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THE STABLE HULL OF AN EXACT ∞-CATEGORY
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Abstract
We construct a left adjoint Hst : Ex∞ → St∞ to the inclu-

sion St∞ ↪→ Ex∞ of the ∞-category of stable ∞-categories into
the ∞-category of exact ∞-categories, which we call the stable
hull. For every exact∞-category E , the unit functor E → Hst(E)
is fully faithful and preserves and reflects exact sequences.
This provides an ∞-categorical variant of the Gabriel–Quillen
embedding for ordinary exact categories. If E is an ordinary
exact category, the stable hull Hst(E) is equivalent to the
bounded derived ∞-category of E .

1. Introduction

Every abelian category has a canonical structure of an ordinary exact category
given by the class of all short exact sequences. Conversely, every ordinary small exact
category admits an embedding into an abelian category with good properties, the
Gabriel–Quillen embedding.

Theorem 1.1 ([TT07, Th. A.7.1]). Let E be a small exact category. Then, there
is an abelian category A and a fully faithful exact functor E → A that reflects exact
sequences. Moreover, E is closed under extensions in A.

As extension-closed subcategories of abelian categories are exact categories, this
gives an alternative description of exact categories as extension-closed subcategories
of abelian categories.

From the point of view of derived categories, it is natural to work with the structure
of triangulated categories, which do not have good categorical properties. In recent
years, Lurie proposed an enhancement for triangulated categories called stable ∞-
categories [Lur09b].

Exact ∞-categories were introduced by Barwick in [Bar15] as a generalization of
ordinary exact categories in the sense of Quillen [Qui73]. Small exact ∞-categories
together with exact functors between them can be organized into an ∞-category,
Ex∞. The ∞-category Ex∞ contains as a full subcategory both

• the category of ordinary small exact categories and exact functors between them
and
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• the ∞-category St∞ of small stable ∞-categories and exact functors between
them.

In this article we construct a functor

Hst : Ex∞ → St∞

called the stable hull functor. The main result of this article is the following theorem,
whose proof is given at the end of Section 4.2.

Theorem 1.2. The functor Hst is left adjoint to the inclusion St∞ ↪→ Ex∞. More-
over, for every exact ∞-category E, the unit functor ηE : E → Hst(E)
1. is fully faithful,

2. preserves and reflects exact sequences and

3. the essential image of E in Hst(E) is closed under extensions.

In fact, for every exact ∞-category E and every stable ∞-category C, restriction
along the unit functor E → Hst(E) induces an equivalence of ∞-categories

Funex(Hst(E), C) ∼−→ Funex(E , C)

between the full subcategories of the functor ∞-categories spanned by those functors
which are exact. The study of a closely related universal property of the bounded
derived category of an ordinary exact category was initiated by Keller using epivalent
towers [Kel91] and later advanced by Porta [Por17] using the language of derivators.
Recently, Bunke, Cisinski, Kasprowski and Winges showed that for an ordinary exact
category E , the canonical functor E → Db(E) into the bounded derived ∞-category
of E is the universal exact functor into a stable ∞-category [BCKW19, Cor. 7.59].
Their result readily implies the existence of a canonical equivalence

Db(E) ∼−→ Hst(E). (1)

Note that if E is moreover abelian, a universal property of Db(E) as a stable ∞-
category with a t-structure was established by Antieau, Gepner and Heller [AGH19,
Prop. 3.26]. In the context of exact categories, t-structures are in general not available.

Theorem 1.2 and the equivalence in (1) show that unit functor ηE : E → Hst(E)
provides both

• an ∞-categorical variant of the Gabriel–Quillen embedding and
• a generalization of the bounded derived ∞-category of an ordinary exact cate-

gory to the more general class of exact ∞-categories.
Furthermore, in light of [Bar15, Ex. 3.5], Theorem 1.2 immediately yields the fol-
lowing characterization of exact ∞-categories:

Corollary 1.3. Let E be a small additive ∞-category and let E†, E† be subcategories
of E. The following are equivalent:

1. The triple (E , E†, E†) is an exact ∞-category.

2. There exists a stable ∞-category C and a fully faithful functor E ↪→ C such that

(a) the essential image of E is closed under extensions in C,
(b) a morphism in E lies in E† if and only if its cofiber in C lies in the essential

image of E and
(c) a morphism in E lies in E† if and only if its fiber in C lies in the essential

image of E.
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2. Preliminaries

We use freely the language of ∞-categories as developed in [Lur09a, Lur17].

2.1. Stable and prestable ∞-categories
First proposed by Lurie [Lur09b], stable ∞-categories provide an enhancement of

triangulated categories in the sense of Verdier [Ver96].

Definition 2.1 ([Lur17, Prop. 1.1.1.9]). An ∞-category C is stable if it has the
following properties:

1. The ∞-category C is pointed, that is it admits a zero object.

2. The ∞-category C admits finite limits and finite colimits.

3. A square in C is cocartesian if and only if it is cartesian.

Proposition 2.2 ([Lur17, Th. 1.1.2.14]). Let C be a stable ∞-category. The homo-
topy category Ho(C) is additive and has a canonical triangulated structure.

Definition 2.3 ([Lur17, Def. 1.2.1.4]). Let C be a stable ∞-category. A t-structure
on C is a t-structure on the homotopy category Ho(C). More precisely, if C is equipped
with a t-structure, we denote the full subcategories of C spanned by those objects
belonging to (Ho(C))⩾n and (Ho(C))⩽n by C⩾n and C⩽n, respectively.

Proposition 2.4 ([Lur17, Prop. 1.2.1.5, Prop. 1.2.1.10, Rem. 1.2.1.1]). Let C be a
stable ∞-category with a t-structure. Then the following statements hold:

1. For all n ∈ N, the inclusion C⩾n ↪→ C admits a right adjoint τ⩾n : C → C⩾n.

2. For all n ∈ N, the inclusion C⩽n ↪→ C admits a left adjoint τ⩽n : C → C⩽n.

3. For all m,n ∈ N, there is a natural equivalence

τ⩽m ◦ τ⩾n ≃ τ⩾n ◦ τ⩽m.

4. The heart C♡ := C⩽0 ∩ C⩾0 is equivalent to the nerve of its homotopy category,
which is an abelian category.

We denote the composite τ⩽0 ◦ τ⩾0 by π0 : C → C♡.

Definition 2.5 ([Lur20, Constr. C.1.1.1]). Let D be a pointed ∞-category which
admits finite colimits and let Σ: D → D be the suspension functor, given on objects
by ΣX = 0 ⊔X 0. We denote the direct limit of the tower

D Σ−→ D Σ−→ D Σ−→ · · ·

by SW(D) and refer to it as the Spanier–Whitehead ∞-category of D. It comes with
a canonical functor D → SW(D).



198 JONA KLEMENC

Remark 2.6. As can be seen from the definition, the ∞-category SW(D) is generated
by the essential image of D under finite suspension.

