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Abstract
We discuss inequalities between the values of homotopical

and cohomological Poincaré polynomials of the self-products of
rationally elliptic spaces. For rationally elliptic quasi-projective
varieties, we prove inequalities between the values of generating
functions for the ranks of the graded pieces of the weight and
Hodge filtrations of the canonical mixed Hodge structures on
homotopy and cohomology groups. Several examples of such
mixed Hodge polynomials and related inequalities for rationally
elliptic quasi-projective algebraic varieties are presented. One of
the consequences is that the homotopical (resp. cohomological)
mixed Hodge polynomial of a rationally elliptic toric manifold
is a sum (resp. a product) of polynomials of projective spaces.
We introduce an invariant called stabilization threshold pp(X; ε)
for a simply connected rationally elliptic space X and a positive
real number ε, and we show that the Hilali conjecture implies
that pp(X; 1) ⩽ 3.

1. Introduction

A rationally elliptic space is a simply connected topological space X such that

dim (π∗(X)⊗Q) < ∞ and dimH∗(X;Q) < ∞,

where π∗(X)⊗Q :=
∑

i⩾1 πi(X)⊗Q and H∗(X;Q) :=
∑

j⩾0 H
j(X;Q). This inter-

esting class of spaces has received considerable attention, but a complete picture of
structure, geometry or invariants of spaces in this class appears to be far from clear.
Very strong restrictions on the ranks of homotopy group were found a long time ago
by J. B. Friedlander and S. Halperin (see [16] and also [14] or [15]). To recall them,
let xi (resp. yj) denote a basis of πodd(X)⊗Q (resp. πeven(X)⊗Q) and let n be the
formal dimension of the space X, i.e., the maximal degree n such that Hn(X;Q) ̸= 0.
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We set

πeven(X)⊗Q :=
∑
k⩾1

π2k(X)⊗Q, πodd(X)⊗Q :=
∑
k⩾0

π2k+1(X)⊗Q,

and

Heven(X;Q) :=
∑
k⩾0

H2k(X;Q), Hodd(X;Q) :=
∑
k⩾0

H2k+1(X;Q).

Then we have the following:

(a)
∑

i deg xi ⩽ 2n− 1,
∑

j deg yj ⩽ n.

(b) n =
∑

i deg xi −
∑

j(deg yj − 1).

(c) χπ(X) := dim (πeven(X)⊗Q)− dim (πodd(X)⊗Q) ⩽ 0.

(d) 0 ⩽ χ(X) = dimHeven(X;Q)− dimHodd(X;Q).

(e) χ(X) > 0 ⇐⇒ χπ(X) = 0.

(f) Betti numbers bi = dimHi(X;Q) ofX satisfy Poincaré duality [14, §38 Poincaré
Duality]. In particular bn = 1 and bn−1 = b1 = 0.

(g) Betti numbers satisfy inequalities:1 bm ⩽ 1
2

(
n
m

)
,m ̸= 0, n (cf. [27, Corollary to

Theorem 1]).

Moreover, the Hilali conjecture [20] (also see [21, 22]), which is still open, suggests
that:

dim (π∗(X)⊗Q) ⩽ dimH∗(X;Q). (1.1)

The present paper, instead of (1.1), shows different types of inequalities between the
ranks of homotopy and cohomology groups of rationally elliptic spaces (cf. [30]). They
are stated in terms of the cohomological Poincaré polynomial and the homotopical
Poincaré polynomial. For a simply connected rationally elliptic space X we put

PX(t) :=
∑
k⩾0

dimHk(X;Q)tk and Pπ
X(t) :=

∑
k⩾2

dim(πk(X)⊗Q)tk.

In [30] the second named author showed that there exists a positive integer n0 such
that for all n > n0 one has Pπ

Xn(1) < PXn(1). Here Xn = X × · · · ×X︸ ︷︷ ︸
n

is the Carte-

sian product of n copies of X. Below we show the following (announced in [31]):

Theorem 1.2. Let X be a simply connected rationally elliptic space. For any positive
real number ε there exists a positive integer n(ε) such that for all n ⩾ n(ε) and all
t ⩾ ε

Pπ
Xn(t) < PXn(t). (1.3)

Remark 1.4. Note that, since X is simply connected, PX(t) = 1 implies that X is
rationally homotopy equivalent to a point (cf. [14, Theorem 8.6]), and hence Pπ

X = 0.
In particular, the inequality (1.3) is satisfied with n(ε) = 1,∀ε > 0. Therefore, in
Theorem 1.2 we assume that PX(t) > 1. We also note that the formal dimension of
a simply connected space is bigger than or equal to 2.

1This inequality implies that dimH∗(X;Q) ⩽ 2n−1 + 1, which is sharper than dimH∗(X;Q) ⩽
2n ([15, Theorem 2.75]).
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Theorem 1.2 suggests the following invariant of a rationally elliptic homotopy type:

Definition 1.5. The stabilization threshold is the smallest integer n(ε) such that
inequality (1.3) takes place for all n ⩾ n(ε).

We denote the stabilization threshold by pp(X; ε), where pp stands for “Poincaré
polynomial”. For example, for ε = 1 we have

1. pp(S2n+1; 1) = 1,

2. pp(S2n; 1) = 3,

3. pp(CP 1, 1) = 3 and pp(CPn, 1) = 2 if n ⩾ 2.

