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(communicated by Claude Ciblis)

Abstract

We provide a new description of the complex computing
the Hochschild homology of an H-unitary A -algebra A as a
derived tensor product A ®%. A such that: (1) there is a canon-
ical morphism from it to the complex computing the cyclic
homology of A that was introduced by Kontsevich and Soibel-
man, (2) this morphism induces the map I in the well-known
SBI sequence, and (3) H°((A ®%. A)#) is canonically isomor-
phic to the space of morphisms from A to A# in the derived
category of A,-bimodules. As direct consequences we obtain
previous results of Cho and Cho—Lee, as well as the fact that
Koszul duality establishes a bijection between (resp., almost
exact) d-Calabi—Yau structures and (resp., strong) homotopy
inner products, extending a result proved by Van den Bergh.

1. Introduction

In their very interesting article [16], the authors provided a new description of
Hochschild and cyclic (co)homology, based on noncommutative (formal) geometry. In
particular, they showed that, in characteristic zero, the complex computing the cyclic
cohomology of a homologically unitary As-algebra A is quasi-isomorphic to a(n even
shift of ) complex ngC’CI(A[l]) of closed cyclic 2-forms. By combining this result with a
formal version of Darboux’s theorem, they showed that a closed cyclic 2-form induces
an isomorphism class of symplectic structures on the minimal model H*(A) of A, if
H*(A) is finite dimensional. On the other hand, as noted by Cho in [4], a constant
closed cyclic 2-form on a finite dimensional A -algebra A is precisely the same as a
strict isomorphism of A.-bimodules between A and its dual A#. Moreover, he found
an equivalent description for the existence of a symplectic structure on a minimal
model (see [4], Thm. 4.1, but also [5], Thm. 3.6). In their pursuit of understanding
the results in [16], Cho and Lee found an explicit description of the quasi-isomorphism
of Ay-bimodules between H*(A) and its dual H®(A)# stated in [16], that they called
strong homotopy inner product (see [5]). Their proof is however somehow ad hoc as
well as computationally highly involved, and the proof of several steps are omitted.

The goal of this article is to show that the mentioned results by Cho in [4], and
Cho and Lee in [5] can be directly deduced from a new description of the complex
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computing the Hochschild homology of A, which is closer to the complex ngcﬁd(A[l])

n [16]. In order to express our results more clearly, we consider the dual noncommu-
tative Cartan calculus of A: in this case, the complex computing the cyclic homology
is a quotient of a(n even shift of) space UZ,.(A[1]), dual to Q2 (A[1]). Inspired by
[18], given an Ay -algebra A and two Ag-bimodules M and N, we introduce the
tensor product M ®%. N, and prove that if A is H-unitary, then A ®%. A computes
the Hochschild homology HH.(A) of A (see Proposition 4.4). Moreover, from the
explicit expression of the complex A ®%. A we directly obtain a map from it to
UZ,.(A[1]), since the latter is a symmetrized version of the former, and we show that
this morphism induces the map I in the SBI sequence (see Proposition 4.5, cf. [5],
Prop. 6.1). Furthermore, the explicit expression of A ®%. A[d] easily tells us that the
space of morphisms of A,-bimodules from A to the shift of the graded dual A#[—d]
in the derived category is in clear correspondence with H°(A ®%. A[d])* (see Propo-
sition 5.1, ¢f. [5], Lemma 6.5). The results from Cho and Lee are just obtained by
combining the previous two statements (see Theorem 5.3; cf. [4], Thm. 4.1, or [5],
Thm. 3.6, as well as the results in [5], Section 7). As another application, we also
obtain that a strongly smooth pseudo-compact local augmented dg algebra is (resp.,
almost exact) d-Calabi-Yau if and only if its Koszul dual has a (resp., strong) homo-
topy inner product, extending Thm. 11.1 in [25], but with a completely different
proof (see Theorem 6.6).

The structure of the article is as follows. Section 2 is devoted to provide the basic
material we will use. This includes the noncommutative Cartan calculus in Subsec-
tion 2.2, as well as the basic definitions concerning Ay -algebras, their A-bimodules
and the associated Hochschild and cyclic homologies in Subsection 2.3. All these
results are by no means new, with the possible exception of some previously unno-
ticed results in Subsection 2.3 (e.g. Lemma 2.5). In the first part of Section 3 we
recall the proof of the mentioned theorem of [16], and we provide then the notion of
homotopy inner products and some basic results.

In Section 4, we prove the first two main results of this article. First, if A is
an H-unitary Ax-algebra and M a right H-unitary As-bimodule, then M ®%. A
computes the Hochschild homology H.(A, M) (see Proposition 4.4). Secondly, we
construct a morphism from A®%. A to UZ.(A[1]) inducing the map I in the SBI
sequence (see Proposition 4.5). In Section 5, we show that H°((M ®%. N)#) is in
correspondence with the space of morphisms from M to the graded dual N# of N in
the derived category D(A) of Ay-bimodules (see Proposition 5.1). We deduce from
this the main result in [4], namely Thm. 4.1 (see Theorem 5.3), as well as the explicit
relations in [5], Section 6 (see Propositions 4.5 and 5.1).

To be completely fair, one might argue that the complex A ®%. A that we introduce
in this article and that computes the Hochschild homology of A is not completely new,
for it is built from well-known constructions. Moreover, it might be well-known to
some experts, but we have not seen it used before in the literature. For example,
in case A is a unitary (dg) algebra, A ®%. A is precisely the complex obtained by
applying the functor A ® 4 (—) to the resolution of A in the category of A-bimodules
given by the tensor product of the bar resolution of A with itself over A.

Finally, after reviewing some basic results concerning pseudo-compact local dg
algebras in Section 6, as well as their Hochschild homology (see Proposition 6.3), we
use our previous results to show that Koszul duality establishes a bijection between



CYCLIC Ax-ALGEBRAS AND CYCLIC HOMOLOGY 289

(resp., almost exact) d-Calabi-Yau structures and (resp., strong) homotopy inner
products (see Theorem 6.6).
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2. Preliminaries

2.1. Basic notation

In this article, we work over a fixed field k. We write N for the set of (strictly)
positive integers and Ny for the set of nonnegative integers. Given i € ZP, also written
(i1, .. 4p), we set [i| =iy + -+ + 4,. We recall that, if V = @®nez» V" is a multigraded
vector space (or just graded, for short), V[m] is a graded vector space over k whose
fi-th homogeneous component V[m]™ is given by V™" for all n,m € ZP, and it is
called the shift of V. For d € ZP, syaq:V— V[d] is the suspension morphism, whose
underlying map is the identity of V, and has degree —d. Moreover, V[(1,0,...,0)]
and sy,(1,0,...,0) Will be simply denoted by V[1] and sy (or s if V' is clear from the
context), resp., whereas V[(0,1,0,...,0)] and sy (,1,0,..,0) Will be denoted by XV
and ty (or just ¢ if V' is clear), resp. All morphisms between vector spaces will be k-
linear (satisfying further requirements if they are so decorated). All unadorned tensor
products ® would be over k. If V is a graded vector space, V# will denote its graded
dual. Moreover, all the signs appearing in this work are obtained from the Koszul
sign rule in the symmetric monoidal category of (differential) graded vector spaces
with the (symmetric) braiding

vw: VW ->WeV (2.1)

given by v @ w — (—=1)"™w @ v, wherev e V", w e V™ and - m = >7_, nym;." The
first component ny of 7 = (n1,...,n,) € ZP of ve V™ will be called cohomological
degree, and it will also be written |v|, whereas the second no, if it exists, will be called
weight. If f: (M,dp) — (N,dn) is a closed morphism of dg vector spaces, also called
a morphism of complexes, i.e. f has zero degree and f ody = dy o f, the cone of f
is by definition the dg vector space Co(f) = M[1]@® N with differential ¢ given by
dly = dy and 0|y = —sm ody 031741 + fo 5;41.

We recall that if W is a graded vector space, then TW = @,en, W&" (resp.,
TW = @enW®) is the cofree cocomplete coaugmented graded coalgebra (resp.,
cofree cocomplete noncounitary graded coalgebra) cogenerated by W, where the
coproduct is given by deconcatenation. We denote by my: T°W — W the canoni-
cal projection. If A is a nonunitary dg algebra, then, its augmentation AT = k@ A is
the unique augmented dg algebra such that the canonical inclusion A — AT is a mor-
phism of nonunitary dg algebras, the canonical inclusion k — A7 is its unit and the
canonical projection of AT — k is the augmentation. The correspondence A — A7 is

! The authors of [16} never explicitly stated which precise braiding the Koszul sign rule should be
applied to. One can check that the “correct” signs cannot be obtained by using the usual braiding
associated to the total degree.
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clearly functorial and it induces an equivalence between the categories of nonunitary
dg algebras and that of augmented dg algebras, the quasi-inverse being the map that
associates the kernel of the augmentation to each augmented dg algebra. Analogously,
if C' is a noncounitary dg coalgebra, we define similarly a structure of coaugmented
dg coalgebra on Ct = k@ C, called the coaugmentation of C. All the corresponding
dual results also hold in this case.

2.2. Basics on noncommutative Cartan calculus

We mainly present the definitions given in [16], but in coalgebra terms. All the
results there can be obtained by taking the dual of the ones we provide here. The
reason for doing so is to facilitate the comparison to Hochschild and cyclic homology
from [10].

Let V = @®,ezV™ be a cohomologically graded vector space. We will regard it as
a bigraded vector space, concentrated in weight zero. Define UV = T¢(V @ XV),
where XV = V[(0,1)]. Recall that ¢ = ¢y, : V — XV is the morphism whose underly-
ing map is the identity of V. It has cohomological degree 0 and weight —1. Note that
OV = ®men, 0™V, where U™V is the subspace of U*V formed by all homogeneous
elements of weight —m. Let Apgr: O°V — U°*V be the unique coderivation satisfying
that mygsy o 9pr is the composition of mygsy and the map VXV - VIV
given by v ® ty (w) — w, for all v, w € V. Explicitly,

dpr (fbltv (V1) -+ TUnty (Un)ﬂn+1)

n i1 ~ o ~ B (2.2)
= Z(—l) Yagty (v1) - Bim1ty (0i-1) Uit g 1ty (Vig1) -+ Unty (Un ) Ung,
i=1
for all @y,...,Up11 €TV, v1,...,v, €V and n € N. It is clear that Apg has coho-

mological degree 0 and weight 1, and that 9pg o Apr = 0. Set Aprm = Ipr|smy .

Given a morphism of coaugmented graded coalgebras F': TV — T¢V | we define
F: 0V - 0°V as the unique morphism of coaugmented graded coalgebras such
that py o Tygsy © F is the composition of the projection T¢(V @ XV) — T°V and
my o F', and psy o mygyy © Fisty o Dy O Tygxy © Fo dpRr, where the canonical pro-
jections are denoted py: V@ XV — V and pyy: VA XV — XV. It is clear that a
is an automorphism of coaugmented graded coalgebras if F' is so, and it satisfies that
F odpg = 9pg o F'. Indeed, this equality is verified if and only if composing it with
Tyexy holds, which trivially follows from the definitions.

Given X € Coder(T°V), define the contraction vx: O*V — U*V as the unique
coderivation satisfying that myg@sy o vx is equal to the composition of the projec-
tion T¢(V@XV) - TV, X, 7y, ty and the canonical inclusion of XV — V @ XV.
It is clear that vx has cohomological degree d and weight —1, if X has (cohomological)
degree d. It is also easy to verify that

vx,%v|=rtx oty + (—1 |X|‘|Y‘Wovx =0,
[ ] (

for all X, Y € Coder(T°V') homogeneous. Note that the sign in the graded commutator
is determined using the Koszul sign rule associated to (2.1). Given a morphism of
coaugmented graded coalgebras F': T°V — T°V and X, X’ € Coder(T°V) such that
X' o F = F o X, then the induced morphism F: 0V > 0V of coaugmented graded
coalgebras satisfies that F oty =vx o F. Indeed, this equality is verified if and only
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if composing it with mygsxy holds, which is true if and only if the restriction of the
latter equality to T'V holds, because the restriction to 8™V vanish if m € N. Since
the mentioned restriction to T'V is precisely tyy omy o X' o F =ty omy o F o X, the
claim follows.