Proposition 2.7 ([Lur20, Prop. C.1.1.7]). Let D be a pointed ∞-category which
admits finite colimits. The ∞-category SW(D) is a stable ∞-category and, for every
stable ∞-category C, restriction along the functor D → SW(D) induces an equivalence

Funex(SW(D), C) ∼−→ Funrex(D, C)

between the full subcategory of Fun(SW(D), C) spanned by the exact functors and the
full subcategory of Fun(D, C) spanned by the right exact functors.

Definition 2.8 ([Lur20, Def. C.1.2.1, Prop. C.1.2.2]). Let D be a pointed ∞-catego-
ry admitting finite colimits. The following conditions are equivalent:

1. The canonical functor D → SW(D) is fully faithful and the essential image is
closed under extensions.

2. The ∞-category D is equivalent to a full subcategory of a stable ∞-category C
which is closed under extensions and finite colimits.

If D has these properties, we call D a prestable ∞-category.

Example 2.9. Let D be a prestable ∞-category, and let D′ be a full subcategory of D
which is closed under extensions and finite colimits. Then D′ is a prestable ∞-catego-
ry and the canonical exact functor i : SW(D′) → SW(D) is exact. As i restricts to the
fully faithful composite D′ ↪→ D ↪→ SW(D) and SW(D′) is generated by D′ under
finite suspensions, i is fully faithful.

Definition 2.10. An ∞-category is additive if it has finite products and finite co-
products and its homotopy category is additive.

Definition 2.11. Let A be a small additive ∞-category. We write PΣ(A) for the full
subcategory of the presheaf category of spaces spanned by those presheaves which
preserve finite products. The ∞-category PΣ(A) is often called the nonabelian derived
∞-category of A.

Notation 2.12. Let B be a small additive 1-category. We define

Mod(B) := Funπ(Bop,Ab).

The following proposition is one of the key inputs of this article.

Proposition 2.13 ([Lur20, Prop. C.1.5.7]). Let A be a small additive ∞-category.
Restriction along the infinite loops functor

Ω∞ : Spcn → S

from the ∞-category of connective spectra to the ∞-category of spaces induces an
equivalence of ∞-categories

Funπ(Aop,Spcn) ∼−→ Funπ(Aop,S)

between the full subcategories of the functor categories spanned by those functors which
preserve finite products.



THE STABLE HULL OF AN EXACT ∞-CATEGORY 199

As a consequence, the ∞-category PΣ(A) is prestable and there exists a t-structure
on SW(PΣ(A)) such that

SW(PΣ(A))⩾0 is the essential image of PΣ(A) in SW(PΣ(A)).

Under this t-structure, the heart of SW(PΣ(A)) identifies with Mod(Ho(A)). In par-
ticular, for all F ∈ PΣ(A), x ∈ A, the homotopy group π0(F (x)) is canonically iso-
morphic to (π0(F ))(x).

2.2. Exact ∞-categories
Definition 2.14 ([Bar15]). An exact ∞-category is a triple (E , E†, E†) where E is
an additive ∞-category and E†, E† are subcategories of E such that the following
conditions hold:

1. Every morphism whose domain is a zero object is in E†. Every morphism whose
codomain is a zero object is in E†.

2. Pushouts of morphisms in E† exist and every pushout of a morphism in E† is in
E†; pullbacks of morphisms in E† exist and every pullback of a morphism in E†

is in E†.

3. For a square in E of the form

x y

x′ y′,

f

g g′

f ′

the following conditions are equivalent:

(a) The square is cocartesian, f ∈ E† and g ∈ E†.
(b) The square is cartesian, f ′ ∈ E† and g′ ∈ E†.

We call the morphisms in E† cofibrations and, in diagrams, mark them by tails. We
call the morphisms in E† fibrations and, in diagrams, mark them by double heads.

In the following, we suppress E†, E† from the notation.

Definition 2.15. Let E be an exact ∞-category. An exact sequence is a bicartesian
square in E of the form

x y

0 z

i

□ p (2)

such that i is a cofibration and p is a fibration. We sometimes write x ↣i y
p−→→ z for

such a sequence. We call z the cofiber of i and x the fiber of p. We sometimes write
cofib(i) for z and fib(p) for x.

Example 2.16. Let E be an ordinary exact category in the sense of Quillen. The exact
structure on E endows (the nerve of) E with the structure of an exact ∞-category,
and vice versa.

Example 2.17. Let C be an additive ∞-category. The triple (C, C, C) is an exact ∞-
category if and only if C is stable.
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Example 2.18 (cf. [Bar15, Ex. 3.5]). Let D be a prestable ∞-category and denote by
D′ the subcategory of D spanned by morphisms p occuring in bicartesian squares of
the form (2). Then (D,D,D′) is an exact ∞-category.

3. The ∞-category of finite additive presheaves

Definition 3.1. Let E be a small exact ∞-category. We denote by PΣ,f (E) the small-
est subcategory of PΣ(E) which contains E and is closed under finite colimits.

Proposition 3.2. The ∞-category PΣ,f (E) admits finite colimits and, for every ∞-
category D which admits finite colimits, restriction along the inclusion E ↪→ PΣ,f (E)
induces an equivalence

Funrex(PΣ,f (E),D) ∼−→ FunΣ(E ,D)

between the full subcategory of Fun(PΣ,f (E),D) spanned by those functors which are
right exact and the full subcategory of Fun(E ,D) spanned by those functors which
preserve finite coproducts.

Proof. By taking the smallest subcategory of PΣ(E) which contains E and is closed
under finite colimits, we follow the construction of the ∞-category with the claimed
universal property given in the proof of [Lur09a, Prop. 5.3.6.2].

Notation 3.3. Let f : x → y be a morphism in E . We denote its image in PΣ,f (E) ⊆
PΣ(E) under the Yoneda embedding by f̂ : x̂ → ŷ. Similarly, we denote its image in

Mod(Ho(E)) under the composite E ↪→ PΣ(E)
π0−→ Mod(Ho(E)) by f : x → y.

Proposition 3.4. Let x ∈ E and F ∈ PΣ(E). The homotopy group π0(Map(x̂,ΣF ))
is trivial.

Proof. By the Yoneda Lemma, there is an isomorphism of abelian groups

π0(Map(x̂,ΣF )) ∼= π0((ΣF )(x)).

The codomain identifies with π0(ΣF )(x); this is a trivial group as F is in the aisle of
the standard t-structure on SW(PΣ(E)).

Proposition 3.5. The ∞-category PΣ,f (E) is prestable.

Proof. As, by definition, PΣ,f (E) is closed under finite colimits inside PΣ(E), it suffices
to prove that PΣ,f (E) is closed under extensions in PΣ(E). Equivalently, we prove that
the cofiber of every map Z → ΣX with Z,X ∈ PΣ,f (E) lies in ΣPΣ,f (E) ⊆ ΣPΣ(E).
We show this by proving the following: For every object X ∈ PΣ,f (E) the class
of objects Z ∈ PΣ,f (E) satisfying this property contains the essential image of the
Yoneda embedding and is closed under finite colimits in PΣ(E). The former condition
follows directly from Proposition 3.4.

