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Abstract
The Euler characteristic is an invariant of a topological space

that in a precise sense captures its canonical notion of size, akin to
the cardinality of a set. The Euler characteristic is closely related to
the homology of a space, as it can be expressed as the alternating
sum of its Betti numbers, whenever the sum is well-defined. Thus,
one says that homology categorifies the Euler characteristic. In his
work on the generalisation of cardinality-like invariants, Leinster
introduced the magnitude of a metric space, a real number that
counts the “effective number of points” of the space and has been
shown to encode many invariants of metric spaces from integral
geometry and geometric measure theory. In 2015, Hepworth and
Willerton introduced a homology theory for metric graphs, called
magnitude homology, which categorifies the magnitude of a finite
metric graph. This work was subsequently generalised to enriched
categories by Leinster and Shulman, and the homology theory that
they introduced categorifies magnitude for arbitrary finite metric
spaces. When studying a metric space, one is often only interested
in the metric space up to a rescaling of the distance of the points
by a non-negative real number. The magnitude function describes
how the effective number of points changes as one scales the dis-
tance, and it is completely encoded by magnitude homology. When
studying a finite metric space in topological data analysis using
persistent homology, one approximates the space through a nested
sequence of simplicial complexes so as to recover topological infor-
mation about the space by studying the homology of this sequence.
Here we relate magnitude homology and persistent homology as two
different ways of computing homology of filtered simplicial sets.

1. Introduction

In a letter to Goldbach written in 1750, Euler [6] noted that for any polyhedron
consisting of F regions, E edges and V vertices one obtains V − E + F = 2. This sum
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is known as the Euler characteristic of the polyhedron. While one usually first
encounters the Euler characteristic in relation to topological spaces, one can more
generally define the Euler characteristic of an object in any symmetric monoidal
category [20], and this can be thought of as its canonical size, a “dimensionless”
measure. The irrelevance of topology for the notion of Euler characteristic, and how
it should be thought of as an invariant giving a measure of the size or cardinality of
an object was made precise among others by Schanuel [26].

In his work on the generalisation of the Euler characteristic as a cardinality-like
invariant, Leinster [13] introduced an invariant for finite categories generalising work
done by Rota on posets. The invariant introduced by Leinster generalises both the
cardinality of a set, as well as the topological Euler characteristic. In subsequent work
[14] Leinster generalised this invariant to enriched categories, calling it magnitude.

Here we are interested in the magnitude of metric spaces. In 1973 Lawvere [11]
observed that every metric space is a category enriched over the monoidal category
[0,∞]

op
with objects non-negative real numbers, and a morphism ϵ′ → ϵ whenever

ϵ′ ⩾ ϵ, with tensor product given by addition. Such enriched categories are called
“Lawvere metric spaces”, and a Lawvere metric space is the same thing as an extended
quasi-pseudometric space. The magnitude of a metric space is a real number that can
be thought of as measuring the “effective number of points” of the space, see [15,
Proposition 2.8]. The magnitude function describes how the effective number of
points changes as one scales the distances of the points of the metric space by a
non-negative real number.

The Euler characteristic of a topological space X is closely related to the singular
homology of the space, as it can be expressed as the alternating sum of its Betti
numbers

χ(X) =

∞∑
i=0

(−1)iβi(X) ,

whenever the sum and the summands are finite. One then says that homology cate-
gorifies the Euler characteristic. Thus, a natural question to ask is whether there is
a homology theory for metric spaces that categorifies in an analogous way the mag-
nitude. Hepworth and Willerton answered this question in the affirmative for finite
metric spaces associated to graphs, by introducing magnitude homology for graphs
[8]. Their work was subsequently extended to arbitrary metric spaces by Leinster and
Shulman [17], who define magnitude homology for arbitrary metric spaces as a spe-
cial case of Hochschild homology for enriched categories. When the metric space is
finite, this homology theory categorifies the magnitude.

In a first version of their manuscript1, Leinster and Shulman listed a series of open
problems, of which two were as follows:

• Magnitude homology only “notices” whether the triangle inequality is a strict
equality or not. Is there a “blurred” version that notices “approximate equali-
ties”?

• Almost everyone who encounters both magnitude homology and persistent ho-
mology feels that there should be some relationship between them. What is it?

1In the published version of the manuscript [17], these questions are discussed under item (7) in
Section 8.
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Here we give an answer to these questions, which we show are intertwined: we define
a blurred version of magnitude homology, and show that it is the persistent homology
with respect to a certain filtered simplicial set that approximates the Vietoris–Rips
simplicial set (as shown in the proof of Theorem 10.4), and thus satisfies theoretical
guarantees that might make it suitable for the study of data. Ordinary and blurred
versions of magnitude homology are morally very different homology theories associ-
ated to filtered simplicial sets: the ordinary version forgets the information given by
the filtration of the simplicial set, which is exactly the “persistent” information cap-
tured by persistent homology, and hence the blurred version of magnitude homology.
Finally, we relate blurred and ordinary magnitude homology with Vietoris homology,
by taking their categorical limits, and we show that the limit of blurred magnitude
homology coincides with Vietoris homology, while the limit of magnitude homology
is trivial.

We note that while in Vietoris homology and persistent homology one works with
simplicial complexes, the definition of magnitude homology is based on simplicial
sets. Simplicial complexes present advantages from the computational point of view,
as a simplex can be uniquely specified by listing its vertices, but from the theoretical
point of view simplicial sets are better suited. In Section 2 we explain how to a given
simplicial complex one can assign a simplicial set such that their geometric realisations
are homotopy equivalent. To make this manuscript accessible to a broad audience, we
have taken special care in introducing notions related to both magnitude homology,
as well as persistent homology.

1.1. Structure of the paper
The paper is structured as follows:

• We cover preliminaries about simplicial complexes and simplicial sets in Sec-
tion 2; enriched categories and Lawvere metric spaces in Section 3; filtered
simplicial sets in Section 4; persistent as well as graded objects in Section 5;
and coends in Section 6.

• In Section 7 we give the definition of magnitude homology for metric spaces
as a special case of Hochschild homology following [17] (see Definition A in
Section 7.1), and then introduce an alternative definition based on the enriched
nerve (Definition B’ in Section 7.2), and show that they are equivalent in Propo-
sition 7.2.

• In Section 8 we give a general definition of persistent homology, while in Sec-
tion 9 we introduce blurred magnitude homology, taking as starting point the
alternative definition of magnitude homology (Definition B’ in Section 7.2), and
show that it is the persistent homology taken with respect to the enriched nerve.

• In Section 10 we relate blurred and ordinary magnitude homology to Vietoris
homology.
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2. Simplicial complexes and simplicial sets

The number of researchers who have a working knowledge of both simplicial com-
plexes and simplicial sets is arguably small, therefore here we recall the basic notions
and definitions. Simplicial complexes and simplicial sets can be seen as combinatorial
versions of topological spaces; they are related to topological spaces by the geomet-
ric realisation. We first recall the definitions of simplicial complexes, simplicial sets
and the corresponding geometric realisations. We then discuss how one can assign a
simplicial set to a simplicial complex in such a way that the corresponding geometric
realisations are homotopy equivalent.