In terms of this invariant, the inequality of Theorem 1.2 implies the following:

Corollary 1.6. For any ε > 0 and r ⩾ pp(X; ε) we have

r

(
n∑

i=2

dim (πi(X)⊗Q) εi

)
<

(
1 +

l∑
i=2

dimHi(X,Q)εi

)r

,

where n (resp. l) is the degree of homotopical (resp. cohomological) Poincare polyno-
mial.

Note that inequality (1.1) is a special case of Corollary 1.6 for the spaces with
stabilization threshold pp(X; 1) = 1, but not for the spaces with pp(X; 1) ⩾ 2. The
argument used in the proof of Theorem 1.2 is an elementary calculus observation and
based only on the difference in behavior of homotopy groups and cohomology groups
in products.

Several results on stabilization threshold and specific values in some examples are
presented in Sections 2, 3 and 4 respectively, but let us point out that we have the
following result about the upper bound of the stabilization threshold pp(X; 1):

Theorem 1.7. Let X be a simply connected rationally elliptic space of formal dimen-
sion n ⩾ 3. Then

pp(X; 1) ⩽ n.

We also show that the Hilali conjecture implies sharp bound, independent of dimen-
sion:

Theorem 1.8. If a simply connected rationally elliptic space X satisfies the Hilali
conjecture, then we have

pp(X; 1) ⩽ 3.

In particular, the question if 3 is an unconditional bound of the threshold pp(X; 1)
is a weakening of the Hilali conjecture. Note (see Corollary 3.6) that the threshold
pp(X; 1) does not exceed 3 if the formal dimension does not exceed 20 since the Hilali
conjecture is verified up in this range (see [7]). The Hilali conjecture is also valid for
formal spaces (see [21]), hence the stabilization threshold pp(X; 1) does not exceed 3
also for, e.g., the following spaces, which are formal:

• compact Kähler manifolds [12],

• projective varieties with isolated normal singularities with high connectivity of
links [8], and
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• smooth quasi-projective manifolds with pure Hodge structure (by Dupont’s
“purity implies formality” theorem [13]).

Now, let X be a quasi-projective algebraic variety. Both the homotopy and the
cohomology groups carry mixed Hodge structures ([10], [11], [25], [17], [18], [26]),
which are functorial for regular maps. An invariant of these mixed Hodge structures
is given by the generating functions for the dimensions of graded pieces of Hodge and
weight filtrations as follows:

MHX(t, u, v) :=
∑
k,p,q

dim
(
GrpF•GrW•

p+qH
k(X;C)

)
tkupvq, (1.9)

where (W•, F
•) is the mixed Hodge structure of the cohomology groups.

MHπ
X(t, u, v) :=

∑
k,p,q

dim
(
Grp

F̃•GrW̃•
p+q((πk(X)⊗ C)∨)

)
tkupvq,

where (W̃•, F̃
•) is the mixed Hodge structure of the dual of homotopy groups. They

will be called respectively the cohomological mixed Hodge polynomial and the homo-
topical mixed Hodge polynomial of X. A refinement of Theorem 1.2 (announced in
[31]) for algebraic varieties is as follows:

Theorem 1.10. Let ε and r be positive real numbers such that ε < r and define
Cε,r := [ε, r]× [ε, r]× [ε, r] ⊂ (R⩾0)

3 to be the cube of size r − ε. Let X be a rationally
elliptic quasi-projective variety. Then there exists a positive integer nε,r such that for
all n ⩾ nε,r the following strict inequality holds:

MHπ
Xn(t, u, v) < MHXn(t, u, v)

for ∀(t, u, v) ∈ Cε,r.

Similarly to pp(X; 1), we can consider the smallest integer n0 such that for ∀n ⩾ n0

the following holds

MHπ
Xn(t, u, v) < MHXn(t, u, v) ∀t ⩾ a,∀u ⩾ b,∀v ⩾ c.

We denote it by mhp(X; a, b, c), where mhp stands for “mixed Hodge polynomial”.
Actual calculations of homotopy and cohomology groups of rationally elliptic quasi-

projective varieties are rather sparse with the main focus being on low dimensional
cases (e.g., see [1], [3] and [19] where such rationally elliptic spaces are identified) and
even less is known about their mixed Hodge theory refinements. Therefore, besides
inequalities, we include several examples, in particular toric varieties and arrange-
ments of linear subspaces and calculate the stabilization thresholds for them.

It would be interesting to find non-trivial2 examples of singular algebraic vari-
eties which are rationally elliptic and study for their mixed homotopy and homology
polynomials and their stabilization thresholds.

