ P N0, and as the canonical projection C‚pA,Aq Ñ Cλ‚ pAq

on C‚pA,Aq. It clearly induces a map HC‚pAq Ñ Hλ
‚ pAq, which is an isomorphism

if the characteristic of k is zero (see [19], Thm. 2.1.5). Moreover, if char k “ 0 and
A is H-unitary, then sBpAqr1s,´2 ˝N induces a quasi-isomorphism from the complex

Cokerpf r´1sq “ Cλ‚ pAq to Kerpf r´1sq XBpAqr´1s “ BpAq6r´1s (see [22], Lemma 1.2
and comments below).

3. Symplectic structures and cyclic A8-algebras

3.1. Generalities
From now on we assume that the characteristic of the field is different from 2.

Let A be an A8-algebra and let B`
A be the differential of BpAq`. Since

L
B`

A
and

d
DR anticommute, p℧mpAr1sq,

L
B`

A
q and p℧mcycpAr1sq,

L
B`

A
q are complexes for all

m P N0, and
d
DR induces morphisms between the corresponding complexes. They will

be provided with these differentials unless otherwise indicated. A symplectic structure
of degree d on A is by definition a nondegenerate pre-symplectic structure ω of degree
d on the graded vector space V “ Ar1s satisfying that ω ˝

L
B`

A
“ 0. A symplectic

structure ω is constant if ωą0 defined after (2.4) vanishes.
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The following is well-known (cf. [4], Lemma 3.1 and [5], Lemma 4.1). Moreover,
condition (ii) in the lemma below is the usual definition of a d-cyclic (or symplectic)
A8-algebra, which was introduced in [16], Def. 10.1.

Lemma 3.1. Let A be a finite dimensional A8-algebra and set V “ Ar1s. Given
a homogeneous linear map ω : ΣV b ΣV Ñ k of cohomological degree 2 ´ d, define
Γ “ ω ˝ ptV b tV q : V b V Ñ k and f : A Ñ A#r´ds by

psA#r´ds,dfpaqqpbq “ p´1q|a|Γpsa, sbq,

for all a, b P A. Then, the following are equivalent

(i) ω is a constant symplectic structure of degree d on A;

(ii) Γ is a nondegenerate graded anti-symmetric map (i.e. Γ ˝ τV,V “ ´Γ) that sat-
isfies

Γpbnpsa1, . . . , sanq, sa0q “ p´1qϵΓpbnpsa0, . . . , san´1q, sanq, (3.1)

for all homogeneous a0, . . . , an P A, where ϵ “ |sa0|p
řn
i“1 |sai|q;

(iii) f is a strict isomorphism of A8-bimodules such that f “ pf# ˝ θA#,dqr´ds ˝ ιA,
as morphisms of graded vector spaces.

Proof. First, note that the finite dimensional assumption on A implies that the graded
dual A# is equal to the usual dual A˚. It is clear that the nondegeneracy condi-
tions for ω and Γ are equivalent, as well as the corresponding graded symmetric and
graded antisymmetric conditions, respectively. Moreover, a straightforward compu-
tation shows that ω ˝

L
B`

A
“ 0 is equivalent to (3.1). On the other hand, it is clear

that (3.1) is tantamount to f being a strict morphism of A8-bimodules, whereas the
nondegeneracy of Γ is equivalent to f being bijective, and the graded antisymmetry
property of Γ is tantamount to f “ pf# ˝ θA#,dqr´ds ˝ ιA.

The next result is a direct consequence of (2.3) and the definition of p´q6.

Fact 3.2. Let A be an A8-algebra and let B`
A be the differential of BpAq`. Then,

(i) p℧0Ar1s,
L

B`
A

q “ BpAq`, which implies p℧0
cycpAr1sq,

L
B`

A
q “ pBpAq`q6;

(ii) the map idBpAq` b ptAr1s ˝ sAq b idBpAq` from BupA,A,Aq to p℧1Ar1s,´
L

B`
A

q

is an isomorphism of dg bicomodules over BpAq`, so it induces an isomorphism
of complexes C‚pA,Aq Ñ p℧1

cycpAr1sq,´
L

B`
A

q.

The following result is essential in the sequel (cf. [16], Subsection 7.2, p. 178).

Lemma 3.3. There is a homogeneous linear map ψ : ΣpT cV q Ñ ℧1V of cohomolog-
ical degree and weight 0 such that the diagram

℧1V

℧1V b T cV

ΣpT cV q T cV b T cV

ρr

d
DRbidTcV

∆TcV ´ τTcV,TcV ˝ ∆TcV

ψ

(3.2)
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commutes, where ρr denotes the standard right coaction of T cV on ℧1V . More explic-
itly, set ψ|Σk “ 0 and ψ|ΣV “ 0, and, for n ě 2 and v1, . . . , vn P V , set ψptpv1 ¨ ¨ ¨ vnqq

as

n
ÿ

i“1

p´1qϵ1,iϵi`1,nvi`1 ¨ ¨ ¨ vntpv1qv2 ¨ ¨ ¨ vi ´

n´1
ÿ

i“0

p´1qϵ1,iϵi`1,nvi`1 ¨ ¨ ¨ vn´1tpvnqv1 ¨ ¨ ¨ vi,

(3.3)

where ϵj,j1 “
řj1

ℓ“j |vℓ| for 1 ď j ď j1 ď n. It satisfies that Kerpψq “ ΣpT cV q6 and

Impψq “ ℧1
cycV X Kerp

d
DRq, so it induces a linear isomorphism

ψ̄ : pΣT̄ cV q{
`

ΣpT̄ cV q6
˘

Ñ ℧1
cycV X Kerp

d
DRq.

Proof. The reader can check that the map ψ given by (3.3) satisfies (3.2). The
inclusion Impψq Ď ℧1

cycV X Kerp
d
DRq follows from (2.2) and (3.3), Kerpψq Ď ΣpT cV q6

from (3.2) and ΣpT cV q6 Ď Kerpψq from (3.3). Set ω P ℧2
cycV as the symmetrizer of

tpv1qv2 ¨ ¨ ¨ vi´1tpviqvi`1 ¨ ¨ ¨ vn in ℧2V , for v1, . . . , vn P V , i.e.

ω
“ ´

i
ÿ

ℓ“2

p´1qϵ1,ℓ´1ϵℓ,nvℓ ¨ ¨ ¨ vi´1tpviqvi`1 ¨ ¨ ¨ vntpv1qv2 ¨ ¨ ¨ vℓ´1

`

n`1
ÿ

ℓ“i`1

p´1qϵ1,ℓ´1ϵℓ,nvℓ ¨ ¨ ¨ vntpv1qv2 ¨ ¨ ¨ vi´1tpviqvi`1 ¨ ¨ ¨ vℓ´1.

