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ON COHOMOLOGY IN SYMMETRIC TENSOR CATEGORIES IN
PRIME CHARACTERISTIC
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Abstract

We describe graded commutative Gorenstein algebras &, (p)
over a field of prime characteristic p, and we conjecture that
Ext(,erpn o, (L, 1) = &, (p), where Verpni1 are the new symmetric
tensor categories recently constructed by the current authors,
with Ostrik, and also by Coulembier. We investigate the com-
binatorics of these algebras, and the relationship with Minc’s
partition function, as well as possible actions of the Steenrod
operations on them.

Evidence for the conjecture includes a large number of com-
putations for small values of n. We also provide some theoreti-
cal evidence. Namely, we use a Koszul construction to identify
a homogeneous system of parameters in &,(p) with a homoge-
neous system of parameters in EXt\./eran (1,1). These param-
eters have degrees 2° — 1 if p = 2 and 2(p® — 1) if p is odd, for
1 < i < n. This at least shows that Exty,, . (1,1) is a finitely
generated graded commutative algebra with the same Krull
dimension as &, (p). For p = 2 we also show that Ext\°,er2n+1 (1,1)
has the expected rank 2"("—1)/2
of parameters.

as a module over the subalgebra

1. Introduction

In our paper [2], we introduced a nested sequence of incompressible symmetric
tensor abelian categories in characteristic two. These were very recently generalised
to all primes in our work with Ostrik [3] and simultaneously by Coulembier [8]. These
categories, Ver,» and Ver;fn7 seem to be new fundamental objects deserving further
study.

Here, our primary aim is to state a conjecture describing the ring structure of
Ext\',eranrl (1,1). We have made large numbers of computations using the computer

algebra system MAGMA [5], and we conjecture that the answer should be the graded
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commutative k-algebra &, (p) introduced below, where k is a field of characteristic p.
After defining these algebras, we prove the following.

Theorem 1.1. For n > 0, the algebra &, (p) is a graded commutative finitely gener-
ated Gorenstein k-algebra of Krull dimension n. If p = 2 then it is an integral domain,

while for p odd it has nilpotent elements. The Poincaré series f(q) = Z ¢ dim &, (p)q
d=0
is a rational function of q satisfying f(1/q) = (—¢)" f(q).

There are natural inclusion maps &,_1(p) = &,(p), and in each degree the sequence
k=& (p) = Eilp) = - = En1(p) = Enlp) = -+

stabilises at some finite stage. So it makes sense to examine the colimit £ (p) =
1Lné'n(p). The Poincaré series of this algebra in the case p = 2 is Minc’s partition

n
function [19]. We adapt Andrews’ proof of a Rogers—Ramanujan style formula [1] for
the reciprocal of the generating function for this partition function so that it gives us
the Poincaré series for &, (p) for all n > 0 and all primes p.

Theorem 1.2. The dimension of &, (p)a is equal to Z Np(m,d), and the dimension

m=1
0o 00 1
of Eso(p)a is equal to N,(m,d), where N,y(m,d)t"¢¢ = —= _
- mz::1 ' ' m%;() : Yico(=1)" i p(q)

and LogPt

H 1— q2j_1 b= 27

£1p(q) = jzl 2 .i—l( —1)—1 2( J‘,l)
¥ ' + g2
H 21 p odd.
j=1 ¢

The relationship with the symmetric tensor abelian categories constructed in [2, 3,

8] is as follows. Since the subcategory Ver;n C Verpn is a direct summand, this inclu-

sion induces an isomorphism Exty, , (1,1) = Ext,_+ (1, 1) and so we only consider
p’ﬂ

Verp,n.

Conjecture 1.3. The graded commutative k-algebra Extye, . (1,1) is isomorphic
P

to En(p). The inclusion Veryn C Verpnir induces the inclusion map E,—1(p) = E,(p).

We have the following computational evidence for this conjecture. In all char-
acteristics, this is true for n < 1. In characteristic two, we have checked both the
dimensions and the algebra structure for n = 2 in all degrees, for n = 3 up to degree
40, and for n = 4 up to degree 26. For p = 3, n =2, 3, and for p = 5, n = 2, we have
checked the dimensions and algebra structure up to degree 40. These computations
were carried out using the computer algebra package MAGMA.

In a symmetric tensor abelian category, the Steenrod operations act on Ext®(1,1)
and satisfy the Cartan formula and unstable condition, as well as the homogeneous
form of the Adem relations in which it is not assumed that the operation Sq” (p=2),
respectively P (p odd) acts as the identity (see [18]; the construction there extends
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to the setting of symmetric tensor categories). We investigate the possibilities for
their action on &, (p). Our conclusions are cleanest when p = 2. In that case, we show
that the only possible action of the Steenrod operations on &, (2) compatible with the
inclusions is that all Sq° = 0 except for the mandatory Sq'*! () = 2%. This makes the
action much more like that on the cohomology of a p-restricted Lie algebra than like
that on the cohomology of a finite group. In the case p odd, the existence of nilpotent
elements interferes with the arguments, and we can only prove a weaker statement.
In the final sections, we provide some theoretical evidence for Conjecture 1.3, and
some tools that may help prove it. Namely, we first consider the Koszul complex of
the generating object V' of Ver,n+1 and compute its cohomology. Then we use the
Koszul complex to express Ext\',e,pn .. (1, X) as the cohomology of an explicit com-
plex of vector spaces. While we cannot yet compute this cohomology in general, this
construction explains the conjectural shape of the answer and provides upper bounds
for dimensions of the individual Ext spaces. In particular, it implies the existence of
the subalgebra of parameters, k[y,...,yn] C Ext\',erp" ., (1, 1), where deg(y;) equals

2" —1if p=2and 2(p’ — 1) if p > 2. We show that Ext{,, . (1,1) is module-finite
P
over this subalgebra, and for p = 2 show that the rank of this module is 27("~1/2_ as

predicted by Conjecture 1.3.
More generally, we at least show the following.

Theorem 1.4. The graded commutative k-algebra Exty,, w1 (L, 1) ds finitely gener-
P
ated, with Krull dimension n. Moreover, for any X € Ver i1, Exty,, (LX) ds a
P
finitely generated module over this algebra.

This confirms Conjecture 2.18 of [14] for the categories Ver,n+1.

Once the Ext algebra is better understood, this will be the starting point for
applying support theory to the categories Ver,n+1, along the lines of the theory for
finite groups, developed by Carlson and others [7]. For example, one might hope that
Ext\',eranrl (1,1) stratifies the stable category of Ver,n+1 as a tensor triangulated cat-
egory, in the sense of Benson, Iyengar and Krause [4]. This would give a classification
of the tensor ideal thick subcategories, as well as the tensor ideal localising subcat-
egories of the stable category of the ind-completion. If Conjecture 1.3 holds, then
the inclusion of the subalgebra of parameters K[y, ..., yn] — Ext\',eranr L(1,1) is an
inseparable isogeny. This implies that it induces a bijection on homogeneous prime
ideals, and so Proj Ext\'/erpn+ L(1,1) is a weighted projective space.
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2. Graded algebras

For a prime p let Z[%} denote the ring of integers with p inverted. An element of
Z[%] is a rational number r = m/n where m,n € Z and n is a power of p. We say
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that such an element r is even if r/2 is also in Z[%] and odd otherwise. So for p = 2,
every element is even. If a € Z[%], we write (—1)® to denote +1 if a is even and —1
if a is odd.

We consider Z[%]—graded algebras R over a field k of characteristic p. If x is a
homogeneous element of R, we write |z| for the degree of . We say that such an
algebra is graded commutative if it satisfies yx = (—1)|w“y|xy.

If Risa Z[%]—graded k-algebra, we write Int(R) for the Z-graded algebra derived
from R by means of the inclusion of Z in Z[%}. So for m € Z, the homogeneous part
of degree m is given by Int(R),, = Rp,.

Example 2.1. Let k be a field of characteristic two, and let k[XQ*] be the algebra gen-
erated by the elements X2" with n € Z, with the obvious relations (X?")?2 = X2
This is a Z[$]-graded commutative k-algebra, with | X2"| = 2. We have Int(k[X?]) =
k[X].

Ezample 2.2. Let k be a field of odd characteristic p, and let k[X?" ] ® A(Y) be the

algebra generated by elements X?" with n € Z and Y with the relations (Xpn P =
XP"" y2=0, XY =YX. This is a Z[%]—graded commutative k-algebra, with
|XP"| = 2p™ and |Y| = 1. We have Int(k[X?"] @ A(Y)) = k[X] @ A(Y).

Definition 2.3. We define the Reynolds operator p: R — Int(R) to be the map which

is the identity on elements of Int(R) and zero on homogeneous elements of R whose
degree is not an integer.

Lemma 2.4. The map p is an Int(R)-module homomorphism.

Proof. Multiplication by elements of Int(R) preserves whether or not the degree of
an element is an integer. O

Proposition 2.5. If R is a Cohen—Macaulay k-algebra then so is Int(R).

Proof. For every element of R, some power is an element of Int(R). So R is an
integral extension of Int(R). By Lemma 2.4, the Reynolds operator p: R — Int(R) is
an Int(R)-module homomorphism. The proposition now follows from Proposition 12
of Hochster and Eagon [16]. O

3. The algebra &,(p)
We treat separately the cases p = 2 and p odd.

3.1. The algebra &,(2)
In this section, we examine the case p = 2, and we let k be a field of characteristic
two.

Definition 3.1. Let R = R(n,2) be the Z[%]—graded commutative polynomial alge-
bra k[z1, ..., 2,] with |z;] = £72, and let £,(2) = Int(R).