In §2 we prove Theorems 1.2 and 1.10 and several results on stabilization thresh-
olds. Theorems 1.7 and 1.8 are proven in §3. In the final §4 we give explicit calculations
of the homotopical and cohomological mixed Hodge polynomials of several compact

2A trivial example is X × C where X is any rationally elliptic smooth or singular variety and C is
a rational cuspidal curve (which is homeomorphic to S2).
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and open manifolds, including some toric varieties and complement to arrangements
of linear subspaces in affine space. In this section we also introduce and discuss homo-
topical E-function which is an analog of classical cohomological E-function.
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2. Proofs of the main results

The isomorphism πi(X × Y ) = πi(X)⊕ πi(Y ) along with the Künneth isomor-
phism Hn(X × Y,Q) =

∑
i+j=n H

i(X;Q)⊗Hj(Y ;Q) imply that the homotopical
Poincaré polynomial Pπ

X(t) and the cohomological Poincaré polynomial PX(t) are
respectively additive and multiplicative, i.e.,

Pπ
X×Y (t) = Pπ

X(t) + Pπ
Y (t) and PX×Y (t) = PX(t)× PY (t),

which imply that Theorem 1.2 is an immediate consequence of the following:

Lemma 2.1. Let ε be a positive real number. Let P (x) and Q(x) be two polynomials
of the following types:

P (x) =

p∑
k=2

akx
k, ak ⩾ 0, Q(x) = 1 +

q∑
k=2

bkx
k, bk ⩾ 0, bq ̸= 0.

Then there exists a positive integer n0 such that for ∀n ⩾ n0

nP (x) < Q(x)n (∀x ⩾ ε). (2.2)

Remark 2.3. For our purpose it is sufficient to consider bq = 1, but we do not assume
it.

Proof of Lemma 2.1. To begin, select a positive integer N0 such that deg
(
Q(x)N0

)
>

deg (N0P (x)) and take s0 > 1, s0 ∈ R such that Q(x)N0 > N0P (x) for any x > s0.
Then R(s, r) defined by R(s, r) := Q(s)r − rP (s) we have the following for all r ⩾ N0

and all s > s0:

∂R(s, r)

∂r
= logQ(s) ·Q(s)r − P (s) > logQ(s) ·N0P (s)− P (s),

which is positive for all s > max(s0, e) since logQ(s) > 1, because Q(s) ⩾ Q(e) =
1 +

∑q
k=2 bke

k > e since bq ̸= 0. Thus for all s > max(s0, e) the function R(s, r) is
increasing with respect to r and R(s,N0) = Q(s)N0 −N0P (s) > 0, thus, in particular
R(x, n) = Q(x)n − nP (x) > 0 for all x > max(s0, e) and for all n ⩾ N0. Therefore we
have that

nP (x) < Q(x)n for all x > max(s0, e) and for all n ⩾ N0.

Now, we have the following

lim
n→∞

nP (ξ)

Q(ξ)n
= P (ξ) lim

n→∞

n

Q(ξ)n
= 0

for any fixed ξ ∈ [ε, s0], since Q(ξ) > 1 for ξ > 0. Therefore, we see that there exists
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an integer n(ξ) such that for all n > n(ξ) one has nP (ξ) < Q(ξ)n. Having such an
integer n(ξ) for each ξ, we can find δξ such that for |x− ξ| < δξ and n > n(ξ) one
has nP (ξ) < Q(ξ)n. Selecting a finite set of ξi such that the intervals of length δξi
centered at ξi cover [ε, s0], we see that for N ⩾ max{n(ξi), N0} one has (2.2) for all
x ⩾ ε.

Remark 2.4. Let n(ε, P,Q) be the smallest integer n0 satisfying conditions of Lem-
ma 2.1. We can find an upper bound u of the threshold n(ε, P,Q), i.e., n(ε, P,Q) ⩽ u,
as follows.

(A) First we consider the case when 0 < ε ⩽ 1: Let m be the number of the
monomials alix

li(1 ⩽ i ⩽ m) in P (x) and bqx
q be the top degree term of Q(x).

Let ui be an upper bound of the stabilization threshold n(ε,malix
li , 1 + bqx

q), i.e.,
n(ε,malix

li , 1 + bqx
q) ⩽ ui, and let u := max{u1, · · · , um}. Then for ∀n ⩾ u we have

for all i:

n(malix
li) < (1 + bqx

q)n ∀x ⩾ ε

and hence

nP (x) =
n

m

m∑
i=1

malix
li <

1

m

m∑
1

(1 + bqx
q)n <

(
1 + bkx

k + · · · bqxq
)n

= Q(x)n.

Therefore we get that n(ε, P,Q) ⩽ u.
Now, each upper bound ui of the threshold n(ε,malix

li , 1 + bqx
q) is obtained as

follows, by considering the inequality n(maix
li) < (1 + bqx

q)n for each of the two
cases (a) x > 1 and (b) ε ⩽ x ⩽ 1:
(a) x > 1:

1. Find an integer s such that sq > ℓi and s ⩾ 2 (condition used in the next step),

2. Find an integer n̂0 (depending on ali , bq, li, s) such that
mali
bsq

⩽
1

n̂0

(
n̂0

s

)
for

n̂0 ⩾ s, which implies that
mali
bsq

⩽
1

n

(
n

s

)
for ∀n ⩾ n̂0 ⩾ s. (If s = 1, then

1
n

(
n
s

)
= 1 for ∀n, in which case there might not exist such an integer n̂0, depend-

ing on the integers m, ali , bq.)