Then,

d
DR2p

ω
q “ ´

i
ÿ

j“1

p´1qϵ1,j´1ϵj,nψ
`

tpvj ¨ ¨ ¨ vnv1v2 ¨ ¨ ¨ vj´1q
˘

. (3.4)

The previous identity and Lemma 2.2 show that ℧1
cycV X Kerp

d
DRq Ď Impψq.

Fact 3.4. Let A be an A8-algebra, B`
A be the differential of BpAq` and V “ Ar1s.

Then, the map ψ defined in Lemma 3.3 is a morphism of complexes, where ΣpT cV q

is endowed with the differential tT cV ˝
L

B`
A

|T cV ˝ t´1
T cV and ℧1V with

L
B`

A
|℧1V .

Proof. This is a lengthy but straightforward computation that follows from (2.3)
and (3.3).

Let pA, b‚q be an H-unitary A8-algebra. Recall the map jA : A Ñ BupA,A,Aq6

given by (2.7) for the standard A8-bimodule A. By composing it with the iso-
morphism in Lemma 2.11 and the canonical map C‚pA,Aq Ñ KerppAq mentioned
after (2.8), it gives a morphism of complexes pA, ub0,0q Ñ KerppAq and a fortiori
pA, ub0,0q Ñ CC‚pAq, by using (2.9). One declares that a homogeneous cocycle λ P

CC‚pAq# is homologically nondegenerate if the composition λ̄ of A Ñ CC‚pAq with
λ induces a nondegenerate bilinear form λ̄ ˝ m̄2 : H

‚pAqb2 Ñ k, where m̄2 is the
product on H‚pAq induced by ´s´1

A ˝ b2 ˝ sb2
A . Note that a homogeneous cocycle

λ1 P CC‚pAq# that is cohomologous to a homologically nondegenerate cocycle λ P

CC‚pAq# is also homologically nondegenerate.
The next result is due to Kontsevich and Soibelman (see [16], Thm. 10.7).
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Theorem 3.5. Let A be an H-unitary A8-algebra over a field k of characteris-
tic zero. There is a quasi-isomorphism θ̄ from p℧2

cycpAr1sq{ Imp
d
DR3qq to BpAq6r1s,

where the differential of the former is induced by
L

B`
A

and we omitted the weight.

Hence, there is a quasi-isomorphism from pBpAq6q#r´1s to pPSpncpAr1sq,
L #

B`
A

q, so

CC‚pAqr2s and ℧2
cycpAr1sq{ Imp

d
DR3q are quasi-isomorphic, as well as their graded

duals. Moreover, a pre-symplectic form ω induces a nondegenerate bilinear form on
H‚pΣpAr1sq,

L
B`

A
q if and only if the corresponding functional is homologically non-

degenerate.

Proof. Fix V “ Ar1s and write
d
DR for the restriction of this differential to ℧‚

cycV .
By Lemma 2.2, the complex p℧2

cycV { Imp
d
DR3qq is precisely p℧2

cycV {Kerp
d
DR2qq, and

d
DR2 induces an isomorphism from the latter to Σ Imp

d
DR2q “ ΣKerp

d
DR1q, where

we have used Lemma 2.2. By Fact 3.4, ψ gives an isomorphism from the complex
ΣpBpAq{BpAq6q to pKerp

d
DR1q,

L
B`

A
q. Since A has is H-unitary, BpAq is quasi-

isomorphic to 0. Then, by the snake lemma applied to the short exact sequence
of complexes

0 Ñ BpAq6 Ñ BpAq Ñ BpAq{BpAq6 Ñ 0

there is an quasi-isomorphism of complexes BpAq{BpAq6 Ñ BpAq6r1s. Then, the map
θ “ ΣpBA ˝ ψ̄´1q ˝

d
DR2 from p℧2

cycV { Imp
d
DR3qq to ΣBpAq6r1s induces the claimed

quasi-isomorphism θ̄, if we drop the immaterial shift on the weight. Finally, CC‚pAq

is canonically identified with the complex BpAq6r´1s, as recalled in the last para-
graph of Subsection 2.3.3, which provides the claimed quasi-isomorphism between
p℧2

cycpAr1sq{ Imp
d
DR3qq and CC‚pAqr2s. By taking the graded dual one obtains a

quasi-isomorphism from pBpAq6q#r´1s to pPSpncpAr1sq,
L #

B`
A

q, and thus the latter

complex is quasi-isomorphic to CC‚pAq#r´2s.

To prove the last part, we first note that the composition of A Ñ CC‚pAq, the
projection CC‚pAq Ñ Cλ‚ pAq and N : Cλ‚ pAq Ñ BpAq6r´1s is simply the usual inclu-
sion A Ñ BpAq6r´1s. It suffices to show that if λ P pBpAq6r´1sq# is homogeneous,

then the map λ̂ given as the composition of A Ñ BpAq6r´1s and λ induces a nonde-

generate bilinear form λ̂ ˝ m̄2 : H
‚pAqb2 Ñ k if and only if the constant part ω0 of

ω “ λ ˝ sΣBpAq6r1s,p´2,´1,0,...,0q ˝ θ is nondegenerate. Using (3.4), we see that

ω0

`

tpvqtpwq ´ p´1q|v|.|w|tpwqtpvq
˘

“ ´λ̂1
`

b1pvqw
˘

´ p´1q|v|λ̂1
`

vb1pwq
˘

´ λ̂1
`

b2pv, wq
˘

.

for v “ spaq and w “ spbq, with a, b P A homogeneous elements, where λ̂1 “ λ̂ ˝ s´1
A .

Hence, the composition of psΣH‚pAq ˝ tH‚pAqqb2 with H‚pΣV,
L

B`
A

qb2 Ñ k induced

by ω0 is equal to λ̂ ˝ m̄2. The theorem follows.

One obtains the following direct consequence, which is implicit in [16].

Corollary 3.6. Let A be an H-unitary A8-algebra over a field of characteristic zero
and having finite dimensional cohomology, provided with a symplectic structure ω of
degree d. Then, there exist an A8-algebra A1 provided with a constant symplectic
structure of degree d, i.e. a d-cyclic structure, and a quasi-isomorphism F : A Ñ A1

of A8-algebras.
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Proof. Let Ã “ H‚pAq provided with a quasi-isomorphic A8-algebra structure to
that of A. Note that Ã is a a fortiori H-unitary. We will denote the differential of
the bar construction of its augmentation Ã` by B`

Ã
. Then, the complexes C‚pA,Aq

and C‚pÃ, Ãq computing Hochschild homology are quasi-isomorphic. By the previous
theorem, Ã is provided with a symplectic structure ω̃ of degree d. By the formal
Darboux theorem, there is an automorphism F of the coaugmented graded coalgebra
T cpÃr1sq sending ω̃ to a constant nondegenerate pre-symplectic structure of the form
ω̂ “ ω̃ ˝ F̂´1 of degree d on Ã, where F̂ is the automorphism of ℧‚pÃr1sq induced by
F as explained in the third paragraph of Subsection 2.2. By transport of structures,
there is a differential on T cpÃr1sq such that F is an isomorphism of coaugmented dg
coalgebras. Let us denote the new A8-algebra structure on Ã by Â. Since F̂ commutes
with the Lie derivatives induced by the differentials B`

Ã
and B`

Â
, we have that

ω̂ ˝
L

B`

Â

˝ F̂ “ ω̂ ˝ F̂ ˝
L

B`

Ã

“ ω̃ ˝
L

B`

Ã

“ 0.