Given a coderivation X € Coder(T¢V) of degree d, the Lie derivative is the map
Sx: 0V - UV defined via &x = [Ipr, tx] = 9pr o vx + vx 0 Apg. It is easy to
see that "N x is a coderivation of cohomological degree d and weight zero, and that

Tvesy © Sx () = z(1), mveny © Sx (dty (v)a') = ty (z(avd)), (2.3)

and Tyexny © Nx|omy = 0, for all m € N\{1}, 4,4’ € TV and v € V, where we write
x =7y o X. From the two previous paragraphs we see that, given a morphism of
coaugmented graded coalgebras [': T°V — TV and X, X' € Coder(TC ) such that
X'oF = Fo X, then F: UV — U°V satisfies that F o Sy = Ny 0 F.

The followmg result is easy to verify.

Fact 2.1. Let X,Y € Coder(T°V). Then,
[9or, ®x] =0, [Xx,vv]=vxyp, ond [Sx,Sv] =y

We recall that, given a coaugmented graded coalgebra C' with coproduct Ag,
one defines the graded vector space C? = Ker(A¢ — 7¢,c o A¢) < C. Note that any
coderivation d € Coder(C) satisfies that d(C%) € C%. We shall usually denote the
induced map d|¢:: C% — CF simply by d. Set OgycV = (U*V)5, which is a dg vector
subspace of U*V for the differential 9pg by the previous comments. Moreover, the
coderivations vy and Sy also induce maps from Ug, .V to itself. Analogously, note
that if f: C' — D is a morphism of coaugmented graded coalgebras, then f(C?%) < DE.
We also set Ugy,V = U2,V n U™V, for all m € No.

We recall the following well-known result, called the (formal) Poincaré lemma.

Lemma 2.2. Let V' be a cohomologically graded vector space over a field k of zero
characteristic. Then, the complex (U, V,9pR) is quasi-isomorphic to k (in zero coho-
mological degree and weight).

cyc

Proof. Consider X, € Coder(T°¢V) defined as follows. For n € Ny, set Xou|yen as
the composition of nidye~ and the canonical inclusion V®" — T°V. The explicit
expression (2.3) of Nx,, implies that mygxy © Sx., [vesy = idyvesy, which in turn
tells us that Nx,, |(vexvien = nidygnvyen, for all n € Ng. This gives in particular
that Ker(&x,,) = k. Moreover, the identity &x,, = [9pr, vx., ] and the assumption

eu

char(k) = 0 tell us that (U2, V,dpRr) is quasi-isomorphic to (Ker(Xx.,),9pr), and

cyc

the result follows. O
Assume that the field k has characteristic different from 2. Given w e (U2 .V)#,

cyc
where (—)# denotes the graded dual, we write the formal infinite sum w = Z@NO we,

where

#
wi € (( P VERIVRVIIRIV® v®r) ) < (UL V), (24)
p+gtr=¢ eve

for all £ € Ny, and the last inclusion is given by extending wy by zero on the direct
summands indexed by ¢ # £. The sum is well defined, since, given « € Ugch, for all
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but a finite number of indices ¢ € Ny, wy(a) vanishes. Set w-o = >,y we. Note that
wo € (BV@IV)%2)# ~ (ZV @ XV)#)S2 < ((XV)®2)# where the total map sends
wo to t(v) @ t(w) — wo(t(v) @ t(w) — (=1t (w) @ t(v))/2, for v,w e V.

A pre-symplectic structure of degree d on a graded vector space V' is a homogeneous
element w € (U2,.V)# of cohomological degree 2 — d such that w o 9pr = 0. Denote
by PSp,,.(V) the graded vector subspace of (U2,.V)# spanned by the homogeneous
pre-symplectic structures on V. A pre-symplectic structure w is nondegenerate if the
graded symmetric bilinear form XV ® XV — k induced by wq is nondegenerate, i.e.
it induces an isomorphism of graded vector spaces ¥V — (XV)#, where we write as
before w = wy + w~¢. Note that a graded vector space V provided with a nondegen-
erate pre-symplectic structure w is necessarily locally finite dimensional. Notice also
that any element wy € ((ZV @ £V)%2)# < (U2, V)# satisfies that wy o dpr = 0. We
remark that if w is a (resp., nondegenerate) pre-symplectic structure of degree d on
V and F: T°V — TV is an automorphism of coaugmented graded algebras, then
W =wo Fis also a (resp., nondegenerate) pre-symplectic structure of degree d, and
if X: TV — TV is a coderivation of degree N, then wo Xy is a pre-symplectic
structure of degree d — N.

The next result is the well-known (formal) Darbouz theorem.

Theorem 2.3. Let V' be a graded vector space over a field k of zero characteristic
and w € Z}gyCV a nondegenerate pre-symplectic structure of degree N on V. There
exists an automorphism F': TV — TV of coaugmented graded coalgebras such that

w' =wo F satisfies that wl vanishes.

Proof. Tt suffices to show that if w = wg + 242 ¢, We 18 a pre-symplectic structure of
degree N, for ¢y > 1, there exists an automorphism F': T°V — TV of coaugmented
graded coalgebras such that ' = w o F satisfies that o’ = w) + 200,41 We- To prove
this latter statement, note that w o Adpgr = 0 implies in particular wy, o 9pr vanishes.
By Lemma 2.2, which can be applied since £y > 0, there exists

#
Oro+1 € (( @ V®”®2V®V®q)cyc>

p+g=~Lo+1

such that wy, = 0,11 © 9pr. Define f,11: VO%+L — V by means of

Oro+1(v1 -+ - vgg 1ty (W) = wo (tv (frorr(vr-- '%+1))tv(w)>7

for all homogeneous vy, ...,v¢,+1,w € V. Since wy is nondegenerate, then the map
feo+1 1s uniquely determined by the previous equality. Let F': TV — TV be the
unique morphism of coaugmented graded coalgebras satisfying that 7y o F|y = idy,
7wy o Flyeen+1 = —fi,+1 and my o Flyen vanishes if n € N\{1, ¢y + 1}. The reader can
easily verify that w’ = wo F satisfies the required property. O

2.3. Ay -algebras and their bimodules

For the basics on dg algebras we refer to [1] (see also [12]). For Ay -algebras
and their bimodules we refer to [18] (see also [21]), even though we follow the sign
convention in [15] (see also [13]). We give the basic definitions needed in the sequel
as well as some probably well-known results on weak units that we couldn’t find in
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the literature. For the rest of this section we consider cohomologically graded vector
spaces, so the braiding (2.1) coincides with the usual one.

2.3.1. Basic definitions

A nonunitary Ax-algebra A is a coderivation By of cohomological degree 1 on the
noncounitary graded tensor algebra T¢(A[1]) = @nenA[1]®" provided with the decon-
catenation coproduct, such that B4 o B4 = 0. The previous noncounitary dg coalge-
bra is called the (nonunitary) bar construction of A and is denoted by B(A). By
the equivalence between noncounitary and coaugmented dg coalgebras, a nonuni-
tary Ay-algebra can also be defined as a coderivation B} of cohomological degree
1 on the coaugmented graded tensor algebra T¢(A[1]) = @pnen, A[1]®" provided with
the deconcatenation coproduct, such that B} o B} =0 and both Bf|; and the
composition of B} with the counit T°(A[1]) — k vanish. If n € N we will denote
an element s(a1)® - ® s(a,) € A[1]®" by [a1]---|a,], where ay,...,a, € A and
s=354: A— A[l] is the suspension on A, whereas [] will denote the unit element
of k € T°(A[1]). From now on, we will usually drop the adjective nonunitary if there
is no risk of ambiguity.

By [18], Lemme 1.1.2.2, there is a linear bijection between the vector space of
coderivations of T¢( A[1]) and the space of linear maps from T¢(A[1]) to A[1], given by
sending a coderivation B to w4y} o B, where m4ppy: T¢(A[1]) — A[1] is the canonical
projection. Hence, B4 is uniquely determined by m4[) 0 Ba = ZzeN 2 for maps of
the form b : A[1]®" — A[1]. Then, this collection of maps satisfies the identities

Z bf+1+to(1d L ®bA@ldAu) 0, (SI(n))

(r,s,t)EL,

for n € N, where Z,, = {(r,s,t) € Ng x N x Ny : 7 + s + t = n}. Reciprocally, starting
from a collection of maps bi': A[1]®" — A[1] fulﬁlling the previous properties we
obtain an Ag-algebra structure. Note that H‘(A —s;x o b1 084) is a (nonunitary)
graded algebra for the product induced by —s, A 0by o s® A . A (strictly) unitary Agp
algebra A is an Ay -algebra provided with a (necessarily unique) map 74: k — A
of cohomological degree 0 such that b o (1d® Ay ® (s40m4) ® 1d®(z "1y = 0, for all
i€ N\{2} and r€{0,...,9— 1}, and 74 is a unit for the (nonassociative) product
7521 oby o .9(22 on A. A homologically unitary Ag-algebra A is an Ay -algebra such
that the graded algebra H*(A, —szl o by 0 54) is unitary. Moreover, an Ay-algebra A
is called H -unitary if the underlying complex of B(A) is quasi-isomorphic to zero. Any
unitary Ag-algebra is clearly homologically unitary, and any homologically unitary
Ao-algebra is H-unitary (see [18], Cor. 4.1.2.7).

Given two Au-algebras (A,bA4) and (A’,b4"), a morphism of A -algebras from A
to A’ is a morphism of noncounitary dg coalgebras from B(A) to B(A’). By [18],
Lemme 1.1.2.2, such a morphism is uniquely determined by its composition with
the canonical projection my : T¢(W) — W. As a consequence, any morphism F of
noncounitary dg coalgebras from B(A) to B(A’) is uniquely determined by the map
Ta) © F =,y Fi, where F: A[1]®" — A'[1]. The fact that F is a morphism of
noncounitary dg coalgebras means exactly that {F}};en satisfies that

Y Franeo (A, @0 @1d5) = D) D) b o (B, @ @ F,), (Mi(n))

(r,s,t)eL, qeNjeNa,n
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for n € N, where N©™ is the subset of N of elements i = (i1,...,i,) satisfying that
li| =41+ +ig=n. If A and A are unitary, one further requires the condition
that Fj osq0n4 = s4 ona and F; o (idf?fl] ®(saomna) ®id§ﬁ]ﬂ’71)) =0, forallie
N\{1} and r € {0,...,i — 1}. A morphism F, is called strict if F; = 0 for all : € N\{1}.
The notions of identity and composition of morphisms of Ay -algebras are clear. If
Ais an A -algebra, AT = k@ A is canonically an augmented A, -algebra, i.e. it has
a unique structure of unitary A,-algebra with unit ¥ — A" such that the canonical
projection €4+ : AT[1] — k[1], called the augmentation of A, is a strict morphism of
unitary Ay -algebras. As for the case of dg algebras, the category of nonunitary Ag-
algebras with morphisms of Ay -algebras is equivalent to the category of augmented
Ax-algebras provided with morphisms of unitary A.-algebras commuting with the
augmentations.