Then, for ∀n ⩾ n̂0:

n(malix
li) ⩽

(
n

s

)
bsqx

ℓi <

(
n

s

)
bsqx

qs =

(
n

s

)
(bqx

q)s < (1 + bqx
q)n for x > 1.

(b) ε ⩽ x ⩽ 1:
First we observe that xli ⩽ 1 for ε ⩽ x ⩽ 1, hence it suffices to consider the inequal-

ity n(mali) < (1 + bqx
q)n, which implies that n(malix

li) < (1 + bqx
q)n.

3. Find a positive integer ñ0 which is larger than the largest of the roots of the
following equation:

(mali)y = (1 + bqε
q)y.

In order to show the inequality n(mali) < (1 + bqx
q)n for ∀n ⩾ ñ0 and for x ∈ [ε, 1],

for a fixed u we consider the line z = e log(u)y, which as direct calculation readily
shows, is tangent to the curve z = uy at the point y∗(u) =

1
log(u) . Any other line
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through the origin of (z, y)-plain either does not intersect z = uy or intersects it at
two points. Taking u = 1 + bqx

q, we conclude that if mali < e log(1 + bqx
q), then

(mali)y < (1 + bqx
q)y for ∀y, in particular, n(mali) < (1 + bqx

q)n for ∀n. Otherwise,
n(mali) < (1 + bqx

q)n is satisfied for ∀n ⩾ y0(x) where y0(x) is the largest coordinate
of intersection of the line z = (mali)y and exponential curve z = (1 + bqx

q)y. To
get an upper bound on y0(x), x ∈ [ε, 1], note that the largest y-coordinate of the
intersection of the line z = (mali)y with the exponential curve z = uy, is increasing
when u is getting smaller and its minimal value is (1 + bqε

q),i.e. for x = ε. Hence the
upper bound of y0(x) is the largest of the roots of the equation (mali)y = (1 + bqε

q)y.
Therefore, we have that n(mali) < (1 + bqx

q)n for ∀n ⩾ n̂0., i.e.,

n(malix
li) < (1 + bqx

q)n for ∀x ∈ [ε, 1].

Finally, we let ui = max{n̂0, ñ0}, then for ∀n ⩾ ui we have

n(malix
li) < (1 + bqx

q)n for ∀x ⩾ ε.

(B) In the case when ε > 1: We do the same thing as in (a), just by replacing x > 1
by x ⩾ ε. Then we let ui := n̂0.

Remark 2.5. We have the following inequality for the stabilization thresholds:

pp(X × Y ; ε) ⩽ max{pp(X; ε), pp(Y ; ε)} (2.6)

for a positive real number ε such that PX(ε) ⩾ 2 and PY (ε) ⩾ 2. Indeed, we let
pp(X; ε) := nX and pp(Y ; ε) := nY , then we have

nPπ
X(t) < PX(t)n ∀n ⩾ nX ,∀t ⩾ ε,

and

nPπ
Y (t) < PY (t)

n, ∀n ⩾ nY ,∀t ⩾ ε.

Then for ∀n ⩾ max{nX , nY } and ∀t ⩾ ε we have

n(Pπ
X(t) + Pπ

Y (t)) < PX(t)n + PY (t)
n. (2.7)

Since PX(t) and PY (t) are increasing functions and PX(ε) ⩾ 2 and PY (ε) ⩾ 2,
PX(t) ⩾ 2 and PY (t) ⩾ 2 for ∀t ⩾ ε. Hence we have

PX(t)n + PY (t)
n ⩽ PX(t)n · PY (t)

n = (PX(t) · PY (t))
n
. (2.8)

PX(t)n + PY (t)
n ⩽ PX(t)n · PY (t)

n follows from that

PX(t)n · PY (t)
n − PX(t)n − PY (t)

n = (PX(t)n − 1) (PY (t)
n − 1)− 1 ⩾ 0

because PX(t)n − 1 ⩾ 1 and PY (t)
n − 1 ⩾ 1 for ∀t ⩾ ε. Therefore it follows from (2.7)

and (2.8) that nPπ
X×Y (t) < PX×Y (t)

n for ∀n ⩾ max{nX , nY } and ∀t ⩾ ε. Therefore
we get pp(X × Y ; ε) ⩽ max{pp(X; ε), pp(Y ; ε)}. However, note that in general one
has inequality, pp(X × Y ; ε) ̸= max{pp(X; ε), pp(Y ; ε)}. For example, we can see that
pp(S2n; 1) = 3, but pp(S2n × S2n; 1) = 2.

Now we will turn to comparison of the homotopical and cohomological mixed
Hodge polynomials.
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In fact the cohomological mixed Hodge polynomial is also multiplicative just like
the (cohomological) Poincaré polynomial PX(t)

MHX×Y (t, u, v) = MHX(t, u, v)×MHY (t, u, v),

which follows from the fact that the mixed Hodge structure is compatible with the
tensor product (e.g., see [28]). On the other hand the homotopical mixed Hodge
polynomial is additive just like the homotopical Poincaré polynomial Pπ

X(t)

MHπ
X×Y (t, u, v) = MHπ

X(t, u, v) +MHπ
Y (t, u, v)

since π∗(X × Y ) = π∗(X)⊕ π∗(Y ) and the category of mixed Hodge structures is
abelian and the direct sum of a mixed Hodge structure is also a mixed Hodge struc-
ture. In this paper the following special multiplicativity and additivity are sufficient:

MHXn(t, u, v) = {MHX(t, u, v)}n, (2.9)

and

MHπ
Xn(t, u, v) = nMHπ

X(t, u, v). (2.10)

In fact, in a similar way to that of Theorem 2.1, using multiplicativity and addi-
tivity relations (2.9) and (2.10), we can show the following proposition. Let R>0 be
the set of positive real numbers.