For the latter, the duals of [Cis19, Th. 7.3.27, Prop. 7.3.28] imply that it is suffi-
cient to show that this collection of objects is closed under pushouts.
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Consider a pushout square σ in PΣ,f (E)

Z Z ′

Z ′′ Y

g

h h′

g′

such that Z, Z ′ and Z ′′ have this property. We need to show that the cofiber of
every morphism f : Y → ΣX is in ΣPΣ,f (E), so let such a morphism be given. We
extend f to a morphism of diagrams f ′ : σ → ConstΣX , where the codomain is the
diagram constant in ΣX. Because colimits commute, the pushout of f ′, taken in the
∞-category of squares in PΣ(E), along a morphism with codomain zero is a pushout
diagram of the form

cofib(f ◦ h′ ◦ g) cofib(f ◦ h′)

cofib(f ◦ g′) cofib(f).

As PΣ,f (E) is closed under finite colimits, this implies that cofib(f) is in PΣ,f (E),
finishing the proof.

Remark 3.6. We have the following diagram of fully faithful functors, which commutes
up to natural equivalence:

PΣ,f (E) PΣ(E)

SW(PΣ,f (E)) SW(PΣ(E)).

While PΣ(E) embeds into SW(PΣ(E)) as the aisle of a t-structure, PΣ,f (E) need not
be the aisle of a t-structure on SW(PΣ,f (E)), as PΣ,f (E) might not have finite limits.
Furthermore, the heart SW(PΣ(E))♡ is not contained in PΣ,f (E). However, we can
still consider the homotopy groups of objects in PΣ,f (E) relative to the t-structure on
SW(PΣ(E))—these might just not lie in PΣ,f (E). Similarly, objects in PΣ,f (E) can
be truncated as objects in PΣ(E)—but again, the resulting object does not have to
be inside PΣ,f (E).

3.1. Primitive acyclic objects
Definition 3.7. Let i : x → y be a morphism in E and z be an object in E . A mor-
phism cofib(̂i) → z is called a primitive quasi-isomorphism if there exists an exact

sequence x ↣i y
p−→→ z such that f is the canonical morphism induced by the sequence.

The colimit in PΣ,f (E) of the diagram

x̂ ŷ

0 ẑ

0 0

0

î

p̂

(3)
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is a primitive acyclic object.

Proposition 3.8. The colimit of a diagram in PΣ,f (E) of the form (3) is canonically

equivalent to the cofiber of the primitive quasi-isomorphism cofib(̂i) → z in PΣ,f (E).
Proof. This is a direct application of [Lur09a, Prop. 4.4.2.2] to the diagram (3) and
the decomposition

• • • •

• • ◦

• •

•

◦ ◦

◦
of the cube.

Definition 3.9. An object M ∈ Mod(Ho(E)) is effaceable if it is the cokernel of a

morphism y
p−→ z, where p : y −→→ z is a fibration in E . We denote the full subcategory

of Mod(Ho(E)) spanned by the effaceable functors by eff(Ho(E)).
The next proposition ensures we can do a lot of the work in functor categories

between ordinary categories.

Proposition 3.10. The primitive acyclic objects constitute the essential image of the
composition eff(Ho(E)) ↪→ Mod(Ho(E)) ≃ SW(PΣ(E))♡ ↪→ PΣ . In particular, this
essential image lies in PΣ,f (E).
Proof. Let A ∈ PΣ,f (E) be a primitive acyclic object corresponding to an exact

sequence x ↣i y
p−→→ z. We claim that A is the effaceable object corresponding to

p.
Let Z be the cofiber of î in PΣ,f (E). We show that the induced map

πn(Z) → πn(ẑ)

is an isomorphism for n > 0, and that in the sequence

x̄ ȳ π0(Z) z,ī f g

the map f is an epimorphism and the map g is a monomorphism. The statement then
follows from the long exact sequence

· · · → πn+1(A) → πn(Z) → πn(ẑ) → πn(A) → πn−1(Z) → · · · .

To this end, note that all of these claims can be checked pointwise. Fix an object t ∈ E .
There is a commutative diagram where the rows are the Serre long exact sequences

. . . π0(Map(t̂, x̂)) π0(Map(t̂, ŷ)) π0(Map(t̂, Z)) π−1(Map(t̂, x̂))

. . . π0(Map(t, x)) π0(Map(t, y)) π0(Map(t, z)) C

whose bottom row is induced by the fiber sequence x ↣i y
p−→→ z in E and whose top

row is induced by the fiber sequence x̂ → ŷ → Z in SW(PΣ(E)). Proposition 3.4
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implies that π−1(Map(t̂, x̂)) = 0. The claim follows from the Four Lemma and the
Five Lemma.

In the next two lemmas, we prove that eff(Ho(E)) is weakly Serre as a subcategory
of Mod(Ho(E)).
Lemma 3.11. The full subcategory of effaceable functors is closed under extensions
in Mod(Ho(E)).
Proof. Let K → L → M be a short exact sequence in Mod(Ho(E)) such that K and
M lie in eff(Ho(E)). By definition, we can extend this to a diagram with exact columns

y1 y2

z1 z2

0 K L M 0,

p1 p2

c1 c2

where p1, p2 are fibrations in E and c1, c3 are epimorphisms in Mod(Ho(E)). Since
objects in the essential image of the Yoneda embedding are projective in Mod(Ho(E)),
the Horseshoe Lemma yields a commutative diagram with exact columns

y1 y1 ⊕ y2 y2

z1 z1 ⊕ z2 z2

0 K L M 0,

p1

p1 0

f −p2

 p2

c1 c3 c2

where c3 is an epimorphism. Proposition A.3 guarantees that the morphism indicated
by a dashed arrow is a fibration in E . Hence L is effaceable.

Lemma 3.12. The full subcategory of effaceable functors is closed under kernels and
cokernels in Mod(Ho(E)).
Proof. Let g : L → M be morphism in eff(Ho(E)). We denote the kernel and the
cokernel in Mod(Ho(E)) by f : K → L and h : M → N , respectively. Again, since
the essential image of Ho(E) in Mod(Ho(E)) consists of projective objects, we can
construct a commutative diagram with exact columns

y1 y2

z1 z2

0 K L M N 0,

p1

b

p2

c2

c

c3

f g h

(4)

where p1 and p2 are fibrations in E , and c2 and c3 are epimorphisms in Mod(Ho(E)).
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Here, projectiveness of z2 and the fact that c3 is an epimorphism means that g ◦ c2
factors through c3 as c. The composition c ◦ p1 is factors through the kernel of c3, so
by exactness of the right column and projectiveness of y2 it factors through p2 as b.
The commutative square

y1 y2

z1 z2

b

p1 p2

c

in Ho(E) can be lifted to a commutative square in E . By Proposition A.2, this square
can be completed further to a commutative diagram

x1 x2 x2

y1 d y2

z1 z1 z2,

a

i1 □ i3 i2

b1

p1

b2

p3 □ p2

c

where all columns are exact sequences and the marked squares are bicartesian. The
commutativity of the bottom right square implies that the composition c2 ◦ p3 in
Mod(Ho(E)) factors through f , say as f ◦ c1. Hence we can extend the diagram (4)
to a larger diagram

y1 ⊕ x2 y1 y2 z1 ⊕ y2

d z1 z2 z2

0 K L M N 0.

(
b1 i3

)
(
id 0

)

p1

b

p2

 0

id


(
c p2

)
p3

c1 c2

c

c3 h◦c3
f g h

(5)