Given an Ay -algebra A, a nonunitary As-bimodule over A is a graded vector space
M equipped with a bicoderivation By; on the graded counitary B(A)*-bicomodule
B(A)T ® M[1] ® B(A)" such that Bys o Bys = 0. We shall denote the previous bico-
module by B(A, M, A), and call it the bar construction of M. As usual, we will drop
the adjective nonunitary if it causes no confusion. Since B(A)* ® M[1]® B(A)* is
a cofree graded counitary bicomodule, a bicoderivation is uniquely determined by its
composition with eg(ay+ @ idpri] ® €pa)+ (see [18], Lemme 2.1.2.1), which is a sum
of mappings of the form blj)\ffq: A[1]®P @ M[1] ® A[1]®P — M][1], for p,q € Ng. Then,
the collection of maps {b%q}pﬂeNo satisfies the following identities

S b o (1d® @b, ®id®) =0 (BI(n, "))

(T,s,t)EIn/+n//+1

in Hom(A[1]®" @ M[1]® A[1]®"", M[1]) for all n’,n” € Ny, where b, is interpreted
as the corresponding multiplication map b, of A if either r +s < n’ or s +t <n”,
and it is understood as b%ﬂ,’n,_t clse. In the first case, b2} is b%75+1’n// ifr+s<n

or b .4 if s+t <n", and it is bY}, else. Moreover, id®" is id?fl] and id®" is

id(fﬁl],_r_s) ®idyy @A if v+ s <5 1d® is idSf) @ idapy @id%ﬁ"s‘” and
id® is id%'fl] if s+t <n”; and id®" is id%fl] and id®" is id%l] else. Reciprocally, given
any collection of maps b} : A[1]®? @ M[1] ® A[1]®¢ — M[1] fulfilling the previous
properties, it defines an A, -bimodule structure on M over A. If A is unitary, one
further imposes that

bt o (1081 @ (54 0 na) @15 @idyy ®1dY))
- 1 . . s . @( 7,571)
= sz)\/fq o (1dAf1] ®ida) ® 1d§[1] ®(sa0n4)® 1dA[‘11] ) =0,

for all (p,q) e N3\{(0,1),(1,0)}, r€{0,...,p—1} and s€{0,...,q— 1}, and also
that bty o ((sa 0na) @ sar) = —sar = by o (sar @ (s4 ©14)). Note that a nonunitary
(resp., unitary) Ax-algebra is also a nonunitary (resp., unitary) Ag-bimodule over
itself for the structure maps b, ¢4 = bp4q+1, Where p,q € Ny. In this case, the under-
lying complexes of B(A, A, A) and B(A) are identical. Moreover, given a nonunitary
Ax-bimodule M over a nonunitary Ay -algebra A, it can be canonically regarded as a
unitary A-bimodule over AT uniquely extending the A.-bimodule structure over A.
There are obvious versions of left (resp., right) Ag-module, for which all the previous

(2.5)
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definitions as well as the ones below (together with the all results in this subsection)
also hold.

Given two nonunitary (resp., unitary) Ag-bimodules M and N over a nonuni-
tary (resp., unitary) Ag-algebra A, a morphism from M to N is a morphism of
counitary dg bicomodules F': B(A, M, A) — B(A, N, A), which is uniquely deter-
mined by its composition with €p(4)+ ® idy[1] ® €p(a)+, Which we will simply write
as o, veny Fpoa A[1]®P @ M[1] ® A[1]®4 — N[1]. The collection of these morphisms
Fpq: A[1]%P @ M[1] ® A[1]®? — N[1] satisfies

Z Fp o (id® @ by ®1d®")
(r$ €Ly 41

=) baye (4R @ Fu@idiy)
(a,k,l,b)ENoyn/’nu

(MBI(n/,n"))

for all n’,n” € Ny, where Np,,» is the subset of N§ of elements (a,k,[,b) such
that a + k = n’ and [ + b =n”, and where we should understand b, as b2 if either
r+s<n’ or s+t<n’, or as bﬁ/{_r’n,,_t else. The indices (r',t') are completely
determined from the previous cases. Furthermore, in the unitary case we have that
F,q0 (idf?fl] ®(saons)® id%l]) vanishes for r # p and (p,q) ¢ {(0,0)}. Recipro-
cally, given any collection of maps F, ,: A[1]®? ® M[1]® A[1]®? — N[1] fulfilling
the previous properties, it defines a morphism of A-bimodules from M to N over A.
We say that it is strict if F), ; vanishes for all (p, ¢) # (0,0), and a quasi-isomorphism
if Fy o is a quasi-isomorphism from (M]1], b(])\?o) to (N[1], bé\jo).

We say that an A,-bimodule M over a homologically unitary Ag-algebra is
homologically unitary if H*(M, —5;} o bé\ffo o $p) 1s a unitary graded bimodule over
H*(A, —sy, obft 0 54). Similarly, an A-bimodule M over a nonunitary A-algebra
A is H-unitary if the underlying complex of B(A, M, A) is quasi-isomorphic to zero.
A right (resp., left) Ap-module M is called right (resp., left) H-unitary if the under-
lying complex of the corresponding bar construction B(M, A) (resp., B(A, M)) is
quasi-isomorphic to zero. Since any A, -bimodule is in particular a right and left Ay-
module, this definition also applies to it. An A, -bimodule M over a homologically
unitary Ao-algebra is H-unitary if and only if it is homologically unitary (see [18],
Lemme 4.1.3.7).

Fact 2.4. Let A be an H-unitary Ay-algebra. Then, the Ay -bimodule (resp., right
Ag-module, left Ayy-module) A is H-unitary (resp., right H-unitary, left H-unitary).

Proof. 1t is clear that the underlying complexes of B(A, A, A) and of B(A) coincide,
proving the result in the A, -bimodule case. The same comments apply to the bar
constructions of the right Ay-module (resp., left A,-module) A. O

We also have the following sufficient criterion.
Lemma 2.5. A right (resp., left) H-unitary Ay -bimodule M is H-unitary.

Proof. We prove the case of a right H-unitary Ag-bimodule M, since the other
is analogous. Let {F,B(A)"}een, be the usual primitive filtration of B(A)*, i.e.
F,B*(A) = @", _,A[1]®™. This is clearly an exhaustive increasing filtration of the dg
coalgebra B(A)™T. Consider the filtration {Fy B(A, M, A)}een, of B(A, M, A) given by
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F.B(A,M,A) = (F.B(A)")® M ® B(A)". Then, {F.B(A, M, A)}.en, is an increas-
ing exhaustive filtration of dg comodules of B(A, M, A). It is clear that the underlying
complex of the associated graded construction is B(A)* ® B(M, A). Since B(M, A)
is quasi-isomorphic to zero, the Kiinneth formula implies that the associated graded
of B(A, M, A) is quasi-isomorphic to zero, so the same holds for B(A4, M, A). O

Remark 2.6. The converse of the previous lemma is in general false, and, more gen-
erally, there are H-unitary Ag-bimodules that are neither right nor left H-unitary.
Indeed, note first that a right (resp., left) module M over a nonunitary algebra A is
right (resp., left) H-unitary if and only if T01“’_4Jr (M, k) =0 (resp., T01“’_4Jr (k, M) =0).
In case of a bimodule M, it is H-unitary if and only if Torﬂ“ﬁ)c (M,k) =0. Let B
be the quotient of the quiver algebra kQ, where @ is the quiver TaeLe , mod-
ulo the relation af. Define A = k.e; D k.a® k.e3 D k.5. It is an H-unitary algebra
(this is the example k.(e1,1,0) D k.(e1,2,0) D k.(0,e11) D k.(0,e21) S Ma(k) x Ma(k)
given in [26], p. 607, by identifying e1, es, o and 8 with (eq.1,0), (0,e1,1), (€1,2,0)
and (0,e2,1), resp., where e; ; € Ma(k) is the matrix with (a, b)-th entry J; 46;,4), and
At ~ B. Tt is easy to see that the dual B-bimodule A* has a projective resolution
(Ps)een, of length 2, with

Py = B(e3®¢eF)®B.(ea ®eF), Pp = B°.(ea®es")®?
and P, = B®.(e2®e3”) @ B®.(e1 ®e3’),
where B°.(e; ® €7”) denotes the submodule of B® generated by e; ® 5’ € B. From
the canonical isomorphism k ®pe M ~ M / (A.M + M.A) for any B-bimodule M and
a simple computation, we get that k ®pge P; vanishes for all j, so A* is an H-unitary

bimodule over A, but it is neither right H- umtary nor left H-unitary, since A* ®@p k ~
A*/(A*.A) # 0 and k ®p A* ~ A*/(A.A*) # 0.

2.3.2. Duals and suspensions

Given an Ay-bimodule (M, bM .) over an Ay-algebra A and d € Z, we define the shifted
Aos-bimodule M|[d] as follows. The underlying graded vector space is the usual shift
M[d] and the bicoderivation Bj;[q) is the unique one satisfying that

€p(a)+®du[11®€p4)+

B(A,M,A) — 5 B(A, M, A) M][1]
lidB(A)-%—@SM[l],d@idB(A)-%— ldB(A)ﬁ-@SM[l] a®id g ay+ SNM[1],d (2~6)

-n? ®idarrat1)®e
B(A, M[d], A) 22, poa pppd), AP SISm0
commutes. Indeed,
MId] . ® ®
bMI A[1]8 @ M[d + 1] ® A[1]®7 — M[d + 1]
is uniquely defined by

bM1dl o (ld%]@sM d®1dA[1) (—1)%sprpay,a 0 bAL,

for all p,q € Ny. It is easy to verify that the maps {bfy\{q[d] }p.qen, satisfy the unitary
condition if {b)’ }, sen, do and they indeed provide a structure of A.-bimodule over
A. The previous shift construction is functorial. Indeed, if F, o: M — N is a morphism
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of Ag-bimodules over the A.-algebra A, then it defines a morphism F, ,[d]: M[d] —
N[d] of Ay-bimodules by

Fpqld]o (id§f1] & Spmp1],a ® idﬁ([ll]) = snM11,d © Fpgs

for all p,q e Ng. We leave the reader to verify that F, ,[d] is indeed a morphism
of Ap-bimodules over A, and that the shift induces a covariant functor from the
category of Ay-bimodules over A to itself. Note that the F, o[d]: M[d] — N[d] is a
quasi-isomorphism if F, o: M — N is so.

Since the suspension functor is a self-equivalence, from now on we will equivalently
describe an Ay -bimodule M by its unshifted bar construction B*(A, M, A), defined as
B(A, M[~1], A). The composition of its bicoderivation Bj;_1], denoted by Bj;, with
€p(ay+ idy ®ep(ay+ is a sum of “by, 4: A[11®P @ M ® A[1]®4 — M for p,q e Ny.
Moreover, given a morphism F': B(A, M, A) — B(A, N, A) of Ay-bimodules, we set
“F: B"(A,M,A) - B“(A, N, A) as F[—1]. Its composition with the tensor product
€p(a)+ @idy ® €pay+ is also a sum of maps “F, ;: A[1]®? @ M ® A[1]®? — N, for
P, q € No.

We recall that, given an A, -bimodule M over an Ay -algebra A, its (graded) dual
Ay -bimodule M# is defined as follows. The underlying graded space is given by the
usual graded dual M# of M and the bicoderivation B}, + is the unique one satisfying
that the diagram

#®€B(A)+®idM®EB(AM# &M
%

lev M

S1234 k

; u id
M# @ Bu(A, M, A2 ES M # @ Bua, M, AY

ev s

B, Bidy

Br(A, M#, 4) @ M 225 (4, M, ) @ S Sy

M#* @M
commutes, where Sja34: M# @ B(A)* @ M @ B(A)* - B(A)* ® M# @ B(A)*t @ M
is the map defined by

ARb@MmY — (—1)V @AX@b@m and € = [V|(|\] + |b] + |m]),

for homogeneous b, € B(A)*, Ae M# and me M, and evy;: M#* ® M — k is the
evaluation map. More explicitly, “b%q# D A[1]®P @ M# @ A[1]%4 — M# is defined by

#
“b;,v{q (sa1,...,sap,\,5ay,...,sa,)(m)

= —(—1)"/)\(“bé\ffp(sa’1, L Sap,m,sar,. .., sap)),

where o’ = [\ + (X7, [sa;]) (Im| + |A| + 27, [saj]), for all homogeneous m € M,
Ae M# and ay,...,ap,,d},..., ay, € A. It is clear that the maps {“bﬁ/,[q# }p.geN, satisfy

the required unitary conditions if the maps {“b)’ }, 4en, do so.