Proposition 2.11. Let (s, a, b) ∈ (R>0)
3. Let X be a rationally elliptic quasi-projec-

tive variety. Then there exists a positive integer n(s,a,b) such that for ∀n ⩾ n(s,a,b) the
following strict inequality holds

MHπ
Xn(t, u, v) < MHXn(t, u, v)

for |t− s| ≪ 1, |u− a| ≪ 1, |v − b| ≪ 1.

Proof. For the sake of completeness and/or the sake of the reader, we give a proof,
which is similar to the proof of Lemma 2.1. We set

MHπ
X(t, u, v) =

∑
k⩾2,p⩾0,q⩾0

ak,p,qt
kupvq,

and

MHX(t, u, v) = 1 +
∑

k⩾1,p⩾0,q⩾0

bk,p,qt
kupvq.

If all the coefficients bk,p,q = 0, then H∗(X;Q) = Q = H∗(pt;Q), which implies (as in
Remark 1.4) that X is rationally homotopy equivalent to the point, hence π∗(X) = 0.
The above strict inequality automatically holds. So we can assume that bk0,p0,q0 ̸= 0
for some (k0, p0, q0). Then for (s, a, b) ∈ (R>0)

3 we have

MHX(s, a, b) = 1 +
∑

k⩾1,p⩾0,q⩾0

bk,p,qs
kapbq ⩾ 1 + bk0,p0,q0s

k0ap0bq0 > 1.

Therefore whatever the value of MHπ
X(s, a, b) is, by the same argument as in the
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proof of Theorem 2.1,

lim
n→∞

n(MHπ
X(s, a, b))

(MHX(s, a, b))n
= MHπ

X(s, a, b) lim
n→∞

n

(MHX(s, a, b))n
= 0.

Hence there exists a positive integer N̂(s,a,b) such that for ∀n ⩾ N̂(s,a,b)

n(MHπ
X(s, a, b))

(MHX(s, a, b))n
< 1. (2.12)

Equivalently, we have for ∀n ⩾ N̂(s,a,b)

nMHπ
X(s, a, b) < MHX(s, a, b)n.

Now the proof is concluded as the proof of Lemma 2.1 using openness of condi-
tion (2.12).

The following theorem follows from the above proposition and the compactness of
the cube Cε,r.

Theorem 2.13. Let ε and r be positive real numbers such that ε < r and define
Cε,r := [ε, r]× [ε, r]× [ε, r] ⊂ (R⩾0)

3. Let X be a rationally elliptic quasi-projective
variety. Then there exists a positive integer nε,r such that for all n ⩾ nε,r the following
strict inequality holds:

MHπ
Xn(t, u, v) < MHXn(t, u, v)

for ∀(t, u, v) ∈ Cε,r.

Remark 2.14. In a similar manner to the proof of (2.6) in Remark 2.5, we can see
the following inequality as to the threshold mhp:

mhp(X × Y ; a, b, c) ⩽ max{mph(X; a, b, c),mhp(Y ; a, b, c)}

for positive real numbers a, b, c such that MHX(a, b, c) ⩾ 2 and MHY (a, b, c) ⩾ 2.

Remark 2.15. We defined in Introduction the stabilization threshold pp(X; ε) as
the smallest integer n0 such that for all n ⩾ n0 the following inequality (1.3) holds:
Pπ
Xn(t) < PXn(t)(∀t ⩾ ε). In particular, it takes place for the product space Xpp(X;ε).

On the other hand this inequality is equivalent to nPπ
X(t) < (PX(t))

n
(∀t ⩾ ε), study

of which is a key ingredient for our results. This inequality can be considered without
assuming that n is an integer, but for n being a positive real number. The same
applies to the stabilization threshold mph(X; a, b, c). Thus we can consider the real
stabilization thresholds ppR(X; ε) and mphR(X; a, b, c), which are more subtle invari-
ants than the integral ones and are more difficult to analyze. For details on properties
and calculation of these invariants of pairs of polynomials, rational elliptic homotopy
types and quasi-projective varieties, we refer to [23].

3. Bounds for stabilization thresholds

We will start with a conditional result, which yields unconditional bound in small
dimensions.
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Theorem 3.1. If a simply connected rationally elliptic space X satisfies the Hilali
conjecture, then we have pp(X; 1) ⩽ 3.

Proof. Let X be a simply connected rationally elliptic space of formal dimension n.
Let the homotopical and cohomological Poincaré polynomials of X be

Pπ
X(t) = a2t

2 + · · ·+ ait
i + · · ·+ aℓt

ℓ,

and

PX(t) = 1 + b2t
2 + · · ·+ bkt

k + · · ·+ tn.

