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ON THE STRING TOPOLOGY COPRODUCT FOR LIE GROUPS

MAXIMILIAN STEGEMEYER

(communicated by Donald M. Davis)

Abstract
The free loop space of a Lie group is homeomorphic to the

product of the Lie group itself and its based loop space. We show
that the coproduct on the homology of the free loop space that
was introduced by Goresky and Hingston splits into the diagonal
map on the group and a based coproduct on the homology of
the based loop space. This result implies that the coproduct is
trivial for even-dimensional Lie groups. Using results by Bott
and Samelson, we show that the coproduct is trivial as well for
a large family of simply connected Lie groups.

1. Introduction

In the last two decades the study of string topology structures on the homology
or cohomology of the free loop space has received a great deal of attention. The
operation that has been studied the most is certainly the Chas–Sullivan product
which was introduced by Chas and Sullivan in [5]. For an oriented closed manifold
M this is a product on the singular homology of the free loop space ΛM of the form

∧ : Hi(ΛM)⊗Hj(ΛM) → Hi+j−n(ΛM),

where n is the dimension of M . In [7], Cohen, Klein and Sullivan show that the
Chas–Sullivan product is a homotopy invariant.

Going back to ideas by Sullivan [17], Goresky and Hingston [8] define a coproduct
on the homology of the free loop space of an oriented closed n-dimensional manifold
M relative to the constant loops which takes the form

∨ : Hi(ΛM,M) → Hi+1−n(ΛM × ΛM,ΛM ×M ∪M × ΛM).

As a dual operation, a product on the cohomology of the free loop space can be
defined (see [8, Section 9]). This homology coproduct and cohomology product have
been further studied by Hingston and Wahl in [11]. The homology coproduct is not a
homotopy invariant as an example of Naef [15] shows. However, Hingston and Wahl
show in [12] that the homology coproduct is invariant under homotopy equivalences
that satisfy an additional assumption.

It is not surprising that explicit computations with these string topology opera-
tions can become very complicated. There are some results, where the Chas–Sullivan
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product was computed explicitly. Using integer coefficients the Chas–Sullivan product
has been computed for spheres and complex projective spaces (see [6]) and complex
Stiefel manifolds (see [18]). With rational coefficients, the Chas–Sullivan product has
furthermore been computed for complex and quaternionic projective spaces (see [19]).
Hepworth has computed the Chas–Sullivan product with rational coefficients for the
special orthogonal groups (see [10]).

The Goresky–Hingston product in cohomology and the corresponding coproduct
in homology have only been computed explicitly in a few instances. In [8] the authors
compute the Goresky–Hingston product for spheres of dimension greater than or
equal to 3. In [11] the homology coproduct is computed for odd-dimensional spheres.

The goal of this article is to study the homology coproduct for Lie groups. The
free loop space of a compact Lie group G splits into the product

ΛG ∼= G× ΩeG,

where ΩeG is the space of loops based at the neutral element e. Since the homology of
ΩeG with coefficients in a commutative ring R is free (see [1]), the homology of ΛG is
isomorphic to the tensor product H•(G)⊗H•(ΩeG). The following main result of this
article shows that the homology coproduct behaves well under this isomorphism. This
result should be thought of as an analogue to [10, Theorem 1.1]. There, Hepworth
shows that for a Lie group G, the Chas–Sullivan ring is isomorphic to the tensor
product of the intersection ring on the Lie group G and the Pontryagin ring on the
based loop space ΩeG.

Theorem (Theorem 3.1). Let G be a compact Lie group of dimension n and con-
sider homology with coefficients in a commutative ring R. Under the isomorphism
H•(ΛG,G) ∼= H•(G)⊗H•(ΩeG, e) the coproduct ∨ can be expressed by the tensor
product of the map d∗ that is induced by the diagonal map d : G → G×G and the
based coproduct ∨Ω up to a sign-correction. More precisely, the following diagram
commutes ⊕

k+j=i Hk(G)⊗Hj(Ω, e) Hi(Λ, G)

⊕
k+j=i Hk(G

2)⊗Hj+1−n(Ω
2,Ω× e ∪ e× Ω) Hi+1−n(Λ

2,Λ×G ∪G× Λ),

(−1)nid∗⊗∨Ω

∼=

∨

∼=

where Ω = ΩeG and Λ = ΛG.

With this result, one can prove directly that the coproduct is trivial for even-
dimensional Lie groups. Combining this with explicit cycles in the based loop space
of a compact, simply connected Lie group of rank r ⩾ 2 we are able to show the
following.

Theorem (Theorem 4.1 and Theorem 5.6). Let G be a compact Lie group. If G is
even-dimensional or if G is simply connected and of rank r ⩾ 2, then the homology
coproduct is trivial.

This article is organized as follows. In Section 2, we review some facts about loop
spaces and define the based homology coproduct as well as the free homology coprod-
uct. We also show a compatibility statement between these two coproducts. The goal
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of Section 3 is to show that the splitting of the free loop space of a compact Lie
group is respected by the homology coproduct. We also show that the dual cohomol-
ogy product behaves nicely under this splitting. In the brief Section 4, we conclude
that the coproduct is trivial for even-dimensional Lie groups. Finally, in Section 5 we
define explicit cycles of the based loop space of a Lie group that were first introduced
by Bott and Samelson [2] to prove that the free homology coproduct vanishes for
simply connected compact Lie groups of rank r ⩾ 2.

In this article all manifolds, are assumed to be smooth and connected and all Rie-
mannian metrics are assumed to be smooth. In particular, all Lie groups are assumed
to be connected.
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2. Free and based coproduct

In this section, we introduce the based coproduct and the free coproduct. We
will then show that these two coproducts are compatible. Furthermore, the dual
cohomology products are introduced.

In the following, let M be an oriented closed n-dimensional Riemannian manifold.
We consider absolutely continuous curves in M (see [14, Definition 2.3.1]). Let

PM =
{
γ : I → M | γ absolutely continuous,

∫ 1

0

|γ̇(t)|2 dt < ∞
}

be the set of absolutely continuous curves in M with square integrable derivative,
where I = [0, 1] is the unit interval. This set can be given a topology and a differ-
entiable structure that make it a Hilbert manifold (see [14, Theorem 2.3.12]). Note
that PM with this topology is homotopy equivalent to the space

C0(I,M) = {γ : I → M | γ continuous}
of continuous paths in M with the compact-open topology (see [13, Theorem 1.2.10]).