21
Ezample 3.2. If n =1, we have R = k[z1] with |z1| = 1. The algebra Int(R) is gen-
erated by u = 2%, so £(2) = ku].
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Ezample 3.3. If n =2, we have R = k[xy,z3] with |z1] =
Int(R) is generated by u = 22, v = x123, w = x3. Then
E5(2) = Int(R) = Kk[u, v, w]/(uw + v?)
with |u| =1, [v| =2, |w| = 3.

1, |aa| = 2. The algebra

Ezample 3.4. If n =3, we have R = K[x1, 2, %3] with |21| = 3, |z2| = 3, |zs| = {.
Then £3(2) = Int(R) has a homogeneous system of parameters y; = 23, y2 = 3, y3 =
2§, of degrees 1,3, 7. The quotient by these parameters has the following basis.
deg |0 1 2 3 4 5 6 7 8
elt 1 .131]}% 33‘11‘2.23% xlxg .L“%JJ% $2$g l‘l.ﬁgl‘g
232
The Poincaré series of £5(2) is therefore given by
. I+ +P+2¢" + ¢+ 5 +¢°
d
Zq dim &3(2)g = 3 -
= (1= -¢*)(1-q")
Theorem 3.5. The algebra &,(2) is a Gorenstein integral domain. It has a regu-
lar homogeneous sequence of parameters y; = x3, yo = x5, ys = x5, ..., Yo =2 of
degrees 1,3,7,...,2" — 1. Modulo this regular sequence, we get a graded Frobenius
n(n— n—1 n
algebra of dimension 2 “ with dualising element o = xyadal .. o2 | a2 =2 in

degree 2"t —2n — 2. The Poincaré series f(q) = Y450 q¢?dim &, (2)q is a rational
function of q satisfying f(1/q) = (—q)" f(q)-
Proof. Tt follows from Proposition 2.5 that &,(2) = Int(k[z1,...,z,]) is a Cohen—
Macaulay integral domain. So the homogeneous sequence of parameters y1, yo2, y3, - - .,
Yn is a regular sequence.

If z{* ... 2% is a monomial in &,(2) then a,, is even. If such a monomial is not divis-
ible by any of the parameters then a; < 2° —1 for 1 < i < n, and a, < 2" — 2. The

. - - - 2" ' —l—an_1_92"_2_gq, : .
monomial ]~ x3 " 2xl % gl "2 =27an jg also a basis element of £, (2)
. . . n
and the product of this with ' ...z is equal to a. So &,(2)/(z%, 23, 25,...,22")

is a Frobenius algebra with a basis consisting of these monomials, and with dualising
element «.

It is easy to verify using the Frobenius property that f(1/q) = (—¢)"f(q). It then
follows by Theorem 4.4 of Stanley [22] that &,(2) is a Gorenstein algebra. Alter-
natively, it is shown in Eisenbud [10, §21.3] that the Gorenstein property holds for
a graded Cohen—Macaulay ring if and only if the quotient by a regular sequence of
parameters is a Frobenius algebra. O

There is a natural inclusion map of algebras R(n — 1,2) — R(n, 2) given by sending
each z; in R(n —1,2) to the element with the same name in R(n,2). It is easy to
check that in each degree the sequence

R(1,2) » -+ —= R(n—1,2) - R(n,2) - ---
stabilises at some finite stage. So we take the colimit R(c0,2) = lim R(n,2). Applying

Int, we obtain inclusion maps £1(2) — -+ = E,—1(2) = E(2) — - -+ whose colimit we
denote £ (2) = Int(R(oc0, 2)).
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3.2. The algebra &,(p), p > 2

For odd primes, we should double the degrees of the polynomial generators and
introduce new exterior generators of degree one smaller.

Let p be an odd prime and let k be a field of characteristic p. Let R = R(n,p) be

the Z[%]—graded commutative algebra k[z1,...,z,] ® A(&1, ..., &) with |a;| = %
and |&| = || — 1= p;—jz. Note that |z;| is even and |¢;| is odd. We define &,(p) =
Int(R(n,p)).

Ezample 3.6. It n = 1, we have R = k[z1] ® A(&;) with |z1] = @ and |&] = %2.
In this case, the algebra & (p) = Int(R) is generated by the elements y = 2} and
n=af" ¢ with Jy| = 2p — 2, n] = 2p — 3, namely, & (p) = kly] ® A(n).

Ezample 3.7. If p=3 and n =2, we have R =k[z1,x2] ® A(&1,&2) with |z1] = %,
lwa| = 42, [&1] = 3, [&2] = & In this case, the algebra £(3) = Int(R) is generated by
the following elements:

element degree element degree element degree
S 3 a3 7 2361 11
3 4 33 8 175 12
Ill‘gglgg 6 l‘gflgg 10 Igfz 15
xw%{l 7 xlngg 11 :rg 16

A regular homogeneous system of parameters is given by y; = 23 and yo = 29, and
the quotient by these parameters is a graded Frobenius algebra with dualising element
232861&5 in degree 18. We have
L 71+q3+q6+2q7+q8+q10+2q11+q12+q15+q18
Zq dim &;(3)q = 7 o .
d>=0 (1—Q)(1—q )

Theorem 3.8. The ring £,(p) is Gorenstein. It has a homogeneous system of param-
2

eters y1 = 2}, yo = 25 ... yn = 2 of degrees 2(p — 1), 2(p* — 1), ..., 2(p" —1).

Modulo this reqular sequence, we get a graded Frobenius algebra of dimension 2™p S
2 n

with dualising element o = xp_la:g -t P & - &, an element which lies in

degree 2(”7:_1;1) — 3n — 2. The Poincaré series f(q) = Y450 q?dim &, (p)q is a ratio-

nal function of q satisfying f(1/q) = (—q¢)"f(q)-

Proof. 1t follows from Proposition 2.5 that &, (p) is Cohen—Macaulay. Since y1, y2, . . . ,
yn are elements of &, (p) which form a regular sequence of parameters in R(n,p), they
also form a regular sequence of parameters in &, (p). If x{* - - a8 &5t - €8n (g; € {0, 1}
for 1 < ¢ < n) is a monomial in &, (p) which is not divisible by any of the parameters
then a; < pi — 1 for 1 <7 < n. The monomial

$€_1_a1$52_1_a2 . xﬁ”’flfané%fm . %76"
is also a basis element of &, (p) and its product with a* - 2 &" -+ - €5 is au
Again it is easy to verify using the Frobenius property that f(1/q) = (—¢)"f(q).
But this time, we cannot show the Gorenstein property as in the proof of Theorem 3.5,
using Theorem 4.4 of [22], because &,(p) is not an integral domain. However, the
alternative argument using §21.3 of [10] still shows that &, (p) is Gorenstein. O
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Remark 3.9. Recall that there is an action of the multiplicative group G,, on the alge-
bras k[z1,...,z,] and K[z1,...,2,] @ A(&1,. .., &) defined by their Z-grading (the
fractional degrees multiplied by p™). Also we have the semisimple infinitesimal sub-
group scheme p,n C G, defined by the equation a?” = 1 (i.e., pipn = (Gin) (n), the n-
th Frobenius kernel of G,,,). For p > 2, &,(p) = (k[z1,...,2,] @ A(&1, ..., &))", the
subring of invariants, and for p = 2 we similarly have the subring of invariants &,(2) =
k[z1,..., T 1, Tn)H2" = Kk[21,. .., Tp1,22]"2". Since Y, deg(x;) — >, deg(&;) is an
integer, the action of y,» on the super-space spanned by the variables z;, ; for p > 2
has Berezinian equal to 1 (recall that degrees of odd variables should be counted with
a minus sign). Similarly, for p = 2 the action of g« on the variables x1,. .., 2,1, 22
has determinant equal to 1, as Z?:_ll degx; + 2degx,, is an integer. This is related
to the fact that the ring &, (p) is Gorenstein. For example, for p = 2 this follows from
a group scheme generalization of Watanabe’s theorem: the algebra of invariants for a
homogeneous unimodular action of a finite semisimple group scheme on a polynomial
algebra is Gorenstein. This is a special case of [17, Theorem 0.1].

4. Generating functions

4.1. Generating functions, p = 2
For an integer d > 0, the degree d part of £,(2) has a basis consisting of the
ay a2

monomials x{'x5* ... x5 such that the a; are non-negative integers, and

1 2" —1
d: §a1+%a2+"'+27nan.

The smallest integer degree of a term with a; > 0 is j, which occurs for the monomial
129 . ..xj,le. So for d an integer, we must have a; = 0 for j > d. It follows that
the maps of vector spaces &(2)g — £2(2)q — - -+ are eventually isomorphisms, and
Ex(2)4 is a finite dimensional vector space, spanned by the monomials z{'z5?---
with

d:%a1+%a2+§a3+~-~ .

Such an expression is a partition of d into parts %, %, §,~--. These are enumer-

ated in sequence A002843 of the On-line Encyclopedia of Integer Sequences (which
is sequence 405 of Sloane’s Handbook [21]). This sequence has been studied by
Minc [19], Andrews [1], and Flajolet and Prodinger [15]; see also Nguyen, Schwartz
and Tran [20] for a context in algebraic topology. The first few terms are

1,1,2,4,7,13,24,43, 78, 141, 253, 456, 820, 1472, 2645, 4749, 8523, 15299, 27456, 49267,
88407, 158630, 284622, 510683, 916271, 1643963, 2949570, 5292027, 9494758, . . .