(Note that a2 = b2 by the Hurewicz theorem and recall that bn = 1 and bn−1 = b1 =
0.)

First we observe that in order to prove that for a positive integer m ⩾ 2

pp(X; 1) ⩽ m,

it suffices to show that

mPπ
X(t) < PX(t)m (∀t ⩾ 1). (3.2)

Which implies that

(m+ 1)Pπ
X(t) < PX(t)m+1 (∀t ⩾ 1) (3.3)

and by induction we get mPπ
X(t) < PX(t)m (∀t ⩾ 1) for ∀m ⩾ m. Indeed, the inequal-

ity (3.2) implies

(m+ 1)Pπ
X(t) < (m+ 1)

(
1

m
PX(t)m

)
. (3.4)

Now

PX(t)m+1 − (m+ 1)

(
1

m
PX(t)m

)
= PX(t)m

(
PX(t)− m+ 1

m

)
= PX(t)m

(
1 + b2t

2 + · · · tn − 1− 1

m

)
⩾ PX(t)m

(
tn − 1

m

)
⩾ PX(t)m

(
1− 1

m

)
> 0 (since m ⩾ 2).

Hence we obtain (3.3) by the inequality (3.4).

Now, we show that

3Pπ
X(t) < PX(t)3 ∀t ⩾ 1.

First, we need to observe that it follows from [14, Theorem 32.15] that we have the
following bound for the degree ℓ of Pπ

X(t):

ℓ ⩽ 2n− 1. (3.5)
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(PX(t))3 − 3Pπ
X(t)

= (tn + bn−2t
n−2 + · · ·+ b2t

2 + 1)3 − 3(aℓt
ℓ + · · ·+ a2t

2)

⩾ (tn + bn−2t
n−2 + · · ·+ b2t

2 + 1)3 − 3tℓ(aℓ + · · ·+ a2)

(since tj ⩾ t2(j ⩾ 2) for ∀t ⩾ 1)

⩾ (tn + bn−2t
n−2 + · · ·+ b2t

2 + 1)3 − 3t2n−1(aℓ + · · ·+ a2) (by (3.5)).

The Hilali conjecture is dim (π∗(X)⊗Q) ⩽ dimH∗(X;Q), i.e. Pπ
X(1) ⩽ PX(1), or

aℓ + · · ·+ a2 ⩽ 1 + bn−2 + · · ·+ b2 + 1.

Before going furthermore, for the presentation below we point out the following about
1 + bn−2 + · · ·+ b2 + 1:

1. If n = 2, PX(t) = 1 + t2 (thus, Pπ
X(t) = t2 + · · · ). As a consequence, it follows

that 1 + bn−2 + · · ·+ b2 + 1 = 1 + 1, thus, the part bn−2 + · · ·+ b2 = 0.

2. If n = 3, then PX(t) = 1 + t3 (thus, Pπ
X(t) = t3 + · · · ), since it follows from the

Poincaré duality of Betti numbers (see (f) in Introduction) that b2 = b1 = 0.
Hence 1 + bn−2 + · · ·+ b2 + 1 = 1 + 1, thus, the part bn−2 + · · ·+ b2 = 0.

3. If n = 4, then PX(t) = 1 + b2t
2 + t4, since b3 = b1 = 0. Hence, it follows that

1 + bn−2 + · · ·+ b2 + 1 = 1 + b2 + 1, thus, the part bn−1 + · · ·+ b2 = b2.

With the part bn−2 + · · ·+ b2 in the cases when n = 2, 3, 4 being understood as above,
the above sequence of inequalities continues as follows:

⩾ (tn + bn−2t
n−2 + · · ·+ b2t

2 + 1)3 − 3t2n−1(1 + bn−2 + · · ·+ b2 + 1)

=
{
(tn + 1) + (bn−2t

n−2 + · · ·+ b2t
2)
}3 − 3t2n−1 {2 + (bn−2 + · · ·+ b2)}

⩾ (tn + 1)3 + 3(tn + 1)2(bn−2t
n−2 + · · ·+ b2t

2)− 6t2n−1 − 3t2n−1(bn−2 + · · ·+ b2)

⩾ (tn + 1)3 − 6t2n−1 + 3(tn + 1)2(bn−2 + · · ·+ b2)− 3t2n−1(bn−2 + · · ·+ b2)

⩾ (tn + 1)3 − 6t2n−1 + 3t2n(bn−2 + · · ·+ b2)− 3t2n−1(bn−2 + · · ·+ b2)

(using (tn + 1)2 ⩾ t2n)

= (tn + 1)3 − 6t2n−1 + 3(t2n − t2n−1)(bn−2 + · · ·+ b2)

⩾ (tn + 1)3 − 6t2n−1 (since t2n − t2n−1 = t2n−1(t− 1) ⩾ 0)

⩾ (tn + 1)3 − 6t2n (again, since t2n ⩾ t2n−1 for t ⩾ 1)

= (tn)3 − 3(tn)2 + 3tn + 1

= (tn − 1)3 + 2

> 0.

Therefore, 3Pπ
X(t) < PX(t)3 ∀t ⩾ 1.

Combining Theorem 3.1 with the result of [7] we obtain:

Corollary 3.6. For a rationally elliptic space X of homological dimension not exceed-
ing 20, the stabilization threshold pp(X; 1) is at most 3.