We consider the following submanifolds of PM : The free loop space of M is defined
to be

ΛM = {γ ∈ PM | γ(0) = γ(1)}
and for a fixed point p0 ∈ M , the based loop space of M in p0 is

Ωp0
M = {γ ∈ PM | γ(0) = γ(1) = p0}.

If it is clear what the basepoint of Ωp0
M is, we may suppress the index p0 from the

notation. If the manifold in question is clear from the context, we will also write
Ω and Λ for Ωp0

M and ΛM , respectively. Note that the trivial loops in M form a
submanifold of ΛM which is diffeomorphic to M (see [13, Proposition 1.4.6]).

On the path space PM we consider the function

L : PM → [0,∞), L(γ) =

√∫ 1

0

|γ̇(t)|2dt,
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which is the square root of the energy functional and which is well-defined by defini-
tion of PM . The energy functional is a continuous function on PM (see [14, Theo-
rem 2.3.20]), hence the function L is continuous as well.

Assume that we have fixed a basepoint p0 ∈ M and choose an ϵ > 0 smaller than
the injectivity radius of M . In order to define the based coproduct and the free
coproduct, we need to make the following preparations. For the definition of the free
coproduct, we closely follow [11, Section 1.5]. Fix a commutative ring R and consider
homology and cohomology with coefficients in R.

First, let ∆M be the diagonal inM ×M . The diagonal has a tubular neighborhood
in M ×M which can be chosen as

UM = {(p, q) ∈ M ×M |d(p, q) < ϵ},

where d is the distance function on M ×M induced by the Riemannian metric on
M . This choice of UM is made as in [11, Section 1.3]. Choose ϵ0 > 0 such that ϵ0 < ϵ
and define

UM,⩾ϵ0 = {(p, q) ∈ UM |d(p, q) ⩾ ϵ0}.

A tubular neighborhood of the diagonal in M ×M is homeomorphic to the normal
bundle of ∆M ↪→ M ×M which itself is isomorphic to the tangent bundle of M .
Consequently, the pair (UM , UM,⩾ϵ0) is homeomorphic to the pair (TM<ϵ, TM<ϵ

⩾ϵ0
)

where TM<ϵ is the open disk bundle

TM<ϵ = {v ∈ TM | |v| < ϵ}

and TM<ϵ
⩾ϵ0

is the fiber bundle

TM<ϵ
⩾ϵ0

= {v ∈ TM<ϵ | |v| ⩾ ϵ0}.

The Thom class in Hn(TM, TM ∖M) that is defined by the orientation of M induces
a class in Hn(TM<ϵ, TM<ϵ

⩾ϵ0
) (see [11, Section 1.3]) and therefore we obtain a class

τM ∈ Hn(UM , UM,⩾ϵ0).

Consider the open ball

Bp0
= {q ∈ M |d(p0, q) < ϵ} ⊆ M

and the inclusion ι : Bp0
↪→ UM given by ι(q) = (p0, q). If we define

Bp0,⩾ϵ0 = {q ∈ Bp0
|d(p0, q) ⩾ ϵ0}

then we obtain a map of pairs ι : (Bp0 , Bp0,⩾ϵ0) ↪→ (UM , UM,⩾ϵ0).
Clearly, we have

Hn(Bp0
, Bp0,⩾ϵ0)

∼= Hn(Dn,Sn−1) ∼= R.

Furthermore, under the identification UM
∼= TM , one observes that the inclusion

ι : Bp0
↪→ UM corresponds to the inclusion of the fiber Tp0

M ↪→ TM .
Recall that the Thom class τ of an orientable vector bundle E → B of rank k

has the following property. Let b ∈ B be a point and denote by Eb the fiber over
b. If we consider the inclusion i : (Eb, Eb ∖ {0}) ↪→ (E,E ∖B) then the pull back
i∗τ ∈ Hk(Eb, Eb ∖ {0}) is the generator induced by the orientation of Eb. Hence, in
our particular situation one obtains the following.
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Lemma 2.1. The generator τ0 of Hn(Bp0
, Bp0,⩾ϵ0) which is induced by the orienta-

tion of M and the class τM satisfy

ι∗τM = τ0.

Furthermore, define the spaces

UΛ = {(γ, s) ∈ ΛM × I |d(γ(0), γ(s)) < ϵ} and

UΛ,⩾ϵ0 = {(γ, s) ∈ UΛ |d(γ(0), γ(s)) ⩾ ϵ0}

and their based counterparts

UΩ = {(γ, s) ∈ ΩM × I |d(p0, γ(s)) < ϵ} and

UΩ,⩾ϵ0 = {(γ, s) ∈ UΩ |d(p0, γ(s)) ⩾ ϵ0}.

Consider the evaluation maps evΛ : Λ× I → M ×M and evΩ : Ω× I → M given by

evΛ(γ, s) = (γ(0), γ(s)) and evΩ(σ, t) = σ(t)

for γ ∈ ΛM , σ ∈ Ωp0M and s, t ∈ I. These maps restrict to maps of pairs

evΛ : (UΛ, UΛ,⩾ϵ0) → (UM , UM,⩾ϵ0) and

evΩ : (UΩ, UΩ,⩾ϵ0) → (Bp0 , Bp0,⩾ϵ0).

Therefore we can define the classes

τΛ = ev∗ΛτM ∈ Hn(UΛ, UΛ,⩾ϵ0) and τΩ = ev∗Ωτ0 ∈ Hn(UΩ, UΩ,⩾ϵ0).

Lemma 2.2. If j : (UΩ, UΩ,⩾ϵ0) ↪→ (UΛ, UΛ,⩾ϵ0) is the inclusion of pairs, then the
classes τΛ and τΩ satisfy j∗τΛ = τΩ.