A few more terms can be found at https://oeis.org/A002843/b002843.txt. This
sequence grows like CA™, where

C :=0.74040259366730734 ..., X :=1.79414718754168546. .. (4.1)

Our analysis of the generating function Y-, ¢? dim&,(2)4 follows Andrews [1].
Since there are many misprints in the relevant section of [1], and we are doing some-
thing slightly different, we choose to repeat the argument in our context. The analo-
gous argument for p odd, which we carry out later, is not dealt with in [1].
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Let N(m,d) be the number of monomials of degree d in x1,...,z,, with a,, > 0.
Thus the dimension of &,(2)q is Y. _; N(m,d), and the dimension of £.(2)4 is

o0
Zm:l N(m7 d)

We can rewrite these monomials in terms of new variables z1, z9,... as follows.
Set z; = a3, and z; = x; ', 22 for i > 2. These variables z; are degree one elements of
the larger Z[l]—graded ring of Laurent polynomials k[z1, 27", 2o, 25", ...]. Then we
have a7'z3? - = zi’lng ... where a; = 2b; — b;11. The constraints a; > 0 translate
to 2b; = b1 for t > 1, and since the b; are eventually zero, they are all non-negative.
Thus N(m,d) is the number of sequences (b1,...,b,,) of nonnegative integers with
S bi=d, and 2b; > by for 1 <i < m.

Set pm(q) = > ey N(m,d)g?, and po(g) = 1. We would like to compute fi,(q)-

In fact, we will compute a more general generating function, taking into account the

degrees with respect to all z;. Introduce auxiliary variables ¢1,qa, ... corresponding
to the statistics by, bo, .. .; i.e., we define the multivariate Poincaré series of &,(2)
o0
b m
P g1y -5 Gm) == > Qs

b1seesbim 26 2bi 1
so that the usual Poincaré series of this algebra is 11, (q) = pm(q, - - ., q).
Thus we have

oo 2by 2bp—1

(s @m) = Y D > A

b1=1by=1 bn=1

2bm,fl
For the last sum we have Z ¢ = 1q7m( — ¢**m-1) and so we obtain
—dm
bm=1

oo 21)1 2bm 2

1 Em Hm—-1 — Z Z Z q : qn;,n 22(QTn,—1q72n)bm71

dm bi=1ba=1 bpy_1=1

Mm =

Now for the last sum we have

2bm—2 2
qm—19
D (Gmoagn) = e (1 (gme107) )
bom_1=1 — qm—-19y,

and so we obtain

__n ( _
ﬂm*l_qm ﬂm—l

[e%) 2bq 2b,, 3

metdm (um 2= > Y ey g ~anm_?f’(quzqfn_qun)b’"‘z))-

1= gm-143 bi=1bo=1 by, =1
We continue this way, using induction. At the end, we use pg = 1. We obtain

i(_l)iﬂ ;( Gm )( Gm—10m )( Gm—i - ¢4 _): 0 m>0,
TN =g/ \ 1 — g1, 1= Gm—i G2 1 m=0.

i=1




ON COHOMOLOGY IN SYMMETRIC TENSOR CATEGORIES 171

So we set
o G) = Qasqs gk 7t
m yrrrodmMm) T m—
(1= qm)( = gm-142) - (1 —q1g5...q%"")’
A 0 > 0,
and we have 7" ((—=1) pm—il; = "
T 1 m=0.
oo m
Now we introduce another variable ¢, so Z Ztm_lum_i - (—=1)"t"¢; = 1. Setting
m=0 i=0

j=m —1 and

e} o
) = Z Um(Q17~-~»lJm)tm7 ,U(t,q) = N(t7QaQ7) = Z #’WL(q)tm?
m=0 m=0

we rewrite this as

[ee]

pt.a)g(t,a) =1, g(t,a) == > (1)t .., ). (4.2)
1=0

This yields u(t,q) = q(t - In particular, u(t, q) = ( 7 where g(t,q) := g(t,q,q,...).
Thus we obtain the following result.

Theorem 4.1. We have

—1
- (D)™t qiq3q5 - g3 "
lu(t7q) = (Z 2 253 2 2m— 1) °

m=0 (1= qm)(I = qm-192) - (1 —q1¢5 - . . ¢&

In particular,

—1)igiglt3HT+ +(20-1)

Z (1-q) 1—q J(1—q7)--(1—¢*7 1)

i N(m,d)t"¢? =

m,d=0

Note that 1 +3 + 7+ -+ (20 = 1) =21 —4 — 2.
Expanding this out, the reciprocal of the generating function for N(m,d) is

tq t2q4 tSqll
it a0t ot -da-a¢ T

which tabulates as follows:

-1 -1 -1 -2 —2 -2 -3 —4
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Taking the reciprocal, we obtain the table of coefficients N(m, d):

1og 2 B gt P B T B 0 g0 1 12 13 14 15 16 17 18
T T

t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12
3 1 3 4 6 9 11 14 18 22 26 31 36 41 a7 53 60
4 1 4 7 11 18 25 33 45 59 74 94 116 139 168 199
f,5 1 5 11 19 33 51 72 102 141 187 246 319 403 504
6 1 6 16 31 57 96 146 216 313 436 595 802 1056
7 17 22 48 94 170 278 432 654 954 1353 1888
8 18 20 71 149 287 502 822 1299 1979 2918
9 1 9 37 101 228 466 867 1497 2470 3922
10 1 10 46 139 338 732 1442 2623 4520
¢11 1 11 56 186 487 1117 2322 4442
12 1 12 67 243 684 1661 3635
13 1 13 79 311 939 2413
114 1 14 92 391 1263
15 1 15 106 484
+16 1 16 121
+17 1 17
18 1

The coefficients of the Poincaré series for £,(2) are given by adding the first n rows of

this table, while the coefficients of the Poincaré series for £, (2) are given by adding
all the rows; in other words by setting ¢ = 1. Thus, setting N (d) :=>_, 5, N(m,d),
we get

(_1)iq1+3+7+---+(2i71)

™ N (gl — s
2N =Gy S L T i TP

K2

Note that the series ¢(q) defines an analytic function in the disk |g| < 1, and that
the numbers C, X in (4.1) are determined as follows: A = 1, where o is the smallest
positive zero of ¢(q), while C' = _#(a)'

It is easy to see from this computation that the reciprocal of the generating function
is much easier to compute than the generating function itself, and has much smaller

coefficients. The same will be true for p odd.

Remark 4.2. Recall [2] that the category Ver;rn+1 is the category of modules in Veran
over the algebra A := AV, where V = X,,_; is the generating object of Veryn. Thus
the group G, acts on A by scaling V. This action gives rise to an action of G,,
on EXt\./eer (1,1), ie., a Z-grading on each cohomology group. We expect that on
&,(2), this grading is given by the degree with respect to the variable z,. In other
words, we expect that the 2-variable Poincaré series of £,(2) taking into account this
grading is pim (g, - - -, ¢, q).

So let us compute the generating function u(t,q,v) := > o ftm(q, - . ., g, qv)t™.
Arguing as above, we get u(t, q,v) — p(t, q) + u(t, q)g(t, q,v) = 1, where

> (_1>itiq2i+1—i—zvzi—1

i—0 (1 - q'U)(l — q3v2)(1 _ q7v4) . (1 _ qu—vai—l) .

2

g(t,q,v) :==

Thus, we have

1 _g(t,q,'U)
:U’t7Q7U :1—"_7
( ) 9(t,q)

4.2. Generating functions, p > 2
The details for p odd are similar to those for p = 2, but are quite a bit harder to
keep straight. So we have chosen to write out the computation again in full.
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For an integer d > 0 the degree d part of £,(n) has a basis consisting of the
monomials z{* ...z £t .. &5 such that the a; are non-negative integers, each ¢; is
zero or one, and

"2
pn

-2

d:2p 2a, +2p Zay + - +2p an+p251+p282+ + B ey,
Let Np(m,d) be the number of such monomials in degree d with a,, + &, > 0.
Thus the dimension of &,(p)q is Y. _; Np(m,d), and the dimension of E(p)q is
> Np(m,d).

m=1

Set z; =¥, ¢ = 2}~ fl,andzl—acZ 1301,(1—331 N §lforz 2. Then we have
lzil =2p—2, ;| =2p—3 (1 <i< n) and

(aftag? (€767 ) = (') (¢ G2 ),

where a; = pb; + (p — 1)&; — bj11 — €;41. Then the conditions on the b; and the ¢;
are that b; are non-negative integers, ¢; = 0 or 1, and pb; + (p — 1)e; = bjr1 + €11
fori>1.