As a consequence, ω̂ is a symplectic structure of degree d on Â.

3.2. Homotopy inner products
Lemma 3.1 motivates the following definition.

Definition 3.7. Let d P Z. A homotopy inner product of degree d on an A8-algebra
pA, b‚q is a quasi-isomorphism uF‚,‚ : A Ñ A#r´ds of A8-bimodules. It is called sym-

metric if puF#
‚,‚ ˝ θA#,dqr´ds ˝ ιA “ uF‚,‚.

Fact 3.8. Let A and B be two locally finite dimensional A8-algebras. Assume that
A is provided with a (resp., symmetric) homotopy inner product uF‚,‚ : A Ñ A#r´ds

of degree d, and let G‚ : B Ñ A be a quasi-isomorphism of A8-algebras. Then, B is
endowed with a (resp., symmetric) homotopy inner product of degree d.

Proof. Note that G‚ induces a quasi-isomorphism uG̃‚,‚ : B Ñ A of A8-bimodules

over B via uG̃p,q “ Gp`q`1 ˝ pidbp
Br1s

b sB b idbq
Br1s

q. It is easy to see that the map
uH‚,‚ “ uG̃#

‚,‚r´ds ˝ uF‚,‚ ˝ uG̃‚,‚ is a quasi-isomorphism of A8-bimodules over B,
so B has a homotopy inner product of degree d. If the homotopy inner product F‚,‚

is symmetric, i.e. puF#
‚,‚ ˝ θA#,dqr´ds ˝ ιA “ uF‚,‚, then we see that

`

uH#
‚,‚ ˝ θB#,d

˘

r´ds ˝ ιB “
`

uG̃#
‚,‚ ˝ uF#

‚,‚ ˝ puG̃#
‚,‚r´dsq# ˝ θB#,d

˘

r´ds ˝ ιB

“
`

uG̃#
‚,‚ ˝ uF#

‚,‚ ˝ θA#,d ˝ uG̃##
‚,‚ rds

˘

r´ds ˝ ιB

“ uG̃#
‚,‚r´ds ˝

`

uF#
‚,‚ ˝ θA#,d

˘

r´ds ˝ ιA ˝ uG̃‚,‚

“ uG̃#
‚,‚r´ds ˝ uF‚,‚ ˝ uG̃‚,‚ “ uH‚,‚,

so the homotopy inner product uH‚,‚ is also symmetric.

Lemma 3.9. Let A be a locally finite dimensional homologically unitary A8-algebra
provided with a homotopy inner product uF‚,‚ : A Ñ A#r´ds of degree d. Then, it
also has a symmetric homotopy inner product.

Proof. Let A be an A8-algebra with a homotopy inner product uF‚,‚ : A Ñ A#r´ds

of degree d. Set B “ H‚pAq the cohomology of A, provided with the minimal A8-
algebra structure induced by the theorem of Kadeishvili, and let G : B Ñ A be the



306 ESTANISLAO HERSCOVICH

quasi-isomorphism of A8-algebras. By Fact 3.8, there exists an homotopy inner
product uH‚,‚ : B Ñ B#r´ds of degree d. Since B is minimal, uH0,0 is an isomor-
phism of graded vector spaces. Moreover, by only considering the underlying uni-
tary graded algebra structure of B given by ´sB ˝ bB2 ˝ sb2

B , uH0,0 is in fact an iso-
morphism of graded bimodules, where B#r´ds has the underlying graded bimod-
ule structure induced by its A8-bimodule structure. Setting h “ sB#r´ds,d ˝ uH0,0

and h1 “ sB#r´ds,d ˝ puH#
0,0 ˝ θB#,dqr´ds ˝ ιB , the previous definitions tell us that

h1paqpbq “ p´1q|a||b|hpbqpaq, for all homogeneous a, b P B. The fact that uH0,0 is a
morphism of graded bimodules yields hp1Bqa “ hpaq “ p´1qd|a|ahp1Bq for all homo-
geneous a P B, which in turn implies that

hpaqpbq “ p´1qd|a|
`

ahp1Bq
˘

pbq “ p´1q|a||b|hp1Bqpbaq

“ p´1q|a||b|
`

hp1Bqb
˘

paq “ p´1q|a||b|hpbqpaq,

and we have as a consequence that puH#
0,0 ˝ θB#,dqr´ds ˝ ιB “ uH0,0. We set finally

uK‚,‚ “ ppuH#
‚,‚ ˝ θB#,dqr´ds ˝ ιB ` uH‚,‚q{2, which is well defined since charpkq ‰ 2.

It satisfies that uK0,0 “ uH0,0, so
uK‚,‚ is a symmetric homotopy inner product on

B. By applying Fact 3.8 once more, we see that A is provided with a symmetric
homotopy inner product.

Remark 3.10. The proof of Lemma 3.9 also shows that the symmetry condition in the
definition of d-cyclic A8-algebra A is superfluous if A is minimal and homologically
unitary.

4. Another version of the Hochschild homology

We will consider in this section another version of the Hochschild and the cyclic
homology of A8-algebras, that is more convenient when one wants to compare to the
spaces of morphisms of A8-bimodules, which we will study in the next section.

LetM and N be two A8-bimodules over the A8-algebra A. Consider the cotensor
product BupA,M,Aq �BpAq

`

BupA,N,Aq, with the induced differential. It is clearly
a dg bicomodule over BpAq`. The mapping

iM,N : BupA,M,Aq �BpAq
`

BupA,N,Aq Ñ BpAq` bM bBpAq` bN bBpAq`

(4.1)
given as the restriction of bbmb b1 b b2 b nb b3 ÞÑ bbmb ϵBpAq` pb1qb2 b nb b3,
for all b, b1, b2, b3 P BpAq`, m P M and n P N , is an isomorphism of graded bico-
modules over T cpAr1sq. Indeed, the inverse is given explicitly by the tensor product
idBpAq` b idM b ∆BpAq` b idN b idBpAq` .

The following result is immediate.

Fact 4.1. Let A be an A8-algebra and m P N. Set V “ Ar1s.