Proof. We have

j∗τΛ = j∗ev∗ΛτM = ev∗Ωι
∗τM = ev∗Ωτ0 = τΩ,

where we used Lemma 2.1 and the fact that evΛ ◦ j = ι ◦ evΩ with ι as above.

Consider the spaces

FΛ = {(γ, s) ∈ ΛM × I | γ(s) = γ(0)} and

FΩ = {(γ, s) ∈ ΩM × I | γ(s) = p0}.

We now want to define a retraction map RGH : UΛ → FΛ. Let γ ∈ PM be a path
and s ∈ I. In order to make the restriction γ|[0,s] a well-defined element of PM , we
introduce the map ρs : PM → PM given by

ρs(γ)(t) = γ(st) for γ ∈ PM.

Similarly, define µs : PM → PM by

µs(γ)(t) = γ(s+ (1− s)t) for γ ∈ PM.

The path µs(γ) is the restriction of γ to the interval [s, 1] combined with a reparame-
trization to make it an element of PM . Furthermore, for a fixed s ∈ I and two paths
γ, δ ∈ PM with γ(1) = δ(0), we denote by ϕs(γ, δ) the concatenation of these two
paths such that the path γ is run through during the interval [0, s] and the path δ is
run through during the interval [s, 1].
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Given two paths γ, δ ∈ PM such that γ(1) = δ(0), we define their optimal concate-
nation to be the path

γ ∗ δ = ϕt∗(γ, δ), where t∗ =
L(γ)

L(γ) + L(δ)
if one of γ or δ has positive length. If L(γ) = L(δ) = 0, then γ = δ = p is a trivial loop
at some point p in M and we set γ ∗ δ = p. For two points p, q ∈ M with d(p, q) < ϵ,
the path pq ∈ PM is chosen to be the unique distance-minimizing geodesic connecting
these two points parametrized on the unit interval I.

Using these definitions, we define RGH : UΛ → FΛ by

RGH(γ, s) =
(
ϕs

(
ρs(γ) ∗ γ(s)γ(0) , γ(0)γ(s) ∗ µs(γ)

)
, s

)
for (γ, s) ∈ UΛ. One checks that this indeed a continuous map.

If we restrict RGH to UΩ ⊆ UΛ, we obtain a map RGH : UΩ → FΩ. Finally, let
cut : FΛ → ΛM × ΛM be the map

cut(γ, s) = (ρs(γ), µs(γ)) for (γ, s) ∈ FΛ.

This restricts to a map cut : FΩ → Ωp0
M × Ωp0

M .
Let [I] be a generator of H1(I, ∂I). If p0 ∈ M is the base point of M , then by a

slight abuse of notation, we shall write p0 for the set {p0} ⊆ ΩM that consists of the
trivial loop at p0.

Definition 2.3. Let M be an oriented closed n-dimensional Riemannian manifold
with base point p0 ∈ M .

1. The based homology coproduct is defined as the composition

∨Ω : H•(Ω, p0)
×[I]−−−→ H•+1(Ω× I,Ω× ∂I ∪ p0 × I)
τΩ∩−−→ H•+1−n(UΩ,Ω× ∂I ∪ p0 × I)

(RGH)∗−−−−−→ H•+1−n(FΩ,Ω× ∂I ∪ p0 × I)

(cut)∗−−−−→ H•+1−n(Ω× Ω,Ω× p0 ∪ p0 × Ω).

2. The free homology coproduct is defined as the composition

∨ : H•(Λ,M)
×[I]−−−→ H•+1(Λ× I,Λ× ∂I ∪M × I)
τΛ∩−−→ H•+1−n(UΛ,Λ× ∂I ∪M × I)

(RGH)∗−−−−−→ H•+1−n(FΛ,Λ× ∂I ∪M × I)

(cut)∗−−−−→ H•+1−n(Λ× Λ,Λ×M ∪M × Λ).

Note that the relative cap product that we use, requires some care. For example,
in the case of the based coproduct, it is understood as a map

Hn(UΩ, UΩ,⩾ϵ0)⊗Hi(Ω× I,Ω× ∂I ∪ p0 × I) → Hi−n(UΩ,Ω× ∂I ∪ p0 × I)

and analogously for the free coproduct. See [11, Appendix A] for details of this
construction and a naturality statement.

We now want to show that the based coproduct and the free coproduct are com-
patible.
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Proposition 2.4. Let M be an oriented closed Riemannian manifold with base point
p0 ∈ M and consider singular homology with coefficients in a commutative ring R.
The based coproduct and the free coproduct are compatible in the sense that the dia-
gram

Hk(Ω, p0) Hk(Λ,M)

Hk+1−n(Ω
2,Ω× p0 ∪ p0 × Ω) Hk+1−n(Λ

2,Λ×M ∪M × Λ)

i∗

∨Ω ∨

(i,i)∗

commutes. Here i : Ω → Λ is the inclusion.

Proof. The claimed commutativity of the diagram in the statement of the proposition
follows if we verify that all subdiagrams of the following diagram commute

Hk(Ω, p0) Hk(Λ,M)

Hk+1(Ω× I,Ω× ∂I ∪ p0 × I) Hk+1(Λ× I,Λ× ∂I ∪M × I)

Hk+1−n(UΩ,Ω× ∂I ∪ p0 × I) Hk+1−n(UΛ,Λ× ∂I ∪M × I)

Hk+1−n(Ω× Ω,Ω× p0 ∪ p0 × Ω) Hk+1−n(Λ× Λ,Λ×M ∪M × Λ).

i∗

×[I] ×[I]

(i,idI)∗

τΩ∩ τΛ∩

(i,idI)∗

(cut◦RGH)∗ (cut◦RGH)∗

(i,i)∗

It is clear that the first and the last square of the above diagram commute. For the
middle square, let X ∈ H•(Ω× I,Ω× ∂I ∪ p0 × I). Then if we write j for (i, idI), we
see that

j∗(τΩ ∩X) = j∗(j
∗τΛ ∩X) = τΛ ∩ (j∗X)

by Lemma 2.2 and the naturality of the cap product. Hence, the above diagram
commutes and therefore the coproducts are compatible.