Set wm(q) = > aeo Np(m,d)g?, and po(g) = 1. Then we have

oo  pbi+(p—1)e1 Pbm—1+(P—1)em—1

Z Z .. Z q(2P= D (o1t tbm) +(2p=3) (e1 -+ Fem)

bi+e1=1 batea=1 bmtem=1

We would like to compute g, (q). As in the case p = 2, we introduce auxiliary vari-
ables q1,qo,..., w1, ws,... corresponding to the statistics by1,bs,..., €1,62,...; i.e.,
we define the multivariate Poincaré series of &, (p)

oo pbi+(p—1)e1 Pbm—_1+(p—1)em—_1

,LLm(Q17"'7qm;w17'--7wm):: Z Z Z qlfl...qfnvjmwil...wfnm

bi+e1=1 ba+tez=1 bmt+em=1

so that the usual Poincaré series of this algebra is

L (@) = pim (P72, P72 PPR L PP,
We have
zs: ¢'w" = W- (4.3)
b+e=1 —4q
So, summing over by,, €, we get
Wyn, +qm oo pbit+(p—1)er
i >

bi+e1=1 batea=1

Pbm—2+(P—1)em—2
b1 bm—2_ &1 Em 2 1\e
" E, 0 W (Gme 1) (Wi gy )ml)
bm—1t+em—1=1
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Thus, summing over b,,_1,&,—1 and using (4.3) again, we have

W, + Gm Wim—1¢5 " 4 Gm-14%,
pom = — " 1 — >
1-— qm 1-— dm—1Gm

( co  pbit(p—1)ey

e S

bi+e1=1 batez=1
Pbm—3+(p—1)em_3 R )
b b — Em— b — -1 —P\Em—
S R Y A = L A s L U S )
bm—2tem—2=1

Continuing inductively and using that pg = 1, we obtain

m

; 0 m>0
Z(_l)l/‘m%gi,p = 7
Pt 1 m=0,

where

- -1 p*- 2
Wy + qm) (wmfqun s qulqﬁl) (wm_Qan_lfﬁn P+ Q2,145 )
1- dm 1- Qm—lqu 1-— qugqﬁhlq?:

gi,p(Q) = (

p—1 i—1_, i—2 P i—1
. (IUm—i-i-lquiJrQ g TP Qi1 20, )

» i1
1- Am—i+1Qm—i12 """ dm

oo (o)

Introducing a new variable ¢, we rewrite this as (Z tjuj) (Z(—l)itiéi,p> =1, so
j=0 i=0

i; can be determined from the generating function

j=0 Zizo(_l)zt%i,p

In particular, setting w; = ¢??~3, ¢; = ¢*P 2, we get

i U@+ (1+¢7 )
(1—¢g?72)(1 = ¢?*72) -+ (1 - ¢*'72)

liplg) = g0
Thus we obtain the following result.

Theorem 4.3. We have

_ i—1_ -1
> Ny, )i = i(—l)itiq@p—zw—n—i I+ +¢” - (1+¢" ) :
m,d=0 i=0 (1 - q2p—2)(1 - q2p2—2) e (1 - q2p1—2)

Remark 4.4. Recall [3, Subsection 4.14] that the principal block of the category
Ver;'n+1 (i.e., the block of the unit object) is equivalent to the category of modules
in Ver,n over the algebra A := AV, where V =T is the generating object of Verpn.
Thus the group G,, acts on A by scaling V. This action gives rise to an action of

Gy, on Exty,, _— (1,1), i.e., a Z-grading on each cohomology group. We expect that

on &,(p), this grading is given by the degree with respect to the variables z, and
Cn- In other words, we expect that the 2-variable Poincaré series of &, (p) taking into
account this grading is i, (¢?P72,...,¢?P72, (qu)?P=2;¢?P=3 ..., ¢*P73, (qu)?P73).
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So let us compute the generating function
p(t, g, Z (@72 P2 (qu)P TR PP (qu) e

Arguing as above, we get u(t,q,v) — pu(t,q) + p(t, q)g(t, q,v) = 1, where

q(t,q,v) :=
> (—1)itiqRP=D @ =D =iy,@p=2) ("I =D=1(1 4 g4y (1 4 2P 12P2) (14 g2 1y (e T
. (1 — q2p—292p=2)(1 — ¢2p%—29(2p=2)p) (1 — ¢2P' —2¢p(2p—2)p'~1) '
Thus, we have
1- g(t7 q, ’U)
:u’(ta q, ’U) =1+ ,
g9(t.q)

where g(t,q) := g(t,q,1).

Here is a table of the coeflicients in the reciprocal of the generating function for
Ny(m,d) with p = 3.

‘qu qs q4q"q(’ q7 qsngm 11 12 13 14 L; 16 17 18q19q20q21q22q23(124[120(126427428q29q30q31(132(133[134(130(136

TT

—1-1 —1-1 —1 -1 -1 -1 —1-1 —1-1 —1-1 —1-1 —1-1
2 101 12 1 12 1 12 1 2 3 1 2 4 2
3 —1-1

-

Reciprocating, we obtain the table of coefficients N3s(m,d). These tables become
sparser as the prime increases.

5. Action of the Steenrod operations

In this section, we examine possible actions of the Steenrod operations on the
algebra £ (p).

5.1. Steenrod operations for p = 2
We begin with the easier case p = 2.

Theorem 5.1. There is only one possibility for the action of the Steenrod operations
on Ex(2) in such a way that the Cartan formula

> Sa'(z)Sq’ (y)

i+j=n

and the unstable conditions Sq'(x) = 2 for i = |z| and Sq*(z) =0 for i > |x| hold.
Namely for © € Ex(2), we have Sq®!(z) = 22, and Sq*(x) = 0 for i # |z|. In partic-
ular, if © has degree greater than zero then Sq () =0.

Proof. We begin by examining the elements 22" of degree 2" — 1, and we show by
induction on n that Sq“(2") =0 for i < 2" — 1. Let T =5q° +Sq" +Sq* +--- be
the total Steenrod operation, which by the Cartan formula is a ring homomorphism.
In particular, note that Sq* of a 2"th power vanishes when ¢ is not divisible by 2™.
Our goal is to show that T'(z2") = (22")? for all n > 1.
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We begin with n = 1. We have (2?)(z3) = (x123)2. Applying Sq* to this relation,
we obtain

Sq”(27)(23)” + (27)*Sq”(23) = Sa*((123)*) = 0.
Therefore Sq°(z?) is divisible by (2%)2, and is hence zero, and so T'(x?) = (23)2.

2%1) = )2. We have the relation

n—1/ — (12”_1

Now for the inductive step. Assume that T'(x

n—1

(@20 T @) = @l )

in £(2). Applying T', we get
211.71

(@2 )" 2 T(a2) = (T2, ~'a2))

gn—1
n—1 .

The right hand side is zero in degrees not divisible by 2"~!. It follows that T'(22")
is zero in degrees not congruent to minus two modulo 27~ !. So the only possibilities
for non-zero Steenrod operations on z2" are qun_1 and Sq2n71_1.
We also have the relation

ontl_o

n nt+l on_ n
; ; )2 t= (xn$n+1 )2

(‘rn )(‘rnJrl
in £5(2). Applying T', we get
on+1 gn+1_

T(ay )(T(aniy )* 7 = (T(anan )
The right hand side is zero in degrees not divisible by 2. So in particular, examining
the term in degree 2"+1(2" — 1) — 2"~ we have

n n41_ n_1y_on—1 ntl_on n—1_ n n4l ontl_
(wp)?Sq® TDETD= (@2 ) +(SeT T @ ) (@ )T P =0

So Sq2"71_1(zfl") is divisible by (z2")?, and is hence zero. Hence T'(z2") = (22")?,

and the inductive step is complete.
Finally, given any monomial x = z{* - - - 2% € £,(2), we raise it to the 2"th power

to obtain an element of the subring generated by z%, 3, f,.... Then T(z)?" =
T(z?") = (#2")? = (2?)?", and since we are in an integral domain of characteristic
two, this implies that T'(z) = z2. O

5.2. Steenrod operations for p > 2

Next, we examine possible actions of the Steenrod operations on the algebra €, (p)
for p odd. Our conclusions are weaker than in the case p = 2, because of the existence
of nilpotent elements.

Theorem 5.2. Suppose that the Steenrod operations act on E (p) with p odd in such
a way that the Cartan formula and unstable conditions hold. Then on the subring
spanned by the monomials not involving any of the &, we have P™(x) =P and
Pi(x) =0 for i # n, where |z| = 2m.

Proof. Let T be the total Steenrod operation P° + P! + - ... The argument to show
that T'(22") = (2" )P for p odd is similar to the case p = 2, but involves one more
induction. We therefore write it out in full.
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Our first task is to show that T'(z}) = (2)?. We begin as before with
(@)@ 7t = (e,
a relation of degree 2p?(p — 1). Applying prie=D-1 ¢ this, we get
PP2(af) (2 )P0V 4 ()P PO (@ ) = 0.

Therefore PP~2(x}) is divisible by (2})P, and hence it is zero. We work downwards

in degree by induction. Suppose we have shown that PP~ (zf),..., PP=2(2]) are all

zero. Then applying PP (P=1=i to the above relation, we get
PPl (@h) (o] )P0 + () PETDETD T (0 ) = o,

Therefore PP~ ~1(21) is divisible by (2])?, and hence it is zero. Once we reach i =
p — 1, we have completed the proof that T'(z]) = (2)P.

n—

n— 1
Next, we suppose that we have already shown that T'(z! _; ) = (22 _, )?. We have
the relation

n—1 v

1 ,
(xi—l )pn 1(551731’ ) = (Ifz—l

n-1_1 1—1

)
in £ (p). Applying T', we get
n—1 n__ n n7171 n—1
()P P Ty ) = (T(ay, . ~ 2}))”
The right hand side is zero in degrees not divisible bylp"_l. So the only possibilities
for non-zero Steenrod operations on xﬁn are PP " 1 for 0 <i < p— 1.