Definition 2.1. A simplicial complex is a tuple K = (V,Σ) where V is a set, and
Σ is a set of non-empty finite subsets of V such that:

(i) for all v ∈ V we have that {v} ∈ Σ,

(ii) Σ is closed with respect to taking subsets.

The elements of Σ with cardinality n+ 1 are called n-simplices of K. The elements
of V are called vertices of K. Given two simplicial complexes K = (V,Σ) and K ′ =
(V ′,Σ′), a simplicial map K → K ′ is a map f : V → V ′ such that for all σ ∈ Σ we
have f(σ) ∈ Σ′.

Remark 2.2. We note that if one wants the 0-simplices to coincide with the vertices
of a simplicial complex, then condition (i) in Definition 2.1 cannot be dispensed of;
while condition (ii) implies that all vertices contained in simplices are in Σ, condition
(i) guarantees that these are the only vertices. Often in the topological data analysis
literature one finds a definition of simplicial complex as a variant of Definition 2.1 in
which condition (i) is omitted, and in such a definition one thus allows vertices that are
not 0-simplices. Such simplicial complexes are studied in combinatorial commutative
algebra, where they are known to correspond to square-free monomial ideals, see [21,
Chapter 1]. One could give a definition equivalent to Definition 2.1 by only requiring
closure under taking subsets as follows: let Σ be a family of non-empty finite sets
closed under taking subsets, and let V (Σ) =

⋃
Σ. Then (V (Σ),Σ) is a simplicial

complex according to Definition 2.1.

To define simplicial sets, we first need to introduce the “simplex category” ∆. Con-
sider the category with objects finite non-empty totally ordered sets, and morphisms
given by order-preserving maps. The skeleton of this category is denoted by ∆ and
called simplex category. In other words, ∆ has objects given by a totally ordered
set [n] = {0, 1, . . . , n} for every natural number n, and morphisms order-preserving
maps.
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Definition 2.3. Denote by Set the category with objects sets and morphisms maps
of sets. A simplicial set is a functor S : ∆op → Set. The elements of S(n) are called
n-simplices.

Explicitly, one can show that a simplicial set is a collection of sets {Sn}n∈N together
with so-called face maps

di : Sn → Sn−1

and degeneracy maps

si : Sn → Sn+1

for all 0 ⩽ i ⩽ n, that satisfy certain compatibility conditions, see [5, Def. 1.1].
The geometric realisation functor gives a canonical way to associate a topological

space to a simplicial complex or set. For this, one first chooses a topological model
for n-simplices, namely the standard n-simplex ∆n:

Definition 2.4. The standard n-simplex is the subset of Euclidean space

∆n =

{
(x0, . . . , xn) ∈ Rn |

n∑
i=0

xi = 1 , and 0 ⩽ xi ⩽ 1 for all i

}
.

Furthermore, there are codegeneracy maps

σi : ∆
n → ∆n+1 : (x0, . . . , xn) 7→ (x0, . . . , xi−1, 0, xi, . . . , xn) ,

and coface maps

δi : ∆
n → ∆n−1 : (x0, . . . , xn) 7→ (x0, . . . , xi + xi+1, . . . , xn) .

Then, to define the geometric realisation one proceeds to glue together standard
simplices:

Definition 2.5. Given a simplicial complex K = (V,Σ), we choose a total order on
the set of vertices V , and we define its geometric realisation |K| to be the quotient
space ⋃

σ∈Σ

∆|σ|−1 × {σ}/ ∼,

where
⋃

σ∈Σ ∆|σ|−1 × {σ} is endowed with the disjoint union space topology, while
the equivalence relation ∼ is the transitive closure of the following relation{(

(x, fi(σ)), (σi(x), σ)
)
| x ∈ ∆|σ|−2, and σ ∈ Σ

}
,

where for σ = {x0, . . . , xn} with x0 < · · · < xn according to the order chosen, we
have that fi(σ) = σ \ {xi} for i = 0, . . . , n. In other words, whenever τ ⊆ σ, we use
the codegeneracy maps to identify the copy of the standard simplex corresponding to
τ with a subset of the copy of the standard simplex corresponding to σ.

Similarly, given a simplicial set S : ∆op → Set, its geometric realisation |S| is
the quotient space ⋃

n∈N
∆n × Sn/ ∼,
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where the equivalence relation ∼ is the transitive closure of the union of the relations{(
(x, di(σ)), (σi(x), σ)

)
: x ∈ ∆n and σ ∈ Sn+1

}
, and{(

(x, si(σ)), (δi(x), σ)
)
: x ∈ ∆n and σ ∈ Sn−1

}
.

Now, given a simplicial complex K = (V,Σ), we assign to it a simplicial set so that
its geometric realisation is homeomorphic to that of K.

Definition 2.6. Let K = (V,Σ) be a simplicial complex. Choose a total order on V .
Define

Ksim
n = {(x0, . . . , xn) | {x0, . . . , xn} ∈ Σ and x0 ⩽ · · · ⩽ xn} ,

and for 0 ⩽ i ⩽ n let

di : K
sim
n → Ksim

n−1 : (x0, . . . , xn) 7→ (x0, . . . , x̂i, . . . , xn) ,

where x̂i means that the ith entry is missing, and let

si : K
sim
n → Ksim

n+1 : (x0, . . . , xn) 7→ (x0, . . . , xi, xi, . . . , xn) .

It is then easy to show that {Ksim
n }n∈N together with the maps di and si is a simplicial

set. We denote this simplicial set by Ksim. Furthermore, we have:

Lemma 2.7. The geometric realisations of Ksim and K are homeomorphic.

Proof. This is easy to see, since the non-degenerate simplices are in bijection, and
all degenerate simplices are in the image of some non-degenerate simplex. For more
details, we refer the reader to [5].

The assignment K 7→ Ksim is not functorial, since it depends on the choice of
a total order on V . One can assign a simplicial set to a simplicial complex in a
functorial way, so that their geometric realisations are homotopy equivalent rather
than homeomorphic, however this is at the cost of adding many more simplices. Here
we discuss one such functorial assignment, which will play a crucial role in relating
a homology theory introduced by Vietoris with blurred magnitude homology, see
Section 10.

Definition 2.8. Let K = (V,Σ) be a simplicial complex. Define

Ksing
n = {(x0, . . . , xn) | {x0, . . . , xn} ∈ Σ} ,

and for 0 ⩽ i ⩽ n let

di : K
sing
n → Ksing

n−1 : (x0, . . . , xn) 7→ (x0, . . . , x̂i, . . . , xn) ,

where x̂i means that the xi entry is missing, and let

si : K
sing
n → Ksing

n+1 : (x0, . . . , xn) 7→ (x0, . . . , xi, xi, . . . , xn) .