We will now focus on field coefficients for the rest of this section. If F is a field
and if the homology of Ω, resp. Λ is of finite type, then the based and free coproduct
induce products in cohomology. Note that the following product on the cohomology
of the free loop space was first introduced by Goresky and Hingston in [8].

Definition 2.5. Let M be an oriented, closed manifold with base point p0 ∈ M and
let F be a field. Assume that the homology of ΩM , resp. ΛM is of finite type.

1. If α ∈ Hi(Ω, p0;F), β ∈ Hj(Ω, p0;F) are cohomology classes, then the based coho-
mology product α ⃝∗Ω β is defined to be the unique class in Hi+j+n−1(Ω, p0;F)
that satisfies

⟨α ⃝∗Ω β,X⟩ = ⟨α× β,∨ΩX⟩ for all X ∈ H•(Ω, p0;F).

2. If α ∈ Hi(Λ,M ;F), β ∈ Hj(Λ,M ;F) are cohomology classes, then the free coho-
mology product α ⃝∗ β is defined to be the unique class in Hi+j+n−1(Λ,M ;F)
that satisfies

⟨α ⃝∗ β,X⟩ = ⟨α× β,∨X⟩ for all X ∈ H•(Λ,M ;F).
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Remark 2.6. Let M be an oriented closed Riemannian manifold.

1. The free homology coproduct was first introduced in [8, Section 8]. In the above
exposition we followed the definition of the coproduct in [11], where the authors
give a chain-level definition. They then show that the induced coproduct in
homology is equivalent to the definition in [8]. The free cohomology product is
more often referred to as the Goresky–Hingston product, since it was introduced
by Goresky and Hingston in [8, Section 9]. Using the chain level definition of
the free coproduct, Hingston and Wahl obtain an equivalent definition in [11].
In order to make a better distinction to the based cohomology product, we will
always refer to the Goresky–Hingston product as the free cohomology product.

2. Note that we used the names product and coproduct. However, the operations
only have the algebraic properties of what is usually understood as product and
coproduct if we introduce additional sign conventions (see [11]). Since this paper
mostly considers situations in which the products and coproducts are trivial,
we will not deal with these signs and stick to the above definitions.

3. One can also extend all the coproducts and products to absolute homology and
cohomology, respectively. As an example, consider the free homology coproduct

∨ : Hi(Λ,M) → Hi+1−n(Λ× Λ,Λ×M ∪M × Λ).

The homology of Λ with coefficients in a commutative ring R is isomorphic to
the direct sum

Hi(Λ) ∼= Hi(Λ,M)⊕Hi(M).

The idea of extending the free homology coproduct to a map

∨̂ : Hi(Λ) → Hi+1−n(Λ× Λ)

is therefore to extend the relative homology coproduct ∨ on Hi(Λ,M) by the
trivial map on Hi(M) in order to get a well-defined map on Hi(Λ). Then,
one has to lift the resulting class in Hi+1−n(Λ

2,Λ×M ∪M × Λ) to a class
in Hi+1−n(Λ

2). See [11] for details. While it might indeed be more convenient
to work on the absolute homology of the free loop space, these extensions do
not bring any new topological information into play. Therefore, for the rest of
this article, we will stick to the relative definitions.

3. Splitting of the coproduct

In this section, we will discuss how the based coproduct and the free coproduct are
related for Lie groups. While for arbitrary manifolds, we only have the compatibility
statement of proposition 2.4, we will now show that in the case of a Lie group the free
coproduct is completely determined by the based coproduct and the push-forward of
the diagonal map of the group itself. After that, we will examine how this result
transfers to the cohomology products.

Let G be a compact Lie group. As base point we will always choose the unit element
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e ∈ G. There is a homeomorphism

Φ: G× ΩG → ΛG, Φ(g, γ) = (t 7→ gγ(t)).

Observe that its inverse is the map

Ψ: ΛG → G× ΩG, Ψ(γ) = (γ(0), t 7→ (γ(0)−1γ(t))). (1)

Bott [1] has shown that the integer homology of ΩG is free and that it is non-trivial
only in even degrees. By the universal coefficient theorem, this property then holds
for homology with coefficients in an arbitrary commutative ring R as well. The same
also holds for the relative homology H•(ΩG, e). Consequently, there is a Künneth
isomorphism

Hi(G× ΩG,G× e) ∼=
⊕

k+j=i

Hk(G)⊗Hj(ΩG, e).

Combining this with the homeomorphism Φ we get an isomorphism

Θ∗ : (H•(G)⊗H•(ΩG, e))i
×−→ Hi(G× ΩG,G× e)

Φ∗−−→ Hi(ΛG,G).

Hepworth [10] has shown that the isomorphism of groups Θ∗ becomes a ring isomor-
phism if we equip H•(G) with the intersection product, H•(ΩG) with the Pontryagin
product and H•(ΛG) with the Chas–Sullivan product. The following result can be
seen as an analogous result for the coproduct.

For the statement of the theorem, observe that there is a homeomorphism

Φ̃: G×G× ΩG× ΩG → ΛG× ΛG

given by

Φ̃(g1, g2, γ1, γ2) = ((t 7→ g1γ1(t)), (s 7→ g2γ2(s))). (2)

Since the relative homology H•(ΩG, e) is free and concentrated in even degrees,
there is a Künneth isomorphism

Hi(ΩG× ΩG,ΩG× e ∪ e× ΩG) ∼=
⊕

k+j=i

Hk(ΩG, e)⊗Hj(ΩG, e) ,

see [16, Theorem 5.3.10] for a relative version of the Künneth theorem which applies
to this situation. Hence, the relative homology H•(ΩG× ΩG,ΩG× e ∪ e× ΩG) is
also free and concentrated in even degrees.

Consequently, there is again a Künneth isomorphism

Hi(G
2 × Ω2, G2 × (Ω× e ∪ e× Ω)) ∼=

⊕
k+j=i

Hk(G
2)⊗Hj(Ω

2,Ω× e ∪ e× Ω).

This yields an isomorphism

Θ̃∗ :
(
H•(G

2)⊗H•(Ω
2,Ω× e ∪ e× Ω)

)
i

×−→ Hi(G
2 × Ω2, G2 × (Ω× e ∪ e× Ω))

Φ̃∗−−→ Hi(Λ
2,Λ×G ∪G× Λ).