We also have the relation

n n+1 n__ n+1l__
(zh )(xﬁ-u ) t= (xnmfw-l p)p

in £oo(p). Applying T', we get

n

T ) (T(h )P~ = (T(aaaty) )"
The right hangl side is zero in degrees not divisible by p™. We show by induction on ¢
that PP" " ~1(22") = 0 for 1 < i < p — 1. If we have proved this for smaller values
of i, then we get

n+1 n

L A N L N A L - Ll O S (C
n

(@ )" h =0.
So Pp"_z‘pnfl—l(xfl”) is divisible by (22")P, and is hence zero. This completes the
proof that T'(z2") = (z2")P. =

6. The Koszul complex

We assume that p™ > 3. We will consider the symmetric tensor categories Verpn
over k defined in [3]. Namely, let 7, := TiltSLy(k) be the category of tilting modules
over SLo(k). Let T; € T, be the tilting module for SLy(k) with highest weight ¢. The
module T},»_1 generates a tensor ideal Z,, C 7, spanned by T; for i > p™ — 1. We define
Tn,p to be the quotient category 7,/Z,. Then Verp» is the abelian envelope of 7, ;,
i.e., the unique abelian symmetric tensor category containing 7, , such that faithful
symmetric monoidal functors out of 7, , into abelian symmetric tensor categories
uniquely factor through Verpn.
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More concretely, Ver,» is the category R—mod of finite dimensional modules over

the algebra R := End(@f;;f,lflTi),l realized as the homotopy category of projective
resolutions P® in R—mod with the usual tensor product. Namely, it turns out that
the tensor product of resolutions is a resolution (i.e., acyclic in negative degrees),
there is a unit object, and the corresponding tensor category is rigid (with T = T;)
and equipped with a natural faithful symmetric monoidal functor 7, , — Ver,» given
by P* — HO(P*).

Let T; be the image of T; in Verp.. In particular, we let V' =T; be the image of
the 2-dimensional irreducible representation T; of SLz(k), also denoted by V' (these
of course depend on n but to lighten the notation we do not indicate this explicitly).
Note that in both categories A2V is the unit object and A’V = 0 for i > 3. Recall [11,
13] that we have the Koszul complex K*® :=S°V ® AV in Verp» (i.e., we use the
symmetric power superscript as the cohomological degree). This complex may also
be graded by total degree, which is preserved by the differential. So it splits into a
direct sum of complexes K2, m > 0:

08"V 5 8™ VeV - SV =0

(where we agree that S7V = 0 if j < 0). The map S™ 'V ® V — S™V in this com-
plex is induced by the multiplication map of the algebra SV, so it is surjective when
m # 0.

Proposition 6.1. If 1 < m < p™ — 2 then the complex K, is exact.

Proof. Tt suffices to show that for any i € [p"~1 — 1,p" — 2] the sequence
0 — Homver,, (S™V, T;) — Homver,. (S™ 'V ® V, T;) = Homver,. (S™*V,T;) — 0

is exact. This sequence can be rewritten as (o1
0 — Homver,,, (VE™, T;)™ — Homve,,, (V™ T;)5m 62)
— Homver,, (VE™72,T;)%"2 — 0. '
By Theorem 4.2 of [3], sequence (6.2) can be rewritten as
0 — Homry, (VO™ T;)% — Homy,  (V&™, T;)%"— 63)

— Homr, (VE™™2,T;)5"~2 — 0.

Now, if 1 < m < p" — 2, then by Proposition 3.5 of [3], sequence (6.3) can be rewritten
as follows:

0 — Homy, (VE™, T — Home, (Vo™ 7)1

6.4
— Homy, (V™2 T;)5"~2 — 0, (64

where V' now denotes the 2-dimensional irreducible representation of SLy(k). The
Hom spaces in this sequence are just Homs between representations of SLs(k). Thus

Tt does not matter whether to take endomorphisms in Tp or Tpn,p — the corresponding natural map
of endomorphism rings is an isomorphism.
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sequence (6.4) can be written as
0 — Homgp, ) (S™V,T;) — HomSL2(k)(Sm71V RV, T;)
— Homgy, 10 (S™ 7V, T;) — 0.
We will now use the following lemma.

Lemma 6.2. For m < p" — 1 one has ExtéLz(k)(SmV, T;) = 0.

Proof. Since i > p"~! — 1, it suffices to show that for any j,
Extg, g0 (S™V, Stn_1 @ T}) =0,
where St,,_1 := Tn-1_; is the (n — 1)st Steinberg module (note that it is self-dual).
We have
Ext§y, a0 (S™V, Stno1 ® Tj) = Extgp, 40 (S™V @ Sty_1,T)).

By [3, Lemma 3.3], S™V ® St,,_1 has a filtration whose successive quotients are
tilting modules. Thus, since Ext' (77, T;) =0, S™V ® St,,—1 is a direct sum of T}, i.e.,
a tilting module. This implies the statement, using again that Extl(Tl, T;)=0. O

Now the exactness of (6.5) follows from the fact that the sequence of SLs(k)-
representations
0= S™" 2V 5 8™ WRV —=S"V =0

is exact (being a homogeneous part of the ordinary Koszul complex) and Lemma 6.2.
This completes the proof of Proposition 6.1. O

Let q = e™/P",
Corollary 6.3.

(i) Form < p"™ — 2 we have

m+1 _ ,—m—1

q
qa—-q

q

FPdim(S™V) = [m + 1] := eR

1

and dim(S™V) =m+1 € k.
(ii) The Jordan—Hélder multiplicities of the objects S™V are the decomposition

numbers of tilting modules into Weyl modules computed in [23] (see [3, Propo-
sition 4.17]).

Proof. (i) It follows from Proposition 6.1 that
FPdim(S™V) = (q+ q ')FPdim(S™ V) — FPdim(S™2V),
dim(S™V) = 2dim(S™'V) — dim(S™2V).
Thus the statement follows by induction, using that SV =1, S'V =V.
(ii) This follows from (i), using [3, Theorem 4.5(iv) and Propositions 4.12, 4.16]. O

Recall [3] that Ver,» has exactly two invertible objects up to isomorphism for
p > 2 and exactly one (the unit) for p = 2. For p > 2 let ¥ be the unique non-trivial
invertible object of Ver,» (generating the category of supervector spaces). If p = 2,
we agree that ¢ = 1.



180 DAVID BENSON anp PAVEL ETINGOF

Corollary 6.4.

(i) 57" 72V =4,

(i) 7"V =V ®y.

(iii) SV =0 for all j > p" — 2.
Proof. (i) By Corollary 6.3, we have FPdim(S?"~2V) = 1, which implies that SP" ~2V/
is invertible (see [12, Ex. 4.5.9]). For p = 2 this implies that S =2V =1, and for
p > 2 that SP" 2V =1 (as SP" 2V € Ver,,. since p" — 2 is odd).

(ii) Similarly, by Corollary 6.3, FPdim(SP"~3V) = q+q~' < 2, s0 S?" 3V is sim-
ple. But by the results of [3], the only object X € Ver,n of Frobenius-Perron dimen-
sion q + q~ ! such that v is a quotient of X @ Vis X = V @ ¢b. Thus SP" 3V = V @ ).

(iii) The map SP" 3V — SP" =2V ® V corresponds by adjunction to the surjec-
tive map SP" 3V ®@ V — SP" 2V, which is nonzero by (i). Hence by (ii) it is an
isomorphism. Thus the morphism S?" 2V @ V' — SP" =1V must be 0 (as Kp._qisa
complex). But this map is surjective, so SP" =1y = 0. This implies the statement. [

Remark 6.5. In particular, this implies that

D dim(S™V)2™ = (1 - 2)P" % € K[[2]).
m=0
Also we clearly have
D dim(AMV)™ =14 22+ 27 = (1+2)* € K[[2]].
m=0
Thus the p-adic dimensions of V' defined in [13] are as follows:
Dim_(V) =2 € Z,, Dim, (V) =2—p" € Z,.
Similarly, we get
14 27"
(1-agz)(1—qtz)

> FPdim(S™V)2™ =

m=0
We also obtain

Corollary 6.6.

(i) The Koszul complex K*® is exact in all degrees except 0 and p"™ — 2. Moreover
HO(K*®) =1 sitting in total degree 0 and HP" ~2(K*®) = ) sitting in total degree
p".

(ii) The algebra SV is (p"™ — 2,2)-Koszul and the algebra AV is (2,p™ — 2)-Koszul
in the sense of Brenner, Butler and King [6] (see [11, Definition 5.3]).

Corollary 6.7. The algebra SV in Verpn is Frobenius.

Proof. Assume the contrary, and let k be the largest integer such that the left ker-
nel of the pairing S*V @ SP"~2-FV — §P" 2V =4 is nonzero. Denote this kernel
by N. Then the composite map N ® V — S¥V @ V — S¥+1V is zero. Thus the
composite map N — SV — SV @ V is zero. But by Proposition 6.1, the map
SFV — SV @ V is injective. Thus N = 0, a contradiction. O
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Remark 6.8. Recall [3, Subsection 4.4] that the category Verp» = Ver,» (k) lifts to a
semisimple braided (non-symmetric) category Verpn (K) over a field K of character-
istic zero, corresponding to the quantum group SL,® where ¢ is a primitive root of
unity of order 2p™ in K. In Ver,» (K) we have the quantum symmetric algebra S_,V,
which is a lift of SV over K and is also Frobenius (p" — 2,2)-almost Koszul (see [11,
Subsection 5.5]). In particular, we have the quantum Koszul complex S* [V @ A_V
in Veryn (K) which is a flat deformation of the Koszul complex S*V ® AV and has
the cohomology as described in Corollary 6.6.

Corollary 6.6 allows us to construct an injective resolution Q,:

Qo= Q1= Q2 — -+

of the augmentation AV-module 1 by free AV-modules, which is periodic with period
2™ — 1 for p =2 and antiperiodic with period p™ — 1 for p > 2 (where antiperiodic
means that it multiplies by ¢ when shifted by this period; in particular, this is
2(p" — 1)-periodic). Namely, for 0 <4 < p" — 2 we have Qo (pr—1)4+m = S™V @AV,
and Q(g,url)(pn,l)er =S"V Yy AV.