Exactness of the right column is immediate and h ◦ c3 is an epimorphism as it is the
composition of two epimorphisms. Note that for every exact sequence p ↣ q −→→ r in
E , the corresponding Serre sequence implies that the sequence

p → q → r

is exact at q. Applying this observation to the exact sequence x2 ↣
i3

d
p3−→→ z1, a short

diagram chase shows that the sequence

y1 ⊕ x2 d coker(p1)

(
b1 i3

)

is exact at d, which shows that the left column in (5) is exact. Note that [Bar15,
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Lem. 4.7] implies that there exists an exact sequence in E of the form

d z1 ⊕ y2 z2.

 b2

−p3

 (
c p2

)

Again, a short diagram chase shows that the existence of the above sequence implies
that the sequence

d z1 coker(p2)
p3

is exact at z1, which shows that c1 is an epimorphism in Mod(Ho(E)).
By [Bar15, Lem. 4.7], the morphisms

(
b1 i3

)
and

(
c p2

)
are fibrations in E .

Hence the left and the right column show that K and N are effaceable, respectively.

The following corollary is a standard result for weakly Serre subcategories.

Corollary 3.13. Let

M1 → M2 → M3 → M4 → M5

be an exact sequence in Mod(Ho(E)) such that all objects but M3 are effaceable. Then
M3 is effaceable as well.

Proof. This sequence decomposes as

N2

M1 M2 M3 M4 M5,

N1

where N1 is the cokernel of M1 → M2, N2 is the kernel of M4 → M5 and the sequence

N1 → M3 → N2

is short exact in Mod(Ho(E)). Propositions 3.11 and 3.12 imply that M3 is effaceable.

3.2. Comparison with Krause’s derived Auslander formula

Let A be a small abelian category. Krause [Kra15] proves that acyclic complexes
in A of the form

· · · → 0 → X2 → X1 → X0 → 0 → . . .

constitute the essential image of the composition

eff(A) ↪→ mod(A) ≃ Db(mod(A))♡ ↪→ Db(mod(A))

under the canonical equivalence

Db(mod(A)) ≃ Kb(A).
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Proposition 3.10 is a generalization of this observation: There exists a diagram of
∞-categories which commutes up to natural equivalence

SW(PΣ,f (A)) Kb(A)

A

eff(A) mod(A) Db(mod(A))

Mod(A)

SW(PΣ(A)) Db(Mod(A)),

∼

∼
♡

♡♡

∼

where all functors are fully faithful. Note that [BCKW19, Prop. 7.55] together with
[Lur09a, Prop. 1.3.3.14] implies the existence of the horizontal equivalences and the
commutativity up to natural equivalence.

3.3. Acyclic objects

Definition 3.14. The objects in the stable closure of the primitive acyclic objects in
SW(PΣ,f (E))—equivalently, the objects in SW(PΣ,f (E)) arising from the primitive
acyclic objects by positive and negative suspensions and cofibers—are acyclic objects.

Proposition 3.15. Let X ∈ SW(PΣ,f (E)) be an acyclic object. For all n ∈ N, the
homotopy group πn(X) is effaceable.

Proof. As SW(PΣ,f (E)) is a subcategory of SW(PΣ(E)) which is closed under posi-
tive and negative suspensions and cofibers, it is sufficient to show that the subcategory
of SW(PΣ(E)) spanned by the objects with this property is closed under positive and
negative suspensions and cofibers, and contains the primitive acyclic objects. That
this subcategory is closed under positive and negative suspensions is clear. The fact
that for a primitive acyclic object X, the homotopy groups are effaceable is shown
in Proposition 3.10 (note that πn(X) = 0 for n ̸= 0 in this case). To prove that for
a map f : X → Y where X,Y have effaceable homotopy groups, the cofiber has this
property as well, consider the corresponding long exact sequence of homotopy groups
and apply Corollary 3.13.

Proposition 3.16. Let X ∈ SW(PΣ,f (E)) be an acyclic object. The truncation of X,
τ⩾0X ∈ PΣ(E), is acyclic and lies in PΣ,f (E).

Proof. The homotopy groups of τ⩾0X ∈ PΣ(E) agree with those of X in positive
degrees and are zero in negative degrees. By Proposition 3.15, its homotopy groups
are all effaceable. Consider the homotopy groups of τ⩾0X as objects in PΣ(E) via the

embedding Mod(Ho(E)) ↪♡−→ PΣ(E). Because it is bounded and connective, τ⩾0X is
generated under repeated extensions of positive suspensions of its homotopy groups.
As PΣ,f (E) is closed in PΣ(E) under colimits and extensions, Proposition 3.10 finishes
the proof.
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4. The stable hull

Definition 4.1. A morphism in SW(PΣ,f (E)) is a quasi-isomorphism if its cofiber is
an acyclic object. We denote the Dwyer-Kan localization of SW(PΣ,f (E)) at the class
of quasi-isomorphisms by Hst(E). Similarly, we denote the Dwyer-Kan localization of
PΣ,f (E) at the class of quasi-isomorphisms in PΣ,f (E) by Hst

⩾0(E).

Remark 4.2. The Dwyer-Kan localization of ∞-categories, sometimes also just called
∞-categorical localization, is the universal functor sending a class of edges to equiva-
lences. This is not equivalent to the concept described by Lurie in [Lur09a, Sec. 5.2.7].
For a very thorough treatment of the Dwyer-Kan localization, see [Cis19, Sec. 7.1].

Remark 4.3. The functor SW(PΣ,f (E)) → Hst(E) is the Verdier quotient of the source
SW(PΣ,f (E)) by its full subcategory of acyclic objects. It is well known that Verdier
quotients of triangulated categories allow for a simple description of their hom-spaces.
A very explicit description of Verdier quotients of stable ∞-categories has been found
by Nikolaus and Scholze in [NS18, Th. I.3.3], which we will quickly repeat here
for Hst(E): For two objects X,Y ∈ SW(PΣ,f (E)) with images X,Y in Hst(E), the
mapping space is given by the filtered colimit

Map(X,Y ) ≃ colimf : Z→Y a quasi-isomorphism(X,Z).

The mapping spaces of Verdier quotients of stable ∞-categories are described by
Nikolaus and Scholze in [NS18, Th. I.3.3].

Proposition 4.4. The quasi-isomorphisms endow SW(PΣ,f (E)) with the structure
of an ∞-category of cofibrant objects, as in the dual of [Cis19, Def. 7.5.7], where
all morphisms are cofibrations. The quasi-isomorphisms which lie in PΣ,f (E) endow
PΣ,f (E) with the structure of an ∞-category of cofibrant objects, where all morphisms
are cofibrations.