Theorem 3.1. Let G be a compact Lie group of dimension n. Consider homology
with coefficients in a commutative ring R. Under the isomorphisms Θ∗ and Θ̃∗ the
free coproduct ∨ can be expressed by the tensor product of the map d∗ that is induced by
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the diagonal map d : G → G×G and the based coproduct ∨Ω up to a sign-correction.
More precisely, for all i ∈ N0 the following diagram commutes⊕

k+j=i Hk(G)⊗Hj(Ω, e) Hi(Λ, G)

⊕
k+j=i Hk(G

2)⊗Hj+1−n(Ω
2,Ω× e ∪ e× Ω) Hi+1−n(Λ

2,Λ×G ∪G× Λ).

(−1)nid∗⊗∨Ω

Θ∗

∨

Θ̃∗

Proof. For the proof, we fix a left-invariant metric on G. Let k, j ∈ N and put l =
k + j + 1− n. Let pr : G× Ω× I → Ω× I be the projection onto the last two factors.

We begin by proving that the following diagram commutes

Hk(G)⊗Hj(Ω, e) Hk+j(Λ, G)

Hk+j(G× Ω, G× e) Hk+j(Λ, G)

Hk+j+1(G× Ω× I,G× (e× I ∪ Ω× ∂I)) Hk+j+1(Λ× I,G× I ∪ Λ× ∂I)

Hl(G× UΩ, G× (e× I ∪ Ω× ∂I)) Hl(UΛ, G× I ∪ Λ× ∂I)

Hl(G× FΩ, G× (e× I ∪ Ω× ∂I)) Hl(FΛ, G× I ∪ Λ× ∂I)

Hl(G
2 × Ω2, G2 × (Ω× e ∪ e× Ω)) Hl(Λ

2,Λ×G ∪G× Λ).

×

Θ∗

=

×[I]

Φ∗

×[I]

(Φ,idI)∗

pr∗τΩ∩ τΛ∩

(Φ,idI)∗

(idG,RGH)∗ (RGH)∗

(Φ,idI)∗

(d,cut)∗ cut∗

Φ̃∗

The commutativity of the first two squares is clear. Consider the third square

Hk+j+1(G× Ω× I,G× (e× I ∪ Ω× ∂I)) Hk+j+1(Λ× I,G× I ∪ Λ× ∂I)

Hl(G× UΩ, G× (e× I ∪ Ω× ∂I)) Hl(UΛ, G× I ∪ Λ× ∂I).

(Φ,idI)∗

pr∗τΩ∩ τΛ∩

(Φ,idI)∗

To prove that this diagram commutes, let X ∈ H•(G× Ω× I,G× (e× I ∪ Ω× ∂I)).
We need to show that

τΛ ∩ ((Φ, idI)∗X) = (Φ, idI)∗(pr
∗τΩ ∩X). (3)

By naturality, the left hand side of this equation is

τΛ ∩ ((Φ, idI)∗X) = (Φ, idI)∗((Φ, idI)
∗τΛ ∩X) (4)

so it suffices to show that pr∗τΩ = (Φ, idI)
∗τΛ.

Consider the tubular neighborhood

UG = {(p, q) ∈ G×G |d(p, q) < ϵ},

where d is the distance-function induced by the chosen Riemannian metric. This
particular tubular neighborhood UG is globally trivial in the sense that the map
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χ : UG → G×Be given by

χ(g, h) = (g, g−1h) for (g, h) ∈ UG

is a homeomorphism. Here we use that the metric on G is left-invariant, therefore
also the distance function is G-invariant.

It follows that the Thom class τG ∈ Hn(UG, UG,⩾ϵ0) can be written as

τG = χ∗(1G × τe),

where τe ∈ Hn(Be, Be,⩾ϵ0) is the class defined for the based coproduct as in Lem-
ma 2.1. Using this identity, we see that

(Φ, idI)
∗τΛ = [χ ◦ evΛ ◦ (Φ, idI)]∗(1G × τe).

It furthermore holds that

(χ ◦ evΛ ◦ (Φ, idI))(g, γ, s) = (g, γ(s)) = (idG, evΩ)(g, γ, s)

for (g, γ, s) ∈ G× Ω× I. Consequently,

(Φ, idI)
∗τΛ = (idG, evΩ)

∗(1G × τe) = 1G × ev∗Ωτe = pr∗τΩ.

Consequently, we see from equations (3) and (4) that the third square commutes.
For the fourth square

Hl(G× UΩ, G× (e× I ∪ Ω× ∂I)) Hl(UΛ,M × I ∪ Λ× ∂I)

Hl(G× FΩ, G× (e× I ∪ Ω× ∂I)) Hl(FΛ,M × I ∪ Λ× ∂I)

(Φ,idI)∗

(idG,RGH)∗ (RGH)∗

(Φ,idI)∗

we prove its commutativity by showing that the diagram of maps

G× UΩ UΛ

G× FΩ FΛ

(Φ,idI)

(idG,RGH) RGH

(Φ,idI)

commutes. Let (g, γ, s) ∈ G× UΩ, i.e. d(e, γ(s)) < ϵ. Using the shorthand notation
γt = γ(t) for t ∈ [0, 1], we have

((Φ, idI) ◦ (idG,RGH))(g, γ, s) =
(
g · ϕs

[
(ρs(γ) ∗ γsγ0), (γ0γs ∗ g · µs(γ))

]
, s

)
=

(
ϕs

[
g · ρs(γ) ∗ (gγs)(gγ0), (gγ0)(gγs) ∗ g · µs(γ)

]
, s
)

= (RGH ◦ (Φ, idI))(g, γ, s).

The second equality holds by our use of a left-invariant metric on G which implies
that the geodesic segment from gγ0 to gγs can be expressed as

(gγ0)(gγs) = g · γ0γs
since left-multiplication by g ∈ G is an isometry. This proves that the fourth square
commutes.

The commutativity of the last square can be seen in an analogous manner by
checking that the underlying maps commute. Thus we have shown that the large
diagram commutes.
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Call the map that is defined by the left vertical side of the large diagram

Ξ: Hk(G)⊗Hj(Ω, e) → Hl(G
2 × Ω2, G2 × (Ω× e ∪ e× Ω)).