Remark 6.9. If p® =2 (i.e., p=2,n = 1) then V = 0, so the Koszul complex reduces
to 1 sitting in degree 0 and hence does not fit the above general pattern; but we will
not consider this trivial case. If p” = 3 (i.e., p = 3,n = 1) then V = 1, so A3%) # 0 and
hence the Koszul complex S*V @ AV still does not fit the general pattern (in fact,
in this case Verp,» = Supervec, so the Koszul complex is exact except in degree 0).
However, now this can be remedied by a slight modification of the definition. Namely,
let AV be the quotient of AV by A®V (forcing the desired equality A3V = 0). Then
we have the truncated Koszul complex K¢, := S*V ® A,V which is easily shown to
have the same properties as the usual Koszul complex K*® for p” > 3. Thus if p" = 3
then, abusing terminology and notation, by AV we will mean A, V', and by the Koszul
complex the truncated Koszul complex; then the above results will also apply to this
case.

As an application let us compute the multiplicities of the unit object in the sym-
metric powers of V' for p = 2.

Proposition 6.10. If p =2 then [S™V : 1] =0 if m is odd and [S™V : 1] =1 if m
is even. Thus [SV : 1] =271,

Proof. Notice that for X € Vergn the multiplicity [X : 1] of 1 in X is equal to
Tr(FPdim(X))/2" ! (the trace of the algebraic number in the field Q(q + q~*) where

= ¢™/2") ; this follows since by [2], TrFPdim(X) = 0 for any nontrivial simple
X € Vergnt1. So we have

g 1 . ]_—I—ZQn
Z[S V12" = 2n—1T ((1 —qz)(1 - q_lz)) .

m

Thus the result follows from the following lemma.

n n 11,—1_1
1 14 22 1-22" 2 .
L 6.11. Tr = = 7,
emma on—1 ((1 _ qz)(l _ q12)> 1— 22 Jz_(:) z
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Proof. We have

1 14+ 22" 1422
T .
gn—1 r <(1 _ qz)(l _ q—lz ) gn—1 Z 2k 1 (1 _ q—2k+1z)

This is the unique polynomial h(z) € Q[z] of degree 2" — 2 such that h(q/) = %quj
for any odd number j. But the polynomial 117;: satisfies these conditions, hence the
result. O

This completes the proof of Proposition 6.10. O

Remark 6.12. Another proof of Proposition 6.10 is obtained by applying Proposi-
tion 4.16 and Theorem 4.42 of [3]. Namely, [S?V : 1] is an entry of the decomposition
matrix of Vergn, so it is 0 if 7 is odd and 1 if ¢ is even. This follows since the descendants
of the number 2" — 1 are exactly all the odd numbers between 1 and 2™ — 1.

7. Ext computations

7.1. Ext computations for p =2

Consider now the case p = 2. In this case, we can use the resolution @), to give
the following recursive procedure of computation of the additive structure of the
cohomology Exty,, ., (1, X) (for indecomposable X).

We will denote the generating object of Verger1 by Xj and recall that Verg'k 4o
is the category of AXi-modules in Vergrs1. Also the resolution Qe in Verge+: will
be denoted by S®Xj[yri1] ® AX}, where yj41 is a variable of degree 25+ —1 for
k > 0. This is justified by this resolution being periodic with period 2! — 1. Also if
Y*, Z* are complexes in an abelian category A then by Ext™(Z®,Y*) we will mean
Hom(Z*,Y*[m]) = Hom(Z*,Y**™) with Hom taken in the derived category D(A).

Recall that Vergnt: = Ver;’n+1 @ Ver,,.,,. If X € Ver,,..,, then Ext\°,er2n+1 (1,X) is
zero. Thus, it suffices to compute Ext\'/er;rn+1 (1,X) for X € Ver;,H. In that case, we

have

EXt. +
Vean+1

(1,X) 2 Exthy, ,(1,X)2Exthy (1,Qs® X) (7.1)

= EXt;\X (1 S.Xn—l[yn] RAX,_1 ®X)
= EXtVergn (]l S°X ’ﬂ l[yn] ® X)
= Bxty s (L(S"Xooalun] © X)),

where the superscript 4+ means that we are taking the part lying in Vers,, and in
the last two expressions X is regarded as an object of Veran using the corresponding
forgetful functor Ver;rn+1 — Vergn. Here for the penultimate isomorphism we invoked
the Shapiro lemma, using that the AX,,_;-module S*X,,_1[y,] ® AX,, 1 ® X is free
and therefore coinduced (as AX,,_; is a Frobenius algebra).

Thus we get a recursion expressing of Extver (]l, X) in terms of Ext\'/er;rn (1, X7").

While this is a good news, unfortunately X’ 1s not an object any more but rather
a complex of objects finite in the negative direction. Luckily, the same calculation
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applies if X is such a complex, i.e., an object of the derived category D*(Ver;ﬂ)
of Ver;“, which allows us to iterate this construction. Namely, for an object X €
D (Ver.,1), let

En(X) = mAXu—l (1,8 Xn-1lyn] @ AX;1 @ X)+ = (S*Xn-1lyn] ® X)+
(the internal Hom taken in the category Veran). This gives an additive functor
E,: D" (Ver],..) — DT (Vers.).

Lemma 7.1. If X € Ver}, (i.e., a trivial AX,,_i-module) then the differential in the
complex E,(X) is zero.

Proof. 1t is easy to see that for a finite dimensional vector space V over k, the
differential on Hompy (k, SV ® AV) = S*V induced by the Koszul differential on
S*V ® AV is zero. The lemma is a straightforward generalization of this fact. O

Corollary 7.2. Suppose X € Vergn. Then we have an isomorphism

Exty . (1,X) = @ Exty; (1,5 X, 1[ya] @ X)

Ver;rnJrl Vergn
i>0
=@ Exty kL (1,(5° X0 afya] @ X)),
ol
i>0

This isomorphism maps the grading induced by the grading on AX,,_1 to the grading
defined by deg(X,,—1) = 1, deg(y,) = 2™ — 1 (i.e., il coincides with the cohomological
grading).

Proof. Follows immediately from Lemma 7.1. O

Remark 7.3. Corollary 7.2 does not quite give a recursion to compute the Ext groups,
since the object (S°X,_1 ® X)T may not belong to Vergn-1 (i.e., it may carry a
nontrivial action of AX,,_5). However, it has some useful consequences given below.

Now recall that Vers = Vec and Very, is the category of k[¢]-modules where £2 = 0.
Define a functor Ey: D*(Vers,) — D¥(Vec) by

Ey(X) = Homye (k, k[y1, €] @ X) = k[y1] ® X,

with the differential d(y}* ® =) = y" ™' @ &z + y* ® da. We thus obtain the following
proposition.

Proposition 7.4. We have a natural isomorphism

E 1, X) 2 Bxty, e (1 Ba(X))

L]
XtD+(Ver;rn+l)(
forn =2, and

Ext (Il,X) = EXt2)+(VCC)(17El(X))

.D+(Ver:;2)
This implies the following corollary. Let
E=FEyo0---0E,: D" (Ver),.,) — D% (Vec).
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Corollary 7.5. We have a linear natural isomorphism

EXt.D*(Ver;n_*_l)(]]"X) = H.(E(X))

The complex of vector spaces E(X) has the following structure:

E(X) = (S.Xl K- (S.Xn—2 & (S.Xn—l & X)+)+ tee )+[y1ay27 e ayn]’ (72)
and it is easy to see that the differential is linear over k[y1, . . . , y»], since multiplication
by v; is induced by the shift in the corresponding periodic resolution. Thus we get

Proposition 7.6. For any X € Vergnt1, Ext\',erw+1 (1,X) is a graded finitely gener-
ated module over K[y, ..., yn]-

In particular, we get that

Extye,,,, (1, 1) = Exty . (1,1) = H*(E(1)),

on+1

where
E1)=(S*X:® - ®(S* X 2@ (S* X)) . ) Y1, v2, - -+, ynl-
Note that we have 1 € E(1) and d(1) = 0, so we obtain a natural linear map
¢ K[y, s yn] = Extle,,, (1,1),

Proposition 7.7. For 1 < i < n multiplication by y; on Ext\°,er2n+1 (1, X) coincides
with the cup product with ¢(y;). In particular, ¢ is an algebra homomorphism.

Proof. The proof is by induction in n. For i < n the statement follows from the
inductive assumption. For ¢ = n, we see that the cup product with ¢(y,) can be
realised as the Yoneda product (= concatenation) with the Koszul complex K*, which

represents the class ¢(y,) in the Yoneda realization of Ext. This proves the first
statement. The second statement then follows since

¢(ab) = (ab) -1 =a-(b-1) = a- ¢(b) = ¢(a)(b). N
Proposition 7.8. For X € Vers.. the natural map
ExtVer, (1, X)[yn] = Extle,,, ., (1, X)

is an injective morphism of K[y1, . .., yn|-modules which is also a morphism of algebras
for X =1.

Proof. This follows from the isomorphism
EXt\./erszrl (]].7 X) =~ EXt\./erZ,” (]l, (SeVean71 ® X) [yn])
since 1 is a direct summand of SV X, _1. O]

Proposition 7.9. Let U € Vergn and X :=U Q@ AX,,_1 € Ver;'ﬂ+1 be a free AX, _1-
module. Then y, acts on Exty,,  (1,X) by zero.

ont1

Proof. By the Shapiro lemma we have

Ext\',er2 1,X) = Extiy, ,(1,X)=Exty,,, (1,U).

n+1(

Therefore, the group G,, scaling X,,_;1 acts trivially on Ext\°,erszrl (1,X). So the
statement follows, as y,, has degree 2" — 1 with respect to this action. O
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Let S C {1,...,n —1} and X3 := @, 4X; be the simple object of Veryn attached
to S in [2].

Proposition 7.10.