One has that {Ksing
n }n∈N together with the maps di and si is a simplicial set, which

we denote by Ksing. Furthermore, we have:

Proposition 2.9. The geometric realisations of Ksing, Ksim and K are pairwise
homotopy equivalent.
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Proof. The simplicial set Ksing can be thought of as the analogon of the singular
simplicial set associated to a topological space. Thus, it should not be too surprising
that the geometric realisation of Ksing is homotopy equivalent to that of K. While
this fact is well-known in the algebraic topology community, we were unable to find
a reference. Two different proofs of this fact are provided in unpublished notes by
Camarena [2]. The remaining part of the claim follows from Lemma 2.7.

3. Enriched categories and Lawvere metric spaces

An ordinary (small) category C is given by a set of objects, and for every pair of
objects x, y a set of morphisms C(x, y), together with composition maps

C(x, y)× C(y, z) → C(x, z)

and maps assigning to every object x its identity morphism

{⋆} → C(x, x) ,

such that the composition of morphisms is associative and the identity morphism
for every object is the neutral element for this composition. Let V be a monoidal
category with tensor product ⊗V and unit 1V . A (small) category enriched over
V (or V-category) is a generalisation of an ordinary category: we still have a set of
objects, but now for every pair of objects x, y we are given an object C(x, y) in V ,
together with composition and identity assigning morphisms in V , namely

C(x, y)⊗V C(y, z) → C(x, z)

and

1V → C(x, x) ,

which satisfy associativity and unitality conditions. When V is the category of sets,
a category enriched over V is an ordinary category. We note that while an enriched
category is in general not a category, it has an “underlying” category, see [9] for
details.

In [11] Lawvere observed that any metric space is an enriched category:

Definition 3.1. Let [0,∞]
op

denote the symmetric monoidal category with objects
given by the extended non-negative real numbers (that is, elements of [0,∞]), exactly
one morphism ϵ′ → ϵ if ϵ′ ⩾ ϵ, tensor product given by addition, and unit by 0. A Law-
vere metric space is a small category enriched over [0,∞]

op
.

In other words, a Lawvere metric space is given by a set X, together with for all
x, y ∈ X a number X(x, y) ∈ [0,∞], and for all x, y, z ∈ X a morphism

X(x, y) +X(y, z) → X(x, z) (1)

as well as a morphism

0 → X(x, x) . (2)

Equation (1) is the triangle inequality, while Equation (2) implies that X(x, x) =
0. Thus, a Lawvere metric space is the same thing as an extended (since we are
allowing infinite distances) quasi-pseudometric space (as distances are not necessarily
symmetric, and we allow distinct elements to have zero distance).



372 NINA OTTER

4. Filtered simplicial sets

Given a metric space (X, d) we are interested in associating to it filtered simplicial
sets, namely functors S(X) : [0,∞] → sSet. Two main examples that we consider in
this paper are the enriched nerve and the Vietoris–Rips simplicial set. We next recall
their definitions.

Definition 4.1. Let (X, d) be a metric space. The enriched nerve of X is the
functor N(X) : [0,∞] −→ sSet such that for any ϵ ∈ [0,∞] the simplicial set N(X)(ϵ)
has set of n-simplices given by

N(X)(ϵ)n =

{
(x0, . . . , xn) | xi ∈ X, and

n−1∑
i=0

d(xi, xi+1) ⩽ ϵ

}
and the obvious degeneracy and face maps. Further, for any ϵ ⩽ ϵ′ the simplicial maps
N(X)(ϵ ⩽ ϵ′) : N(X)(ϵ) → N(X)(ϵ′) are the canonical inclusion maps.

When adding up pairwise lengths of an ordered tuple, we will often talk about the
“length” of the tuple:

Definition 4.2. Let (X, d) be a metric space. The length of an ordered tuple of

elements (x0, . . . , xn) of X is
∑n−1

i=0 d(xi, xi+1).

Definition 4.3. Let (X, d) be a metric space. The Vietoris–Rips simplicial set
of X is the functor V sing(X) : [0,∞] −→ sSet with set of n-simplices given by

V sing(X)(ϵ)n =
{
(x0, . . . , xn) | d(xi, xj) ⩽ ϵ for all i, j ∈ {0, . . . , n}

}
and the obvious degeneracy and face maps. Furthermore, for any ϵ ⩽ ϵ′ the simplicial
maps V sing(X)(ϵ ⩽ ϵ′) : V sing(X)(ϵ) → V sing(X)(ϵ′) are the canonical inclusion maps.

Remark 4.4. We note that we are indeed interested in studying simplicial sets filtered
by the monoidal category [0,∞], and not merely by the category associated to the
poset ([0,∞],⩽). Firstly, the enriched nerve is the generalisation of the nerve of a
category to the enriched setting, and it can be defined, using the Yoneda embedding,
as a simplicial object in the category of presheaves Set[0,∞], see Section 4.1. Secondly,
as we will explain in the next section, a fundamental observation in persistent homol-
ogy is that functors [0,∞] → KVect can be identified with graded modules over a
certain monoid ring, and implicit in this identification is the fact that the poset has
a monoid structure compatible with the order. The monoidal structure is also crucial
for the study of questions related to stability in persistent homology, see [1].

4.1. The nerve of an enriched category
We recall the construction of the nerve for enriched categories, and, in particular,

for metric spaces. The author learned about this construction from John Baez, and
the following discussion is due to him.

Given an ordinary category C, the nerveN(C) is a simplicial set whose n-simplices
are composable n-tuples of morphisms in C:

x0
f1−→ x1

f2−→ · · · fn−1−→ xn−1
fn−→ xn.
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In other words, the set of n-simplices of the nerve is a disjoint union of products:

N(C)n =
⊔

x0,...,xn∈obC

C(x0, x1)× · · · × C(xn−1, xn). (3)

The face maps in N(C) are defined using composition, while the degeneracy maps
are defined using identity morphisms.

To generalise this concept to categories enriched over an arbitrary monoidal cat-
egory V one can proceed as follows. The product of sets in Equation (3) should be
replaced by the tensor product ⊗V in V . The disjoint union of sets is a special case
of a coproduct. While V may not have coproducts, the category of presheaves on
V , denoted V̂ does. The objects of this category are functors F : Vop → Set, called
presheaves on V . The morphisms are natural transformations.

The category V̂ contains V as a subcategory via the Yoneda embedding

Y : V → V̂ ,

which sends each object ϵ ∈ obV to the so-called representable presheaf

V(−, ϵ) : Vop → Set.

The coproducts in V̂ are computed objectwise: if {Fj}j∈J is a collection of presheaves
on V , their coproduct is given by⊔

j∈J

Fj

 (ϵ) =
⊔
j∈J

Fj(ϵ)

for all ϵ ∈ obV , see [19, Sec. V.3] for more details. Now we can generalise the nerve
to a category enriched over V :

Definition 4.5. Let C be a V-category. The enriched nerve of C is the functor

N(C) : Vop → sSet,

where for each ϵ ∈ obV the set of n-simplices is given by

N(C)(ϵ)n =
⊔

x0,...,xn∈obC

V(ϵ, C(x0, x1)⊗V · · · ⊗V C(xn−1, xn)) .