In order to complete the proof of the theorem, we need to show that the following
diagram commutes

Hk(G)⊗Hj(Ω, e)

Hk(G
2)⊗Hj+1−n(Ω

2,Ω× e ∪ e× Ω)

Hl(G
2 × Ω2, G2 × (Ω× e ∪ e× Ω)).

(−1)n(k+j)d∗⊗∨Ω

Ξ

×

This is easily seen by unwinding the definitions. Let X ∈ Hk(G) and Y ∈ Hj(Ω, e),
then

Ξ(X ⊗ Y ) = (d, cut)∗(idG,RGH)∗(pr
∗τΩ ∩ (X × Y × [I]))

= (d, cut ◦ RGH)∗((1G × τΩ) ∩ (X × (Y × [I])))

= (−1)nk(d, cut ◦ RGH)∗(X × (τΩ ∩ (Y × [I])))

= (−1)nk(d∗X × ∨ΩY ).

Now, if Y is non-trivial, then j is even, hence we see that

Ξ(X ⊗ Y ) = (−1)n(k+j)(d∗X × ∨ΩY ).

The commutativity of this last diagram combined with the commutativity of the
large diagram at the beginning of the proof show the claim.

We now prove a dual result about the cohomology products introduced in Section 2.
We will only deal with cohomology with coefficients in a field F. Note that since the
cohomology of the Lie group is of finite type, the cross product in cohomology induces
an isomorphism

(H•(G;F)⊗H•(ΩG, e;F))i ∼= Hi(G× ΩG,G× e;F)

see [16, Theorem 5.6.1]. Combining this with the pull-back of the map Ψ defined in
equation (1), we get an isomorphism

Θ∗ : (H•(G;F)⊗H•(Ω, e;F))i ×−→ Hi(G× Ω, G× e;F) Ψ∗

−−→ Hi(Λ, G;F).

Theorem 3.2. Let G be a compact Lie group. Assume that the homology H•(ΩG;F)
is of finite type. The free cohomology product on ΛG can be expressed by the tensor
product of the cup product on the cohomology of G and the based cohomology product
on ΩG. More precisely, if α ∈ Hi(Λ, G;F) and β ∈ Hj(Λ, G;F) are of the form

α = Ψ∗(a×A) and β = Ψ∗(b×B),

where a, b ∈ H•(G;F) and A,B ∈ H•(Ω, e;F), then

α ⃝∗ β = (−1)n(i+j)Ψ∗[(a ∪ b)× (A ⃝∗Ω B)].
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Proof. Since the homology H•(ΩG;F) is of finite type, so is H•(ΛG;F) and thus
the cohomology products are defined. The free cohomology product of α and β is
determined by the natural pairing of homology and cohomology, i.e. we have

⟨α ⃝∗ β,X⟩ = ⟨α× β,∨X⟩ for all X ∈ H•(Λ, G;F). (5)

Since the natural pairing is trivial if the homology class and the cohomology class
have different degrees, it is sufficient to consider homology classes X of degree k =
i+ j + n− 1.

Let X ∈ Hk(Λ, G;F) and assume that the class X is of the form

X = Φ∗(x× ξ) with x ∈ H•(G;F), ξ ∈ H•(Ω, e;F). (6)

Equation (5) then becomes

⟨α× β,∨X⟩ = ⟨Ψ∗(a×A)×Ψ∗(b×B), (−1)nkΦ̃∗(d∗x× ∨Ωξ) ⟩
= (−1)nk⟨Φ̃∗(Ψ,Ψ)∗(a×A× b×B), d∗x× ∨Ωξ⟩
= (−1)nk⟨((Ψ,Ψ) ◦ Φ̃)∗(a×A× b×B), d∗x× ∨Ωξ⟩, (7)

where Φ̃ was defined in equation (2) and where we used Theorem 3.1 in the first
equality.

A direct computation shows that

((Ψ,Ψ) ◦ Φ̃)(g1, g2, γ1, γ2) = (g1, γ1, g2, γ2) for g1, g2 ∈ G, γ1, γ2 ∈ Ω.

Therefore, (Ψ,Ψ) ◦ Φ̃ is just the swapping map

G×G× Ω× Ω → G× Ω×G× Ω

interchanging the second and the third factor. By the standard properties of the cross
product we obtain

((Ψ,Ψ) ◦ Φ̃)∗(a×A× b×B) = (−1)|A||b|a× b×A×B,

where | · | is the degree of a cohomology class. As for homology, the cohomology of
the based loop space is only non-trivial in even degrees, so if the class A is non-trivial,
the sign (−1)|A||b| is always equal to 1. Going back to equation (7), we see that

⟨α ⃝∗ β,X⟩ = (−1)nk⟨a× b×A×B, d∗x× ∨Ωξ⟩
= (−1)nk⟨a× b, d∗x⟩⟨A×B,∨Ωξ⟩
= (−1)nk⟨(a ∪ b)× (A ⃝∗Ω B), x× ξ⟩
= (−1)nk⟨Ψ∗((a ∪ b)× (A ⃝∗Ω B)), X⟩,

where we used the definitions of the cup product and of the based cohomology prod-
uct, respectively. For the sign, we observe that

(−1)nk = (−1)n(i+j)(−1)n(n−1) = (−1)n(i+j).

This shows that

⟨α ⃝∗ β,X⟩ = (−1)n(i+j)⟨Ψ∗((a ∪ b)× (A ⃝∗Ω B)), X⟩ (8)

for all classes X that can be written as in equation (6). But since these classes span
all of Hk(Λ, G;F), it follows that equation (8) holds for all X ∈ Hk(Λ, G;F). By the
non-degeneracy of the natural pairing this completes the proof of the theorem.
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4. Triviality of the coproduct for even-dimensional Lie
groups

We are now going to show that the coproduct is trivial for large classes of Lie
groups. In this section, we will consider compact, even-dimensional Lie groups, where
the triviality follows directly from Theorem 3.1.