Moreover, the previous (graded) dual construction is in fact functorial. To wit, if
“Feo: M — N is a morphism of A,-bimodules over the A, -algebra A, then it defines
a morphism “F.# o: N#* — M# of A, -bimodules between the corresponding graded
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duals, given as the unique morphism of graded bicomodules such that

id B id Xe ®id Ny Qe
N# @ Bu(A, M, A) 2 N# @ Bu(a, N, A T2 TR o N

levN

S1234 k

ev g

€ ay+®idy z®ep4)+ Qldam
®]ﬁf ) (A)

BU(A, N#, A) @ M T84 Ar#, ) M* @ M

commutes. More explicitly, the maps {“qu}pﬂeNo are defined by
“qu(sal, c.y8ap,\, sy, ..., say)(m)
= (—1)”/)\(“Fq’p(sa’17 S Say,m,sar,. .., sap)),

where p' = ( 1 sa;]) (|m| + [A| + X2_, |sa}]), for all homogeneous A € N#, m e M
and ay,...,ap,ay,...,a, € A. It is clear that the collection of maps {quq}p,qENo
satisfies the required unitary conditions, for the maps {“F), 4}p qen, do so, and that
the graded dual induces a contravariant functor from the category of A-bimodules
over A to itself. If M and N are locally finite dimensional, “F.#f.: N# > M# is a
quasi-isomorphism if “F, : M — N is so.

Fact 2.7. If M is an H-unitary Ay-bimodule over an Ay -algebra and d € Z, then
M][d] also.

Proof. The statement is a direct consequence of the commutativity of the left square
in diagram (2.6). O

Remark 2.8. The previous constructions can be carried out also for right (resp., left)
Ag-modules over an A-algebra. In this case, the graded dual sends right (resp.,
left) As-modules to left (resp., right) Ag-modules. All the definitions are directly
obtained from the previous ones by dropping the tensor factor B(A)* from the side
of B¥(A, M, A) that is not involved, in order to obtain B*(M, A) (resp., B*(A, M)).
Moreover, the previous fact also holds in that situation, with the analogous proof.

Remark 2.9. Note that the graded dual M# of an H-unitary A.-bimodule is in
general not H-unitary, as the following example shows. Let £ > 2 be an integer and

set By to be the nonunitary algebra given as the direct colimit U,en,t’ .E[t! "] of
the diagram of nonunitary algebras obtained from the obvious inclusions

R[] — T R
of nonunitary algebras, for all n € Ny. Finally, define the nonunitary algebra A, given
by Bg/(By.t). This is Example 4.7, (3), in [26], where it is also shown that A, is an
H-unitary algebra. Moreover, it is easy to see that the set
{t?*" :n,pe Ny and 1 < p < "}
is a basis of A;. We claim that the A,-bimodule given by the dual A} is not H-unitary.
Since k ®(Azr)c AF ~ A¥ /(A A} + A} Ay), it suffices to show that A} # A, A}, for A,
is commutative. This follows directly from the assertion that any A\ € A,. A} satisfies
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that A(t) = 0. Indeed, it suffices to prove it for A of the form P/ 11, where pe
Af, tP/*" 'neNgand pe {1,...,0"}, since any \ € Ay A} is a linear combination of
elements of the previous type. Finally, we note that (t?/¢".pu)(t) = u(t.t?/*") = u(0) =
0, which proves our last assertion, and, as a consequence, A} is not an H-unitary
bimodule over Ay.

Let M be an A,-bimodule over an Ay -algebra A. Define tpr: M — (M#)# as the
map given by pr(m)(\) = (=1)*A(m), for all m e M and A € M#. Then, 1p; is a
strict morphism of A-bimodules, that is natural in M. Using the previous definitions
it is rather long but straightforward to check the following result.

Fact 2.10. Let M be an Ay -bimodule over an Ay -algebra A and let d € Z. Then,
the canomnical map Oprq: M#[d] — (M[—d])# defined by

Onr,a(sar#.aN) (5ar,—am) = (=) \(m),

for all \e M# and m e M, is a strict isomorphism of A -bimodules, natural in M.

2.3.3. Basics on Hochschild and cyclic homology

2.3.3.1. THE HOCHSCHILD HOMOLOGY OF AN A,-ALGEBRA We follow [10], Sec-
tion 3. Given a dg bicomodule N over a coaugmented dg coalgebra C, with left and
right coactions p: N - C®N and p,: N — N®C, define N = Ker(p; — 7n.c ©
p+). It is easy to verify that N¥ is a complex with the induced differential, and that
(—)% defines a functor from the category of dg bicomodules over C' to the category
of dg vector spaces. Moreover, it is clear that (—)! sends a homotopy h between
endomorphisms F,G: N — N of dg bicomodules (i.e. a morphism h: N — N of the
underlying graded bicomodules such that F — G = dy o h+ hody) to a homotopy
of the corresponding endomorphisms of dg vector spaces. Note that, if C' is a coaug-
mented dg coalgebra, C? defined in Subsection 2.2 coincides with the one here if C
is regarded as a dg bicomodule with left and right coactions given by its coproduct.
Moreover, notice that the canonical inclusion

ga: (M, “bg%) — (B*(A, M, A), B) (2.7)

is a morphism of complexes with image included in B*(A, M, A)".
The next result gives a more usual way of regarding the underlying graded vector
space of the complex B“(A, M, A)%. For a proof, see [10], Prop. 3.6.

Lemma 2.11. The maps
€EB(A)+ ®idys ®idB(A)+‘B“(A,M,A)ﬂ : BY(A, M, A)h — ]\4@)3(14)Jr

and Si23 0 (idy ® Apay+): M ® B(A)" — B“(A, M, A)* are inverse morphisms of
graded vector spaces, where S1a3: M ® B(A)T ® B(A)* — B(A)" @ M ® B(A)* is
given by mbR Y — (—1)|b/|(‘m‘+‘b‘)b’ ®m®Yb, for all homogeneous elements m €
M and bt/ € B(A)*.

We will denote by NF® the dg vector space defined as the image of N9 under the
isomorphism of the previous lemma.

Definition 2.12. Let A be an Ay -algebra and let M be an Ay -bimodule over A.
Define the complex C,(A, M) = B“(A, M, A)}. If A and M are H-unitary, then
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Co(A, M) is called the Hochschild homology complex and its homology H.(A, M)
is called the Hochschild homology of A with coefficients in M. They coincide with the
usual definitions for dg algebras and dg bimodules. We usually write H H,(A) instead
of Ho(A, A).

Remark 2.13. We have not defined Hochschild homology for any A-algebra with
coefficients in any A,-bimodule, and it would be wrong to believe that Co(A, M)
computes it in general, as it is already noticed from studying the Hochschild homology
of nonunitary algebras A (with coefficients in the standard bimodule A).

2.3.3.2. THE CYCLIC HOMOLOGY OF AN A, -ALGEBRA Let A be an A -algebra
and let AT be the augmentation of A. Using the inclusion A — A, we see that A™
is an A,-bimodule over A. Denote the differential of the complex Cy(A, AT) by b. As
proved in [10], Thm. 3.7, C,(A, A") is a dg module over the dg algebra A = k[e]/(¢?)
with zero differential, where € has cohomological degree —1. The action of € is given
by an endomorphism B of C,(A, A1), which is described as follows. Define the map

o: B(A)" — B“(A, A1, A)

sending 1y to 14+, and [aq] - - - |ay] to
n—1
Lar @ [ar]- - lan] + Y far] - [a] @ 1as @ [assa] -+ an] + [ar] -+ |an] ® 14+,
i=1

as well as the mapping
p: BY(A, AT, A) > B(A)"

sending [a1]- - |an] ® 1g+ ® [b1] - - - |bm] to zero, and [a1] - |an] ® a ® [b1] - - - |bm] to
[a1]---|an|albi| - |bm], if a € A. Set B = o% o of. Then, C,(A4, A") is a dg module
over the dg algebra A = k[e]/(e?) with zero differential, where ¢ has cohomological
degree —1 and the right action of € is given by B. Note that the canonical projection

na: Co(A AT > k (2.8)

induced by (ep(a)+ ® €4+ ® EB(A)+)h is a morphism of dg modules over A, where k
has the trivial dg module structure.

Consider the (graded) pseudo-compact algebra k[u], where u has cohomological
degree —2, and let W be a graded pseudo-compact left module W over k[u]. Consider
the complex C, (A, A*)[[u]]@k[[u]]w, with the differential b + uB. The mapping (2.8)
induces a morphism of complexes from C, (A,A*)[[u]]@k[[u]]w to kﬂu]]@k[[u]]W ~ W.
The cohomology of the kernel C'C.(A, W) of this map is denoted by HC.(A, W).
If W =k, then HC,(A,W) is called the Hochschild homology H.(A, A) of A with
coefficients in A. It coincides with the notion considered in Definition 2.12 if A is H-
unitary, since the canonical inclusion Co(A4, A) — Ker(724) is a quasi-isomorphism.
Indeed, its cokernel is isomorphic to B(A), which is acyclic. If W = k((u)) (resp.,
W = k(u)/uk[u], W = k[u]), the complex CC4(A, W) is denoted CP,(A) (resp.,
CC.(A), CC; (A)) and its homology is called the periodic cyclic homology HP.(A)
(resp., the cyclic homology HCW(A), the negative cyclic homology HC (A)) of A.
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The commutative diagram of short exact sequences

0= k(u) (u)/Mu] —— 0
l l lidk«u»/knuu (2.9)

of pseudo-compact kfu-modules (where k ~ k[u]/uk[u] and the two left vertical
maps are the canonical projections) induces the commutative diagram

i —— HCW_1(A) —Z5 HOT(A) —2 HPJ(A) =5 HCu_2(A) — -

lidHc.,l(A) J/h J/P lidHc,,z(A) (2~10)

oo —— HCu_1(A) =25 HH.(A) —— HC.(A) —2= HC. 5(A) — ---

We note that B“(A, A, A) is canonically a subcomplex of B¥(A4, A*, A), whose cok-
ernel is isomorphic to B(A)™ ® B(A)*. By applying the functor (—)* we see that
C.(A, A) is a subcomplex of C,(A, A"), whose cokernel is B(A)*. Moreover, the
complex C, (A, AT)[1] is isomorphic to the cone of the morphism of complexes

i B(A)T — C.(A, A)[1]

such that f| is zero, and, for n € N, f|apjen is given by id4p1jen — t,,, where

n—1.
ta(lar] - Jan]) = (=Dl 2 B0l ag |- Jap ],

for all homogeneous ay, .. .,a, € A. Note that f[4;;) = 0. One also defines the mor-
phism of complexes N: C,(A, A) — B(A)[1], where N[1]|sf1je» is given by the com-
posite sp(4),2 © (Z;:Ol t,). It is easy to prove that fo N[—-1] =0 = N[1] o f.

Set C}(A) as the cokernel Coker(f[—1]), and denote its homology by HJ(A).
Define the map 7: Co(A, AY)(u)/uk[u] — C}(A) as zero on B(A)*.u™ and on
Co(A, A)u="" for all £€ Ny, and as the canonical projection C,(A, A) — C}(A)
on C,(A, A). Tt clearly induces a map HC,(A) — H}(A), which is an isomorphism
if the characteristic of k is zero (see [19], Thm. 2.1.5). Moreover, if chark = 0 and
A is H-unitary, then sg(4)p1),—2 © IV induces a quasi-isomorphism from the complex
Coker(f[—1]) = CX(A) to Ker(f[—1]) n B(A)[~1] = B(A)*[—1] (see [22], Lemma 1.2

and comments below).