The maps

di : N(C)(ϵ)n → N(C)(ϵ)n−1, i = 0, . . . , n

are defined using composition morphisms in C, while the degeneracy maps

si : N(C)(ϵ)n → N(C)(ϵ)n+1, i = 0, . . . , n

are defined using identity-assigning morphisms, all in a manner closely mimicking the
usual nerve.

When V = [0,∞]
op

and X is a V-category, the set

V
(
ϵ,X(x0, x1)⊗V · · · ⊗V X(xn−1, xn)

)
= V

(
ϵ, d(x0, x1) + · · ·+ d(xn−1, xn)

)
is a singleton if

ϵ ⩾ d(x0, x1) + · · ·+ d(xn−1, xn)
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and empty otherwise. Thus, we have a canonical isomorphism

N(X)n(ϵ) ∼=
{
(x0, . . . , xn) | d(x0, x1) + · · ·+ d(xn−1, xn) ⩽ ϵ

}
. (4)

We can take the isomorphic set in (4) as the set of n-simplices in the enriched
nerve N(X) associated to a metric space X, and thus obtain the enriched nerve as
defined in Definition 4.1.

5. Persistent vs. graded objects

Our aim is to study the homology of filtered simplicial sets such as those introduced
in Section 4, and we are thus interested in functors [0,∞] → chAb. Since such functors
are the central object of study in persistent homology, we introduce the following
definition:

Definition 5.1. Let C be a small category, and (P,⩽,+) a monoidal poset, that
is, a poset together with a monoid structure compatible with the order. We identify
(P,⩽,+) with the symmetric monoidal category P with objects given by the elements
of P , exactly one morphism p′ → p if p′ ⩽ p, and tensor product given by +. A functor
P → C is called a P -persistent element of the set of objects of C.

Example 5.2. Consider (N,⩽,+) where ⩽ and + are the usual order and addition
on the natural numbers. Further, let C = KVect be the category of vector spaces
over a field K together with K-linear maps. There is an isomorphism of categories
between the functor category of N-persistent vector spaces over K and the category
of N-graded modules over the polynomial ring K[x]. Similarly, when we consider the
monoidal poset ([0,∞],⩽,+) where ⩽ and + are the usual order and addition on
real numbers, there is an isomorphism of categories between the functor category of
[0,∞]-persistent vector spaces and the category of modules graded by ([0,∞],⩽ +)
over the monoid ring K[([0,∞],+)]. Furthermore, finitely presented modules corre-
spond to persistent vector spaces of “finitely presented type” [4]. This is known as
the Correspondence Theorem in the persistent homology literature, and N-, as well
as [0,∞]-persistent vector spaces are usually called persistence modules.

We will see that in magnitude homology one “forgets” the information given by the
inclusion maps in the filtration of a simplicial sets, and thus the chain complexes that
one ends up with are more properly graded objects, rather than persistent objects.

Definition 5.3. Let C be a small category, and I a set, which we identify with the
discrete category I with objects given by the elements of I and no morphisms apart
from the identity morphisms. A functor I → C is called an I-graded element of the
set of objects of C.

If C has all coproducts, one can characterise such functors as follows:

Proposition 5.4. Let C be a small category with all coproducts, and let I be a set.
There is an isomorphism of categories between the functor category of I-graded objects
of C and the category with objects pairs (c, {ci}i∈I) such that c is isomorphic to
the coproduct of {ci}i∈I , and morphisms (c, {ci}i∈I) → (c′, {c′i}i∈I) given by {fi}i∈I

where for each i ∈ I we have that fi : ci → c′i is a morphism in C.
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Example 5.5. When I = [0,∞], we have that a [0,∞]-graded chain complex of abelian
groups can be identified with a chain complex of [0,∞]-graded abelian groups, because
coproducts of chain complexes are computed componentwise.

Thus, while a [0,∞]-graded vector space over K is simply a vector space V together
with a direct sum decomposition V = ⊕l∈[0,∞]Vl, we have that a [0,∞]-persistent
vector space over K is a [0,∞]-graded vector space together with an action of the
monoid ring K[([0,∞],+)], which corresponds to the information given by the non-
trivial maps ϵ −→ ϵ′ whenever ϵ ⩽ ϵ′.

Remark 5.6. Given a monoidal poset (P,⩽,+), and a category C with zero mor-
phisms, we can identify any P -graded object in C with a P -persistent object in a
canonical way. Consider the full subcategory of the functor category Fun(P , C), given
by all functors that send every morphism to the zero morphism in C. Then this cat-
egory is easily seen to be isomorphic to the category of P -graded objects of C, that
is, the functor category Fun(P,C).

6. Coends

One of the main ingredients in the definition of blurred magnitude homology that
we will give in Section 9 is the coend, a construction that is ubiquitous in category
theory. For ease of reference we briefly recall its definition here.

Intuitively, given a bivariate functor with mixed variance F : Dop ×D → C, its
coend is an object in C that identifies the “left action” of F with the “right action”
of F ; for instance, the tensor product of a left module with a right module over a
ring is an example of a coend, see [19, Section IX.6].

While one can define a coend in this general setting, we will make use of the
following characterisation of coends in the case that D is cocomplete and C small.

Definition 6.1. Suppose that D is a cocomplete category, and C is a small category.
Given a functor F : Cop × C → D, its coend is the coequaliser of the diagram⊔

f : c→c′
F (c′, c)

⊔
c∈C

F (c, c) ,

where the two parallel morphisms are the unique morphisms induced by the mor-
phisms F (f, 1c) : F (c

′, c) → F (c, c), and F (1c′ , f) : F (c
′, c) → F (c′, c′), respectively.

If D has additionally the structure of a monoidal category together with tensor prod-
uct ⊗, then given two functors L : Cop → D and R : C → D, we denote the coend of
L⊗R by L⊗C R. This coend is often referred to as the functor tensor product
of L and R.

For more details on coends we refer the reader to [19, Section IX.6], as well as the
survey [18].

7. Magnitude homology

Hepworth and Willerton introduced magnitude homology for graphs in [8] as the
categorification of the magnitude of a finite metric space associated to a graph. Sub-
sequently, Leinster and Shulman generalised magnitude homology to arbitrary finite
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metric spaces [17]. Here we first briefly recall the definition of magnitude homology
as given in [17], and then we give an alternative equivalent definition that will serve
as the starting point to relate persistent homology to magnitude homology.

7.1. Magnitude homology for arbitrary finite metric spaces
Instead of with [0,∞], Leinster and Shulman choose to work with the category

[0,∞) with set of objects given by the non-negative real numbers [0,∞), with exactly
one morphism ϵ −→ ϵ′ whenever ϵ ⩽ ϵ′, tensor product given by addition, and unit
by 0. See [17, Section 2] for an explanation. Here we will adopt the same choice. In
this setting we have that a [0,∞)

op
-category is a quasi-pseudometric space. Leinster

and Shulman then give the following definition:

Magnitude homology (Definition A). [17, Section 3]: Let (X, d) be a finite quasi-
pseudometric space. The magnitude homology of X is the homology of the chain
complex M(X) of [0,∞)-graded abelian groups defined as follows:

M(X)n =
⊕

l∈[0,∞)

Z

[{
(x0, . . . , xn) |

n∑
i=0

d(xi, xi+1) = l

}]
. (5)

Thus, in degree n it is the free [0,∞)-graded abelian group, which in degree l is gener-
ated by the ordered tuples (x0, . . . , xn) of length exactly l. Furthermore, the boundary
map dn : M(X)n →M(X)n−1 is given by the alternating sum of maps din, defined as
follows for all 1 ⩽ i ⩽ n− 1:

din((x0, . . . , xn)) =

{
(x0, . . . , xi−1, xi+1, . . . xn), if ML(xi),

0, otherwise,

where ML(xi) stands for the condition d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1),
sometimes referred to as the sequence being metrically linear at xi, while for i = 0 we
have

d0n((x0, . . . , xn)) =

{
(x1, x2, . . . xn), if d(x0, x1) = 0,

0, otherwise

and similarly for i = n.

The assignment X 7→ H⋆(M(X)) induces a functor from the category with objects
[0,∞)-categories and morphisms [0,∞)-functors to the category of [0,∞)-graded
abelian groups [17, Theorem 5.12]. Furthermore, for finite quasi-pseudometric spaces
X, the magnitude homology of X categorifies the magnitude of X with respect to
the canonical size function, see [17, Theorem 3.5, Corollary 7.15].

7.2. Magnitude homology: an alternative viewpoint
In online discussions [16] Leinster and Shulman initially gave a different definition

of magnitude homology. Here we recall this definition (Definition B), and prove that
an adaptation of it (Definition B’) agrees with the definition given in the previous
section (Definition A). We will use Definition B’ of magnitude homology to relate
magnitude homology to persistent homology.

Denote by Ab the category of abelian groups with monoidal structure given by
the tensor product of abelian groups, which we denote by ⊠; this induces a monoidal



MAGNITUDE MEETS PERSISTENCE. HOMOLOGY THEORIES 377

structure on the category of chain complexes over Ab, which we again denote by ⊠.
Given a [0,∞)

op
-category X, Leinster and Shulman consider the following functor

CN(X) =

(
[0,∞)

N(X)−→ sSet
Z[·]−→ sAb

U−→ chAb

)
, (6)

where the functor Z[·] is induced by the free abelian group functor, and the functor U
is the functor that sends a simplicial abelian group to its unnormalised chain complex.
They then introduce functors of coefficients A : [0,∞)

op −→ Ab, where one views A
as taking values in chAb through the canonical inclusion Ab ↪→ chAb, and give the
following definition:

Magnitude homology (Definition B). The magnitude homology of X with
coefficients in A is the homology of the chain complex given by the coend of the
form CN(X)⊗[0,∞) A.

One can describe this chain complex as follows for a particular choice of coefficient
functor.

Lemma 7.1. For any ϵ ∈ [0,∞) define the following functor of coefficients

Aϵ : [0,∞)
op → Ab,

l 7→

{
Z, if l = ϵ,

0, otherwise,

(ℓ ⩾ ℓ′) 7→

{
idZ, if ℓ = ℓ′ = ϵ,

0, otherwise .

We consider Aϵ as taking values in chAb through the canonical inclusion functor
Ab ↪→ chAb.

Then, the chain complex CN(X)⊗[0,∞) Aϵ is given in degree n by the free abelian
group on the tuples (x0, . . . , xn) that have length exactly ϵ. The boundary maps

dn :
(
CN(X)⊗[0,∞) Aϵ

)
n
→

(
CN(X)⊗[0,∞) Aϵ

)
n−1

are alternating sums of maps din which can be described as follows, for 0 < i < n:

din((x0, . . . , xn)) =

{
(x0, . . . , xi−1, xi+1, . . . , xn), if ML(xi),

0, otherwise,

where ML(xi) stands for the condition d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1),
sometimes referred to as the sequence being metrically linear at xi, while for i = 0 we
have

d0n :
(
CN(X)⊗[0,∞) Aϵ

)
n
→

(
CN(X)⊗[0,∞) Aϵ

)
n−1

(x0, . . . , xn) 7→

{
(x1, x2, . . . , xn), if d(x0, x1) = 0,

0, otherwise

and similarly for i = n.
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Proof.2 The coend CN(X)⊗[0,∞) Aϵ is the coequaliser of the following diagram:

⊕
ℓ⩽ℓ′

CN(X)(ℓ)⊠Aϵ(ℓ
′)

⊕
ℓ∈[0,∞)

CN(X)(ℓ)⊠Aϵ(ℓ) .

⊕
ℓ⩽ℓ′

CN(X)(ℓ ⩽ ℓ′)⊠ 1

⊕
ℓ⩽ℓ′

1⊠Aϵ(ℓ ⩽ ℓ′)

Thus, it is the coproduct over ℓ ∈ [0,∞) of the chain complexes CN(X)(ℓ)⊠Aϵ(ℓ),
modulo the relations given by equating the two parallel morphisms on the left hand
side. By definition of Aϵ, the morphisms are both trivial if ℓ′ ̸= ϵ, thus we assume
that ℓ′ = ϵ. The two morphisms are identical if ℓ = ϵ, thus we assume that ℓ ̸= ϵ, and
so we have ϵ > ℓ. Thus, the bottom parallel morphism is zero, while the top parallel
morphism is

CN(X)(ℓ) −→ CN(X)(ϵ) .

Furthermore, we have ⊕
ℓ∈[0,∞)

CN(X)(ℓ)⊠Aϵ(ℓ) ∼= CN(X)(ϵ)

since tensoring with Aϵ(ℓ) makes all summands vanish, except if ℓ = ϵ. Thus, in
degree n the chain complex CN(X)⊗[0,∞) Aϵ is the free abelian group on the tuples
(x0, . . . , xn) that have length exactly ϵ.

Now, denote by D(ϵ) the subcomplex of CN(X)(ϵ) whose n-chains are the n-tuples
with length strictly less than ϵ, so that CN(X)⊗[0,∞) Aϵ

∼= CN(X)(ϵ)/D(ϵ) by the
previous discussion. Note that the boundary map on the quotient chain complex
CN(X)(ϵ)/D(ϵ) is the alternating sum of maps

din : CN(X)(ϵ)n/D(ϵ)n → CN(X)(ϵ)n−1/D(ϵ)n−1,

which send c+D(ϵ)n to di,Cn (c) +D(ϵ)n−1, where d
i,C
n : CN(X)(ϵ)n → CN(X)(ϵ)n−1

is the map induced by the ith face map. Thus din(x0, . . . , xn) is the map induced by
the ith face maps if and only if by deleting the ith entry the length of the tuple is
unchanged, and is the zero map otherwise.

Our aim is to relate Definition B with Definition A. For any ϵ ⩽ ϵ′ define the
natural transformation ι : Aϵ ⇒ Aϵ′ where ιℓ is the identity if ℓ = ϵ = ϵ′, and the zero
map otherwise. This induces a chain map

CN(X)⊗[0,∞) Aϵ → CN(X)⊗[0,∞) Aϵ′ ,

and we thus have a functor

CN(X)⊗[0,∞) A− : [0,∞) → chAb

that assigns to a number ϵ the chain complex CN(X)⊗[0,∞) Aϵ.
Recall that a chain complex of [0,∞)-graded abelian groups can be identified with

an [0,∞)-graded chain complex (see Example 5.5). Thus, in particular, we can identify
the chain complex M(X) with a functor [0,∞) → chAb that coincides with M(X)
on the set of objects, and sends every non-identity morphism to the trivial chain map
(see Remark 5.6). We have:

2We note that parts of this proof were given by Shulman in an online comment [27].
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Proposition 7.2. The functors CN(X)⊗[0,∞) A− and M(X) are isomorphic. In
particular, the magnitude homology of X (Definition A) is isomorphic to the homology
of CN(X)⊗[0,∞) A−.

Proof. By Lemma 7.1 and (5) the chain complexes M(X)ϵ and CN(X)⊗[0,∞) Aϵ

are canonically isomorphic. Next, for ϵ ⩽ ϵ′, consider the following diagram:

M(X)ϵ M(X)ϵ′

CN(X)⊗[0,∞) Aϵ CN(X)⊗[0,∞) Aϵ′ ,

where the vertical arrows are the canonical isomorphisms, while the horizontal arrows
are zero maps. Thus every such square commutes, so the canonical isomorphisms
assemble into a natural isomorphism between CN(X)⊗[0,∞) A− and M(X).

For ease of reference, we state here the equivalent definition of magnitude homol-
ogy, as given by Proposition 7.2:

Magnitude homology (Definition B’). The magnitude homology of X is the
homology of the [0,∞)-graded chain complex CN(X)⊗[0,∞) A−.

8. Persistent homology

Persistent homology is, in an appropriate sense, the generalisation of simplicial
homology of a simplicial set to persistent simplicial sets. Given a metric space (X, d),
we seek to study its geometric and topological properties by associating to it [0,∞)-
persistent simplicial sets S(X).

We then consider the functor

CS(X) =

(
[0,∞)

S(X)−→ sSet
Z[·]−→ sAb

U−→ chAb

)
,

where Z[·] and U are defined as in (6).
Let F be a field. Consider the constant functor of coefficients

A : [0,∞) → chAb

that sends ℓ to the chain complex with a copy of F concentrated in degree zero, and
sends ℓ ⩽ ℓ′ to the identity chain map.

The composite H⋆(CS(X)⊠A), where H⋆ : chAb → Ab is the usual homology
functor, is usually called the “persistent homology of X (with respect to S) with
coefficients in F.” Using this coefficient functor has the advantage that, under appro-
priate finiteness conditions, isomorphism classes of such functors can be completely
characterised by a collection of intervals, called the barcode, see e.g., [23, Theo-
rem 1.9]. We note that there are many different types of filtered spaces that are used
in applications of persistent homology, see [22, Table 1] for an overview of some of
these. To be useful in applications, such spaces have to satisfy theoretical guarantees
dictated by what is called “topological inference”, see [23, Chapter 2 and 5].



380 NINA OTTER

More generally, we give the following definition:

Definition 8.1. Let (X, d) be a metric space, let S(X) be a [0,∞)-persistent sim-
plicial set, and A : [0,∞) → chAb a functor. The persistent homology of X with
respect to S and with coefficients in A is the composition H⋆(CS(X)⊠A).
When A is the unit for ⊠ we call the homology of CS(X)⊠A the persistent homol-
ogy of X (with respect to S).

For arbitrary coefficient functors one in general no longer has a barcode. However,
such functors of coefficients might be interesting for applications, as they might allow
to capture more refined information, for instance different torsion or orientability
phenomena over different filtration scales, which might be detected by taking, e.g.,
coefficients over F2 (the field with two elements) over a certain interval I ⊂ [0,∞),
and coefficients over F3 over a different disjoint interval J ⊂ [0,∞). More complicated
coefficient functors might allow for an even more refined analysis.

9. Magnitude meets persistence

In the final section of [17] Leinster and Shulman list a series of open problems;
two of these problems, as stated in a first version of their manuscript are as follows
(these problems now appear with a change of wording in Section 8 of the published
version of the manuscript):

• Magnitude homology only “notices” whether the triangle inequality is a strict
equality or not. Is there a “blurred” version that notices “approximate equali-
ties”?

• Almost everyone who encounters both magnitude homology and persistent ho-
mology feels that there should be some relationship between them. What is it?

In this section we attempt a first answer to these questions, which we believe
are intertwined: it is the blurred version of magnitude homology that is related to
persistent homology. Indeed, as is apparent from Proposition 7.2, the magnitude
homology of a metric space X is a homology theory that in a certain sense forgets
the maps induced on the homology groups by the inclusions of simplicial sets of the
form N(X)(ϵ) → NX(ϵ′), whenever ϵ ⩽ ϵ′, whereas the “persistence” in persistent
homology is exactly the information given by such maps. Thus, morally, these are
very different homology theories.

Our starting point is Definition B’ of magnitude, which we adapt to coefficient
functors not supported at points, but on intervals.

Definition 9.1. For any ϵ ∈ [0,∞] define the functor of coefficients

A[0,ϵ] : [0,∞)
op → Ab,

ℓ 7→

{
Z, if ℓ ∈ [0, ϵ],

0, otherwise,

(ℓ ⩾ ℓ′) 7→

{
idZ, ℓ, ℓ

′ ∈ [0, ϵ],

0, otherwise .
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We consider A[0,ϵ] as taking values in chAb through the canonical inclusion functor
Ab ↪→ chAb.

Now, for any ϵ ⩽ ϵ′ we consider the natural transformation ι : A[0,ϵ] ⇒ A[0,ϵ′] where
ιℓ is the identity if ℓ ∈ [0, ϵ], and the zero map otherwise. This natural transforma-
tion induces a chain map CN(X)⊗[0,∞) A[0,ϵ] → CN(X)⊗[0,∞) A[0,ϵ′], and we thus
have a functor CN(X)⊗[0,∞) A[0,−] : [0,∞) → chAb that assigns to a number ϵ the
chain complex CN(X)⊗[0,∞) A[0,ϵ]

3. Explicitly, we can describe the chain complexes
CN(X)⊗[0,∞) A[0,ϵ] as follows:

Lemma 9.2. For any ϵ ∈ [0,∞) we have

CN(X)⊗[0,∞) A[0,ϵ]n
= Z

[{
(x0, . . . , xn) |

n∑
i=0

d(xi, xi+1) ⩽ ϵ

}]
with boundary maps given by alternating sums of maps induced by the face maps.

Proof. The chain complex CN(X)⊗[0,∞) A[0,ϵ] is the coequaliser of the following
diagram:

⊕
ℓ⩽ℓ′

CN(X)(ℓ)⊠A[0,ϵ](ℓ
′)

⊕
ℓ∈[0,∞)

CN(X)(ℓ)⊠A[0,ϵ](ℓ) .

⊕
ℓ⩽ℓ′

CN(X)(ℓ ⩽ ℓ′)⊠ 1

⊕
ℓ⩽ℓ′

1⊠A[0,ϵ](ℓ ⩽ ℓ′)

First, note that ⊕
ℓ∈[0,∞)

CN(X)(ℓ)⊠A[0,ϵ](ℓ) ∼=
⊕

ℓ∈[0,ϵ]

CN(X)(ℓ) ,

as the summands vanish if ℓ > ϵ, by definition of A[0,ϵ]. We next see what relations
are given by the two parallel morphisms in the diagram. For ℓ′ > ϵ we have that the
morphisms are both zero, so we assume that ℓ′ ∈ [0, ϵ]. Furthermore, the morphisms
are identical if ℓ = ℓ′, so we assume that ℓ ̸= ℓ′, and thus have 0 ⩽ ℓ < ℓ′ ⩽ ϵ. Thus,
the top horizontal morphism is CN(X)(ℓ) → CN(X)(ℓ′), while the bottom morphism
is CN(X)(ℓ) → CN(X)(ℓ). By equating these morphisms in ⊕ℓ∈[0,ϵ]CN(X)(ℓ) we are
thus identifying the summand CN(X)(ℓ) with the image of the inclusion of CN(X)(ℓ)
in CN(X)(ℓ′). We thus obtain

CN(X)⊗[0,∞) A[0,ϵ]
∼= CN(X)(ϵ) .

Similarly, the relations given by the pair of parallel morphisms tell us that the bound-
ary maps on the quotient chain complex are the boundary maps of the chain complex
CN(X)(ϵ), thus alternating sums of maps induced by face maps.

Definition 9.3. Let (X, d) be a metric space. The blurred magnitude homology
of X is the homology of CN(X)⊗[0,∞) A[0,−]).

We have:

3We note that, more generally, coends are functorial, see for instance [18, Remark 1.1.7].
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Theorem 9.4. The functors CN(X)⊗[0,∞) A[0,−] and CN(X) are isomorphic. In
particular, the blurred magnitude homology of X is isomorphic to the persistent homol-
ogy of X with respect to the enriched nerve.

Proof. By Lemma 9.2 we know that there is an isomorphism between the chain
complexes CN(X)⊗[0,∞) A[0,ϵ] and CN(X)(ϵ) for any ϵ ∈ [0,∞). Next, for any ϵ ⩽
ϵ′, consider the square

CN(X)⊗[0,∞) A[0,ϵ] CN(X)⊗[0,∞) A[0,ϵ′]

CN(X)(ϵ) CN(X)(ϵ′),

where the vertical morphisms are the aforementioned isomorphisms, the top horizon-
tal morphism is given by functoriality of the coend, as discussed before Lemma 9.2,
and the bottom horizontal morphism is CN(X)(ϵ ⩽ ϵ′). The fact that this square
commutes follows by the universal property of coends, see for instance [18, Defini-
tion 1.1.6], applied to the coend in the top left corner.

10. Limit homology

In [28] Vietoris introduced what is now called the Vietoris–Rips complex, as a way
to define a homology theory for compact metric spaces4. One starts by considering
the composition

CV sing(X) =

(
(0,∞)

V sing(X)−→ sSet
Z[·]−→ sAb

U−→ chAb

)
, (7)

where Z[·] and U are defined as in (6). Here we denote by (0,∞) the semigroup
category associated to the semigroup poset ((0,∞),⩽,+) given by the positive real
numbers, with usual addition and order. Vietoris defined the homology of X (for a
compact metric space X) to be the limit

H⋆(X) := limH⋆(CV
sim(X)(ϵ)) . (8)

Vietoris’s motivation was to prove what is now called the “Vietoris mapping the-
orem”, a result that relates the homology groups of two spaces using properties of a
map between them. While there has been some work done on Vietoris homology (see,
e.g., [7, 24]), the theory has not been as widely studied as other homology theories.
A limit homology theory that plays a fundamental role in algebraic topology is Čech
homology: given a space X and a cover U of X, one considers the simplicial homology
H⋆(CN(U)) of the nerve of U . If V is a cover of X that refines U , then there is a
homomorphism H⋆(CN(V)) → H⋆(CN(U)). The Čech homology of X is the limit
over all open covers of X. The difference between Vietoris and Čech homology is

4We note that while Vietoris introduced what is called the “Vietoris–Rips simplicial complex” (at

level ϵ) V (X)(ϵ), here we discuss this homology theory using the simplicial set V sing(X)(ϵ) asso-
ciated to it, see Lemma 2.9 and Definition 4.3.
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immaterial for compact metric spaces, as for such spaces the homology theories are
canonically isomorphic, see [12].

In later work, Hausmann [7] proposed a cohomological counterpart of the homology
theory introduced by Vietoris, by considering the colimit of the functor that one
obtains by taking simplicial cohomology of the filtered chain complex in (7):

H⋆(X) := colimH⋆(CV sim(X)(ϵ)) .

Hausmann called this cohomology theory “metric cohomology”, and not Vietoris
cohomology, because the adjective Vietoris had already been used to designate a coho-
mology theory which is in general not isomorphic to the cohomological counterpart of
the homology theory introduced by Vietoris [7]. The denomination “Vietoris–Rips”
for the complex introduced by Vietoris is also due to Hausmann, as the complex
introduced by Vietoris was in the meantime known as Rips complex [25].

Instead of the Vietoris–Rips simplicial set, we can consider the enriched nerve
associated to a metric space X, and take the limit of the resulting homology functor:
similarly as in (7), we consider the composition

CN(X) =

(
(0,∞)

N(X)−→ sSet
Z[·]−→ sAb

U−→ chAb

)
, (9)

and then take the limit of this functor:

limH⋆(CN(X)(ϵ)) . (10)

In the following we relate the limits (8) and (10).

Remark 10.1. We note that since (0,∞) does not have the structure of a symmetric
monoidal category, the discussion of Remark 4.4 does not apply to the different types
of limit homology considered in this section.

Let C be any category, and let (P,⩽,+) be a semigroup poset. Similarly as for
monoidal posets, we denote by P the semigroup category associated to this semigroup
poset. The category with objects given by functors P → C and morphisms given by
natural transformations between them, can be endowed with an extended pseudo-
distance, called interleaving distance [1]. The interleaving distance was first intro-
duced in [3] for the monoidal poset (R,⩽,+). The central notion is that of interleav-
ing: for ϵ ⩾ 0 two functorsM,N : RRR → C are ϵ-interleaved if there are collections of
morphisms {ϕϵ : M(a) → N(a+ ϵ) | a ∈ R} and {ψϵ : N(a) →M(a+ ϵ) | a ∈ R} such
that all diagrams of the following form commute:

M(a− ϵ)

N(a)

M(a+ ϵ)

N(a) N(b)

M(a+ ϵ) M(b+ ϵ)

N(a− ϵ) N(a+ ϵ)

M(a) M(a) M(b)

N(a+ ϵ) N(b+ ϵ) .

Two functors that are ϵ-interleaved have bounded interleaving distance [3, Theo-
rem 4.4].
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In many examples of filtered spaces that one considers in topological data anal-
ysis, what one obtains is not an interleaving of the corresponding homologies, but
rather what is called an “approximation”. For c ⩾ 1 two functors M,N : [0,∞) → C
are c-approximations of each other if there are collections of morphisms of the
form {ϕc : M(a) → N(ca) | a ∈ R⩾0} and {ψc : N(a) →M(ca) | a ∈ R⩾0} such that
all diagrams of the following form commute:

M(a)

N(ca)

M(c2a)

N(a) N(b)

M(ca) M(cb)

N(a) N(c2a)

M(ca) M(a) M(b)

N(ca) N(cb) .

It shouldn’t then be too surprising that functors that are c-approximations of each
other have bounded interleaving distance in the log scale [10].

For ease of reference, we state the definition of c-approximations for functors on
the semigroup category (0,∞):

Definition 10.2. Let C be a category, and let M,N : (0,∞) −→ C be two func-
tors. For any c ⩾ 1 denote by Dc : (0,∞) → (0,∞) the functor that sends a to
ca. Furthermore, denote by ηc : id(0,∞) ⇒ Dc the natural transformation given by
ηc(a) : a→ ca. A c-approximation of M and N is a pair of natural transformations

ϕ : M ⇒ NDc

and

ψ : N ⇒MDc

such that (ψDc)ϕ =Mηc2 and (ϕDc)ψ = Nηc2 .

Lemma 10.3. Let M,N : (0,∞) −→ Ab be two functors. If there exists a c-approx-
imation between M and N , then

limM(ϵ) ∼= limN(ϵ) .

Proof. Let ϕ : M ⇒ NDc and ψ : N ⇒MDc be the natural transformations which
are part of the data of the c-approximation. These induce homomorphisms

ϕ̄ : limM(ϵ) −→ limN(ϵ)

and

ψ̄ : limN(ϵ) −→ limM(ϵ),

which are inverse to each other.

Theorem 10.4. For all k = 0, 1, 2, . . . there is an isomorphism

limHk(CN(X)(ϵ)) ∼= Hk(X) .
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Proof. While there is an inclusion map N(X)(ϵ) → V sing(X)(ϵ) for all ϵ ∈ (0,∞),
in general there is an inclusion V sing(X)(ϵ) → N(X)(cϵ) only for c = ∞, since a
p-simplex in V sing(X)(ϵ) may have length equal to pϵ. On the other hand, when
computing simplicial homology in dimension k, we only need to consider simplices
up to dimension k + 1, and we will therefore consider the truncations of the simpli-
cial sets N(X)(ϵ)⩽k, given by precomposing N(X)(ϵ) : ∆op → Set with the inclusion
∆op

⩽k → ∆op, and similarly for V sing(X)(ϵ).

The inclusion N(X)(ϵ) → V sing(X)(ϵ) induces an inclusion

ϕc(ϵ) : N(X)⩽k+1(ϵ) → V sing(X)⩽k+1(cϵ)

for any c ⩾ 1. If σ is a p-simplex in V sing(X)(ϵ), then its length is bounded by pϵ,
and thus there is an inclusion map

ψk+1(ϵ) : V
sing(X)⩽k+1(ϵ) → N(X)⩽k+1((k + 1)ϵ) .

The collection of maps{
ϕk+1(ϵ) : N(X)⩽k+1(ϵ) → V sing(X)⩽k+1((k + 1)ϵ) | ϵ ∈ (0,∞)

}
and {

ψk+1(ϵ) : V
sing(X)⩽k+1(ϵ) → N(X)⩽k+1((k + 1)ϵ) | ϵ ∈ (0,∞)

}
are easily seen to satisfy the properties of a k + 1-approximation, as all maps involved
are inclusions. Applying homology we obtain a k + 1-approximation between the func-
tors Hk(CV

sing(X)) and Hk(CN(X)). We can now use Lemma 10.3 and obtain an
isomorphism

limHk(CN(X)⩽k+1(ϵ)) ∼= limHk(CV
sing(X)⩽k+1(ϵ)) .

Since Hk(CN(X)⩽k+1(ϵ)) is equal to Hk(CN(X)(ϵ)) for all k, and similarly for
the truncation of the Vietoris–Rips simplicial set, we obtain the claim.

Finally, we aim to compare blurred and ordinary magnitude homology by using
their definition in terms of coends. Thus, similarly as done in the previous part of
this section, we consider these as functors on the semigroup category (0,∞), by pre-
composing the functors with the inclusion functor (0,∞) ↪→ [0,∞): we denote by
Hk(CN(X)⊗(0,∞) Aϵ) and Hk(CN(X)⊗(0,∞) A(0,ϵ] the resulting functors, respec-
tively.

Corollary 10.5. Let k be a non-negative integer, and let X be a metric space with
Hk(X) ≇ 0. Then

limHk(CN(X)⊗(0,∞) Aϵ) ≇ limHk(CN(X)⊗(0,∞) A(0,ϵ]) .

That is, under the limit, the kth ordinary and blurred magnitude homology of X are
not isomorphic. In particular, for any finite metric space the limits differ for k = 0.

Proof. First, note that

limHk(CN(X)⊗(0,∞) Aϵ) ∼= 0

since for any 0 < ϵ ⩽ ϵ′ we have that CN(X)⊗(0,∞) Aϵ → CN(X)⊗(0,∞) Aϵ′ is the
zero chain map. By Lemma 9.2 we have CN(X)⊗(0,∞) A(0,ϵ]

∼= CN(X)(ϵ) for any
ϵ > 0, and further by Theorem 10.4 we have that limHk(CN(X)(ϵ)) is isomorphic to
the Vietoris homology of X.
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11. Conclusion

In this manuscript we relate persistent homology to magnitude homology as two
different ways of computing homology of filtered simplicial sets. We give an answer
to two of the open problems formulated by Leinster and Shulman in [17], and listed
on Page 367 of this manuscript, which we show are intertwined. We define a blurred
version of magnitude homology and show that it is the persistent homology taken
with respect to a certain filtered simplicial set. Furthermore, we show how blurred
and ordinary magnitude homology differ in the limit: blurred magnitude homology
coincides with Vietoris homology, while magnitude homology is trivial.
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