(i) Ifie S and Y € Ver;+1 then multiplication by y; acts by zero on the space

Ext:/er;wr1 (Y, Xs). Hence Ext\?er;+1 (Y, Xs) is a torsion module over the ring

k[yi,...,yn] unless S =& (i.e., Xg=1).
(ii) The annihilator of Exty,_+ (Xs,Xs) in kly1,...,yn] is generated by y; with
on+1
ieS.

Proof. (i) The proof is by induction in n. The base is clear, so we just have to justify
the induction step. We have

Ext? (Y, Xg) = Ext\‘/er;n (1, (Xs ®S*X,,—1 @ Y*) [yn]).

Ver 11
an
If n —1¢ S then Xg € Vers, so this can be written as
Ext I(K Xg) = EXt\./er;"((Y@S.Xn_l[yn]*)Jr,Xs)

\./er+

an+
and the statement follows from the inductive assumption. On the other hand, if
n —1 € S then setting S" = 5\ {n — 1}, we have Xg = Xg ® X,,_1. So we get

EXt\./er+ » (}/, XS) = EXt\./er; (]1, Xg ® X1 ® (S.Xn—l ® Y*)f[yn]),

an "
where the superscript minus sign means that we are taking the part lying in Ver,... But
(S*X,, 1®Y*)" = X,,_, @ W* for some W* € Ver].., and X,, 1 ® X,,_1 = AX,,_»
(and some differential on the tensor product whose exact form is not important for
this argument). Thus we get

Ext? Y, Xg) = Ext\./er;rn (1,Xe @ X5y 1 @ Xpn1 @ WO yn))

Ver;”Jrl
= Exthx, , (1, Xo @ AXp o @ W[yn])
=~ EXt\./erTL,l (W.[yn]*’ XS/).

So by Proposition 7.9 the element y,,_1 acts on this space by zero, and the statement
again follows from the inductive assumption.

(ii) By (i) the annihilator is at least as big as claimed, and we only need to show
that it is not bigger. This is shown again by induction in n. The base is again easy
so we only need to do the induction step. If n — 1 ¢ S then by Proposition 7.8 we

have an inclusion Ext:/er;n (Xs,X9)[yn] — E><t\°/er+n+1 (Xs,Xg), so the result follows

from the inductive assumption for n — 1. On the other hand, if n — 1 € S then Xg =
Xs ® X,,_1 so

Exty,:  (Xs Xs) 2 Extix, (X5 X5 ®AX,-2)
~ Exthy. ,(Xs, X ® AX, 5 ® SVX, )
= Extyer,, , (X5, X @ S™"Xp1),
which contains Extye,  , (Xs/, Xs/) = Ext\'/er;k1 (Xs/, Xg) as a direct summand as

Seven X, 1 contains 1 as a direct summand. Thus the result again follows from the
inductive assumption (this time for n — 2). O
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Corollary 7.11. The rank r,, of the module Ext\°,e,2n+1 (1,1) over K[y, ..,yn] sat-
isfies the equality ry, = rp—1[SXp—1 : 1].

Proof. In view of the isomorphism (7.1) applied to X = 1, this follows from Propo-
sition 7.10 (i). O

ﬂ(n 1)

Corollary 7.12. We have r,, =27 =
Proof. This follows from Corollary 7.11 and Proposition 6.10, using that 4 =1. O

Recall that the algebra Ext\',ergn — (1,1) has a Z-grading coming from the grading
on AX, 1, where y, has degree 2" — 1. Define the field F, := k(y1,...,yn—1), and
let r,,(v) be the Poincaré polynomial of EXt\./eer (1,1) ®xys....,yn_1] Fn as a module
over the algebra F},[y,]. Then the above arguments yield

Corollary 7.13. Exty,,
n>=2

(1, 1) @y, ....yn_1] Fn 15 a free Fy[y,]-module, and for

on+1

on— 1_1

271,
(n-1)(n-2) 1 — v (n D(n=2)
ro(v) =22 T2 = E v

(n=1) , .
= is now obtained by

This agrees with Conjecture 1.3. Also the formula r, =
evaluating 7, (v) at v = 1.

Remark 7.14. As stated in Conjecture 1.3, we expect that moreover Ext\°,er2n+1 (1,1)
is a free K[y, . .., yn)-module (even without localization in y1,...,¥n—1)

More generally, for every object X € Ver;'Hl we obtain upper bounds for the

Poincaré polynomials of generators of Exty,, i (1, X)),

,J
rn(X, z,v) Z 207 dim (EXtVer n+1 (1,X) /Zk 1 (yk)) )

,j=0

where 7 is the cohomological degree and j is the v-degree.

Proposition 7.15. For n > 2 we have r,(X, z,v) < rX(X, z,v), in the sense that
each coefficient on the left is less than or equal to the corresponding coefficient on the
right, where

1

N . . 1+ (zv 2 1+ 27
ro(X, z,0) == 27171T1" <FPd1m(X) 0= qe)(1 = q—z0) L. T

::] \

In particular, all generators have degree < 2"+ — 2(n + 1).

Proof. The bound for r,(X, z,v) follows from the form of E(X) given in (7.2) and
formula (6.6) by a direct computation. This implies the bound on the degree of
generators, since the degree of r with respect to z is 2"+! — 2(n + 1). O

In particular, for X = 1 we get
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Corollary 7.16. Exty,, ., (
with Poincaré polynomial of generators r,(z,v) < ri(z,v), where

1,1) is a finitely generated module over Kly1,...,yn]

1 1+ (zv) 14 2%
; = T .
() gn—1-" (1—qzv)(1 —q'zv) H (1—q¥ "2)(1—q 2 "2)

In particular, all the generators have degree at most 2" —2(n + 1), and there is
ezactly one generator of that degree. Moreover, the Poincaré polynomial of generators
is palindromic, i.e., satisfies the equation P(z) = 22" ~"~1P(z71).

Proof. 1t only remains to show that the Poincaré polynomial of the generators is
palindromic, which follows from the fact that the complex E(1) is self-dual. O

Remark 7.17. Note that according to Conjecture 1.3, the degree bound of Corol-
lary 7.16 is expected to be sharp: the largest degree of a generator is expected
to equal 21 — 2(n + 1), with exactly one generator in that degree. On the other
hand, the bound 7, <7} is rather poor: we have log,(r’(1,1)) ~n? as n — oo,
while log,(r,(1,1)) = % This is not surprising, as this bound does not take
into account the fact that the complex E(1) has a nontrivial differential for n > 3
and shrinks drastically when we compute its cohomology.

Ezample 7.18. 1. Let n = 2. Then we have E(1) = (SX1)"[y1, y2]. But S°X; = S%2X;
=1, S'X; = X1, and all the other symmetric powers are zero. Thus, (SX;)" =
k ® kw, where w has cohomological degree 2. Also in this case it is easy to see that
the differential in E(1) is zero (so the bound 73(z,v) = 1 + (2v)? is sharp). Thus
Ext\',er23 (1,1) is a free k[y1,y2] module of rank 2 with generators of degree 0 and 2,
which agrees with the result of [2].

2. Let n = 3. Let S° := S?X,. Then one can show by a direct computation that

SO=1, St =Xy, S?=[1,X1], =X, ® Xy, S*=[X1,1], S° =Xy, S®=1,

and all the other symmetric powers are zero (where Y = [Y7,...,Y,,] means that ¥
is a uniserial object with composition series Y7,...,Y,,, with head Y7 and socle Y,,,).
Thus Extye, , (1,1) is isomorphic to

ExtVer,; (1, 1)[0] & Extye, , (1, [1, X])[2] © Extye, , (1, [X, 1])[4] & Exty, , (1,1)[6],

where X = X; and the numbers in square brackets are degree shifts. Now, consider
the portion of the long exact sequence

Hom(1, X) — Ext*(1,1) — Ext'(1, [X,1]) — Ext’(1, X) — Ext*(1,1),  (7.3)

where Ext groups are taken in Verss. It was shown in [2] that the Poincaré series
of Ext®(1,X) is +=5. Also we have dim Ext'(1, [X,1]) > 2 since we have two dif-
ferent nontrivial extensions of 1 by [X, 1], namely [1® X, 1] and [1, X, 1] (both
indecomposable quotients of the projective cover of 1 in Verys). Thus the dimension
of Ext*(1,[X,1]) is two, and the sequence (7.3) looks like 0 — k — k% — k — k.
This implies that the last map in this sequence (the connecting homomorphism
Ext!(1, X) — Ext?(1,1)) is zero. Since the map Ext®(1,X) — Ext*™(1,1) is lin-
ear over Kk[ys], we see that this map is zero in all degrees (as Ext®(1,X) is a free
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k[ys]-module on one generator in degree 1). Thus, Ext®*(1,[X,1]) 2 Ext*(1,X) &
Ext®(1,1), so the Poincaré series of Ext®(1, [X, 1]) is %
Now, the object [X, 1,1, X] is the projective cover of X. This implies that

Ext® (1, [1, X]) = Ext* " (1, [X, 1]).