3. Symplectic structures and cyclic A -algebras

3.1. Generalities

From now on we assume that the characteristic of the field is different from 2.
Let A be an A-algebra and let B be the differential of B(A)". Since Q&BX and

dpr anticommute, (0™ (A[1]), E&Bﬁ) and (Ugy.(A[1]), :&BX) are complexes for all
m € Ng, and 9pg induces morphisms between the corresponding complexes. They will
be provided with these differentials unless otherwise indicated. A symplectic structure
of degree d on A is by definition a nondegenerate pre-symplectic structure w of degree

d on the graded vector space V = A[1] satisfying that w o Q&BX = 0. A symplectic
structure w is constant if w~o defined after (2.4) vanishes.
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The following is well-known (cf. [4], Lemma 3.1 and [5], Lemma 4.1). Moreover,
condition (ii) in the lemma below is the usual definition of a d-cyclic (or symplectic)
Ao -algebra, which was introduced in [16], Def. 10.1.

Lemma 3.1. Let A be a finite dimensional Ay-algebra and set V = A[l]. Given
a homogeneous linear map w: XV ® XV — k of cohomological degree 2 — d, define
l=wolty®ty): VRV —k and f: A — A¥[—d] by

(SA#[—d],df(a))(b) = (71)|“‘F(sa,5b),
for all a,be A. Then, the following are equivalent

(i) w is a constant symplectic structure of degree d on A;

(it) T is a nondegenerate graded anti-symmetric map (i.e. I o myy = —T') that sat-
isfies
T(bn(sa1,...,sa,),sa0) = (—1)T(by(sag,. .., san_1), sa,), (3.1)
for all homogeneous ag, . .., a, € A, where € = |sao|(X;—; |sai|);

(iii) f is a strict isomorphism of Ay -bimodules such that f = (f# o Oa a)[—d]ora,
as morphisms of graded vector spaces.

Proof. First, note that the finite dimensional assumption on A implies that the graded
dual A# is equal to the usual dual A*. It is clear that the nondegeneracy condi-
tions for w and I' are equivalent, as well as the corresponding graded symmetric and
graded antisymmetric conditions, respectively. Moreover, a straightforward compu-
tation shows that w o b&BX = 0 is equivalent to (3.1). On the other hand, it is clear

that (3.1) is tantamount to f being a strict morphism of A,-bimodules, whereas the
nondegeneracy of I' is equivalent to f being bijective, and the graded antisymmetry
property of I' is tantamount to f = (f# 0 64# 4)[—d] o La. 0O

The next result is a direct consequence of (2.3) and the definition of (—)%.

Fact 3.2. Let A be an Ay -algebra and let B be the differential of B(A)". Then,

(i) (UOA[l],D&BX) = B(A)*, which implies (UgyC(A[l]),D&BX) = (B(A)*")%;

(ii) the map idp(ay+ @ (tap) 0 s4) @idp(ay+ from B*(A, A, A) to (G A[1], _RBX)
is an isomorphism of dg bicomodules over B(A)*, so it induces an isomorphism
of complezes Cy(A, A) — (UL,.(A[1]), —°&BX),

The following result is essential in the sequel (cf. [16], Subsection 7.2, p. 178).

Lemma 3.3. There is a homogeneous linear map 1: X(TV) — BV of cohomolog-
ical degree and weight 0 such that the diagram

UV
s OV TV (3.2)
e quR®idTCV
S(TeV) Ary S oAy oy & ey




CYCLIC Ax-ALGEBRAS AND CYCLIC HOMOLOGY 303

commutes, where p, denotes the standard right coaction of T°V on OV . More explic-
itly, set Y|sp = 0 and Y|sy =0, and, forn =2 and vy, ..., v, €V, set Y(t(vy -+ vy))
as

n—1
(_1)51,i€i+1,nvi+1 - ’l)nt(’l]l)’l}z ceev; — Z (_1)61,161+1,7zvi+1 . 'Unflt(vn)Ul ey,
1 i=0

-

3

where €; jr ZZ _jlvel for 1<j<j <n. It satisfies that Ker(¢y) = S(T°V)8 and

Im(y) = UinV N Ker(9pr), so it induces a linear isomorphism

P (2T°V)/(S(T°V)?) - UL,V n Ker(dpr).

cyc

Proof. The reader can check that the map 1 given by (3.3) satisfies (3.2). The
inclusion Im(v)) < UL, .V n Ker(9dpRr) follows from (2.2) and (3.3), Ker(¢)) € X(T¢V)*

cyc
from (3.2) and X(T°V)# < Ker(¢)) from (3.3). Set m e Ugch as the symmetrizer of
t(v1)ve v _1t(v;) Vi1 - vy in B2V, for vy, ..., v, €V, ie.

4
— Z (—1)61’2_165’"115 ce ’Ui_lt(’Ui)’Ui_;,q e ’Unt(’Ul)’UQ et Up—1

=2
n+1
+ Z (—1)61‘57162’"115 s vnt(vl)vg s vi,lt(vi)viﬂ e Up_q.
l=i+1
Then,
qDR2 Z El j—1€;5, n (t('UJ R N L RRE /Ujfl))' (34)

The previous identity and Lemma 2.2 show that U}, .V n Ker(dpr) < Im(¥)). O
Fact 3.4. Let A be an A-algebra, B be the differential of B(A)™ and V = A[1].
Then, the map ¢ defined in Lemma 3.3 is a morphism of complexes, where S(TV)
is endowed with the differential tpey o Q&BX |7ev o trey and OV with RBX Iy

Proof. This is a lengthy but straightforward computation that follows from (2.3)
and (3.3). O

Let (A,b,) be an H-unitary Ay-algebra. Recall the map j4: A — B"(A, A, A)*
given by (2.7) for the standard Ag-bimodule A. By composing it with the iso-
morphism in Lemma 2.11 and the canonical map C,(A, A) — Ker(24) mentioned
after (2.8), it gives a morphism of complexes (A,"by ) — Ker(na) and a fortiori
(A,%bo,0) — CC.(A), by using (2.9). One declares that a homogeneous cocycle A €
CC.(A)* is homologically nondegenerate if the composition X of A — CC,(A) with
A induces a nondegenerate bilinear form S\Omg H*(A)®? — k, where my is the
product on H*(A) induced by —s; A 0byos® A . Note that a homogeneous cocycle
X e CC,(A)¥* that is cohomologous to a homologlcally nondegenerate cocycle \ €
CC,(A)# is also homologically nondegenerate.

The next result is due to Kontsevich and Soibelman (see [16], Thm. 10.7).
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Theorem 3.5. Let A be an H-unitary Ao-algebra over a field k of characteris-
tic zero. There is a quasi-isomorphism 6 from (U2, (A[1])/Im(dpgs)) to B(A)*[1],

where the differential of the former is induced by E&BX and we omitted the weight.

Hence, there is a quasi-isomorphism from (B(A)%)#[—1] to (PSpnC(A[l]),R§+), s0
A

CC.(A)[2] and U2, .(A[1])/Im(9pgs) are quasi-isomorphic, as well as their graded

cyc
duals. Moreover, a pre-symplectic form w induces a nondegenerate bilinear form on
H’(E(A[l]),‘)&BX) if and only if the corresponding functional is homologically non-

degenerate.

Proof. Fix V' = A[1] and write dpg for the restriction of this differential to Ug,. V.
By Lemma 2.2, the complex (02,.V/Im(9pgs)) is precisely (U2,.V/Ker(dpg2)), and
dpr2 induces an isomorphism from the latter to ¥ Im(9pgrz) = ¥ Ker(9pg:), where
we have used Lemma 2.2. By Fact 3.4, ¢ gives an isomorphism from the complex
Y(B(A)/B(A)%) to (Ker(qDRl),RBX). Since A has is H-unitary, B(A) is quasi-
isomorphic to 0. Then, by the snake lemma applied to the short exact sequence
of complexes

0 — B(A)* — B(A) — B(A)/B(A)" - 0

there is an quasi-isomorphism of complexes B(A)/B(A)? — B(A)%[1]. Then, the map
0 = %(Bgoypt)o9pge from (U, V/Im(dpgs)) to Y B(A)%[1] induces the claimed
quasi-isomorphism 6, if we drop the immaterial shift on the weight. Finally, C'C,(A)
is canonically identified with the complex B(A)%[—1], as recalled in the last para-
graph of Subsection 2.3.3, which provides the claimed quasi-isomorphism between
(G2, .(A[1])/Im(9dpgs)) and CC,.(A)[2]. By taking the graded dual one obtains a

cyc

quasi-isomorphism from (B(A)%)#[-1] to (PSpnC(A[l]),R§+), and thus the latter
A

complex is quasi-isomorphic to CC,(A4)#[-2].

To prove the last part, we first note that the composition of A — CC,(A), the
projection CC,(A) — CM(A) and N: C)(A) — B(A)¥[—1] is simply the usual inclu-
sion A — B(A)¥[—1]. Tt suffices to show that if A € (B(A)%[—1])* is homogeneous,
then the map A given as the composition of A — B(A)![—1] and X induces a nonde-
generate bilinear form Ao my: H*(A)®2 — k if and only if the constant part wgy of
W = A0 Syp(A)[1],(~2,~1,0,...,0) © 0 is nondegenerate. Using (3.4), we see that

wo (t()t(w) — (1)l ()t () = =N (b (v)w) — (=1)IN (vby (w)) — N (ba (v, w)).
for v = s(a) and w = s(b), with a,b e A homogeneous elements, where ' = \ o st
Hence, the composition of (sspe(a) © tye(a))®? with H*(ZV, Q&B:{)®2 — k induced

by wq is equal to A o ms. The theorem follows. O
One obtains the following direct consequence, which is implicit in [16].

Corollary 3.6. Let A be an H-unitary Asx-algebra over a field of characteristic zero
and having finite dimensional cohomology, provided with a symplectic structure w of
degree d. Then, there exist an Ay -algebra A’ provided with a constant symplectic
structure of degree d, i.e. a d-cyclic structure, and a quasi-isomorphism F: A — A’
of Ax-algebras.



CYCLIC Ax-ALGEBRAS AND CYCLIC HOMOLOGY 305

Proof. Let A=H *(A) provided with a quasi-isomorphic A -algebra structure to
that of A. Note that A is a a fortiori H-unitary. We will denote the differential of
the bar construction of its augmentation A+ by B}. Then, the complexes C*(A, A)
and C* (A, A) computing Hochschild homology are quasi-isomorphic. By the previous
theorem, A is provided with a symplectic structure & of degree d. By the formal
Darboux theorem, there is an automorphism F' of the coaugmented graded coalgebra
Tc(fl[ 1) sendlng @ to a constant nondegenerate pre-symplectic structure of the form
& =@o F~! of degree d on A, where F' is the automorphism of U°(A[1]) induced by
F' as explained in the third paragraph of Subsection 2.2. By transport of structures,
there is a differential on T°(A[1]) such that F' is an isomorphism of coaugmented dg
coalgebras. Let us denote the new A -algebra structure on A by A. Since F' commutes
with the Lie derivatives induced by the differentials BE and B} we have that

WoXNpg+ OF:(QJO}?’OD&B+~ =woXxpzr =0.
A A A
As a consequence, w is a symplectic structure of degree d on A. O

3.2. Homotopy inner products
Lemma 3.1 motivates the following definition.

Definition 3.7. Let d € Z. A homotopy inner product of degree d on an A -algebra
(A, b,) is a quasi-isomorphism “F, ,: A — A#[—d] of Ay-bimodules. It is called sym-
metric if (* f. 004# q)[—d]ota ="F,.,.