(i) The map (4.1) gives an isomorphism of graded bicomodules between the m-

th cotensor power p℧1V q�BpAq`
m and ℧mV , and the differential of the former

induced by
L

B`
A

on ℧1V is identified with
L

B`
A

on ℧mV under the previous

isomorphism.
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(ii) Let σm : p℧1V q�BpAq`
m Ñ p℧1V q�BpAq`

m be the cyclic permutation induced by

ω
1 b ¨ ¨ ¨ b

ω
m ÞÑ ´p´1q

m`|
ω

1|p
řm

j“2 |
ω

j |qω
2 b ¨ ¨ ¨ b

ω
m b

ω
1,

for ω1, . . . ,
ω
m P ℧1V homogeneous, and Nm “

řm´1
ℓ“0 σℓm. Then, using the iden-

tification in the previous item, σm restricts to a map p℧mV q6 Ñ p℧mV q6 that
commutes with

L
B`

A
such that the image of the restriction of Nm is ℧mcycV .2

(iii) By Fact 3.2 and (4.1), pidBpAq` b ptAr1s ˝ sAqqbm b idBpAq` induces an isomor-

phism of dg bicomodules from BupA,A,Aq�BpAq`
m to p℧mpAr1sq, p´1qm

L
B`

A
q

over BpAq`.

The previous cotensor product allows to introduce the following notion, the first
part of which was defined in [18], Subsubsection 4.1.1.

Definition 4.2. Let M and N be two A8-bimodules over an A8-algebra A. The
tensor product Mb8

AN is the graded vector space M bBpAq` bN with the A8-
bimodule structure over A whose (unshifted) bar construction is precisely given by
BpAq` bM bBpAq` bN bBpAq`, provided with the dg bicomodule structure over
BpAq` obtained by transport of structures using (4.1). Moreover, we define the tensor
product Mb8

AeN of M and N as the dg vector space BupA,M b8
A N,Aq 6.

Consider also the unique map

ρ : BpAq` bM bBpAq` bA` bBpAq` Ñ BpAq` bM bBpAq` (4.2)

of graded bicomodules over T cpAr1sq satisfying that ρ̄ “ pϵBpAq` b idM b ϵBpAq` q ˝ ρ
is such that ρ̄|Ar1sbpbMbAr1sbp1

bAbAr1sbp2 is

ubp,p1`p2`1 ˝
`

idbp
Ar1s

b idM b idbp1

Ar1s
b sA b idbp2

Ar1s

˘

,

ρ̄|Ar1sbpbMbAr1sbp1
bk.1A` bAr1sbp2 is zero if p` p1 ` p2 ą 0, and ρ̄pmb 1A` q “ m. It

is lengthy but straightforward to verify that ρ is a morphism of dg bicomodules over
BpAq`, i.e. a morphism of A8-bimodules over A from Mb8

AA
` of M . Indeed, the

restriction of (MBIpn1, n2q) for ρ to Ar1sbn1

bM bAr1sbi bAbAr1sbn2

is equiv-
alent to (BIpn1, n2q) for M with n2 ` i` 1 instead of n2, whereas the restriction
of (MBIpn1, n2q) for ρ to Ar1sbn1

bM bAr1sbi b k.1A` bAr1sbn2

is precisely the
tautology ubn1,n2`i “ ubn1,n2`i for the structure maps of M .

Lemma 4.3. Let M be an A8-bimodule over an A8-algebra A. The map (4.2) is
a weak equivalence of dg bicomodules over BpAq` for the model category structure
defined in [18], Thm. 2.2.2.2. Equivalently, ρ induces a quasi-isomorphism of A8-
bimodules over A from M b8

A A` to M .

Proof. The equivalence is a consequence of [18], Prop. 2.4.1.5. To prove the latter, it
suffices to show that the cone pCopρ̄0,0q, Bq is acyclic, where ρ̄0,0 “ ρ̄|MbT cAr1sbA. In
order to do so, consider the linear endomorphism r of Copρ̄0,0q given by sendingm P M
to spmb 1A` q, spmb ra1| ¨ ¨ ¨ |ans b aq to p´1qϵspmb ra1| ¨ ¨ ¨ |an|as b 1A` q for n P

N0, and spmb ra1| ¨ ¨ ¨ |ans b 1A` q to zero if n P N, for allm P M and a1, . . . , an, a P A,
with ϵ “ |m| `

řn
j“1 |saj |. It is clear that r ˝ B ` B ˝ r “ idCopρ̄0,0q.

2Note that ℧m
cycV “ ℧mV X p℧‚V q

6 is a strict graded vector subspace of p℧mV q
6, if m ě 2.
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Proposition 4.4. Let A be an A8-algebra and M an A8-bimodule over A. Then,
there is a quasi-isomorphism from M b8

Ae A` to C‚pA,Mq. If M is further assumed
to be right H-unitary, the inclusion of M b8

Ae A inside of M b8
Ae A` is a quasi-

isomorphism of complexes.

Proof. Since a morphism of dg bicomodules F : BupA,M,Aq Ñ BupA,N,Aq over
BpAq` is a weak equivalence if and only if it is a homotopy equivalence (see [18],
Prop. 2.4.1.1), the functor p´q 6sends weak equivalences to quasi-isomorphisms. Thus,
applying p´q 6to (4.2), we get that BupA,M,Aq 6and BupA,M b8

A A`, Aq 6are quasi-
isomorphic, and the first statement follows.

To prove the last part, note first that the cokernel of the inclusion of complexes
M b8

Ae A Ñ M b8
Ae A` is exactly M b8

Ae k, where k is the trivial A8-bimodule over
A. It suffices to show that the latter tensor product is quasi-isomorphic to zero. Note
that the underlying complex of M b8

A k is exactly the bar construction of the under-
lying right A8-module ofM over A. As the latter is quasi-isomorphic to zero, the zero
morphismM b8

A k Ñ 0 is a quasi-isomorphism of A8-bimodules. In consequence, the
associated bar constructions are weakly equivalent or, equivalently, homotopy equiv-
alent, which in turn implies thatM b8

Ae k is quasi-isomorphic to zero, since the latter
is isomorphic to BupA,M b8

A k,Aq 6.

We define the morphism of dg vector spaces (of cohomological degree ´2 and
weight 2) given by the following composition

sym: Ab8
Ae A

»
ÝÑ

`

℧2pAr1sq
˘6 id`σ2

ÝÑ
`

℧2
cycpAr1sq,

L
B`

A

˘

, (4.3)

where the left isomorphism is induced by the map in Lemma 2.11 and sA, and σ2 was
defined in Fact 4.1. More explicitly, sym sends a0ra1| ¨ ¨ ¨ |ansan`1ran`2| ¨ ¨ ¨ |ams (for
homogeneous a0, . . . , am P A and n,m P N0 such that m ě n` 1) to ´p´1qϵ0,n times

m´n
ÿ

ℓ“1

p´1qεℓspan`ℓ`1q ¨ ¨ ¨ spamqt
`

spa0q
˘

spa1q ¨ ¨ ¨ spanqt
`

span`1q
˘

span`2q ¨ ¨ ¨ span`ℓq

´

n`1
ÿ

ℓ“1

p´1qε
1
ℓspaℓq ¨ ¨ ¨ spanqt

`

span`1q
˘

span`2q ¨ ¨ ¨ spamqt
`

spa0q
˘

spa1q ¨ ¨ ¨ spaℓ´1q,

where εℓ “ ϵn`ℓ`1,mϵ0,n`ℓ, ε
1
ℓ “ ϵℓ,mϵ0,ℓ´1, and ϵj,j1 was defined in Lemma 3.3. It is

clear that sym is surjective.
We provide the following result relating our previous description of Hochschild

homology with the one for cyclic homology in Theorem 3.5. Together with Corol-
lary 3.6, it gives a more natural proof of [5], Prop. 6.1.