Thus the Poincaré series of Ext®(1,[1, X]) is #ﬁﬁ) Altogether we obtain that

the Poincaré series of Exty,, , (1, 1) is given by the formula
(14 (v2)°) (1 +2%) + (v2)°(2 + 2%) + (v2)*(1 + 2)
h(Z, ’U) =
(1=2)(1 = 2°)(1 = (v2)7)

1+ 2240?28 4 (02 +ut) 2t + ute® + 0020 + 0028

- (1—=2)(1=2%)(1 = (v2)7)
One can check directly that Exty, , (1,1) is a free module over k[y1,y2, ys]. Thus the
Poincaré polynomial of its generators is

r3(z,v) = 14 22 + 0223 + (V2 + 02 + 0125 + 0528 0028,
On the other hand, it is easy to compute that
r5(z,0) = 14+ (1 + 0222 + 20223 + (02 + 02t 4+ 20725 + (v +0°%)20 0528
=r3(2,v) + 02 (2% + 23) + v (25 + 2O).
This means that the differential in the complex E(1)/(y1,y2,y3) acts as a rank 1
operator between degrees 2 — 3 and 5 — 6 and otherwise acts by zero. In other
words, when computing the cohomology of this complex, we kill two elements of
cohomological degrees 2,3 in v-degree 2 and two elements of cohomological degrees
5,6 in v-degree 4.
It is instructive to write down the complex E(1) explicitly. We have

E(1) = M [y1,y2,y3], M :=SX; ® (SX5)".
The components of M are as follows (with X := X3):
M°=1, M'=X, M?’=10[1,X], M*=Xo[1,X]=[X,1,1],
M*=[1,X]®[X,1], M°’°=X®[X,1]=[1,1,X],
Ml =19(X,1], M"=X, M®=1.
Thus, E(1) has the following components (as Al-modules):
E'=1, E'=0, E’=191, E*=[1,1, E‘=1¢1,
ES=[1,1], E°=191, E" =0, E%=1.

The differential maps E? =1 & 1 — E3 = [1,1], E®> = [1,1] — E® = 1 ® 1, both by
rank 1 operators, and is zero in other degrees.

7.2. Ext computations for p > 2

In this section we would like to generalise some of the results of the previous section
to the case p > 2. The constructions and formulas are very similar to the case p =2
but not exactly the same due to presence of the invertible object ¢ and some other
differences, so we chose to repeat them.
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As in the case p = 2, we can use the resolution (), to give the following recur-
sive procedure for the computation of the additive structure of the cohomology
Ext\',eranrl (1, X) (for indecomposable X).

For k > 1 we will denote the generating object of Ver,. by X;_1 and recall [3,
Subsection 4.14] that the principal block Ver2k+1 of Verpr41 is naturally equivalent to
the category of AXj_j-modules in Ver,s. Let us denote this equivalence by Fj i.e.,
for an object X € Vergk.“ we denote the corresponding A Xj_;-module by FX.

In the Yoneda realization of Ext, the Koszul complex K® = S*X;_1 ® AX,_1 rep-

resents a class 75 € Extik)gcl_l(]l?w), and the class yy := 72 of degree 2(p* —1) is
represented by the concatenation of S®X; 1 ® AX; 1 with S°X;_ 1 @ AX;_ 1 ® Y,
which we will denote by S*Xj_1 ® AX;_1 ® S®Yr_1, where ¢p_; is ¢ sitting in
degree p¥ — 1. Thus Qe = S* Xp_1[yr] @ AXp_1 @ S*Yp_1.
If X €Veryn but X ¢ Vergn then we have Exty,, , (1,X) = 0. So, it suffices to
compute Exty,o - (1,X) for X € Vergnﬂ. In that case, we have
Extyeo  (1,X) = Extiy, (1, FX)=Extiy, (1,Q. @ FX)
= Extiy, (1,9 X0 1[yn] @ AX 1 ®@ S*¢Yp1 @ FX)
= Exter,, (1, 5° Xn—1[yn] ® S*n_1 @ FX)

= EXt\./eron (]l’ (S.X’ﬂfl[y’ﬂ] & S.w’ﬂfl 0 FX)0)7

where the superscript zero means that we are taking the part lying in Vergn, and in
the last two expressions F'X is regarded as an object of Ver,» using the corresponding
forgetful functor AX,,_i1-mod — Ver,» forgetting the structure of a AX,,_;-module.
The same calculation applies if X is a complex, i.e., an object of the derived
category DT (Verg,L+1) of Vergnﬂ. Namely, for an object X € D+ (Ver?,n+1)7 let

En(X) = MAxn_l (]la S.Xn—l[yn] ® AXn—l ® S.wn—l ® FX)O
= (S8 X, 1[yn] ® S*n_1 @ FX)°.
This gives an additive functor E,: D¥(Ver).y1) — DF(Ver),).

The following lemma is a straightforward analog of Lemma 7.1.

Lemma 7.19. If X € Verpn (with trivial action of AX,_1) then the differential in
the complezx E, (X) is zero.

Corollary 7.20. Suppose X € Verpn. Then we have an isomorphism

EXt\./eron+1 (]17 X) = @ EXt\./erpn (117 Sanfl[yn] ® S.'l/}nfl ® FX)

i>0
= P Extyeo, (1, (' Xn1[yn] ® S*thn1 @ FX)°).
i>0 :
This isomorphism maps the grading induced by the grading on AX,_, to the grading

defined by deg(X,—1) =1, deg(yn) = 2p™ — 2, deg(,—1) =p™ — 1 (i.e., it coincides
with the cohomological grading).
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As for p =2, Corollary 7.20 does not quite give a recursion to compute the Ext
groups, since the object (S°X,,_1 ® S*,_1 ® FX)° may not belong to Ver,.-1 (i.e.,
may carry a nontrivial action of AX,,_5). However, it has some useful consequences
given below.

Proposition 7.21. For n > 1 we have
EXt.DJr(Velr0 )(117X) = EXt.DJr(Ver0 )(117E7L(X))
pntl pn

This implies the following corollary. Let E = Fyo0---0 Ey,: Vergn+1 — Verg = Vec.
Corollary 7.22. We have a linear isomorphism
(1, X) = H*(E(X)).

Ext?
D+ (Vergn_*_1

The complex of vector spaces E(X) has the following structure:
E(X) = (5"Xo® S*y @ F(S* X1 ® S*1 @ - -
e ® F(S.Xn71 X S.’(/Jn,1 024 FX)O . )O)O[’yl,yg, . 7yn];

and it is easy to see as in the case p = 2 that the differential is linear over k[y1, . .., yn].
Thus we get

Proposition 7.23. For any X € Ver,n1, Exty,, _— (1,X) is a graded finitely gen-
P
erated module over K[y1, ..., yn].

In particular, we get that

Ext\',erpn+1 (1,1) = Ext\',eron+1 (1,1) = H*(E(1)),
where P

E(1) = (5°Xo ® S*$o®@F(S°X1 ® S*r & - -
0 F(S.anl b2y S.wn71>0 s >O)O[y17y27 s ayn]

Note that we have 1 € E(1) and d(1) = 0, so we obtain a natural linear map

¢ K[yr, ..., yn] — Ext\',erpn+1 (1,1).
Proposition 7.24. For 1 < i < n multiplication by y; on Exty,, . (1, X) coincides
p
with the cup product with ¢(y;). In particular, ¢ is an algebra homomorphism.

Proof. The proof is the same as that of Proposition 7.7, using that ¢(y,) can be
realised as Yoneda product with the complex K*® ® S®,_1, where K* is the Koszul
complex. The only difference is the presence of the additional factor S®v,, 1. O

Proposition 7.25. For X € Vergn the natural map

EXt\./erpn (]la X) [yn] — EXt\./erp 1, X)

n+1(

is an injective morphism of K[y1, . . ., yn]-modules which is also a morphism of algebras
for X =1.

Proof. This follows from the isomorphism

Ext\'/erpn+1 (1,X) = Ext\'/erpn (1,(S*X,,_1 ® S'wn_l)O ® X)[yn]

since 1 is a direct summand of (S*X,_1 ® S*¢,_1)°. O
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8. Some further computations

In order to search for similar patterns for Exty,, . (1,5) with S simple in the
principal block, it makes sense to compute a number of examples. For instance, the
simplest case n = 1 can be computed using the theory of Brauer tree algebras, and
the answer is as follows.

Let X, ..., Xn—1 label the simple modules for a chain-shaped Brauer tree algebra
of length N, in the order they occur in the Brauer tree (note that in the case of
Verlinde categories N = p — 1 and Xy = 1). Then we have

Proposition 8.1 ([9]). The Poincare series of Ext®(X;, X;) is given by the formula

o0 . Qijn(t) + N 1Qun(t71)
Ztk dlmEth(Xi,Xj) == 12N ’ ’

k=0

whelr'e Qle(t) = tll_]‘ + t‘i—j‘+2 + . _|_ tN_l_lN_l_i_jI’

Example 8.2. If i = 0, Proposition 8.1 gives
&0 t] t2N—l—j
>+ dim Ext*(Xo, X;) = e

1— 2N
k=0

We also computed Exty,, . (1,5) for S simple in the cases p =2 and p = 3. For
p = 2, by the results of [2], we have the following (note that Lo = 1):

1+ ¢ SN ; t
1 —t)(1—3) ;t dim Extye,,, (1, L2) = 13-

>t dimExty,, , (1,1) =
=0

For p = 3, the Poincaré series computed using MAGMA agree at least up to degree
100 with the following (again Lo = 1):

1+t3+t6+2t7+t8+t10+2t11+t12+t15+t18
(1= ) (1 — 119 ’

>t dim Extye, , (1,1) =

=0

> 4 5 6 8 9 10 12 13 14 17
;ti dim Bt (1,1y) = LHEEE +t(1+_2z4)—(&—1t_ ;61; T
iti dim Extye, , (1, Lg) = %
i ¥ dim st (1, L) = 124265 + 1 + 17 (+1 tj‘ ;)t(lf+fllal)+ £ 209 4 10
=0
. . 2 4 5 6 2 9 12 13 14 16 17
;tzdimExt%ALhQ ottt +t(1+_ ;)—(&—115_ ;er; M 0T
i t" dim Extye, , (1, L1s) = %

=0
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