Fact 3.8. Let A and B be two locally finite dimensional Ay -algebras. Assume that
A is provided with a (resp., symmetric) homotopy inner product “Fy o: A — A#[—d|
of degree d, and let Go: B — A be a quasi-isomorphism of A -algebras. Then, B is
endowed with a (resp., symmetric) homotopy inner product of degree d.

Proof. Note that G, induces a quasi—isomorphism é.,: B — A of Ay-bimodules
over B via "G, 4 = Gpigt1 © (1d 1® 5B ®1dB[1 ). It is easy to see that the map
“Heo = “C:'Z#. [~d] 0 “Fy.0“G.. is a quasi-isomorphism of A-bimodules over B,
so B has a homotopy inner product of degree d. If the homotopy inner product F, .
is symmetric, i.e. (“FZ, o Oa# q)[—d) ora = "F, ., then we see that

(“HZ%. o 93#@) [—d]op = (“Gf’E o “F# o (“é# [—d])# o GB#,d) [—d]otp

(VG U 0040 g0 VCEH )] 00
“G¥ [~d] o (“F¥, 00as 4)[—dlota0"CGus
="G¥,[~d] 0" F,40"Gee ="H,,,

so the homotopy inner product “H, , is also symmetric. O

Lemma 3.9. Let A be a locally finite dimensional homologically unitary Ay -algebra
provided with a homotopy inner product “Fuo: A — A%[—d] of degree d. Then, it
also has a symmetric homotopy inner product.

Proof. Let A be an A-algebra with a homotopy inner product “F, .: A — A#[—d]

of degree d. Set B = H*(A) the cohomology of A, provided with the minimal Ag-
algebra structure induced by the theorem of Kadeishvili, and let G: B — A be the
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quasi-isomorphism of Ag-algebras. By Fact 3.8, there exists an homotopy inner
product “H, o: B — B#[—d] of degree d. Since B is minimal, “Hy is an isomor-
phism of graded vector spaces. Moreover, by only considering the underlying uni-
tary graded algebra structure of B given by —sp o b o S%Q, “Hy is in fact an iso-
morphism of graded bimodules, where B#[—d] has the underlying graded bimod-
ule structure induced by its Ag-bimodule structure. Setting h = sp#[_q).q4 © “Hoo
and h' = sp#[_q)q° (“HS%O 00p# q4)[—d] oup, the previous definitions tell us that
B’ (a)(b) = (—1)1llPIn(b)(a), for all homogeneous a,be B. The fact that “Hyq is a
morphism of graded bimodules yields h(1g)a = h(a) = (—1)%lah(1p) for all homo-
geneous a € B, which in turn implies that

h(a)(b) = (—1)%l (ah(1p)) (b) = (—1)!“PIn(15)(ba)
= (=)l (h(1p)b) (a) = (—1)1*I*Ih(b)(a),

and we have as a consequence that (“Hg‘if0 00p# q4)[—d]otp ="Hpp. We set finally
“Keo = (“HY, o Op# q)[—d] o g + “H,,)/2, which is well defined since char(k) # 2.
It satisfies that “Ko o = “Hp,0, 50 “K, e is a symmetric homotopy inner product on
B. By applying Fact 3.8 once more, we see that A is provided with a symmetric
homotopy inner product. O

Remark 3.10. The proof of Lemma 3.9 also shows that the symmetry condition in the
definition of d-cyclic Ap-algebra A is superfluous if A is minimal and homologically
unitary.

4. Another version of the Hochschild homology

We will consider in this section another version of the Hochschild and the cyclic
homology of Ay-algebras, that is more convenient when one wants to compare to the
spaces of morphisms of A,-bimodules, which we will study in the next section.

Let M and N be two Ay-bimodules over the A, -algebra A. Consider the cotensor
product B*(A, M, A) gBA* B"(A, N, A), with the induced differential. It is clearly
a dg bicomodule over B(A)". The mapping

inn: BYA, M, A)0PW7" BY(A,N,A) - B(A)" ® M @ B(A)* @ N @ B(A)*
(4.1)
given as the restriction of b@ m @b ® " N b” — bR m & €B(A)+ O @n®b”,
for all b,b',0",0" € B(A)™, me M and n€ N, is an isomorphism of graded bico-
modules over T°(A[1]). Indeed, the inverse is given explicitly by the tensor product
idpa)+ ®idy ® Apay+ @idy ®idpa)+-
The following result is immediate.

Fact 4.1. Let A be an Ay-algebra and m € N. Set V = A[1].

(i) The map (4.1) gives an isomorphism of graded bicomodules between the m-

+
th cotensor power (UlV)DB(A) ™ and O™V, and the differential of the former
induced by C&B} on UV is identified with D&BX on O™V under the previous

isomorphism.
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B(A)T

— (Utv)o ™ be the cyclic permutation induced by

(ii) Let o, : (Ul‘/)DB(A)er
M- @y, — _(_1)m+|m1\(2;n=2 ““J“)mz R - @m, ®mny,

formy, ..., o, € OV homogeneous, and N,, = Z;nzgl afn. Then, using the iden-

tification in the previous item, o, restricts to a map (U™V) — (U™V)# that
commutes with “&BX such that the image of the restriction of Ny, is UZ;CV.Q
(iii) By Fact 3.2 and (4.1), (idpay+ ® (tap) ©54))®" @idp(ay+ induces an isomor-
+
phism of dg bicomodules from B“(A,A,A)':'B(A) ™ to (O™(A[1]), (—1)"’°&BX)
over B(A)*.

The previous cotensor product allows to introduce the following notion, the first
part of which was defined in [18], Subsubsection 4.1.1.

Definition 4.2. Let M and N be two Ag-bimodules over an Ay -algebra A. The
tensor product M®% N is the graded vector space M ® B(A)T ® N with the A-
bimodule structure over A whose (unshifted) bar construction is precisely given by
B(A)*"® M ® B(A)t ® N® B(A)*, provided with the dg bicomodule structure over
B(A)* obtained by transport of structures using (4.1). Moreover, we define the tensor
product M®%. N of M and N as the dg vector space B%(A, M ®% N, A)*.

Consider also the unique map
p: BAT®@MQB(A)T®AT®B(A)" - B(A)T®@M® B(A)" (4.2)
of graded bicomodules over T°(A[1]) satisfying that p = (ep(a)+ ® idyr @ €p(ay+) 0 p
is such that pl 4(1er@ueapier @agap]er” 19

“Op,p+p+1 © (id(:?][a] ®idy ® id(fﬁ] ®s4® id%fl])’

Plaperemealer okl @apjer 18 zero if p+p' +p” >0, and p(m @ 14+) = m. It
is lengthy but straightforward to verify that p is a morphism of dg bicomodules over
B(A)", i.e. a morphism of Ay-bimodules over A from M®% AT of M. Indeed, the
restriction of (MBI(n/,n")) for p to A[1]®" @ M @ A[1]®" ® A® A[1]®"" is equiv-
alent to (BI(n/,n”)) for M with n” + i+ 1 instead of n”, whereas the restriction
of (MBI(n/,n")) for p to A[1]®" @ M @ A[1]® @ k.1 4+ ® A[1]®"" is precisely the
tautology “by pryi = “byps prys for the structure maps of M.

Lemma 4.3. Let M be an Ay-bimodule over an Ay -algebra A. The map (4.2) is
a weak equivalence of dg bicomodules over B(A)" for the model category structure
defined in (18], Thm. 2.2.2.2. Equivalently, p induces a quasi-isomorphism of Ag-
bimodules over A from M ®% At to M.

Proof. The equivalence is a consequence of [18], Prop. 2.4.1.5. To prove the latter, it
suffices to show that the cone (Co(po,0),0) is acyclic, where po.0 = plpereap]ea- In
order to do so, consider the linear endomorphism 7 of Co(pg,0) given by sending m € M
to s(mM®14+), s(m® [a1] - |an] ®a) to (—1)s(m®[ar| - |an|a] ®14+) for ne
No, and s(m ® [a1] -+ |an] ® 14+ ) to zero if n € N, for all m € M and aq, . ..,an,a € A,

with € = |[m| + X7_, [sa;|. Tt is clear that r 0 0+ dor = idco (s, 0)- O

2Note that UGV =0"V n (U'V)h is a strict graded vector subspace of (U™V)", if m > 2.
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Proposition 4.4. Let A be an Ay -algebra and M an As-bimodule over A. Then,
there is a quasi-isomorphism from M ®%. A" to Co(A, M). If M is further assumed
to be right H-unitary, the inclusion of M ®%. A inside of M ®%. At is a quasi-
isomorphism of complezes.

Proof. Since a morphism of dg bicomodules F': B*(A, M, A) — B"*(A, N, A) over
B(A)* is a weak equivalence if and only if it is a homotopy equivalence (see [18],
Prop. 2.4.1.1), the functor (—)* sends weak equivalences to quasi-isomorphisms. Thus,
applying (=) to (4.2), we get that B*(A, M, A)* and B*(A, M ®% A*, A)! are quasi-
isomorphic, and the first statement follows.

To prove the last part, note first that the cokernel of the inclusion of complexes
M®%. A — M ®%. AT is exactly M ®%. k, where k is the trivial As-bimodule over
A. Tt suffices to show that the latter tensor product is quasi-isomorphic to zero. Note
that the underlying complex of M ®% k is exactly the bar construction of the under-
lying right A,-module of M over A. As the latter is quasi-isomorphic to zero, the zero
morphism M ®% k — 0 is a quasi-isomorphism of A,-bimodules. In consequence, the
associated bar constructions are weakly equivalent or, equivalently, homotopy equiv-
alent, which in turn implies that M ®%. k is quasi-isomorphic to zero, since the latter
is isomorphic to BY(4, M ®% k, A)*. O

We define the morphism of dg vector spaces (of cohomological degree —2 and
weight 2) given by the following composition

~ id+o
sym: A®% A > (GA(A[])" % (02 (A1), Npe), (4.3)
where the left isomorphism is induced by the map in Lemma 2.11 and s 4, and o5 was
defined in Fact 4.1. More explicitly, sym sends ag[a1|- - |an]an+1[@nt2]| - |am] (for
homogeneous ag, ..., a, € A and n,m € Ny such that m = n + 1) to —(—1)%" times

S (1) s ses1) - (am ) (5(a0))5(a1) -+ (an)t(5(an11)5(ans2) - (anse)
=1

n+1
= 3 (—1)s(a) - s(an)t(5(ans1))s(ans) - - s(am)t(s(a0))s(ar) - - s(arr),

=1
where €/ = €,4011.m€0,n+e, €) = €1,m€o0,0—1, and €; ;; was defined in Lemma 3.3. It is
clear that sym is surjective.

We provide the following result relating our previous description of Hochschild

homology with the one for cyclic homology in Theorem 3.5. Together with Corol-
lary 3.6, it gives a more natural proof of [5], Prop. 6.1.