The next proposition gives unconditional bound on the stabilization threshold,
depending, however, on the homological dimension.
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Proposition 3.7. Let X be a simply connected rationally elliptic space of formal
dimension n ⩾ 3. Then we have

pp(X; 1) ⩽ n.

The argument below uses, in addition to (3.5), the following bound (cf. [14, The-
orem 32.15]):

Pπ
X(1) = a2 + a3 + · · ·+ aℓ ⩽ n. (3.8)

Proof. In order to prove the proposition, it suffices to show that

nPπ
X(t) < PX(t)n ∀t ⩾ 1.

(PX(t))n − nPπ
X(t)

⩾ (tn + 1)n − n(aℓt
ℓ + · · ·+ a2t

2)

⩾ (tn + 1)n − ntℓ(aℓ + · · ·+ a2)

⩾ (tn + 1)n − n2t2n−1 (by (3.5) and (3.8))

⩾ (tn + 1)n − n2t2n (since t2n ⩾ t2n−1 for t ⩾ 1)

=

n∑
k=0

(
n

k

)
tnk − n2t2n

>

n∑
k=2

(
n

k

)
tnk − n2t2n

⩾ t2n
n∑

k=2

(
n

k

)
− n2t2n (since tnk ⩾ t2n for k ⩾ 2 and t ⩾ 1)

= t2n

{
n∑

k=2

(
n

k

)
− n2

}

= t2n

{
n∑

k=0

(
n

k

)
−
(
n

1

)
−
(
n

0

)
− n2

}
= t2n

{
2n − (n2 + n+ 1)

}
> 0

assuming that n ⩾ 5. For n = 3, 4 the claim follows from Corollary 3.6 above.

Remark 3.9. For n = 2 the above proposition does not hold since the formal dimen-
sion of CP 1 is 2, but pp(CP 1; 1) = 3.

We conclude this section with the question on “mixed Hodge polynomial” version
of Theorem 3.1 and Proposition 3.7. More precisely:

1. Does there exist a fixed integer a(⩾ 3) such that mhp(X; 1, 1, 1) ⩽ a for any
rationally elliptic quasi-projective variety X satisfying the Hilali conjecture?

2. Does there exist an integer a(n)(⩾ n) such that mhp(X; 1, 1, 1) ⩽ a(n) for any
rationally elliptic quasi-projective variety X of formal dimension n?
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4. Examples and concluding remarks

Here we present several explicit calculations of thresholds and introduce and discuss
some property of homotopical E-function which is an analog of classical cohomological
E-function.

4.1. Examples
The purpose of this section is to provide examples of calculations of exact values

of stabilization thresholds.

4.1.1. Cn+1 \ 0
Here n > 0. This is a smooth quasi-projective variety, for which the mixed Hodge
structures on cohomology and homotopy can be constructed using log-forms (cf. [10]
and [25] resp.). Since this space can be retracted on S2n+1 and the Hurewicz iso-
morphism preserves the Hodge structure (cf. [17]) and calculating the mixed Hodge
structure on Hn(Cn+1 \ 0) (for example using Gysin exact sequence for the homology
of the complement to smooth divisor on the blow up of Pn+1 at a point) we obtain:

MHCn+1\{0}(t, u, v) = 1 + t2n+1(uv)n+1,

and

MHπ
Cn+1\{0}(t, u, v) = t2n+1(uv)n+1.

Hence we have

MHCn+1\{0}(t, u, v) = 1 +MHπ
Cn+1\{0}(t, u, v).

4.1.2. Projective spaces
Example 4.1. We start with X = CPn. We have

PCPn(t) = 1 + t2 + · · ·+ t2n and Pπ
CPn(t) = t2 + t2n+1.

One easily verifies that

pp(CPn; 1) =

{
3 if n = 1,

2 if n ⩾ 2.

The mixed Hodge polynomials are as follows:

MHCPn(t, u, v) = 1 + t2uv + t4(uv)2 + · · ·+ t2i(uv)i + · · ·+ t2n(uv)n,

and

MHπ
CPn(t, u, v) = t2uv + t2n+1(uv)n+1.

The cohomological case is trivial and the claim in the homotopical case follows using
the Hurewicz isomorphism for π2 and for higher homotopy groups the locally trivial
fibration C× ↪→ Cn+1 \ {0} → CPn, the calculation in §4.1.1 and the corresponding
exact sequence

· · · → π2n+1(C×) → π2n+1(Cn+1 \ {0}) → π2n+1(CPn) → π2n(C×) → · · · ,

which is an exact sequence of mixed Hodge structures [17, Theorem 4.3.4].
One easily verifies that:
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1. mhp(CP 1; 1, 1, 1) = 3.

2. If n ⩾ 2, then mhp(CPn; 1, 1, 1) = 2. In fact, this can be made to the following
a bit sharper statement: for ∀m ⩾ 2

MHπ
(CPn)m(t, u, v) < MH(CPn)m(t, u, v) for ∀t ⩾ 1,∀(u, v) such that uv ⩾ 1.