Proof. That the axioms given in [Cis19, Def. 7.4.12] are fulfilled follows readily from
the following three properties of quasi-isomorphisms:

• Equivalences are quasi-isomorphisms: The cofibers of equivalences are the zero
objects.

• Quasi-isomorphisms are stable under pushouts: Every morphism has the same
cofiber as its pushout along every other morphism.

• Quasi-isomorphisms have the 2-out-of-3-property: This can be checked on the
homotopy categories, where it follows from the octahedral axiom: if f and g are
composable, then the cofiber of g ◦ f is an extension of the cofiber of f and the
cofiber of g.

We obtain the following corollary as an application of [Cis19, Prop. 7.5.11].

Corollary 4.5. Let D be an ∞-category with finite colimits. Restrictions along the
functors SW(PΣ,f (E)) → Hst(E) and PΣ,f (E) → Hst

⩾0(E) induce the following equiv-
alences of ∞-categories:

Funrex(Hst(E),D) ∼−→ Funrexq-i (SW(PΣ,f (E)),D),

Funrex(Hst
⩾0(E),D) ∼−→ Funrexq-i (PΣ,f (E),D).

Here, the subscript indicates that we restrict further to the full subcategory of those
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functors which send quasi-isomorphisms to equivalences.

Proposition 4.6. Let X ∈ PΣ,f (E), Y ∈ SW(PΣ,f (E)), and w : X → Y be a quasi-
isomorphism. Using the conventions of Remark 3.6, the truncation τ⩾0Y ∈ PΣ(E) lies
in PΣ,f (E) and the induced map X → τ⩾0Y is a quasi-isomorphism.

Proof. In the following proof, we view w as a morphism in SW(PΣ(E)) by means of
the fully faithful functor SW(PΣ,f (E)) ↪→ SW(PΣ(E)). Note that by the 2-out-of-3
property of quasi-isomorphisms and since the counit τ⩾0X → X is an equivalence, it
suffices to prove the claim for τ⩾0w. Applying τ⩾0 to the cofiber diagram of w yields
a commutative diagram

τ⩾0X τ⩾0Y 0

0 τ⩾0Z τ⩾0ΣX,

τ⩾0w

where Z—and hence by Proposition 3.16, τ⩾0Z as well—is acyclic by assumption.
Both the right and the outer square are bicartesian before truncating, hence they
are pullback diagrams in PΣ(E), as truncation preserves limits. Because PΣ(E) is
prestable and τ⩾0ΣX is equivalent to ΣX, they are bicartesian in PΣ(E) and hence
bicartesian in SW(PΣ(E)) as well. By the Pasting Law for cartesian squares [Lur09a,
Lem. 4.4.2.1], the left square is bicartesian as well. Since PΣ,f (E) is closed in PΣ(E)
under extensions, this finishes the proof.

Proposition 4.7. The functor Hst
⩾0(E) → Hst(E), which is induced by the composite

PΣ,f (E) ↪→ SW(PΣ,f (E)) → Hst(E), is fully faithful.

Proof. By Corollary 4.5, the induced functor is right exact. Hence, by the dual of
[Cis19, Th. 7.6.10], it is sufficient to check that the induced functor on homotopy
categories is fully faithful. Note that the homotopy category of the ∞-categorical
Dwyer-Kan localization agrees with the 1-categorical localization of the homotopy
category and that the morphism sets of the localization can be calculated using left
calculus of fractions. We need to prove that, for objects X,Y ∈ PΣ,f (E), the induced
map

homHo(Hst
⩾0

(E))(X,Y ) → homHo(Hst(E))(X,Y )

is an isomorphism. To prove that this map is injective, note that any two roofs in
Ho(PΣ,f (E)) which become equivalent in Ho(Hst(E)) yield a commutative diagram
in Ho(SW(PΣ,f (E))) of the form

Y ′

X Ỹ Y,

Y ′′

∼ ∼

∼

∼

∼

where all the marked morphisms are quasi-isomorphisms and all the objects but Ỹ
are in Ho(PΣ,f (E)). Replacing Ỹ with τ⩾0Ỹ and using Proposition 4.6, we can form
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an analogous diagram in Ho(PΣ,f (E)), showing the roofs are equivalent as maps in
Ho(Hst

⩾0(E)). To show that this map is surjective, using the same argument, every
roof in Ho(SW(PΣ,f (E))) is equivalent to a roof in Ho(PΣ,f (E)).

Corollary 4.8. The ∞-category Hst
⩾0(E) is prestable and the induced functor is an

equivalence SW(Hst
⩾0(E)) → Hst(E).

Proof. The ∞-category Hst(E) is stable by [NS18, Th. I.3.3]. By Corollary 4.5, the
embedding Hst

⩾0(E) ↪→ Hst(E) is right exact. We first show that Hst
⩾0(E) is closed in

Hst(E) under extensions, which proves both that Hst
⩾0(E) is prestable and that the

functor SW(Hst
⩾0(E)) → Hst(E) is fully faithful, see Example 2.9.

Let X → Y → Z be an exact sequence in Hst(E) with X,Z in the essential image
of Hst

⩾0(E). After shifting, we are left to show that the cofiber of the induced map

Z → ΣX lies in the essential image of ΣHst
⩾0(E) ⊆ Hst

⩾0(E). Since Hst
⩾0(E) → Hst(E)

is fully faithful, we can assume the map Z → ΣX to be in Hst
⩾0(E). Using the left

calculus of fractions, such a map comes up to equivalence from a map in PΣ,f (E). The
claim now follows from the facts that PΣ,f (E) is a prestable ∞-category and that the
functor PΣ,f (E) → Hst

⩾0(E) is right exact.
It remains to show that the functor SW(Hst

⩾0(E)) → Hst(E) is essentially sur-

jective. For this, note that for every object X ∈ Hst(E), there exists some n ∈ Z
such that ΣnX is equivalent to the image of some Y ∈ PΣ,f (E) under the compo-
sition PΣ,f (E) → SW(PΣ,f (E)) → Hst(E). But then X is equivalent to the image of
Σ−nY ∈ SW(Hst

⩾0(E)).

4.1. Size considerations
As passing from E to PΣ(E) removes any smallness assumptions E might have,

it is a priori not clear which smallness properties are preserved by the construction
E → Hst(E). In this section, we see that Hst(E) is essentially V-small.

Lemma 4.9. Let U ⊆ V be a Grothendieck universe such that E is a locally U-small
∞-category. Then SW(PΣ,f (E)) is locally U-small.

Proof. By virtue of [Cis19, Cor. 5.7.9] and because

πn(hom(X,Y )) ∼= π0(hom(ΣnX,Y )),

it is sufficient to prove that, for every pair of objects X,Y ∈ SW(PΣ,f (E)), the set
π0(hom(X,Y )) is U-small. Fix x∈E and consider the full subcategory of SW(PΣ,f (E))
spanned by those objects Y for which π0(hom(x̂,ΣnY )) is U-small for all n ∈ Z. This
subcategory is clearly closed under suspensions and extensions and contains E by
assumption and Proposition 3.4. As SW(PΣ,f (E)) is generated by E under suspensions
and extensions, this shows that π0(hom(x̂, Y )) is U-small for all x ∈ E , Y ∈ PΣ,f (E).