Proposition 4.5. Let A be an A8-algebra. Then we define the extended mapping
sym: Ab8

Ae A Ñ p℧2
cycpAr1sq{ Imp

d
DR3q as the composition of sym given in (4.3)

and the canonical projection, as well as ssym “ s℧2
cycpAr1sq{ Imp

d
DR3 q,´2 ˝ sym. If A

is H-unitary and charpkq “ 0, the latter map induces HH‚pAq Ñ HC‚pAq, which is
precisely the morphism I from (2.10) using the quasi-isomorphism between C‚pA,Aq

and Ab8
Ae A, and the quasi-isomorphism between

CC‚pAq and p℧2
cycpAr1sq{ Imp

d
DR3q,

L
B`

A
qr´2s

explained in Theorem 3.5.
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Proof. From Fact 4.1 and (iii), we see that there is a map of dg BpAq`-bicomodules
of the form F : BupA,Ab8

A A,Aq Ñ ℧2pAr1sq. Hence, the composition of the iso-
morphism of Lemma 2.11 and F 6 is a map of complexes from Ab8

Ae A to ℧2pAr1sq6,
whose composition with ℧2pAr1sq6 Ñ ℧2

cycpAr1sq given by Fact 4.1 and (ii), is sym.
This proves the first statement. Assume now that A is H-unitary and the field k
has zero characteristic. In that case, Fact 2.4 tells us that the underlying right A8-
module structure of A is H-unitary. We recall that, when using the identification
between CC‚pAq and BpAq6r´1s given as the composition of the canonical projection
π̄ : CC‚pA,A`q Ñ Cλ‚ pAq and the morphism sBpAqr1s,´2 ˝N recalled in the end of
Subsection 2.3.3, the map I is induced by the restriction of the previous composition
to C‚pA,Aq.u0. Then, the later statement is a direct consequence of the following
commutative diagram

Ab8
Ae A ℧2

cycpAr1sq

Ab8
Ae A` C‚pA,Aq Cλ‚ pAq BpAq6r1s,

sym

inc θ

ρ 6 π̄|C‚pA,Aq N

where the map θ “ BA ˝ ψ̄´1 ˝
d
DR2 was defined in the proof of Theorem 3.5.

5. Homology and morphisms of A8-bimodules

For later use, we recall that if A is a unitary A8-algebra over k, the derived
category D8pAeq is defined as the triangulated category given as the localization of
the dg category Mod8pAeq of (unitary) A8-bimodules by quasi-isomorphisms. This
is the standard definition in case A is augmented (see [18], Déf. 2.5.2.1), whereas the
usual definition in the general nonunitary case is the kernel of the functor

k b8
A` p´q b8

A` k : D8

`

pA`qe
˘

Ñ D8pkeq (5.1)

(see [18], Déf. 4.1.2.1 and 4.2.0.1). As noted in [18], Rk. 4.1.3.5, an object M of
D8ppA`qeq is in the kernel of the previous functor if and only if the underlying
complex of its bar construction BpA,M,Aq is quasi-isomorphic to zero. In any case, as
proved in [18], Thm. 4.2.0.4, (see also [18], Thm. 4.1.3.1) the latter is equivalent to the
definition we provided if A is strictly unitary. Moreover, D8pAeq is also triangulated
equivalent to the quotient of Mod8pAeq by homotopies of (unitary) A8-bimodules if
A is unitary (see [18], Cor. 2.4.2.2, Thm. 4.1.3.1 and 4.2.0.4). We remark that if A is
a unitary dg algebra, the faithful functor ModdgpAeq Ñ Mod8pAeq given by inclusion
induces an equivalence of triangulated categories DdgpAeq Ñ D8pAeq, where DdgpAeq
is the triangulated category given as the localization of the dg category ModdgpAeq
of (unitary) dg A-bimodules by quasi-isomorphisms (see [18], Lemmes 2.4.2.3 and
4.1.3.8). The previous definitions can be generalized to the nonunitary case, for which
the previous results also hold (see [18], Déf. 4.1.3.9 and Cor. 4.1.3.1). Moreover, any
quasi-isomorphism of A8-algebras f‚ : A Ñ B induces an equivalence of triangulated
categories D8pBeq Ñ D8pAeq (see [18], Thm. 4.1.2.4).

The reason for studying the complexes considered in the previous subsection is
justified by the following result. Combined with Proposition 4.5, it gives a more
natural proof of [5], Lemma 6.5.
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Proposition 5.1. Let A be an A8-algebra and let M and N be two A8-bimodules
over A. Then, the space of cocycles Z0ppM b8

Ae Nq#q is canonically isomorphic to
the space of morphisms HomMod8ppA`qeqpN,M#q “ HomMod8pAeqpN,M#q. More-

over, if M# and N are H-unitary, the previous map induces an isomorphism between
H0ppM b8

Ae Nq#q and the space of morphisms HomD8pAeqpN,M#q.

Proof. Using the identification (4.1), we can transfer the differential on pM b8
Ae Nq#

to endow pM bBpAq` bN bBpAq`q# with a structure of dg vector space, which is
identified to a structure of dg vector space on HompBpAq` bN bBpAq`,M#q. We
leave to the reader the rather long but elementary verification that the kernel of the
differential of the latter is precisely the image of

HomcoModdgpBpAq`q

`

BupA,N,Aq, BupA,M#, Aq
˘

“ HomcoModdgpB`pA`q

`

BupA,N,Aq, BupA,M#, Aq
˘

under the map F ÞÑ pϵBpAq` b idM# b ϵBpAq` q ˝ F . Moreover, this identification also

sends the set of coboundaries B0ppM b8
Ae Nq#q to the equivalence relation gener-

ated by homotopies , so it induces an isomorphism between H0ppM b8
Ae Nq#q and

the space of morphisms HomD8ppA`qeqpN,M#q. Since M# and N are H-unitary,
they are in the kernel of the functor (5.1) defining the derived category D8pAeq, so
HomD8ppA`qeqpN,M#q coincides with HomD8pAeqpN,M#q.