Theorem 4.1. Let G be an even-dimensional compact Lie group. Consider homology
with coefficients in a commutative ring R. Then the based coproduct ∨Ω and the free
coproduct ∨ are trivial.

Proof. As we have mentioned earlier, the relative homology of the based loop space
H•(ΩG, e) is free and concentrated in even degrees (see [1]). Consequently, by the
Künneth isomorphism these same properties also hold for the relative homology
H•(ΩG× ΩG,ΩG× e ∪ e× ΩG).

The based coproduct is a map

∨Ω : Hi(ΩG, e) → Hi+1−n(ΩG× ΩG,ΩG× e ∪ e× ΩG)

with degree shift 1− n. Since n is even, this degree shift is odd. Consider now the case
where i is even. Then the degree i+ 1− n is odd, so Hi+1−n(ΩG

2,ΩG× e ∪ e× ΩG)
is trivial. Hence, for even i, the based coproduct must be trivial. In the other case,
one can see similarly that the based coproduct must be trivial as well. This shows
that the based coproduct must be trivial.

By Theorem 3.1, the free coproduct ∨ on H•(Λ, G) can be expressed as

d∗ ⊗ ∨Ω : (H•(G)⊗H•(ΩG, e))i → (H•(G
2)⊗H•(ΩG

2,ΩG× e ∪ e× ΩG))i+1−n

(9)
under the isomorphisms described in Theorem 3.1. We can drop the sign that appears
in Theorem 3.1, since the dimension n of G is even. As we have already shown, the
based coproduct ∨Ω is trivial in this situation. This implies that the map in equa-
tion (9) is trivial and by Theorem 3.1 this implies the triviality of the free coprod-
uct.

Corollary 4.2. Let G be a compact even-dimensional Lie group and let F be a field.
Assume that H•(ΩG;F) is of finite type. Then the based cohomology product and the
free cohomology product of G are trivial.

Proof. Since H•(ΩG;F) is of finite type, so is H•(ΛG;F). Hence, we can use Theo-
rem 4.1 to see that the cohomology products must vanish.

5. Triviality of the coproduct for certain simply connected Lie
groups

We now turn to compact, simply connected Lie groups of rank r ⩾ 2. There are
lots of classical results about the topology of the based loop space of a compact Lie
group by Bott (see [1] and [3]) and by Bott and Samelson (see [2]). We will use an
explicit description of cycles in the based loop space. Throughout this section, we
consider homology with integer coefficients.

Before, we investigate these cycles, let us define the intersection multiplicity of a
homology class. The following definition is given as in [11, Definition 5.1].
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Definition 5.1. Let M be a Riemannian manifold. Let [X] ∈ H•(ΛM,M) be a non-
trivial homology class with representing cycle X ∈ C•(ΛM,M). Assume that the
relative cycle X is represented by a cycle x ∈ C•(ΛM). The basepoint intersection
multiplicity int([X]) of the class [X] is the number

int([X]) = inf
A∼x

(
sup

[
#(γ−1({γ(0)})) | γ ∈ Im(A), L(γ) > 0

])
− 1,

where the infimum is taken over all cycles A ∈ C•(ΛM) homologous to x.

Note that this definition does not depend on the choice of the cycle x, since if
x′ ∈ C•(ΛM) is another cycle representing the relative cycle X, then x and x′ differ
only by elements of C•(M). However, in the above definition we do not consider
trivial loops, so the basepoint intersection multiplicity is well-defined.

Also note that the correction of −1 comes from the fact that we consider loops
as maps γ : [0, 1] → X with γ(0) = γ(1). Hence, for any loop, we would count the
basepoint twice if we did not perform this correction. By using finite-dimensional
approximations of ΛM , one can furthermore see that the number int([X]) is always
finite (see [11, p. 44]).

Hingston and Wahl show the following result (see [11, Theorem 3.10 (C)]).

Proposition 5.2. Let M be an oriented, closed manifold. If X ∈ Hi(ΛM,M) is a
non-trivial homology class with basepoint intersection multiplicity int(X) = 1, then
the free coproduct ∨X vanishes.

From now on, let G be a compact, simply connected Lie group of rank r ⩾ 2. In
particular, G is then semisimple (see [4, Section V.7]). We shall now describe some
explicit cycles in ΩG, closely following the exposition in [3, Section 3].

Denote the Lie algebra of G by g. Let T ⊆ G be a maximal torus, which implies
dim(T ) = r. Furthermore, let gC be the complexification of the Lie algebra g. Then
the Lie algebra t of the maximal torus T is a maximal abelian subalgebra of g and
its complexification h = t⊕ it is a Cartan subalgebra of gC.

A root of the complex semisimple Lie algebra gC is an element α of the dual space
h∗ such that there is a non-trivial subspace gα ⊆ gC with

[H,X] = α(H)X for all H ∈ h, X ∈ gα.

Denote the set of non-zero roots by ∆, then one obtains a decomposition

gC = h⊕
⊕
α∈∆

gα.

If a non-zero root α ∈ ∆ is restricted to t ⊆ h, then its values are purely imaginary.

Definition 5.3. Let α ∈ ∆ be a non-zero root and n ∈ Z. The affine plane

{H ∈ t |α(H) = 2πin} ⊆ t

is called the singular plane (α, n).

If p = (α, n) is a singular plane, we write p for its image exp(p) ⊆ G under the Lie
group exponential of G. Let G(p) be the centralizer of p, i.e. we have

G(p) = {g ∈ G | gh = hg for all h ∈ p}.

The group G(p) is a closed subgroup of G.
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Clearly, the torus T is itself always a closed subgroup of G(p) and one can show
that for all singular planes p the dimension of G(p) is strictly larger than r (see e.g.
[9, Lemma VII.4.5]).

Let P = (p1, p2, . . . , pm) be an ordered family of singular planes, where m ∈ N. Set

W (P ) = G(p1)×G(p2)× · · · ×G(pm).

Following [3], there is a right-action χ of the m-fold product of the maximal torus T
on W (P ) given by

χ : W (P )× Tm → W (P ),

((k1, . . . , km), (t1, . . . , tm)) 7→ (k1t1, t
−1
1 k2t2, . . . , t

−1
m−1kmtm).