Consider the full subcategory of PΣ,f (E) spanned by those objects X for which
π0(hom(X,Y )) is U-small for all Y ∈ PΣ,f (E). By an analogous argument, this sub-
category is PΣ,f (E) itself, which finishes the proof.

Lemma 4.10. The Spanier–Whitehead ∞-category SW(PΣ,f (E)) is essentially V-
small.
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Proof. By [Cis19, Prop. 5.7.6] and Lemma 4.9, it suffices to show that the set of
isomorphism classes is V-small. This is clear, as SW(PΣ,f (E)) is generated by E
under finite suspensions and extensions.

Proposition 4.11. The stable ∞-category Hst(E) is essentially V-small.

Proof. As πn(hom(X,Y )) ∼= π0(hom(ΣnX,Y )), this may be checked on the homotopy
category, which is the Verdier quotient of Ho(SW(PΣ,f (E))) by the acyclics. As the
Verdier quotient of a small triangulated category is small [Nee01, Prop. 2.2.1], this
follows directly from Lemma 4.10.

Remark 4.12. The construction E → Hst(E) does not preserve local smallness. Indeed,
in Corollary 4.29 we show that in the case of ordinary exact categories, there is a
canonical equivalence Db(E) ∼−→ Hst(E) and the construction E → Db(E) does not
preserve smallness [Fre64, Ex. 6.2.A].

4.2. Properties of the stable hull

First, we establish the universal property of Hst(E), which implies that the con-
struction E → Hst(E) can be organized into a left adjoint to the inclusion functor
St∞ ↪→ Ex∞.

Lemma 4.13. Every object T ∈ PΣ(E) which is local to the primitive quasi-isomor-
phisms is local to all quasi-isomorphisms.

Proof. Let T ∈ PΣ(E) be local to the primitive quasi-isomorphisms. Then, the map-

ping space Map(A,ΣT ) is trivial for every primitive acyclic object A: Let x ↣i y
p−→→ z

be the exact sequence in E corresponding to a fixed primitive acyclic object A. Then
there is a Serre long exact sequence

· · · → πn(Map(ẑ,ΣT )) → πn(cofib(i),ΣT ) → πn−1(Map(A,ΣT )) → · · · .

The morphism πn(Map(ẑ,ΣT )) → πn(Map(cofib(i),ΣT )) is an isomorphism for n > 0
by assumption, while π0(Map(ẑ,ΣT )) is trivial by Proposition 3.4.

Now using

• Proposition 3.15,

• the fact that in PΣ(E) ⊆ SW(PΣ(E)), every bounded object arises as an iterated
extension of its homotopy groups, and

• that the class of objects Y ∈ PΣ(E) for which Map(Y,ΣX) is trivial is closed
under extensions,

we conclude that Map(X,ΣT ) is trivial for every acyclic object X ∈ PΣ,f (E). As the
cofiber of every quasi-isomorphism w : Y → Z is acyclic, the claim follows from the
corresponding Serre long exact sequence

· · · → πn(Map(Z, T )) → πn(Map(Y, T )) → πn−1(Map(cofib(w), T )) → · · · .

Lemma 4.14. Let D be an ∞-category which admits small colimits. A cocontinuous
functor PΣ(E) → D sends primitive quasi-isomorphisms to equivalences if and only
if it sends all quasi-isomorphisms to equivalences.
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Proof. Let

PΣ(E) Lq(PΣ(E))
i

be the cocontinuous localization of PΣ(E) along the quasi-isomorphisms. As PΣ(E)
is presentable, i is the inclusion of the full subcategory of PΣ(E) spanned by those
objects which are local to quasi-isomorphisms. Hence, by Lemma 4.13, this local-
ization is also the cocontinuous localization of PΣ(E) along the class of the primi-
tive quasi-isomorphisms. Therefore, a cocontinuous functor PΣ(E) → D sends quasi-
isomorphisms to equivalences if and only if it is equivalent to the restriction of
some cocontinuous functor Lq(PΣ(E)) → D if and only if it sends primitive quasi-
isomorphisms to equivalences.

Proposition 4.15. Let D be an ∞-category which admits finite colimits. A right
exact functor PΣ,f (E) → D sends primitive quasi-isomorphisms to equivalences if and
only if it sends all quasi-isomorphisms to equivalences.

Proof. By embedding D into P(Dop)op, we can assume D to admit all small col-
imits. Then, both right exact functors PΣ,f (E) → D and colimit-preserving functors
PΣ(E) → D correspond to functors E → D which preserve finite coproducts. There-
fore, the inclusion PΣ,f (E) ↪→ PΣ(E) induces an equivalence

Fun!(PΣ(E),D) ∼−→ Funrex(PΣ,f (E),D).

Here Fun!(PΣ(E),D) denotes the full subcategory of Fun(PΣ(E),D) spanned by the
cocontinuous functors. The conclusion now follows directly from Lemma 4.14.

Proposition 4.16. Let D be an ∞-category which admits finite colimits. We write
FunΣ,seq(E ,D) for the full subcategory of Fun(E ,D) spanned by those functors which
preserve finite coproducts and send exact sequences to pushout squares. Then, restric-
tion along the composition

E ↪→ PΣ,f (E) → Hst
⩾0(E)

induces an equivalence of ∞-categories

Funrex(Hst
⩾0(E),D) ∼−→ FunΣ,seq(E ,D).

Proof. By Corollary 4.5, restriction along the functor PΣ,f (E) → Hst
⩾0(E) induces an

equivalence of ∞-categories

Funrex(Hst
⩾0(E),D) ∼−→ Funrexq-i (PΣ,f (E),D).

As we have shown in Proposition 4.15, the codomain of this equivalence agrees with
Funrexp q-i(PΣ,f (E),D), the full subcategory of Fun(PΣ,f (E),D) spanned by the right
exact functors which send primitive quasi-isomorphisms to equivalences. Also, the
equivalence from Proposition 3.1 restricts to an equivalence

Funrexp q-i(PΣ,f (E),D) ∼−→ FunΣ,seq(E ,D).

Composing these equivalences yields the result.

Proposition 4.17. The functor E → Hst(E) is fully faithful.
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Proof. Let K be the class of all finite simplicial sets, and let R be the union of

• the class of exact sequences in E and

• the class of diagrams in E exhibiting finite coproducts.

Proposition 4.16 shows that there is an equivalence Hst
⩾0(E) ∼−→ PK

R commuting with

the inclusion of E , where E → PK
R is the universal functor into a ∞-category with

K-indexed colimits which sends diagrams in R to colimit diagrams, see [Lur09a,
Sec. 5.3.6]. As the functor E → PK

R is fully faithful, so are the functor E → Hst
⩾0(E)

and the composition E → Hst
⩾0(E) ↪→ Hst(E).

Definition 4.18 ([Bar15, Def. 4.1]). Let E , F be exact ∞-categories. We say a
functor E → F is exact if it preserves cofibrations, fibrations, zero objects, pushouts
along cofibrations and pullbacks along fibrations.