Note that the map ld : pAb8
Ae Aqrds Ñ Ards b8

Ae A sending

sAb8
AeA,dpab āb bb b̄q to sA,dpaq b āb bb b̄

is an isomorphism of complexes, for a, b P A and ā, b̄ P BpAq`. Propositions 4.5 and 5.1
naturally lead to the following notion.

Definition 5.2. Let pA, b‚q be an A8-algebra, uF‚,‚ : A Ñ A#r´ds a quasi-isomor-

phism of A8-bimodules and f̃ P Z0ppAb8
Ae Aq#r´dsq be the associated cycle. More

precisely, f̃ is the image under θ´1
Ab8

AeA,´d
˝ l

#
d of the element in Z0ppArds b8

Ae Aq#q

corresponding to θA,´d ˝ uF‚,‚ under Proposition 5.1. uF‚,‚ is called a strong homo-
topy inner product of degree d if there is a pre-symplectic structure ω of degree d on
A such that f̃ “ θ´1

Ab8
AeA,´d

pω ˝ sp℧2
cycpAr1sqqrds,´d ˝ psymrdsqq. Note that ω ˝

L
B`

A
“ 0,

since sym is surjective. By writing down the correspondences, we see that uF‚,‚ is
a strong homotopy inner product if and only if it is a symmetric homotopy inner
product satisfying

`

sA#r´ds,d ˝ uFp`q`1,rpā1sa2ā2, a3, ā3q
˘

pa1q

“ p´1q|ā2|`|sa2|
`

sA#r´ds,d ˝ uFp,q`r`1pā1, a2, ā2sa3ā3q
˘

pa1q

` p´1q|a2|`dp|ā1|`|sa2|q
`

sA#r´ds,d ˝ uFq,r`p`1pā2, a3, ā3sa1ā1q
˘

pa2q,

for all homogeneous a1, a2, a3 P A, and ā1 P Ar1sbp, ā2 P Ar1sbq and ā3 P Ar1sbr.
This is precisely the notion introduced by Cho and Lee in [6] (see Def. 2.2).

The main result in [4], namely Thm. 4.1 (see also [5], Thm. 3.6), is now a direct
consequence of our Propositions 5.1 and 4.4, together with Corollary 3.6.
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Theorem 5.3. Let A be an H-unitary A8-algebra having finite dimensional cohomol-
ogy over a field of characteristic zero. Assume that A# is an H-unitary A8-bimodule
(e.g. if A is homologically unitary). Let uF‚,‚ : A Ñ A#r´ds be a morphism of A8-
bimodules. Then, uF‚,‚ is a strong homotopy inner product if and only if there is a
quasi-isomorphism of A8-algebras G : B Ñ A such that B is finite dimensional and
uG̃#

‚,‚r´ds ˝ uF‚,‚ ˝ uG̃‚,‚ is a d-cyclic structure on B, where uG̃‚,‚ is the associated
morphism of A8-bimodules over B recalled in the proof of Fact 3.8.

Proof. Note first that, if f̃ P Z0ppAb8
Ae Aq#r´dsq is the associated cycle to uF‚,‚

and rf̃ s is its cohomology class using Proposition 5.1, then Proposition 4.5 tells us
that rf̃ s is in the image of the map HC‚pA,Aq#r´ds Ñ H‚pA,Aq#r´ds induced by
I : H‚pA,Aq Ñ HC‚pA,Aq. In other words, uF‚,‚ is induced by a symplectic structure
ω of degree d on A. By Corollary 3.6, there is a quasi-isomorphism of A8-algebras
G : B Ñ A such that B is finite dimensional and ω ˝ Ĝ is constant. Applying again
Propositions 4.5 and 5.1, we obtain that uG̃#

‚,‚r´ds ˝ uF‚,‚ ˝ uG̃‚,‚ is a d-cyclic struc-
ture on B. The converse is immediate, since any d-cyclic structure is a fortiori a
strong homotopy inner product, and they are invariant under quasi-isomorphisms of
A8-algebras for the stated transformation.

A more concrete application of the previous result is the following homological
description of the cyclic structure of a (homologically) unitary A8-algebra. It gives a
direct proof of the equivalence between Definition 5.2 and the Calabi–Yau condition
on a compact A8-algebras introduced [16], that it is called compact Calabi–Yau in
[7] and right Calabi–Yau in [2].

Corollary 5.4. Let A be a (homologically) unitary A8-algebra over a field of char-
acteristic zero. Let B be any finite dimensional minimal homologically unitary A8-
algebra quasi-isomorphic to A. Then, B has a d-cyclic structure if and only if there
is a quasi-isomorphism A Ñ A#r´ds of A8-bimodules whose cohomology class is in
the image of the map HC‚pA,Aq#r´ds Ñ H‚pA,Aq#r´ds.

6. Application to Calabi–Yau algebras

6.1. Basics on Calabi–Yau algebras
In this section we recall the basic material on pseudo-compact Calabi–Yau algebras.

For further details, see [25], Sections 2–8 and 12–15.
Recall that the category of pseudo-compact dg vector spaces is formed by all dg

vector spaces provided with a decreasing filtration of dg vector spaces each of whose
terms is of finite codimension and such that the induced topology is complete (see [9],
IV, 3–4). It is a symmetric monoidal category for the completed tensor product, and
the coproducts in the category of pseudo-compact dg vector spaces coincide with the
product of the underlying dg vector spaces. The notions of pseudo-compact (resp.,
augmented) unitary dg algebras and their pseudo-compact (unitary) dg (bi)modules
are clear, as well as that of pseudo-compact (resp., coaugmented) counitary dg coalge-
bras are their pseudo-compact (counitary) dg (bi)comodules. A pseudo-compact aug-
mented dg algebra A is called local if the kernel of the augmentation of A is the unique
maximal dg ideal A. The category of local pseudo-compact augmented dg algebras
is in fact (contravariantly) equivalent to the category of cocomplete coaugmented dg
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coalgebras, and the category of pseudo-compact (unitary) dg (bi)modules over a local
pseudo-compact (unitary) dg algebra A is (contravariantly) equivalent to the category
of (counitary) dg (bi)comodules over the corresponding cocomplete coaugmented dg
coalgebra pA1qop, where X 1 denotes the continuous dual of X. Indeed, the contravari-
ant functors X ÞÑ X 1, and Y ÞÑ DpY q given by taking the (ungraded) dual space
HompY, kq provided with the topology obtained by the duals of finite dimensional
subspaces, are quasi-inverse to each other. The categories of local pseudo-compact
augmented dg algebras and that of pseudo-compact (unitary) dg (bi)modules over a
local pseudo-compact augmented dg algebra are endowed with model structures by
means of the previous contravariant equivalence (see [18], Thm. 1.3.1.2, and [20], Sec-
tion 8.2). This allows to define the bar construction B`pAq of a local pseudo-compact
augmented dg algebra A as the pseudo-compact dg coalgebra DpΩ`pA1qq, as well as
the universal twisting cochain τA : B`pAq Ñ A, which is the dual of the couniversal
twisting cochain τA