Proposition 4.5. Let A be an Ay-algebra. Then we define the extended mapping
sym: A®%. A — (U2, (A[1])/Im(9pRs) as the composition of sym given in (4.3)
and the canonical projection, as well as SSym = 5652, (A[1])/ Tm(dp s ),—2 © SYI. If A
is H-unitary and char(k) = 0, the latter map induces HH,(A) — HC,(A), which is
precisely the morphism I from (2.10) using the quasi-isomorphism between Co(A, A)

and A®%. A, and the quasi-isomorphism between

COMA)  and (B (A[1])/ Tm(dpps), N )[ 2]

cyc

explained in Theorem 3.5.
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Proof. From Fact 4.1 and (iii), we see that there is a map of dg B(A)*-bicomodules
of the form F: B“(A, A®% A, A) — U?(A[1]). Hence, the composition of the iso-
morphism of Lemma 2.11 and F? is a map of complexes from A ®%. A to U?(A[1])f,
whose composition with O?(A[1])% — U (A[1]) given by Fact 4.1 and (i), is sym.
This proves the first statement. Assume now that A is H-unitary and the field k
has zero characteristic. In that case, Fact 2.4 tells us that the underlying right A-
module structure of A is H-unitary. We recall that, when using the identification
between CC,(A) and B(A)f[—1] given as the composition of the canonical projection
7: CC.(A,AT) — C}(A) and the morphism sp(ay1],—2 © N recalled in the end of
Subsection 2.3.3, the map I is induced by the restriction of the previous composition
to Co(A, A).u’. Then, the later statement is a direct consequence of the following
commutative diagram

sym

AQ%. A Uy (A[L])

[ |

A% At 25 0(A, A AP0 A) Ny BAY[L],

where the map § = B4 09! o dpr> was defined in the proof of Theorem 3.5. O

5. Homology and morphisms of A, -bimodules

For later use, we recall that if A is a unitary A-algebra over k, the derived
category Dy (A°) is defined as the triangulated category given as the localization of
the dg category Mody (A€) of (unitary) As-bimodules by quasi-isomorphisms. This
is the standard definition in case A is augmented (see [18], Déf. 2.5.2.1), whereas the
usual definition in the general nonunitary case is the kernel of the functor

E®% (-) ®%: ki Do ((A%)°) — Dan(°) (5.1)

(see [18], Déf. 4.1.2.1 and 4.2.0.1). As noted in [18], Rk. 4.1.3.5, an object M of
Dy ((AT)¢) is in the kernel of the previous functor if and only if the underlying
complex of its bar construction B(A, M, A) is quasi-isomorphic to zero. In any case, as
proved in [18], Thm. 4.2.0.4, (see also [18], Thm. 4.1.3.1) the latter is equivalent to the
definition we provided if A is strictly unitary. Moreover, Dy, (A€) is also triangulated
equivalent to the quotient of Mody,(A¢) by homotopies of (unitary) Ag-bimodules if
A is unitary (see [18], Cor. 2.4.2.2, Thm. 4.1.3.1 and 4.2.0.4). We remark that if A is
a unitary dg algebra, the faithful functor Modg4(A¢) — Mod (A€) given by inclusion
induces an equivalence of triangulated categories Dyq4(A°) — Dy (A°), where Dy, (A°)
is the triangulated category given as the localization of the dg category Modg,(A°)
of (unitary) dg A-bimodules by quasi-isomorphisms (see [18], Lemmes 2.4.2.3 and
4.1.3.8). The previous definitions can be generalized to the nonunitary case, for which
the previous results also hold (see [18], Déf. 4.1.3.9 and Cor. 4.1.3.1). Moreover, any
quasi-isomorphism of A -algebras f,: A — B induces an equivalence of triangulated
categories Dy, (B®) — Dy (A°) (see [18], Thm. 4.1.2.4).

The reason for studying the complexes considered in the previous subsection is
justified by the following result. Combined with Proposition 4.5, it gives a more
natural proof of [5], Lemma 6.5.
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Proposition 5.1. Let A be an Ay-algebra and let M and N be two Ay -bimodules
over A. Then, the space of cocycles Z°((M ®%. N)#) is canonically isomorphic to
the space of morphisms Homyoq, ((a+)e)(IV, M#) = Homyoq,, (a)(N, M#). More-
over, if M# and N are H-unitary, the previous map induces an isomorphism between
HO((M ®%. N)#) and the space of morphisms Homp_ (acy(N, M#).

Proof. Using the identification (4.1), we can transfer the differential on (M ®%. N)#
to endow (M ® B(A)"™ ® N ® B(A)")# with a structure of dg vector space, which is
identified to a structure of dg vector space on Hom(B(A)* ® N ® B(A)*, M#). We
leave to the reader the rather long but elementary verification that the kernel of the
differential of the latter is precisely the image of

HomcoModdg(B(A)"') (Bu(A7 N7 A), Bu(A7 M#7 A))
= HomcoModdg(B+(A+) (BU<A7 N, A)a Bu(Aa M#7 A))

under the map F' +— (ep(a)+ ®idp# ® €p(ay+) o . Moreover, this identification also
sends the set of coboundaries BY((M ®%. N)#) to the equivalence relation gener-
ated by homotopies , so it induces an isomorphism between HY((M ®%. N)#) and
the space of morphisms Hompoo((A+)e)(N, M#). Since M# and N are H-unitary,
they are in the kernel of the functor (5.1) defining the derived category Dy, (A¢), so
Homp_ ((a+)e)(N, M#) coincides with Homp_ (4e)(N, M#). O

Note that the map €4: (A ®%. A)[d] — A[d] ®%. A sending
sap%, 4,d(0@a®D®D)  to s44(a)®ARD®D

is an isomorphism of complexes, for a,b e A and a,b € B(A)*. Propositions 4.5 and 5.1
naturally lead to the following notion.

Definition 5.2. Let (A, b,) be an Ay -algebra, “F, ,: A — A#[—d] a quasi-isomor-
phism of Ay-bimodules and f € Z°((A®%. A)#[—d]) be the associated cycle. More
precisely, f is the image under QZéfCA,—d o f of the element in Z°((A[d] ®%. A)#)
corresponding to 04,_q o “F, o under Proposition 5.1. “F, , is called a strong homo-
topy inner product of degree d if there is a pre-symplectic structure w of degree d on
A such that f = QZéch_d(w © @52, (A[1]))[d],—d © (sym[d])). Note that w o a&BX =0,

since sym is surjective. By writing down the correspondences, we see that “F, , is
a strong homotopy inner product if and only if it is a symmetric homotopy inner
product satisfying

(SA#[_d],d 0 “Fpyq+1,r(@15020a2, as, 513)) (a1)
= (—1)leltlsa2] (sa#[—ay,a © “Fpqsrt1(a1, a2, azsa3as))(a1)
+ (—pylaabrdlanltlsal) (g 0 b0 “Fy i py1 (G2, a3, azsarar) ) (az),
for all homogeneous a,az,a3 € A, and a; € A[1]®P, Gy € A[1]®? and a3 € A[1]®".

This is precisely the notion introduced by Cho and Lee in [6] (see Def. 2.2).

The main result in [4], namely Thm. 4.1 (see also [5], Thm. 3.6), is now a direct
consequence of our Propositions 5.1 and 4.4, together with Corollary 3.6.
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Theorem 5.3. Let A be an H-unitary Ay -algebra having finite dimensional cohomol-
ogy over a field of characteristic zero. Assume that A% is an H-unitary A -bimodule
(e.g. if A is homologically unitary). Let “Fuo: A — A¥[—d] be a morphism of A-
bimodules. Then, “F, . is a strong homotopy inner product if and only if there is a
quasi-isomorphism of Ax-algebras G: B — A such that B is finite dimensional and
“éﬁ.[—d] o%F, 40 “é., is a d-cyclic structure on B, where “é., is the associated
morphism of Ay -bimodules over B recalled in the proof of Fact 3.8.

Proof. Note first that, if fe Z°((A®%. A)#[—d]) is the associated cycle to “F, ,
and [ f] is its cohomology class using Proposition 5.1, then Proposition 4.5 tells us
that [f] is in the image of the map HC,(A, A)#[—d] — H,(A, A)#[—d] induced by
I:H,(A,A) —> HC,(A, A). In other words, “F, . is induced by a symplectic structure
w of degree d on A. By Corollary 3.6, there is a quasi-isomorphism of A, -algebras
G: B — A such that B is finite dimensional and w o G is constant. Applying again
Propositions 4.5 and 5.1, we obtain that “C:'f’&. [-d]o“F,,0 “G’.,. is a d-cyclic struc-
ture on B. The converse is immediate, since any d-cyclic structure is a fortiori a
strong homotopy inner product, and they are invariant under quasi-isomorphisms of
Aq-algebras for the stated transformation. O

A more concrete application of the previous result is the following homological
description of the cyclic structure of a (homologically) unitary A,-algebra. It gives a
direct proof of the equivalence between Definition 5.2 and the Calabi—Yau condition
on a compact Ag-algebras introduced [16], that it is called compact Calabi-Yau in
[7] and right Calabi-Yau in [2].

Corollary 5.4. Let A be a (homologically) unitary As-algebra over a field of char-
acteristic zero. Let B be any finite dimensional minimal homologically unitary Ae-
algebra quasi-isomorphic to A. Then, B has a d-cyclic structure if and only if there
is a quasi-isomorphism A — A#[—d] of Ax-bimodules whose cohomology class is in
the image of the map HC,(A, A)#[—d] — H.(A, A)#[—d].

6. Application to Calabi—Yau algebras

6.1. Basics on Calabi—Yau algebras

In this section we recall the basic material on pseudo-compact Calabi—Yau algebras.
For further details, see [25], Sections 2-8 and 12-15.

Recall that the category of pseudo-compact dg vector spaces is formed by all dg
vector spaces provided with a decreasing filtration of dg vector spaces each of whose
terms is of finite codimension and such that the induced topology is complete (see [9],
IV, 3-4). It is a symmetric monoidal category for the completed tensor product, and
the coproducts in the category of pseudo-compact dg vector spaces coincide with the
product of the underlying dg vector spaces. The notions of pseudo-compact (resp.,
augmented) unitary dg algebras and their pseudo-compact (unitary) dg (bi)modules
are clear, as well as that of pseudo-compact (resp., coaugmented) counitary dg coalge-
bras are their pseudo-compact (counitary) dg (bi)comodules. A pseudo-compact aug-
mented dg algebra A is called local if the kernel of the augmentation of A is the unique
maximal dg ideal A. The category of local pseudo-compact augmented dg algebras
is in fact (contravariantly) equivalent to the category of cocomplete coaugmented dg
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coalgebras, and the category of pseudo-compact (unitary) dg (bi)modules over a local
pseudo-compact (unitary) dg algebra A is (contravariantly) equivalent to the category
of (counitary) dg (bi)comodules over the corresponding cocomplete coaugmented dg
coalgebra (A")°P, where X’ denotes the continuous dual of X. Indeed, the contravari-
ant functors X — X', and Y +— D(Y) given by taking the (ungraded) dual space
Hom(Y, k) provided with the topology obtained by the duals of finite dimensional
subspaces, are quasi-inverse to each other. The categories of local pseudo-compact
augmented dg algebras and that of pseudo-compact (unitary) dg (bi)modules over a
local pseudo-compact augmented dg algebra are endowed with model structures by
means of the previous contravariant equivalence (see [18], Thm. 1.3.1.2, and [20], Sec-
tion 8.2). This allows to define the bar construction BT (A) of a local pseudo-compact
augmented dg algebra A as the pseudo-compact dg coalgebra D(Q1(A’)), as well as
the universal twisting cochain 74: BT (A4) — A, which is the dual of the couniversal
twisting cochain 74" : A" — Q*(A’) (¢f. [14], Section 2.1).

If A is a local pseudo-compact augmented dg algebra, the derived category is
Dypedag(A) is the localization of the category of pseudo-compact (unitary) dg modules
over A by weak equivalences. Recall that the minimal thick triangulated subcategory
of Dpeag(A) containing A is denoted by Perf,.q5(A), and their objects are generically
called perfect. As usual, A¢ denotes the completed tensor product of A and A°P, and
we identify the category of pseudo-compact dg bimodules over A with the category
of pseudo-compact dg modules over A¢. We say that A is homologically smooth if A
belongs to Perf,.q44(A°). We recall that in this article a (triangulated) subcategory S
of a (triangulated) category 7 is be definition always full and strict, i.e. S contains
all objects in 7 isomorphic to an object in §. We also recall that a triangulated
subcategory S of a triangulated category is called thick if it is closed under direct
summands. We will say that a local pseudo-compact augmented dg algebra A is
strongly smooth if it is homologically smooth and k belongs to Perf,.q4(A).

For latter use, we recall that A€ is a pseudo-compact A°-bimodule, with the outer
and inner actions given by

alc®d)b = ac®db, and a(c® d)b = (—1)lellbl+lallel+lldlcp @ g,

respectively. It is clear that the pseudo-compact dg algebras A¢ and (A€)°P are iso-
morphic via a ® b — (fl)m”b‘b ® a, interchanging the outer and inner actions.
The following definition is due to Ginzburg in [11] (see also [16,23,24]).

Definition 6.1. Let d € Z. A local pseudo-compact augmented dg algebra A is called
d-Calabi—Yau if it is homologically smooth and there is an isomorphism

RHom 4 (A, A°) — A[—d], (6.1)

in Dpeag(A°), where A° is provided with the outer action, and the inner action induces
a structure of A®-module on RHom 4-(A, A°).

Remark 6.2. In the first definition by Ginzburg, the previous isomorphism f was also
assumed to satisfy the duality condition f = RHom e (f, A°)[—d]. However, this is
always verified (see [25], Prop. 14.1).

We first recall that the Hochschild homology HH,.(A) of a local pseudo-compact
dg algebra A can be defined as the homology of the complex A ®Y4. A in Dpeay(k).
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This is equivalent to the usual definition involving the bar resolution of A, since the
latter is a semifree resolution of A in the category of pseudo-compact dg A-bimodules.
Moreover, if A is augmented, then the usual Hochschild complex computing A ®%5. A
is A®,, BT (A), where 74: B*(A) — A is the universal twisting cochain. By its very
definition, the latter complex is obtained by applying the functor D to the complex
QT (A") ®,4 A’, computing the Cartier-Doi homology HH,(A’) (see [3,8]). This fact
together with a well-known result on resolutions of cofibrant dg algebras implies the
following (cf. [25], Cor. 15.2).

Proposition 6.3. Let A be a local pseudo-compact augmented dg algebra. Then,
HH,(A) ~ ]D)(HH. (B+(A)')).

Proof. As the complex A®,, B*(A) computing the Hochschild homology H H,(A)
is obtained by applying the functor D to the complex Q% (A") ® 1 A’ computing
the Cartier-Doi homology H H,(A’), we see that HH,(A) ~ D(HH,(A")). It suffices
to show that HH,(A’) is isomorphic to the Hochschild homology HH,.(B*(A)’) of
the dg algebra BT (A)’, i.e. Q7 (A)®, 4 A" and BT (A)’ @rpt ay BT (B*(A)") are
quasi-isomorphic complexes. The result now follows from the fact that, by definition,
Bt(A) = Qt(A’), and that [14], Fact 2.5, tells us that the complexes QT (A") ® . A’
and Q1 (A) Rros ar) BT (Q*(A’)) are quasi-isomorphic. O

We recall that, given three local pseudo-compact augmented dg algebras B, C' and
D, as well as a pseudo-compact dg B°P-module M, a pseudo-compact dg C ® B°P-
module N, and a pseudo-compact dg C'® D°P-module P, such that M is in the
minimal thick triangulated subcategory of Dpeqq(C°P) containing the right pseudo-
compact dg B°P-module B°P, then the morphism

M ®p RHome(N, P) — RHome(RHompes (M, N), P)

induced by the map sending m ® f to the mapping ¢ — f(¢(m)) is an isomorphism
in Dpeag(DP). As a consequence, if A is d-Calabi-Yau, we see that

RHom ac (RHomae (A, A°), A[—d]) ~ A@%. RHoma (A, A[—d]) ~ A®';. A[—d]
(6.2)
in Dpeqq(k). As a consequence, the isomorphism (6.1) is given by an element £ €
A®Y. A[—d] of homological degree zero, and it is unique up to quasi-isomorphism,
i.e. it is uniquely determined by a Hochschild homology class H Hy(A), which we are
going to denote also by &.

The next definitions make sense for both usual dg algebras or for local pseudo-
compact augmented ones, taking into account that for the latter we use completed
tensor products and the model structure we explained before. Denote A ®45. A sim-
ply by Ce(A, A). As recalled previously, this complex is endowed with a dg module
structure over the dg algebra A = k[e]/(€?), where € has degree —1 and d(e) = 0. For
the following definitions, we recall that k is provided with the trivial action of A
and the zero differential. We recall that the cyclic homology of a pseudo-compact
dg algebra A is given as the homology of the complex CC,(A4, A) = C,(A, A) ®% k.
Analogously, we recall that the negative cyclic homology of A is given as the homology
of CC, (A, A) = RHomp(k,Ce(A, A)). Even though this is not the usual phrasing of
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the notions of cyclic and negative cyclic homology, respectively, it can be easily seen
that they are equivalent to the usual notions we recalled previously by picking the
obvious semifree resolution of the dg A-module k. Recall that the map I in (2.10)
coincides with

Co(A,A) = Co(A,A) @k — Cy (A, A) @5 k= CC, (A, A).

The following definition appears in [7] as (strong) smooth Calabi-Yau and in [2] as
left Calabi—Yau, and it is apparently due to Kontsevich and Vlassopoulos (see [17]).

Definition 6.4. Let A be a local pseudo-compact augmented dg algebra and let
de Z. It is said to be an almost exact d-Calabi-Yau algebra, if it is d-Calabi-Yau
with isomorphism (6.1) given by a Hochschild homology class £ € HH4(A) that is in
the image of the canonical map hq: HC (A) — HHy(A).

Remark 6.5. The isomorphism (6.1) is not part of the structure of a (resp., almost
exact) d-Calabi—Yau algebra: we only require its existence. In [25], Def. 7.3, the
author calls a d-Calabi—Yau algebra A with isomorphism (6.1) given by a homology
class £ € HH4(A) exact if £ belongs to the image of the canonical map

hd o Bd_1: HCd_l(A) i HHd(A),

where this latter map is denoted simply by B (as usual in the literature). It is clear
that an exact d-Calabi—Yau algebra is almost exact.

6.2. Calabi—Yau dg algebras and homotopy inner products

We now provide a direct application of our main result, Theorem 5.3, which extends
[25], Thm. 11.1, but with a completely different proof. The proof is based on some
discussions with Greg Stevenson, but the last part is closer to the one sketched in [7],
Thm. 25.

Theorem 6.6. Let A be a local pseudo-compact augmented dg algebra over a field
of characteristic zero and let A’ be the cocomplete coaugmented dg coalgebra given
by the continuous dual. Assume A is strongly smooth. Let E = QT (A’) be the cobar
construction of A’, so E ~RHoma(k, k). Then, A is (resp., almost exact) d-Calabi-
Yau if and only if E has a (resp., strong) homotopy inner product of degree d.

Proof. We establish first some basic results. The strong smoothness assumption on
A implies that k is in Perf,.qq(A°), and that E has finite dimensional cohomol-
ogy. Indeed, the first statement follows from considering P® P°? ~ k®k ~ k in
Dpedg(A®), where P ~ k is a finite free resolution in Djc4q(A), whereas the second
follows from E ~ RHom 4 (k, k) in Dgy(k), which is a compact object for it is the dual
of k®Y k ~ P®Y P°P, which is compact in Dg,(k). On the other hand consider the
functor

T = ()@Y k: Dpeag(A®) — Day(E°),

where k is regarded as a dg A°-FE°-bimodule, that is pseudo-compact as left dg A°-
module, as well as

T = (=) ®HE6 k: Ddg(Ee) - pcdg(Ae)a

where k is a dg F°-A°-bimodule, that is pseudo-compact as right dg A°-module. It is
clear that T is the composition of the equivalence Dpeqq(A¢) — Dyy((A')¢) together
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with (=) ®,a E°, where Dgg((A')°) denotes the coderived category of the cocom-
plete coaugmented dg coalgebra A’, whereas T" is the composition of (—) ®, s (A")®
together with the equivalence Dgg4((A")¢) — Dpedg(A€). As explained in [20], Sec-
tion 8.4, these functors come from a Quillen adjunction at the level of the categories
of pseudo-compact dg modules and dg modules, respectively, that induce a Quillen
equivalence between the corresponding derived categories.

The adjunction between the derived tensor product and the derived homomor-
phism functor tells us that

T(X)# = (k@Y. X)# ~ RHoma- (X, k), for all X € Dpeaq(A°),
where we have used that
RHomy(—, k) = Homp(—, k) = (—)%.

As a consequence, if T'(X) or T'(X)# has finite dimensional cohomology, then the
other has as well and (T(X)#)# ~ T(X) in Dgy(E®). As explained before, since

T(A[~d]) = A[—d] @4 k ~ k@Y k[—d] and k€ Perfpegy(A),
T(A[—d]) is a compact object of Dgq(E€). As a consequence,
T(A[~d]) ~ k@ k[~d] ~ E¥[~d]
in Dyg(E°). Note also that

T(RHomac (A, A%)) = RHomac (A, A°) @4 k ~ RHomac (A, A° ®Y. k)
~ RHomae (A k) ~ RHoma(k, k) = E

in Dggy(E°), where we used in the first isomorphism that k belongs to Perf,.q4(A°).
By Proposition 6.3, there is an isomorphism A ®@Y4. A ~ D(E ®%. E) in Dpeqy(k),
which combined with (6.2) gives an isomorphism

RHom 4 (RHom ac (A, A%), A[—d]) ~ D(E ®'. E[—d]) (6.3)

in Dpeag(k). Notice that the map (6.3) induces an isomorphism between the space
of morphisms f: RHomae(A, A°) — A[—d] in Dpcqq(A°) and that of linear forms
B e (E®%. E[—d])* homogeneous of degree zero, i.e. morphisms g: E[d] — E# in
Dyg(E*). We claim that f: RHomae (A, A°) — A[—d] is an isomorphism in D44 (A°)
if and only if its image under the map (6.3) induces an isomorphism g: E — E#[—d]
in Dgg(E€). By the comments in the previous paragraph, T'(f) defines a morphism
E — E#[—d] in Dgy(E¢). This is precisely the image of f under (6.3). Since 7T is an
equivalence, it is clear that T'(f) is an isomorphism if and only if f is so, which proves
the claim. Hence, A is d-Calabi-Yau if and only if F has a homotopy inner product
of degree d.

Let us now prove that A is exact d-Calabi—Yau if and only if E has a strong
homotopy inner product of degree d. Assume that A is d-Calabi—Yau (or, equivalently,
that E has a homotopy inner product of degree d). Let £ € HH;(A) be the homology
class associated to the isomorphism f: RHomae (A, A®) — A[—d| in Dpeqq(A€), and
A€ HHy(FE)' the linear functional on the Hochschild homology associated to the
corresponding isomorphism g: E — E#[—d] in Dg,(E°) under (6.3). We will show
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that & = hg(x), for some x € HC (A) if and only if \: Co(E, E) — k factors through
I:C.(E,E) - C.(E,E)®% k = CC,(E),

i.e. A is in the image of I#. This follows from the commutative diagram

CCy (A) h Cu(A, A)
RHomA(k,C.(A,A)) 2
RHoma (kz RHom(C.(E, E), k)) RHom(C.(E, E), k)
nl I#*

RHom (C(E, E) ®j3 k, k) ———— RHom(CC,(E), k)

in Dy, (k) (given by forgetting the topologies on the respective pseudo-compact vector
spaces), where the upper right vertical map and the middle left vertical map are
given by Proposition 6.3, the bottom left vertical map is just adjunction between
the derived tensor product and the derived homomorphism space, and the upper
left vertical map and the bottom horizontal map are identifications described in the
previous subsection. The claimed equivalence follows from Corollary 5.4. O
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