Note that Tm is a closed subgroup of W (P ) but the action above is not the one
induced by the group multiplication in W (P ). One can check that the action χ is
proper and free and consequently the quotient

ΓP = W (P )/Tm

is a manifold. Bott and Samelson show in [2] that all ΓP are connected and oriented.
We now construct a continuous map fP : ΓP → ΩG. Let c = (c0, c1, . . . , cm) be an

ordered sequence of polygons in t with the following property:

• The polygon c0 starts at the origin 0 ∈ t.

• For i = 1, . . . ,m the endpoint of the polygon ci−1 is the start point of the
polygon ci and lies on the singular plane pi.

• The polygon cm ends at the origin 0 ∈ t.

For all i = 0, 1, . . . ,m, we can parametrize the polygon ci on the interval [ i
m+1 ,

i+1
m+1 ].

Then we define a map f̃P : W (P ) → ΩG by setting

f̃P (g1, g2, . . . , gm) = ϕ
[
exp(c0), g1 exp(c1)g

−1
1 , . . . , g1 . . . gm exp(cm)g−1

m . . . g−1
1

]
,

where ϕ means the concatenation of the respective paths. By the choice of the poly-
gons, this is a well-defined continuous map. One checks that f̃P is invariant under
the right-action of Tm by χ, so it descends to a map

fP : ΓP → ΩG.

If we choose an orientation class [ΓP ] ∈ H•(ΓP ) of the manifold ΓP , we obtain a
homology class

P∗ = (fP )∗[ΓP ] ∈ H•(ΩG).

Bott and Samelson [2] have shown that the set

{P∗ ∈ H•(ΩG) |P = (p1, . . . , pm) is an ordered family of singular planes, m ⩾ 1}
(10)

together with a generator of H0(ΩG) generates the homology of ΩG if G is simply
connected. Hence, the image in H•(ΩG, e) of the set in equation (10) generates the
homology H•(ΩG, e).

Note that the map fP depends on the choice of the polygons (c0, . . . , cm). How-
ever, assume that we make a different choice, i.e. we choose an ordered sequence of
polygons (d0, . . . , dm) that satisfy the same conditions with respect to the family of
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singular planes P . Then the map f̂P which is induced by the polygons (d0, . . . , dm) is
homotopic to the map fP , since we can continuously deform each di into ci and thus
obtain the desired homotopy from f̂P to fP .

Let F be the lattice

F = {H ∈ t | exp(H) = e},

where exp is the Lie group exponential of G and e ∈ G is the unit element. Recall
that the dimension of t is equal to the rank r.

Definition 5.4. Let P = (p1, . . . , pm) be an ordered family of singular planes. We
say that an ordered family of polygons (c0, c1, . . . , cm) is lattice-nonintersecting if the
following holds: No polygon ci intersects the lattice F apart from c0 at its start point
and cm at its endpoint.

In case the rank r of the Lie group g satisfies r ⩾ 2, it is clear that given an ordered
family of singular planes P = (p1, . . . , pm) we can choose the polygons (c0, c1, . . . , cm)
to satisfy the conditions with respect to the endpoints of the polygons and to be
lattice-nonintersecting at the same time. This choice is not possible however if the
rank is r = 1.

Proposition 5.5. Let G be a compact, simply connected Lie group of rank r ⩾ 2.
Then every homology class in H•(ΛG,G) has basepoint intersection multiplicity 1.

Proof. By the arguments from Section 3 the homology of the free loop space of G
relative to the constant loops is isomorphic to the tensor product of the homology of
G and of the homology of the based loop space of G relative to the basepoint via the
maps

(H•(G)⊗H•(ΩG, e))i
×−→ Hi(G× ΩG,G× e)

Φ∗−−→ Hi(ΛG,G).

Choose classes [x1], . . . , [xl] ∈ H•(G) that generate the homology of G. Then by the
considerations before this proposition and the above isomorphism, it is clear that the
set

{Φ∗([xi]× P∗) | i ∈ {1, . . . , l}, P non-trivial ordered family of singular planes}

generates the homology of ΛG relative to the trivial loops G.

Let i ∈ {1, 2, . . . , l} and let P be a non-trivial ordered family of singular planes. We
want to determine the intersection multiplicity of the homology class Φ∗([xi]× P∗).
Choose an arbitrary representative xi of [xi] and a representative P of P∗ that is
obtained via a lattice-nonintersecting polygon. This is possible, since the rank r is
greater than or equal to 2.

A loop γ ∈ Im(Φ∗(xi × P)) is of the form

γ = k · ϕ
[
exp(c0), g1 exp(c1)g

−1
1 , . . . , g1 . . . gm exp(cm)g−1

m . . . g−1
1

]
.

Clearly, we have γ(0) = γ(1) = k. Assume that there is an s ∈ (0, 1) with γ(s) = k.
Then there is an i ∈ {0, . . . ,m} with exp(ci(s)) = e which implies that ci(s) ∈ F . But
by the choice of a lattice-nonintersecting polygon, this is a contradiction to s ∈ (0, 1)



344 MAXIMILIAN STEGEMEYER

which proves that #(γ−1(k)) = 2. We conclude that

int(Φ∗([xi]× P∗)) = 1.

Since the homology of the free loop space ΛG relative to the constant loops G is
generated by homology classes of the form that we considered, this shows that every
class in H•(ΛG,G) has basepoint intersection multiplicity 1.

Theorem 5.6. Let G be a simply connected, compact Lie group of rank r ⩾ 2. Then
the free coproduct ∨ is trivial.

Proof. This follows from Propositions 5.2 and 5.5.

Remark 5.7. 1. The condition on the rank in Theorem 5.6 cannot be given up.
The 3-sphere S3 can be seen as the Lie group SU(2) which is a compact, simply
connected Lie group of rank 1. The free coproduct on S3 is non-trivial (see
[11, Proposition 3.17] ).

2. Classical examples of Lie groups to which Theorem 5.6 applies are the special
unitary groups SU(n) for n ⩾ 3, the spin groups Spin(n) for n ⩾ 4 and the
compact symplectic groups Sp(n) for n ⩾ 2.
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