1

: A1 Ñ Ω`pA1q (cf. [14], Section 2.1).
If A is a local pseudo-compact augmented dg algebra, the derived category is

DpcdgpAq is the localization of the category of pseudo-compact (unitary) dg modules
over A by weak equivalences. Recall that the minimal thick triangulated subcategory
of DpcdgpAq containing A is denoted by PerfpcdgpAq, and their objects are generically
called perfect. As usual, Ae denotes the completed tensor product of A and Aop, and
we identify the category of pseudo-compact dg bimodules over A with the category
of pseudo-compact dg modules over Ae. We say that A is homologically smooth if A
belongs to PerfpcdgpAeq. We recall that in this article a (triangulated) subcategory S
of a (triangulated) category T is be definition always full and strict, i.e. S contains
all objects in T isomorphic to an object in S. We also recall that a triangulated
subcategory S of a triangulated category is called thick if it is closed under direct
summands. We will say that a local pseudo-compact augmented dg algebra A is
strongly smooth if it is homologically smooth and k belongs to PerfpcdgpAq.

For latter use, we recall that Ae is a pseudo-compact Ae-bimodule, with the outer
and inner actions given by

apcb dqb “ acb db, and apcb dqb “ p´1q|a||b|`|a||c|`|b||d|cbb ad,

respectively. It is clear that the pseudo-compact dg algebras Ae and pAeqop are iso-
morphic via ab b ÞÑ p´1q|a||b|bb a, interchanging the outer and inner actions.

The following definition is due to Ginzburg in [11] (see also [16,23,24]).

Definition 6.1. Let d P Z. A local pseudo-compact augmented dg algebra A is called
d-Calabi–Yau if it is homologically smooth and there is an isomorphism

RHomAepA,Aeq Ñ Ar´ds, (6.1)

in DpcdgpAeq, where Ae is provided with the outer action, and the inner action induces
a structure of Ae-module on RHomAepA,Aeq.

Remark 6.2. In the first definition by Ginzburg, the previous isomorphism f was also
assumed to satisfy the duality condition f “ RHomAepf,Aeqr´ds. However, this is
always verified (see [25], Prop. 14.1).

We first recall that the Hochschild homology HH‚pAq of a local pseudo-compact
dg algebra A can be defined as the homology of the complex AbL

Ae A in Dpcdgpkq.
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This is equivalent to the usual definition involving the bar resolution of A, since the
latter is a semifree resolution of A in the category of pseudo-compact dg A-bimodules.
Moreover, if A is augmented, then the usual Hochschild complex computing AbL

Ae A
is AbτA B

`pAq, where τA : B`pAq Ñ A is the universal twisting cochain. By its very
definition, the latter complex is obtained by applying the functor D to the complex
Ω`pA1q bτA1 A1, computing the Cartier–Doi homology HH‚pA1q (see [3,8]). This fact
together with a well-known result on resolutions of cofibrant dg algebras implies the
following (cf. [25], Cor. 15.2).

Proposition 6.3. Let A be a local pseudo-compact augmented dg algebra. Then,

HH‚pAq » D
´

HH‚

`

B`pAq1
˘

¯

.

Proof. As the complex AbτA B
`pAq computing the Hochschild homology HH‚pAq

is obtained by applying the functor D to the complex Ω`pA1q bτA1 A1 computing
the Cartier–Doi homology HH‚pA1q, we see that HH‚pAq » DpHH‚pA1qq. It suffices
to show that HH‚pA1q is isomorphic to the Hochschild homology HH‚pB`pAq1q of
the dg algebra B`pAq1, i.e. Ω`pA1q bτA1 A1 and B`pAq1 bτB`pAq1

B`pB`pAq1q are

quasi-isomorphic complexes. The result now follows from the fact that, by definition,
B`pAq1 “ Ω`pA1q, and that [14], Fact 2.5, tells us that the complexes Ω`pA1q bτA1 A1

and Ω`pA1q bτΩ`pA1q
B`pΩ`pA1qq are quasi-isomorphic.

We recall that, given three local pseudo-compact augmented dg algebras B, C and
D, as well as a pseudo-compact dg Bop-module M , a pseudo-compact dg C bBop-
module N , and a pseudo-compact dg C bDop-module P , such that M is in the
minimal thick triangulated subcategory of DpcdgpCopq containing the right pseudo-
compact dg Bop-module Bop, then the morphism

M bL
B RHomCpN,P q Ñ RHomCpRHomBoppM,Nq, P q

induced by the map sending mb f to the mapping ϕ ÞÑ fpϕpmqq is an isomorphism
in DpcdgpDopq. As a consequence, if A is d-Calabi–Yau, we see that

RHomAe

`

RHomAepA,Aeq, Ar´ds
˘

» AbL
Ae RHomAepAe, Ar´dsq » AbL

Ae Ar´ds

(6.2)
in Dpcdgpkq. As a consequence, the isomorphism (6.1) is given by an element ξ P

AbL
Ae Ar´ds of homological degree zero, and it is unique up to quasi-isomorphism,

i.e. it is uniquely determined by a Hochschild homology class HHdpAq, which we are
going to denote also by ξ.

The next definitions make sense for both usual dg algebras or for local pseudo-
compact augmented ones, taking into account that for the latter we use completed
tensor products and the model structure we explained before. Denote AbL

Ae A sim-
ply by C‚pA,Aq. As recalled previously, this complex is endowed with a dg module
structure over the dg algebra Λ “ krϵs{pϵ2q, where ϵ has degree ´1 and dpϵq “ 0. For
the following definitions, we recall that k is provided with the trivial action of Λ
and the zero differential. We recall that the cyclic homology of a pseudo-compact
dg algebra A is given as the homology of the complex CC‚pA,Aq “ C‚pA,Aq bL

Λ k.
Analogously, we recall that the negative cyclic homology of A is given as the homology
of CC´

‚ pA,Aq “ RHomΛpk,C‚pA,Aqq. Even though this is not the usual phrasing of
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the notions of cyclic and negative cyclic homology, respectively, it can be easily seen
that they are equivalent to the usual notions we recalled previously by picking the
obvious semifree resolution of the dg Λ-module k. Recall that the map I in (2.10)
coincides with

C‚pA,Aq “ C‚pA,Aq b k Ñ C‚pA,Aq bL
Λ k “ CC‚pA,Aq.

The following definition appears in [7] as (strong) smooth Calabi–Yau and in [2] as
left Calabi–Yau, and it is apparently due to Kontsevich and Vlassopoulos (see [17]).

Definition 6.4. Let A be a local pseudo-compact augmented dg algebra and let
d P Z. It is said to be an almost exact d-Calabi–Yau algebra, if it is d-Calabi–Yau
with isomorphism (6.1) given by a Hochschild homology class ξ P HHdpAq that is in
the image of the canonical map hd : HC

´
d pAq Ñ HHdpAq.

Remark 6.5. The isomorphism (6.1) is not part of the structure of a (resp., almost
exact) d-Calabi–Yau algebra: we only require its existence. In [25], Def. 7.3, the
author calls a d-Calabi–Yau algebra A with isomorphism (6.1) given by a homology
class ξ P HHdpAq exact if ξ belongs to the image of the canonical map

hd ˝Bd´1 : HCd´1pAq Ñ HHdpAq,

where this latter map is denoted simply by B (as usual in the literature). It is clear
that an exact d-Calabi–Yau algebra is almost exact.

6.2. Calabi–Yau dg algebras and homotopy inner products
We now provide a direct application of our main result, Theorem 5.3, which extends

[25], Thm. 11.1, but with a completely different proof. The proof is based on some
discussions with Greg Stevenson, but the last part is closer to the one sketched in [7],
Thm. 25.

Theorem 6.6. Let A be a local pseudo-compact augmented dg algebra over a field
of characteristic zero and let A1 be the cocomplete coaugmented dg coalgebra given
by the continuous dual. Assume A is strongly smooth. Let E “ Ω`pA1q be the cobar
construction of A1, so E » RHomApk, kq. Then, A is (resp., almost exact) d-Calabi–
Yau if and only if E has a (resp., strong) homotopy inner product of degree d.

Proof. We establish first some basic results. The strong smoothness assumption on
A implies that k is in PerfpcdgpAeq, and that E has finite dimensional cohomol-
ogy. Indeed, the first statement follows from considering P b P op » k b k » k in
DpcdgpAeq, where P » k is a finite free resolution in DpcdgpAq, whereas the second
follows from E » RHomApk, kq in Ddgpkq, which is a compact object for it is the dual
of k bL

A k » P bL
A P

op, which is compact in Ddgpkq. On the other hand consider the
functor

T “ p´q bL
Ae k : DpcdgpAeq Ñ DdgpEeq,

where k is regarded as a dg Ae-Ee-bimodule, that is pseudo-compact as left dg Ae-
module, as well as

T 1 “ p´q bL
Ee k : DdgpEeq Ñ DpcdgpAeq,

where k is a dg Ee-Ae-bimodule, that is pseudo-compact as right dg Ae-module. It is
clear that T is the composition of the equivalence DpcdgpAeq Ñ DdgppA1qeq together



CYCLIC A8-ALGEBRAS AND CYCLIC HOMOLOGY 315

with p´q bτA1 Ee, where DdgppA1qeq denotes the coderived category of the cocom-
plete coaugmented dg coalgebra A1, whereas T 1 is the composition of p´q bτA1 pA1qe

together with the equivalence DdgppA1qeq Ñ DpcdgpAeq. As explained in [20], Sec-
tion 8.4, these functors come from a Quillen adjunction at the level of the categories
of pseudo-compact dg modules and dg modules, respectively, that induce a Quillen
equivalence between the corresponding derived categories.

The adjunction between the derived tensor product and the derived homomor-
phism functor tells us that

T pXq# “ pk bL
Ae Xq# » RHomAepX, kq, for all X P DpcdgpAeq,

where we have used that

RHomkp´, kq “ Homkp´, kq “ p´q#.

As a consequence, if T pXq or T pXq# has finite dimensional cohomology, then the
other has as well and pT pXq#q# » T pXq in DdgpEeq. As explained before, since

T pAr´dsq “ Ar´ds bL
Ae k » k bL

A kr´ds and k P PerfpcdgpAq,

T pAr´dsq is a compact object of DdgpEeq. As a consequence,

T pAr´dsq » k bL
A kr´ds » E#r´ds

in DdgpEeq. Note also that

T
`

RHomAepA,Aeq
˘

“ RHomAepA,Aeq bL
Ae k » RHomAepA,Ae bL

Ae kq

» RHomAepA, kq » RHomApk, kq “ E

in DdgpEeq, where we used in the first isomorphism that k belongs to PerfpcdgpAeq.

By Proposition 6.3, there is an isomorphism AbL
Ae A » DpE bL

Ee Eq in Dpcdgpkq,
which combined with (6.2) gives an isomorphism

RHomAe

`

RHomAepA,Aeq, Ar´ds
˘

» DpE bL
Ee Er´dsq (6.3)

in Dpcdgpkq. Notice that the map (6.3) induces an isomorphism between the space
of morphisms f : RHomAepA,Aeq Ñ Ar´ds in DpcdgpAeq and that of linear forms
β P pE bL

Ee Er´dsq# homogeneous of degree zero, i.e. morphisms g : Erds Ñ E# in
DdgpEeq. We claim that f : RHomAepA,Aeq Ñ Ar´ds is an isomorphism in DpcdgpAeq
if and only if its image under the map (6.3) induces an isomorphism g : E Ñ E#r´ds

in DdgpEeq. By the comments in the previous paragraph, T pfq defines a morphism
E Ñ E#r´ds in DdgpEeq. This is precisely the image of f under (6.3). Since T is an
equivalence, it is clear that T pfq is an isomorphism if and only if f is so, which proves
the claim. Hence, A is d-Calabi–Yau if and only if E has a homotopy inner product
of degree d.

Let us now prove that A is exact d-Calabi–Yau if and only if E has a strong
homotopy inner product of degree d. Assume that A is d-Calabi–Yau (or, equivalently,
that E has a homotopy inner product of degree d). Let ξ P HHdpAq be the homology
class associated to the isomorphism f : RHomAepA,Aeq Ñ Ar´ds in DpcdgpAeq, and
λ P HHdpEq1 the linear functional on the Hochschild homology associated to the
corresponding isomorphism g : E Ñ E#r´ds in DdgpEeq under (6.3). We will show
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that ξ “ hdpχq, for some χ P HC´
d pAq if and only if λ : C‚pE,Eq Ñ k factors through

I : C‚pE,Eq Ñ C‚pE,Eq bL
Λ k “ CC‚pEq,

i.e. λ is in the image of I#. This follows from the commutative diagram

CC´
‚ pAq C‚pA,Aq

RHomΛ

`

k,C‚pA,Aq
˘

RHomΛ

´

k,RHom
`

C‚pE,Eq, k
˘

¯

RHom
`

C‚pE,Eq, k
˘

RHom
`

C‚pE,Eq bL
Λ k, k

˘

RHom
`

CC‚pEq, k
˘

h

»

„

„
»

»

I#

in Ddgpkq (given by forgetting the topologies on the respective pseudo-compact vector
spaces), where the upper right vertical map and the middle left vertical map are
given by Proposition 6.3, the bottom left vertical map is just adjunction between
the derived tensor product and the derived homomorphism space, and the upper
left vertical map and the bottom horizontal map are identifications described in the
previous subsection. The claimed equivalence follows from Corollary 5.4.
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