Remark 4.19. As can be easily checked by considering split exact sequences, an exact
functor between exact ∞-categories preserves biproducts.

Proposition 4.20. Let E, F be exact ∞-categories. A functor E → F which pre-
serves finite coproducts is exact if and only if it sends exact sequences to exact
sequences.

Proof. By [Bar15, Prop. 4.8], it is sufficient to prove that a pushout square in E of
the form

A A′

B B′

is sent to a pushout square in F . By Proposition A.1, such a pushout square fits into
a commutative diagram

A A′ 0

B B C

such that both the outer rectangle and the right square are bicartesian. By assump-
tion, after applying the functor E → F these squares are bicartesian; applying Propo-
sition A.1 again finishes the proof.

Corollary 4.21. The functor E ↪→ Hst(E) is exact and the functor E ↪→ Hst
⩾0(E) pre-

serves exact sequences.

Proof. Because the three functors

E ↪→ PΣ,f (E), PΣ,f (E) → SW(PΣ,f (E)) and SW(PΣ,f (E)) → Hst(E)

preserve finite coproducts, so does their composition. Hence, it suffices to prove that
E ↪→ Hst

⩾0(E) preserves exact sequences; that the functor E ↪→ Hst(E) is exact then
follows from Proposition 4.20. We need to show for that for an exact sequence of the
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form x ↣i y
p−→→ z, the induced map

cofib(̂i) → z

in Hst
⩾0(E) is an equivalence. This map can be chosen to be the image of the corre-

sponding map in PΣ,f (E), which is a (primitive) quasi-isomorphism.

We are ready to establish the universal property of the stable hull.

Proposition 4.22. Let E be an exact ∞-category E. For every stable ∞-category C,
restriction along the functor E ↪→ Hst(E) induces an equivalence of ∞-categories

Funex(Hst(E), C) → Funex(E , C)

between the full subcategories of the functor ∞-categories spanned by those functors
which are exact.

Proof. Using the notation of Proposition 4.16, the codomain of the functor agrees
with FunΣ,seq(E , C) by Proposition 4.20. The functor E ↪→ Hst(E) induces equivalences
of ∞-categories

Funex(Hst(E), C) ∼−→ Funrex(Hst
⩾0(E), C) ∼−→ FunΣ,seq(E , C).

The rightmost equivalence comes from the Proposition 4.16, while the leftmost one
comes from Corollary 4.8 together with the universal property of the Spanier–White-
head construction.

The following definition is taken from [Bar15, Not. 4.2].

Definition 4.23. We let Ex∆
∞ be the following simplicial category: The objects of

Ex∆
∞ are small exact ∞-categories and, for two small exact ∞-categories E , F , we

set

Ex∆
∞(E ,F) := core(Funex(E ,F)),

where Funex(E ,F) is the full subcategory of Fun(E ,F) spanned by the exact functors.
We let Ex∞ be the homotopy coherent nerve of Ex∆

∞ and St∞ be the full subcategory
of Ex∞ spanned by the stable ∞-categories (with every morphism marked both as a
fibration and a cofibration as in Example 2.17).

Corollary 4.24. The embedding St∞ ↪→ Ex∞ admits a left adjoint

Hst : Ex∞ → St∞.

The unit of this adjunction is, for every exact ∞-category E, equivalent to the canon-
ical functor E → Hst(E).
Proof. By [Lur09a, Prop. 5.2.7.8], it is sufficient to show that for every object E ∈
Ex∞, there exists a morphism E → H in Ex∞ such that H is in St∞ and for every
stable ∞-category C, the induced map

MapEx∞
(H, C) → MapEx∞

(E , C)

is an isomorphism in the homotopy category of spaces. By the construction of Ex∞,
this map is equivalent to the induced map

core(Funex(H, C)) → core(Funex(E , C)).

Proposition 4.22 shows that E ↪→ Hst(E) has the desired property.
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In [Kel90] Keller provides an elementary proof of the Gabriel–Quillen embed-
ding. The proof of the following proposition is an ∞-categorical analogue of Keller’s
own proof that this embedding reflects exact sequences and is closed under exact
sequences.

Proposition 4.25. The functor E ↪→ Hst(E) reflects exact sequences and the essen-
tial image of this functor is closed under extensions.

Proof. As the embedding Hst
⩾0(E) ↪→SW(Hst

⩾0(E)) ∼−→Hst(E) reflects exact sequences
and has an essential image which is closed under extensions, it is sufficient to show
that the functor E ↪→ Hst

⩾0(E) has these properties as well.

Let x̂ → Y ′ → ẑ be an exact sequence in Hst
⩾0(E) with x, z ∈ E . As the functor

E ↪→ Hst
⩾0(E) is fully faithful, it suffices to show that there exists an exact sequence

x ↣i y
p−→→ z in E which is equivalent to the given sequence in Hst

⩾0(E). The hom-sets

in Ho(Hst
⩾0(E)) can be computed using the left calculus of fractions on Ho(PΣ,f (E)).

Using this, one can form a commuting diagram of the form

x̂ Y cofib(j)

Y ′ Z

ẑ

j

∼ ∼

f

∼

g

in Ho(Hst
⩾0(E)), where all the solid arrows come from morphisms in PΣ,f (E), the

cofiber of j is taken in PΣ,f (E) and the vertical maps are all quasi-isomorphisms in
PΣ,f (E).

It now suffices to show that the exact sequence x̂ → Y → Z is equivalent to the
image of an exact sequence in E . Let d : Z → Q be the cofiber of f in PΣ,f (E).
Note that, as f is a quasi-isomorphism, Q is acyclic. By Proposition 3.15, π0(Q) is
effaceable, hence it is the cokernel of some fibration q : w → v in Mod(Ho(E)). The
diagram in Mod(Ho(E))

v

z π0(Z) π0(Q)
π0(g) π0(d)

has a lift, as the vertical map is an epimorphism. We denote the pullback of q
along this lift by p∗ : y∗ −→→ z. Note that the composition d ◦ g ◦ p̂∗ is the zero-map in
Ho(PΣ,f (E)). Hence the diagram in PΣ,f (E)

cofib(j)

ŷ∗ ẑ Z
p̂∗ g
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has a lift which can, by Proposition 3.4, be lifted further to a square in PΣ,f (E)

ŷ∗ ẑ

Y Z.

p̂∗

g

By Proposition A.2, this square can be extended to a morphism of exact sequences
of the form

σ x̂∗ ŷ∗ ẑ

σ′′ x̂ ŷ ẑ

σ′ x̂ Y Z

□

p̂∗

□

∼

j

in which the marked squares are bicartesian. The morphism σ′′ → σ′ is an equivalence.
Since the functor E ↪→ Hst

⩾0(E) is fully faithful, E has fibers of fibrations and p∗ is a
fibration, x̂∗ can be chosen to be the image of some x∗ ∈ E . By a similar argument,
the middle row can be chosen to be the image of an exact sequence in E .

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. The fact that Hst is left adjoint to the inclusion St∞ ↪→ Ex∞
is established in Corollary 4.24, which also states that the unit of the adjunction is
equivalent to the construction of the stable hull. We apply our findings about the
stable hull to prove the three claimed properties of the unit functor. For the stable
hull, we proved (1) in Proposition 4.17 and (2) and (3) in Proposition 4.25.

4.3. The stable hull of an ordinary exact category
If E is an exact 1-category in the sense of Quillen, its nerve inherits the structure

of an exact ∞-category. In this case, the universal property of the stable hull and the
universal property of the bounded derived category proven in [BCKW19, Cor. 7.59]
imply the existence of a canonical equivalence

Db(E) ∼−→ Hst(E).

For completeness, we include a slightly different proof which explains our naming
of acyclic objects and quasi-isomorphisms.

Proposition 4.26 ([BCKW19, Prop. 7.55]). Let E be an exact 1-category. Then
there exists a canonical equivalence

Kb(E) ∼−→ SW(PΣ,f (E))

whose composition with the inclusion E → Kb(E) is equivalent to the Yoneda embed-
ding E → PΣ,f (E).

Remark 4.27. While the definition of PΣ,f (E) used by Bunke, Cisinski, Kasprowski
and Winges differs from ours, Proposition 3.5 ensures that they are equivalent.
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Proposition 4.28. Let E be an exact category, considered an exact ∞-category as in
Example 2.16. Then, the equivalence described in Proposition 4.26 sends an object to
an acyclic object in the sense of Definition 3.14 if and only if it is an acyclic complex
in the usual sense. Hence, this equivalence preserves and reflects quasi-isomorphisms.

Proof. The full subcategory of acyclic chain complexes in Kb(E) is the triangulated
closure of acyclic complexes of the form

· · · → 0 → X2 ↣i X1
p−→→ X0 → 0 → · · · .

It suffices to show that, under the equivalence Kb(E) ∼−→ SW(PΣ,f (E)), an acyclic
complex of this form is sent to the primitive acyclic object corresponding to the exact

sequence X2 ↣i X1
p−→→ X0. This follows from right exactness, as both of these objects

are equivalent the cofiber of the induced map cofib(̂i) → X0, see Proposition 3.8.

Corollary 4.29 (cf. [BCKW19, Cor. 7.59]). Let E be an exact category, consid-
ered an exact ∞-category as in Example 2.16. Then, there is a canonical equivalence
Db(E) ∼−→ Hst(E), whose composition with the inclusion E ↪→ Db(E) is equivalent to
the inclusion E ↪→ Hst(E).

Appendix A. Diagram lemmas in exact ∞-categories

In this appendix, we include the proofs of three diagram lemmas we use in the
article.

Proposition A.1. Let E be an exact ∞-category. Consider a square in E of the form

x y

x′ y′,

i

f g

j

where the morphisms i and j are cofibrations. The following conditions are equivalent:

1. The square is bicartesian.

2. The square is a pushout square.

3. There exists a commutative diagram

x y

x′ y′

0 z,

i

f g

j

where both the lower and the outer rectangle are bicartesian.

Proof. The equivalence (1) ⇔ (2) is proven in [Bar15, Lemma 4.5].
For (2) ⇒ (3), one pushes out j along x′ −→→ 0, and applies the Pasting Lemma for

pushouts.
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We show (3) ⇒ (2). We first reduce to the case where f is the identity by con-
structing a diagram

x y

x y

x′ w

x′ y′

0 z′

0 z.

∼

Here the front face is the original diagram, and the backsides are obtained by pushing
out twice (in particular, w = x′ ⨿x y). As both the other front and the outer back
faces are cocartesian, the morphism z′ → z is an equivalence [Cis19, Rem. 6.2.4].
Thus in the lower cube, the bottom, the back and the front face are bicartesian,
hence the top face of the bottom cube fulfills the requirements of (3). If the claim
holds for that diagram, then the morphism w → y′ is an equivalence, finishing the
proof.

So we assume, without loss of generality, that f is the identity. We then extend the
original diagram as indicated below. Note that all the new squares are bicartesian.

x, x⊕ x x⊕ y

x x⊕ x x⊕ y

0 x y

0 x y′.

□

 id

−id


□

id 0

id id

 ∼

id 0

0 i

 id 0

i id

 ∼

□

id

0


□

id 0

0 i

(
0 id

) (
0 id

)

□

i

g

j

(6)

The rightmost vertical morphism
(
j g

)
: x⊕ y → y′ is a fibration, since it consti-

tutes the leftmost vertical morphism in the diagram

x⊕ y y

x⊕ y′ y′

y′ z,

□

id 0

0 g



(
0 id

)

g

(
j id

)
(
0 id

)
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where the rightmost vertical morphism is a fibration by assumption, the top square
is readily seen to be bicartesian and the bottom square is cartesian by [Bar15,
Lemma 4.6].

As all small squares in the diagram (6) are cartesian, so is the outer square. As the
right morphism is a fibration, it is cocartesian as well. The Pasting Lemma guarantees
that the bottom right square is cocartesian, finishing the proof.

Proposition A.2. Let E be an exact ∞-category. For every square

y z

y′ z′,

f

p

g

p′

there exist two morphisms between exact sequences a : σ → σ′′, b : σ′′ → σ′ and a com-
position c = b ◦ a such that the restriction along ∆2 → ∆1 ×∆1 yields a commutative
diagram of the form

σ x y z

σ′′ x′ w z

σ′ x′ y′ z′,

a □

b □

(7)

where the marked squares are bicartesian and the right vertical rectangle is the original
square.

Proof. By taking the pullback of p′ along g, we obtain a factorization of the original
square

y z

w z

y′ z′.

p

□

p′′

p′

Every exact sequence in Fun(∆1 ×∆1, E) is an iterated Kan extension of the fibration
it restricts to. Hence, the restriction functor along the right vertical arrow

Fun(∆1 ×∆1, E) → Fun(∆1, E)

restricts, by [Lur09a, Prop. 4.3.2.15], to a trivial Kan fibration from the full sub-
category spanned by the exact sequences to the full subcategory spanned by the
fibrations. Hence, this diagram can be extended to a diagram of exact sequences of
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the form

x y z

x′ w z

x′′ y′ z′.

□

p

□

p′′

p′ p′

The top left square is bicartesian by Proposition A.1. By the dual of Proposition A.1,
the morphism x′ → x′′ is an equivalence; identifying x′ with x′′ along this equivalence
finishes the proof.

Proposition A.3. Let E be an exact ∞-category, p1 : y1 −→→ z1 and p2 : y2 −→→ z2 two
fibrations, and g : y1 → z2 a morphism in E. The morphism y1 ⊕ y2 → z1 ⊕ z2 given
by the matrix (

−p1 0
g p2

)
is a fibration.

Proof. The map in question is a composition of the morphisms

y1 ⊕ y2 y1 ⊕ z2 y1 ⊕ z2 z1 ⊕ z2,

id 0

0 p2

 id 0

g id

 −p1 0

0 id



where each map is a fibration: the two outer maps are pullbacks of p2 and −p1 along
projections, and the one in the middle is an equivalence.
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