4.1.3. Compact toric manifolds

In [3, Theorem 3.3] I. Biswas, V. Muñoz and A. Murillo show that the homological
Poincaré polynomial of a rationally elliptic toric manifold coincides with that of a
product of complex projective spaces. Below, using a recent result due to M. Wiemeler
[29] we show that the same thing holds for the homotopical Poincaré polynomial, in
fact, for the homotopical mixed Hodge polynomial, and furthermore we also show
that the homological mixed Hodge polynomial of a rationally elliptic toric manifold
coincides with that of a product of complex projective spaces, which is a stronger
version of the above result of Biswas–Muñoz–Murillo:

Theorem 4.2. The homotopical and cohomological mixed Hodge polynomials of a
rationally elliptic toric manifold of complex dimension n coincides with those of a
product of complex projective spaces. To be more precise, if X is the quotient of

k∏
i=1

(Cni+1 \ {0})

by a free action of commutative algebraic groups, i.e., (C×)k. Here n =
∑k

i=1 ni. Then
we have

1. MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

∑k
i=1 MHπ

CPni (t, u, v), i.e.,

MHπ
X(t, u, v) =

k∑
i=1

(
t2uv + t2ni+1(uv)ni+1

)
= kt2uv +

k∑
i=1

t2ni+1(uv)ni+1.

2. MHX(t, u, v) = MH∏k
i CPni (t, u, v) =

∏k
i=1 MHCPni (t, u, v), i.e.,

MHX(t, u, v) =

k∏
i=1

(
1 + t2uv + · · ·+ t2j(uv)j + · · ·+ t2ni(uv)ni

)
.

Proof. In [29] M. Wiemeler shows that there is an algebraic isomorphism X ∼= X ′

where X ′ is the quotient described above:

X ′ =
( k∏
i=1

(Cni+1 \ {0})
)
/(C×)k. (4.3)

(1) First we observe that

πj

( k∏
i=1

(Cni+1 \ {0})
)
⊗Q =


Q⊕ · · · ⊕Q︸ ︷︷ ︸

a

j = 2ni + 1,

0 j ̸= 2ni + 1.
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Here a is the number of the same integer ni.

πj

(
(C×)k

)
⊗Q =


Q⊕ · · · ⊕Q︸ ︷︷ ︸

k

j = 1,

0 j ̸= 1.

Hence, since each 2ni + 1 ⩾ 3, it follows from the long exact sequences of homotopy
groups that there is an isomorphism of mixed Hodge structures:

πj(X)⊗Q ∼=


πj

(∏k
i=1(Cni+1 \ {0})

)
⊗Q j = 2ni + 1,

π1

(
(C×)k

)
⊗Q = Q⊕ · · · ⊕Q︸ ︷︷ ︸

k

, j = 2,

0 j ̸= 2, j = 2ni + 1.

Then it follows from the proof in the above Example 4.1 that we have the isomorphism
of mixed Hodge structures

πj(X)⊗Q ∼=

{
πj

(∏k
i=1 CPni

)
⊗Q j = 2, 2ni + 1,

0 j ̸= 2, j = 2ni + 1.

Therefore we have

MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

k∑
i=1

MHπ
CPni (t, u, v).

(2) It follows from [29] that X ′ is a so-called Bott manifold, i.e., there is a sequence
of fiber bundles over complex projective spaces with a complex projective space as a
fiber:

X ′ = Bk
pk−→ Bk−1 → · · · → Bi

pi−→ Bi−1 → · · ·B2
p1−→ B1 → B0 = {pt},

where p1 : B1 = Cn1+1 → B0 = {pt} and each pi : P(Cni+1 ×Bi−1) → Bi−1 is the
projection map of the projectivization P(Cni+1 ×Bi−1) of the product Cni+1 ×Bi−1

or a Whitney sum of trivial complex line bundles over Bi−1. This sequence is some-
times called a Bott tower. Note that the fiber space of pi is nothing but the complex
projective space CPni . Then it follows from Deligne’s degeneration of Leray spectral
sequence (see [28]) that for each projection map pi : Bi → Bi−1 the cohomology of Bi

with mixed Hodge structure is the tensor product of the cohomology of the base Bi−1

and the fiber CPni with mixed Hodge structures. Therefore the mixed Hodge poly-
nomial MHX(t, u, v) coincides with that of the product of these complex projective
spaces:

MHX(t, u, v) = MH∏k
i CPni (t, u, v) =

k∏
i=1

MHCPni (t, u, v).

It follows from the above Theorem 4.2 that the cohomological and homotopical
Poincaré polynomials of a rationally elliptic toric manifold are the same as those of
a product of complex projective spaces, thus as explained in the introduction we get
the following:
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Corollary 4.4. The Hilali conjecture holds for rationally elliptic toric manifolds.

Proof. Since a rationally elliptic toric manifold is formal, thus it follows that the
Hilali conjecture holds (see [3]). Here we give another simple direct proof, using the
above calculation. Let X be a rationally elliptic toric manifold described as (4.3).
Then it follows from the above Theorem 4.2 that we have

Pπ
X(1) = MHπ

X(1, 1, 1) =

k∑
i=1

(1 + 1) = 2k, PX(1) = MHX(1, 1, 1) =

k∏
i=1

(1 + ni).

Since each ni ