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Abstract
Hyperoctahedral homology for involutive algebras is the

homology theory associated to the hyperoctahedral crossed sim-
plicial group. It is related to equivariant stable homotopy the-
ory via the homology of equivariant infinite loop spaces. In this
paper we show that there is an E-infinity algebra structure on
the simplicial module that computes hyperoctahedral homol-
ogy. We deduce that hyperoctahedral homology admits Dyer-
Lashof homology operations. Furthermore, there is a Pontryagin
product which gives hyperoctahedral homology the structure
of an associative, graded-commutative algebra. We also give an
explicit description of hyperoctahedral homology in degree zero.
Combining this description and the Pontryagin product we show
that hyperoctahedral homology fails to preserve Morita equiv-
alence.

1. Introduction

Hyperoctahedral homology for involutive algebras is the homology theory associated
to the hyperoctahedral crossed simplicial group [FL91, Section 3]. It was introduced
by Fiedorowicz [Fie, Section 2] and developed by the author [Gra22]. The hyperoc-
tahedral crossed simplicial group is the largest of the fundamental crossed simplicial
groups, meaning that every other crossed simplicial group is either a subobject or an
extension of a subobject [FL91, Theorem 3.6]. It is therefore of interest to study the
properties of the associated homology theory. It has applications in equivariant stable
homotopy theory. In particular, the author showed [Gra22, Theorem 8.8] that for a
group of odd order G and a commutative ground ring k, there is an isomorphism of
graded k-modules HO⋆(k[G]) ∼= H⋆ (ΦΩC2

QC2
BG) where BG is the classifying space

of the group, QC2
is the C2-equivariant free infinite loop space functor, ΩC2

is the
C2-equivariant based loops functor and Φ is the C2-fixed point functor.

In this paper we show that the simplicial k-module used to compute the hyperoc-
tahedral homology of an involutive algebra has the structure of an E∞-algebra in the
category of simplicial k-modules.
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The notion of E∞-algebra first appeared in work of Boardman and Vogt [BV68]
and was developed by May [May72] amongst others. An E∞-algebra structure on an
object means that is has a multiplication operation that is both associative and com-
mutative up to all higher homotopies. One important implication of an E∞-algebra
structure is that it yields tools for calculation. We will show that the E∞-algebra
structure on the simplicial k-module which calculates hyperoctahedral homology in
this paper gives rise to two such tools: Dyer-Lashof homology operations and a Pon-
tryagin product.

Dyer-Lashof homology operations are an important tool for calculation in algebraic
topology and homological algebra. They were introduced in [DL62] and used to
calculate the homology of infinite loop spaces. Consider the isomorphism of graded
k-modules HO⋆(k[G]) ∼= H⋆ (ΦΩC2

QC2
BG). When we take k[G] = Fp[Z], the right

hand side has an action of the Dyer-Lashof algebra. The result of this paper shows
that the left hand side also has an action of the Dyer-Lashof algebra in this case. The
author hopes that this is the first stage in showing that this isomorphism of graded k-
modules is in fact more structured. In particular, it is hoped that it preserves the Dyer-
Lashof actions. This is a non-trivial statement and should certainly be investigated
in the case of symmetric homology first.

The notion of a Pontryagin product has its roots in [Pon39]. In its simplest formu-
lation it provides a graded product structure on the singular homology of topological
spaces although there are many variants and generalizations. For example, there is a
Pontryagin product on H-spaces [Hat02, 3.C]. The Pontryagin product in this paper
gives hyperoctahedral homology the structure of an associative, graded-commutative
algebra. This is a remarkable property that hyperoctahedral homology shares with
symmetric homology: there is a graded-commutative structure on hyperoctahedral
homology, even when the algebra under consideration is not commutative! In light
of this it is natural to ask whether the homology theory associated to an arbitrary
crossed simplicial group has the structure of a graded ring or a graded-commutative
ring. However, in general the homology theory associated to a crossed simplicial group
is not known to have any structure beyond that of a graded module.

The method of proof in this paper closely follows [Aul14] in which an E∞-algebra
structure is found for symmetric homology. Ault’s proof has four main stages:

• construct an analogue of the Barratt-Eccles operad in the category of small
categories;

• construct a left operad module, in the sense of [Fre04, 2.1.6], over this operad
using under-categories of the symmetric category;

• use this left operad module structure to deduce an E∞-algebra structure on an
object closely related to the concept of a Schur functor [MSS02, Definition
1.24];

• deduce that this induces an E∞-algebra structure on the simplicial k-module
that computes symmetric homology.

We will see that hyperoctahedral homology shares many of the properties of sym-
metric homology. The keys to finding an E∞-algebra structure for hyperoctahedral
homology are as follows. Firstly we define the tuple category in Section 3. In some
sense this can be seen as an “involutive” version of the material in [Aul14, Sec-
tion 2.2]. In Section 4 we define a left operad module over the categorical version
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of the Barratt-Eccles operad using under-categories of the hyperoctahedral category.
The main work in this section is identifying the correct functors required to verify
the left operad module structure. These are found in Lemma 4.7 and Definition 4.9.
Once these have been established, the technical details of the proofs of Lemma 4.7,
Lemma 4.10 and Theorem 5.4 pass over from the symmetric case mutatis mutandis.

The paper is organized as follows. In Section 2 we collate the background material
that we will require for the remainder of the paper. In Subsection 2.1 we define
the categories that we will use throughout the paper. In Subsection 2.2 we recall
constructions from functor homology, in particular the tensor product of functors,
Tor functors over a small category and simplicial k-modules used to compute them.
Subsection 2.3 recalls the definition of hyperoctahedral homology for an involutive
algebra, in terms of functor homology. We recall the hyperoctahedral category and the
hyperoctahedral bar construction. Finally, in Subsection 2.4 we recall the necessary
material from the theory of operads. We recall the notion of an E∞-operad in a
symmetric monoidal model category. As examples we recall analogues of the Barratt-
Eccles operad in the category of small categories and in the category of simplicial
k-modules. We recall the definition of a left operad module in the sense of [Fre04,
2.1.6].

In Section 3 we define the tuple category. For an involutive monoid M , the tuple
category is constructed from tuples of elements in M , morphisms in the hyperocta-
hedral category and the hyperoctahedral bar construction. We show that the tuple
category is symmetric strict monoidal, giving it the structure of an E∞-algebra in
the category of small categories.

In Section 4 we construct a left operad module over the Barratt-Eccles operad in
the category of small categories, using under-categories in the hyperoctahedral cate-
gory. In Section 5 we will use the left operad module structure to deduce that there
is an E∞-algebra structure on the simplicial k-module which computes hyperocta-
hedral homology. As a corollary we obtain Dyer-Lashof homology operations and a
Pontryagin product for hyperoctahedral homology.

In Section 6, we give an explicit description of hyperoctahedral homology in degree
zero. We prove that for an involutive k-algebra A, the degree zero hyperoctahedral
homology is isomorphic to the quotient of A by the ideal generated by the rela-
tion a0a1a2 − a2a1a0. In particular, degree zero hyperoctahedral homology has a ring
structure induced from the one in A. We show that this description of degree zero
hyperoctahedral homology together with the Pontryagin product implies that hype-
roctahedral homology does not preserve Morita equivalence.

Conventions

Throughout the paper, k will denote a unital commutative ground ring. All the
algebras considered are unital.
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2. Background material

We begin this section by collating definitions and notation for the categories that
we will use throughout the rest of the paper. In Subsection 2.2 we recall the con-
structions from functor homology necessary to define hyperoctahedral homology in
Subsection 2.3. We recall the hyperoctahedral category and the hyperoctahedral bar
construction. We recall the simplicial k-module used to compute hyperoctahedral
homology, which we will later show bears the structure of an E∞-algebra. Finally
in Subsection 2.4 we recall the required material on operad theory, specifically the
notions of E∞-operad in a symmetric monoidal model category and the notion of a
left operad module.

2.1. Categories
We begin by defining the categories that we will require throughout the paper.

Definition 2.1. The following categories will be used throughout the paper.

• Let Cat be the category of small categories and functors.

• Let ∆ be the category whose objects are the sets [n] = {0, . . . , n} for n ⩾ 0 with
order-preserving maps as morphisms [Lod98, B.1].

• Let sSet denote the category of simplicial sets.

• Let Modk and sModk denote the categories of k-modules and simplicial k-
modules respectively.

• Let Top denote the category of compactly-generated Hausdorff topological
spaces and continuous maps.

• For a finite group G, let EG denote the category whose objects are the elements
g ∈ G with a unique morphism g2g

−1
1 ∈ HomEG (g1, g2).

• Let IMon denote the category of involutive monoids and involution-preserving
morphisms.

• Let S denote the symmetric groupoid. The objects are the sets n = {1, . . . , n}
for n ⩾ 0 and HomS (n, n) = Σn.

• For a category C and an object C ∈ C, we denote the under-category by C ↓ C,
see [ML98, II.6] for instance.

• Let {Ci} be a set of small categories whose object sets are pairwise disjoint.
Let

∐
i Ci denote the category whose object set is

∐
i Ob (Ci) and whose set of

morphisms is
∐

i Mor (Ci).

2.2. Functor homology
Throughout the paper we will make use of concepts from functor homology. We

recall the necessary constructions from [PR02] and [GZ67].

Definition 2.2. Let C be a small category. We define the category of left C-modules,
denoted CMod, to be the functor category Fun (C,Modk). We define the category
of right C-modules, denoted ModC, to be the functor category Fun (Cop,Modk).

It is well-known that the categories CMod and ModC are abelian with enough
projectives and injectives, see for example [PR02, Section 1.6].
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Definition 2.3. Let k⋆ denote the right C-module that is constant at the trivial
k-module. We will refer to this functor as the k-constant right C-module.

Definition 2.4. Let G be an object of ModC and F be an object of CMod. We
define the tensor product G⊗C F to be the k-module⊕

C∈Ob(C)G(C)⊗k F (C)〈
G(α)(x)⊗ y − x⊗ F (α)(y)

〉 ,
where

〈
G(α)(x)⊗ y − x⊗ F (α)(y)

〉
is the k-submodule generated by the set{

G(α)(x)⊗ y − x⊗ F (α)(y) : α ∈ Hom(C), x ∈ src(G(α)), y ∈ src(F (α))
}
.

This quotient module is spanned k-linearly by equivalence classes of elementary
tensors in

⊕
C∈Ob(C)G(C)⊗k F (C) which we will denote by [x⊗ y].

Definition 2.5. One constructs the tensor product of C-modules as a bifunctor
−⊗C − : ModC×CMod→Modk on objects by (G,F ) 7→ G⊗C F . Given two
natural transformations Θ ∈ HomModC (G,G1) and Ψ ∈ HomCMod (F, F1), the mor-
phism Θ⊗C Ψ is determined by [x⊗ y] 7→

[
ΘC(x)⊗ΨC(y)

]
.

It is well-known that the bifunctor −⊗C − is right exact with respect to both
variables and preserves direct sums, see for example [PR02, Section 1.6].

Definition 2.6. We denote the left derived functors of −⊗C − by TorC⋆ (−,−).

Recall the nerve of a small category C [Lod98, B.12]. N⋆C is the simplicial set
such that NnC for n ⩾ 1 consists of all strings of composable morphisms of length
n in C and N0C is the set of objects in C. The face maps are defined to either
compose adjacent morphisms in the string or truncate the string and the degeneracy
maps insert identity morphisms into the string. We will denote an element of NnC
by (fn, . . . , f1) where fi ∈ HomC (Ci−1, Ci).

We will be particularly interested in the case where G is a functor of the form
k
[
Nn (− ↓ C)

]
. That is, we take the nth level of the nerve of an under-category and

then take the free k-module on this set. We can view this construction as a resolution
of the k-constant right C-module k⋆ in the category ModC. We observe that in this
case k

[
N⋆ (− ↓ C)

]
⊗C F has the structure of a simplicial k-module, where the face

and degeneracy maps are induced from nerve construction, and the homology of this
simplicial k-module is TorC⋆ (k⋆, F ).

There is an isomorphic construction due to Gabriel and Zisman [GZ67, Appen-
dix 2].

Definition 2.7. Let F ∈ CMod. We define

Cn(C, F ) =
⊕

(fn,...,f1)

F (C0),

where the direct sum runs through all elements (fn, . . . , f1) of NnC and, for each i,
fi ∈ HomC (Ci−1, Ci). We write a generator of Cn(C, F ) in the form (fn, . . . , f1, x)
where (fn, . . . , f1) ∈ NnC indexes the summand and x ∈ F (C0).
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The face maps ∂i : Cn(C, F )→ Cn−1(C, F ) are determined by

∂i(fn, . . . , f1, x) =


(fn, . . . , f2, F (f1)(x)) i = 0,

(fn, . . . , fi+1 ◦ fi, . . . , f1, x) 1 ⩽ i ⩽ n− 1,

(fn−1, . . . , f1, x) i = n.

The degeneracy maps insert identity maps into the string. We will denote the homol-
ogy of the associated chain complex by H⋆ (C, F ).

Remark 2.8. As mentioned above, for a left C-module F there is an isomorphism of
simplicial k-modules C⋆ (C, F ) ∼= k

[
N⋆ (− ↓ C)

]
⊗C F . This is well-known; for exam-

ple, details of this isomorphism are discussed in [Aul10, Section 1.3] for specific
choices of C and F .

2.3. Hyperoctahedral homology
Recall from [FL91, Definition 1.1] that a family of groups {Gn}n⩾0 is a crossed

simplicial group if there exists a small category ∆G such that: the objects of ∆G are
the sets [n] for n ⩾ 0; ∆G contains ∆ as a subcategory; Aut∆G([n]) = Gn; and any
morphism in Hom∆G

(
[n], [m]

)
can be written uniquely as a pair (φ, g) where g ∈ Gn

and φ ∈ Hom∆

(
[n], [m]

)
.

The final condition ensures that the category ∆G has a well defined composi-
tion, which is denoted by (ψ, h) ◦ (φ, g) =

(
ψ ◦ h⋆(φ), φ⋆(h) ◦ g

)
where the morphisms

h⋆(φ) and φ
⋆(h) are determined by the crossed simplicial group {Gn}.

Definition 2.9. For n ⩾ 0, the hyperoctahedral group Hn+1 is defined to be the semi-
direct product Cn+1

2 ⋊ Σn+1, where C2 =
〈
t | t2 = 1

〉
and Σn+1 acts on Cn+1

2 by
permuting the factors.

It is shown in [FL91, 3.3, 3.4] that the family of hyperoctahedral groups and the
family of symmetric groups {Σn+1}n⩾0 are crossed simplicial groups.

Definition 2.10. Let ∆S and ∆H denote the categories associated to the symmetric
and hyperoctahedral crossed simplicial groups respectively. The composition laws in
each category are determined by the relations given in [Lod98, E.6.1.7] and [Gra22,
Definition 1.2] respectively.

Remark 2.11. Let ∆S+ and ∆H+ denote the categories formed from ∆S and ∆H
by appending an initial object, which will be denoted by [−1]. Both ∆S+ and ∆H+

are symmetric strict monoidal categories, as proved in [Aul10, Proposition 9] and
[Gra22, Proposition 6.2] respectively.

Remark 2.12. Fiedorowicz and Loday provide a classification theorem for crossed
simplicial groups [FL91, Theorem 3.6]. This shows that there are seven fundamental
crossed simplicial groups. The largest of these is the hyperoctahedral crossed simplicial
group; the remainder being subgroups of hyperoctahedral groups. Any other crossed
simplicial group is an extension of a fundamental crossed simplicial group. From this
perspective it is important to understand the properties of hyperoctahedral homology.
However it also raises interesting questions. Fiedorowicz and Loday prove that any
semi-direct extension of the symmetric groups is a crossed simplical group [FL91,
Theorem 3.10]. The author plans to investigate the homology theories associated to
these crossed simplicial groups.
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Definition 2.13. Let A be an involutive, associative k-algebra with the involution
denoted by a 7→ a. The hyperoctahedral bar construction is the functor

HA : ∆H →Modk given on objects by [n] 7→ A⊗n+1

for n ⩾ 0. Let (φ, g) ∈ Hom∆H

(
[n], [m]

)
. Then φ ∈ Hom∆

(
[n], [m]

)
along with g =

(z0, . . . , zn;σ) ∈ Hn+1. We define

HA (φ, g) (a0 ⊗ · · · ⊗ an) =

 ∏
i∈(φ◦σ)−1(0)

azii

⊗ · · · ⊗
 ∏

i∈(φ◦σ)−1(m)

azii


on elementary tensors and extend k-linearly, where the product is ordered according
to the map φ and

azi =

{
a zi = 1

a zi = t.

Note that an empty product is defined to be the multiplicative unit 1A.

Definition 2.14. Let A be an involutive, associative algebra. For n ⩾ 0, we define
the nth hyperoctahedral homology of A to be

HOn(A) := Tor∆H
n (k⋆,HA) .

Remark 2.15. We recall from [Gra22, Definition 6.3] that the hyperoctahedral bar
construction extends to a functor HA+ ∈ Fun (∆H+,Modk) by defining HA+([−1]) =
k and, for n ⩾ 0 and in ∈ Hom∆H+

(
[−1], [n]

)
, defining HA+(in) to be the inclusion

of k-algebras k → A⊗(n+1). Furthermore, by [Gra22, Theorem 6.4], there is an iso-
morphism of graded k-modules HO⋆(A) ∼= H⋆ (∆H+,HA+).

Definition 2.16. For a monoid with involution, M , we define a functor

HM : ∆H+ → IMon on objects by HM

(
[n]

)
=

{
Mn+1 n ⩾ 0

∅ n = −1,

whereMn+1 denotes the (n+ 1)-fold Cartesian product. HM is defined on morphisms
in ∆H analogously to HA. We define HM (in) to be the unique map ∅ →Mn+1. We
call HM the hyperoctahedral bar construction for monoids.

2.4. Operad theory
Recall [Hov99, 4.2.6] that a symmetric monoidal model category is a category

that bears both the structure of a symmetric monoidal category [Hov99, 4.1.4] and
of a model category [Hov99, 1.1.3] subject to some compatibility conditions.

Example 2.17. We will be particularly interested in the following symmetric monoidal
model categories.

• The category sSet with the level-wise Cartesian product and the Quillen model
structure [Hov99, 4.2.8].

• The category sModk with the level-wise tensor product of k-modules and the
projective model structure [Qui67, II.4.12].
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• The category Cat with the product of categories and the Thomason model
structure [Tho80].

Definition 2.18. Let C be a small symmetric monoidal model category with unit 1.
An E∞-operad in C is a functor O ∈ Fun (Sop,C) such that

• the conditions of an operad [May72, Definition 1.1] are satisfied;

• for each n ⩾ 0, O(n) is weakly equivalent to 1 in the model structure;

• for each n ⩾ 0, the action of Σn on O(n) is free.

Example 2.19. Some interesting examples of E∞-operads in Top are the little ∞-
cubes operad [May72, Section 4], the Barratt-Eccles operad [BE74], [BF04, 1.1]
and the hyperoctahedral operad [Gra22, Definition 7.9].

Remark 2.20. Observe that if O is an E∞-operad in a symmetric monoidal model
category C and F ∈ Fun (C,D) is symmetric monoidal then there is an E∞-operad
in D induced from O by F . We will be particularly interested in the categories Cat,
sSet and sModk with the nerve functor N ∈ Fun (Cat, sSet) and the free k-module
functor k[−] ∈ Fun (sSet, sModk).

Example 2.21. We describe an analogue of the Barratt-Eccles operad in Cat, follow-
ing [Aul14, Example 2.7]. The nerve functor then recovers a familiar description of
the Barratt-Eccles operad in the category of simplicial sets and the free k-module
functor induces an analogue of the Barratt-Eccles operad in the category sModk.
Following Ault, the operads in Cat and sModk will be denoted by DCat and DMod

respectively.

For m ⩾ 0 let DCat(m) = EΣm. Let m, k1, . . . , km ⩾ 0 and let k =
∑m

i=1 ki. The
operad structure maps are the functors

DCat(m)×DCat(k1)× · · · × DCat(km)→ DCat(k)

given on objects by

(σ, τ1, . . . , τm) 7→ τσ−1(1) × · · · × τσ−1(m).

That is, we form the permutation where τi acts on a block of size ki and we permute
the blocks according to the permutation σ ∈ Σm.

The right action of Σm of EΣm is given by composition of group elements and
is therefore a free action. The category EΣm is contractible since the nerve of the
category EΣm is a simplicial model of the total space of Σm. Therefore DCat is an
E∞-operad in Cat.

Definition 2.22. Let C be a symmetric monoidal model category and let O be an
E∞-operad in C. An O-algebra [MSS02, Definition II.1.20] is called an E∞-algebra
in C.

Example 2.23. As shown in [Aul14, 2.5], a symmetric strict monoidal category has
the structure of a DCat-algebra and is therefore an E∞-algebra in Cat.
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Definition 2.24. Let (C,⊗) be a symmetric monoidal category. Let O be an operad
in C. A left O-module is a functorM∈ Fun (Sop,C) together with composition prod-
ucts

O(n)⊗M(p1)⊗ · · · ⊗M(pn)→M (p1 + · · ·+ pn)

satisfying associativity, left unit and equivariance conditions analogous to those of an
operad.

Proposition 2.25. Let (C,⊕,⊗) be a cocomplete distributive symmetric monoidal
category. Let O be an operad in C. LetM be a left O-module and let Z be an object
in C. Then

M⟨Z⟩ :=
⊕
m⩾0

M (m)⊗Σm Z⊗m

admits the structure of an O-algebra.

Proof. This is stated as [Aul14, Proposition 3.7]. It can be proved analogously to
[MSS02, Proposition 1.25] using the left operad module structure maps in place of
the operad structure maps.

3. The tuple category

In this section we define the tuple category. Given an involutive monoidM we con-
struct a category whose objects are tuples of elements inM and whose morphisms are
constructed from the hyperoctahedral category ∆H+. We show that the tuple cate-
gory is symmetric strict monoidal, making it an E∞-algebra in Cat. This structure
is key in the proof of Lemma 4.10.

Definition 3.1. For an involutive monoid M we define the tuple category of M ,
denoted by T (M) as follows. The objects of T (M) are finite, possibly empty, tuples
of elements in M . The empty tuple is denoted by ().

For each morphism f ∈ Hom∆H+

(
[p− 1], [q − 1]

)
for p, q ⩾ 0 andm ∈Mp there is

a morphism (f,m) ∈ HomT (M)

(
m,HM (f)(m)

)
. Composition is defined via the com-

position of morphisms in the category ∆H+ and is well-defined by the functoriality
of HM .

Definition 3.2. We define a functor T (−) ∈ Fun (IMon,Cat) on objects by the
assignment of Definition 3.1. Letm ∈Mp and let (f,m) ∈ HomT (M)

(
m,HM (f)(m)

)
.

For a morphism φ ∈ HomIMon (M,N), T (φ) ∈ HomCat

(
T (M), T (N)

)
is the func-

tor defined on objects by T (φ)(m) = φ(m) and on morphisms by T (φ)(f,m) =
(f, φ(m)), where φ is evaluated on the tuple m point-wise.

Lemma 3.3. LetM be an involutive monoid. The tuple category T (M) has the struc-
ture of a DCat-algebra. That is, it is an E∞-algebra in Cat.

Proof. The product of two tuples in T (M) is given by concatenation. The fact this
product is symmetric strict monoidal follows from the fact ∆H+ is symmetric strict
monoidal under the disjoint union.
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4. A left operad module

In this section we will define a left operad module over DCat in terms of under-
categories of the hyperoctahedral groups. We will use the left operad module defined
in this section, in conjunction with Proposition 2.25, to give an E∞-algebra struc-
ture on C⋆ (∆H+,HA+), the simplicial k-module which computes hyperoctahedral
homology.

Definition 4.1. We define a functor IF(−) ∈ Fun (Sop,Cat) as follows. On objects
we define IF (m) = [m− 1] ↓ ∆H+. For σ ∈ Σm and (φ, g) ∈ [m− 1] ↓ ∆H+, we
define IF(σ)(φ, g) = (φ, g ◦ σ).

Remark 4.2. Henceforth, for the sake of neatness, we will omit the underline on an
object when we apply the functor IF .

Definition 4.3. Let m, j1, . . . , jm ⩾ 0 and let j =
∑m

i=1 ji. For each 1 ⩽ i ⩽ m let
fi ∈ Hom∆H+

(
[ji − 1], [pi − 1]

)
and let gi ∈ Hom∆H+

(
[pi − 1], [qi − 1]

)
.

We define a family of functors

λ : DCat(m)×
m∏
i=1

IF(ji)→ IF(j)

on objects by

λ (σ, f1, . . . , fm) = fσ−1(1) × · · · × fσ−1(m).

That is, fi acts on a block of size ji and we permute the m blocks according to
σ ∈ Σm. The functor λ is defined on morphisms by

λ
(
τσ−1, g1, . . . , gm

)
(σ, f1, . . . , fm) = gτ−1(1)fτ−1(1) × · · · × gτ−1(m)fτ−1(m).

That is, we compose gi with fi, set this to act on a block of size ji and then permute
the blocks according to the permutation τ ∈ Σm. The functoriality of λ follows from
the functoriality of the composition of morphisms in the under-category.

We will show in Lemma 4.10 that the structure from Definitions 4.1 and 4.3 define
the structure of a left DCat-module on IF(−).

Definition 4.4. Let X = {x1, x1, x2, x2, . . .} be a set of formal indeterminates. Let
F (X) denote the free involutive monoid on X.

Remark 4.5. Observe that the set X has a C2-action given by xi 7→ xi. Recall that
a category C is called discrete if the only morphisms in C are identity morphisms.
Note that for each m ⩾ 0 we can consider the Cartesian product Xm as a discrete
category. Furthermore, this category has a left action of the hyperoctahedral group
Hm given by applying the C2-action and permuting the factors.

Remark 4.6. Observe that for each m ⩾ 0 the category IF(m) has a right action of
the hyperoctahedral group Hm defined by (φ, g) • h = (φ, g ◦ h).
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Lemma 4.7. There is an isomorphism of categories

E :
∐
m⩾0

(
IF(m)×Hm

Xm
)
→ T (F (X))

induced from the evaluation maps IF(m)×Xm → T (F (X)) given by

(f, y1, . . . , ym) 7→ HM (f)(y1, . . . , ym).

Proof. The proof is analogous to [Aul14, Lemma 3.4]. One shows that the evalua-
tion maps factor through IF(m)×Hm Xm using the functoriality of HM . One then
constructs the inverse functor, which is induced from the maps that completely factor
the monomials in a tuple in T (F (X)).

For the remainder of this section, fix the choices of m, j1, . . . , jm ⩾ 0 and also let
j =

∑m
i=1 ji.

Definition 4.8. Let y =
(
y1, . . . , yj

)
∈ Xj . Define y1 =

(
y1, . . . , yj1

)
∈ Xj1 and, for

2 ⩽ i ⩽ m, define yi =
(
yj1+···+ji−1+1, . . . , yj1+···+ji

)
∈ Xji .

Definition 4.9. We define the functors we require to verify that IF is a left DCat-
module.

• For 1 ⩽ i ⩽ m, let Ii : IF(ji)→ IF(ji)×Hji
Xji be the inclusion functor send-

ing f 7→ (f,yi).

• Let I = I1 × · · · × Im.

• Let I : IF(j)→ IF(j)×Hj X
j be the inclusion functor f 7→ (f,y).

• For i ⩾ 0, let

Ji : IF(i)×Hi X
i →

∐
i⩾0

(
IF(i)×Hi X

i
)

be the inclusion of categories.

• Let J = Jj1 × · · · × Jjm .

Lemma 4.10. The functors λ of Definition 4.3 define a left DCat-module structure
on the functor IF(−) of Definition 4.1.

Proof. Recall from Lemma 3.3 that the tuple category T (F (X)) has the structure of
a DCat-algebra. Therefore, for m ⩾ 0, we have operad algebra structure maps

θ : DCat(m)× T (F (X))m → T (F (X))

as defined in [Aul14, Section 2.5].

Recall the isomorphism of categories from Lemma 4.7 and the functors of Defini-
tion 4.9. Analogously to [Aul14, Diagram (16)], there is a commutative diagram
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DCat(m)×
m∏
i=1

IF(ji) IF(j)

DCat(m)×
m∏
i=1

(
IF(ji)×Hji

Xji
)

IF(j)×Hj
Xj

DCat(m)×

∐
i⩾0

(
IF(i)×Hi X

i
)×m ∐

i⩾0

(
IF(i)×Hi X

i
)

DCat(m)× T (F (X))m T (F (X))

λ

id×I I

id×J Jj

id×E×m E

θ

in Cat.

The associativity condition of the functors λ is induced from the associativity con-
ditions of the operad algebra structure maps θ, since all the vertical functors are
injective. The left unit condition is satisfied straightforwardly. The equivariance con-
ditions are satisfied similarly to the diagrams labelled Equivariance A and Equiv-
ariance B in [Aul14, Section 3.3].

Definition 4.11. Let ĨF(−) := k
[
N⋆ (− ↓ ∆H+)

]
∈ Fun (Sop, sModk).

Corollary 4.12. There is a left DMod-module structure on ĨF(−).

Proof. The required structure is induced from the DCat-module structure on IF(−)
by the composite of the nerve functor and the free k-module functor.

5. E-infinity structure

In this section we apply Proposition 2.25 to obtain an E∞-algebra in the category of
simplicial k-modules, constructed from the left DMod-module ĨF of Definition 4.11
and the hyperoctahedral bar construction. We prove that the simplicial k-module
C⋆ (∆H+,HA+) is a quotient of this and that the quotient map induces the structure
of an E∞-algebra structure on C⋆ (∆H+,HA+). As a corollary we observe that hype-
roctahedral homology of an involutive algebra admits Dyer-Lashof operations and a
Pontryagin product.

Lemma 5.1. Let A be an involutive k-algebra. The simplicial k-module

ĨF(−)⊗Aut∆S+
HA+

admits the structure of an E∞-algebra in sModk.
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Proof. One identifies

ĨF(−)⊗Aut∆S+
HA+ =

⊕
n⩾0

ĨF(n)⊗Σn
A⊗n = ĨF ⟨A⟩ .

The result now follows from Proposition 2.25 where we set C = sModk, O = DMod,
M = ĨF(−) and Z = A.

Definition 5.2. Let q : ĨF ⟨A⟩ → C⋆ (∆H+,HA+) denote the quotient map of sim-
plicial k-modules induced from the inclusion of categories Aut∆S+ ↪→ ∆S+ ↪→ ∆H+.

Definition 5.3. We denote by

ν : DMod(m)⊗Σm ĨF ⟨A⟩
⊗m → ĨF ⟨A⟩

the operad algebra structure maps implied by Lemma 5.1.

Theorem 5.4. Let A be an involutive k-algebra. The simplicial k-module which com-
putes the hyperoctahedral homology HO⋆(A), C⋆ (∆H+,HA+), bears the structure of
an E∞-algebra in the category sModk.

Proof. Analogously to [Aul14, Lemma 3.10], one can show that the E∞-algebra
structure maps ν of Definition 5.3 and the quotient map q of Definition 5.2 are
compatible in the sense that the diagram

DMod(m)⊗Σm
ĨF ⟨A⟩⊗m ĨF ⟨A⟩

DMod ⊗Σm
C⋆ (∆H+,HA+)

⊗m
C⋆ (∆H+,HA+)

ν

id⊗q⊗m q

ν

commutes. That is, the structure map ν remains well defined upon passing to the
quotient and we deduce that C⋆ (∆H+,HA+) has the structure of aDMod-algebra.

Corollary 5.5. Let A be an involutive k-algebra.

1. When k = Fp for a prime p, the hyperoctahedral homology HO⋆(A) admits Dyer-
Lashof homology operations.

2. For any commutative ground ring k, HO⋆(A) admits a Pontryagin product,
giving it the structure of a unital, associative, graded-commutative algebra.

Proof. The first part of the corollary follows directly from Theorem 5.4 and [CLM76,
Chapter I Theorem 1.1]. The second part of the corollary follows by defining the
product

C⋆ (∆H+,HA+)
⊗2

↪→ DMod(2)⊗Σ2 C⋆ (∆H+,HA+)
⊗2 ν−→ C⋆ (∆H+,HA+)

where ν is the DMod-algebra structure map from Theorem 5.4. The fact that the
product is unital follows from the fact that our analogues of the Barratt-Eccles operad
are unital operads.
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6. Hyperoctahedral homology in degree zero

In this section we give an explicit description of hyperoctahedral homology in
degree zero. We will show that for a unital involutive k algebra A, HO0(A) is isomor-
phic to the quotient of A by the ideal (a0a1a2 − a2a1a0). In particular, we deduce
that HO0(A) has a ring structure.

The material in this section is best presented using an isomorphic variant of the
category ∆H, namely the category of involutive non-commutative sets IF(as). The
isomorphism of [Gra22, Theorem 1.7] tells that a morphism in Hom∆H

(
[n], [m]

)
can be uniquely described as a map of sets f : [n]→ [m] such that for each element
i ∈ [m] the preimage f−1(i) has a total ordering and each element comes adorned
with a superscript label from the group C2. We call such a set a C2-labelled ordered
set. We also recall that a C2-labelled ordered set X has a C2-action, X

t that reverses
the total ordering and multiplies each of the labels by t ∈ C2.

We will require two maps in particular.

Definition 6.1. For each n ⩾ 0, let µn ∈ HomIF(as)

(
[n], [0]

)
be defined by

µ−1
n (0) =

{
01 < 11 < · · · < n1

}
.

Definition 6.2. Let ν ∈ HomIF(as)

(
[2], [0]

)
be defined by ν−1(0) =

{
21 < 1t < 01

}
.

We begin by constructing a partial resolution of the k-constant right IF(as)-
module k⋆.

Lemma 6.3. For each n ⩾ 0 there is an exact sequence of k-modules

0← k
ε←− k

[
HomIF(as)

(
[n], [0]

)] ρ←− k
[
HomIF(as)

(
[n], [2]

)]
,

where ε is defined by ε(f) = 1k on generators and extended k-linearly. The map ρ is
determined on generators by ρ(g) = µ2 ◦ g − ν ◦ g and extended k-linearly.

Proof. The augmentation map ε is surjective by definition. The composite ε ◦ ρ is
zero since the image of ρ on generators consists of two morphisms with differing
signs. Therefore Im(ρ) ⊆ Ker(ε). It remains to show that Ker(ε) ⊆ Im(ρ).

Ker(ε) is spanned by all differences f − f ′ for f , f ′ ∈ HomIF(as)

(
[n], [0]

)
. In fact, it

is spanned by all differences of the form f − µn for f ∈ HomIF(as)

(
[n], [0]

)
. Certainly

all the differences of the form f − µn are in the kernel of ε and we can write any
difference f − f ′ as (f − µn)−

(
f ′ − µn

)
. Therefore, in order to show that Ker(ε)

is contained in Im(ρ) it suffices to show that f − µn is in the image of ρ for each
f ∈ HomIF(as)

(
[n], [0]

)
.

Consider a morphism g ∈ HomIF(as)

(
[n], [2]

)
. This map is completely determined

by g−1(0) = X, g−1(1) = Y and g−1(2) = Z where X, Y and Z are C2-labelled,

ordered sets. By definition ρ(g) = µ2 ◦ g − ν ◦ g where (µ2 ◦ g)−1
(0) = X < Y < Z

and (ν ◦ g)−1
(0) = Z < Y t < X.

In order to show that the differences f − µn lie in the image of ρ it suffices to show
that there is a finite sequence of morphisms fp, . . . , f0 in HomIF(as)

(
[n], [0]

)
such that

fp = f , f0 = µn and for each pair (fi, fi−1) there exists a g ∈ HomIF(as)

(
[n], [2]

)
such

that µ2 ◦ g = fi and ν ◦ g = fi−1.
We construct this sequence of morphisms as follows.
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1. Let f ∈ HomIF(as)

(
[n], [0]

)
be defined by

f−1(0) =
{
iz00 < · · · < iznn

}
.

2. If z0 = z1 = · · · = zn = 1 skip to Step 6. Otherwise apply Steps 3 to 5 until this
is the case.

3. If z0 = t we choose g with

X = ∅, Y =
{
it0
}
, Z =

{
iz11 < · · · < iznn

}
.

4. If z0 = z1 = · · · = zj−1 = 1 with j < n, we choose g with

X =
{
i10 < · · · < i1j−1

}
, Y =

{
itj

}
, Z =

{
i
zj+1

j+1 < · · · < iznn

}
.

5. If z0 = z1 = · · · = zn−1 = 1 we choose g with

X =
{
i10 < · · · < i1n−1

}
, Y =

{
itn
}
, Z = ∅.

6. By applying Steps 3 to 5 above we have obtained a morphism, say β, in
HomIF(as)

(
[n], [0]

)
such that β−1(0) is of the form{

k10 < k11 < · · · < k1n

}
.

7. If km = m for 0 ⩽ m ⩽ n then we have obtained µn and we are done.

8. If not, by repeatedly choosing g such that Y = ∅ and Z is a singleton we cycli-
cally permute the elements of the total ordering without changing any of the
labels. We do this until kn = n.

9. If km = m for 0 ⩽ m ⩽ n then we have obtained µn and we are done.

10. If not, suppose km = m for m > j. Choose g with

X =
{
k10 < · · · < k1j−1

}
, Y =

{
k1j

}
, Z =

{
k1j+1 < · · · < k1n

}
.

11. By choosing g such that Y = ∅ and Z is singleton, we can cyclically permute
this total ordering until we obtain{

ktj < k10 < · · · < k1j−1 < k1j+1 < · · · < knn

}
.

12. Choose g withX = ∅,Y =
{
ktj

}
andZ =

{
k10 < · · · < k1j−1 < k1j+1 < · · · < knn

}
.

13. By choosing g with Y = ∅ and Z a singleton, we cyclically permute the resulting
total ordering to get{

k1j < k10 < · · · < k1j−1 < k1j+1 < · · · < knn

}
.

14. The result of Steps 10 to 13 is to fix km for m > j and to cyclically permute
k0 up to kj whilst leaving the labels unchanged. Repeating this process a finite
number of times we will obtain µn as required.

This shows that all the differences of the form f − µn lie in the image of ρ and so
Ker(ε) ⊆ Im(ρ). Therefore the sequence is exact.
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Let F : IF(as)→ ∆H denote the isomorphism of [Gra22, Theorem 1.7]. The map
F (µn) is the unique order-preserving map (µn, idn) ∈ Hom∆H

(
[n], [0]

)
. Furthermore,

the map F (ν) is the map
(
µ2,

(
1, t, 1; (0 2)

))
∈ Hom∆H

(
[2], [0]

)
.

Corollary 6.4. For each n ⩾ 0 there is an exact sequence of k-modules

0← k
ε←− k

[
Hom∆H

(
[n], [0]

)] ρ←− k
[
Hom∆H

(
[n], [2]

)]
,

where ε is defined by ε
(
(φ, g)

)
= 1k on generators and extended k-linearly. The

map ρ is determined on generators by ρ
(
(ψ, h)

)
= F (µ2) ◦ (ψ, h)− F (ν) ◦ (ψ, h) and

extended k-linearly.

Proof. This follows directly from Lemma 6.3 and [Gra22, Theorem 1.7].

Corollary 6.5. There is an exact sequence of right ∆H-modules

0← k⋆
ε←− k

[
Hom∆H

(
−, [0]

)] ρ←− k
[
Hom∆H

(
−, [2]

)]
,

where ε and ρ are the natural transformations formed from the k-module maps of
Corollary 6.4.

Proof. The exactness of a sequence of functors is checked object-wise, so this follows
directly from Corollary 6.4.

Corollary 6.6. Let A be a unital, involutive k-algebra. The homology of the partial
chain complex

0← A
d←− A⊗3,

where d(a0 ⊗ a1 ⊗ a2) = a0a1a2 − a2a1a0 is isomorphic to HO0(A).

Proof. We apply the functor −⊗∆H HA to the partial resolution of k⋆ in Corollary 6.5
and take homology.

Lemma 6.7. The k-submodule k
[
{a0a1a2 − a2a1a0}

]
of A is, in fact, an ideal of A.

Proof. We observe that given a product of four elements a0a1a2a3 we can use the
relation to obtain any product of four elements given by applying the involution to
any subset of the four factors, then permuting the four factors. This follows from the
algorithm of Lemma 6.3 by showing that we can use the relation to obtain µ3 from
any map in HomIF(as)

(
[3], [0]

)
.

Theorem 6.8. Let A be a unital, involutive k-algebra. There is an isomorphism

HO0(A) ∼=
A

(a0a1a2 − a2a1a0)
.

In particular, HO0(A) has a ring structure induced from the ring structure of A.

Proof. This follows from Corollary 6.6 and Lemma 6.7.

Remark 6.9. We noted in the introduction that hyperoctahedral homology has the
remarkable property that it has a graded-commutative product structure even when
the algebra under consideration is not commutative. We see this in action with this
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theorem. By taking a1 to be the multiplicative identity 1A, we recover the ideal
generated by the commutator submodule of A. This appears in degree zero symmetric
homology [Aul10, Theorem 86].

Corollary 6.10. Let A be a unital, involutive k-algebra.

1. If A is a commutative algebra with the trivial involution then HO0(A) ∼= A.

2. Let A be a commutative algebra with a non-trivial involution. In this case
HO0(A) is isomorphic to the coinvariants of A under the involution.

3. Let A be a unital involutive k-algebra. If the ideal (a0a1a2 − a2a1a0) is equal to
A, then HO⋆(A) is trivial in all degrees.

Proof. The first two statements follow directly from Theorem 6.8. The third state-
ment follows from Theorem 6.8 and Corollary 5.5. In particular, since we have a
unital, associative, graded-commutative product we have have surjective maps

HO0(A)⊗HOq(A)→ HOq(A) given by 1⊗ x 7→ x

for all q ⩾ 0. However, if we have an equality (a0a1a2 − a2a1a0) = A, then HO0(A)
is trivial and so HO⋆(A) is trivial in all degrees.

Corollary 6.11. Hyperoctahedral homology fails to preserve Morita equivalence.

Proof. Let A be a commutative algebra with trivial involution. Consider the involu-
tive algebra of (n× n)-matrices, Mn(A), with n > 1. By taking a1 to be the identity
matrix we see that the ideal (a0a1a2 − a2a1a0) =Mn(A). By Statement (3) of Corol-
lary 6.10, the hyperoctahedral homology of Mn(A) is trivial in all degrees. However,
by Statement (1) of Corollary 6.10 HO0(A) ∼= A. Therefore, hyperoctahedral homol-
ogy does not preserve Morita equivalence.

Proposition 6.12. When restricted to HO0(A)⊗HO0(A)→ HO0(A), the Pontrya-
gin product of Corollary 5.5 is the algebra multiplication map in

A

(a0a1a2 − a2a1a0)
.

Proof. Using the degrees zero and one terms of the chain complex C⋆ (∆H+,HA+)
one can show that HO0(A) is generated k-linearly by equivalence classes of the form
id[0] ⊗ a. One then observes that the Pontryagin product structure of Corollary 5.5
is the algebra multiplication as required.
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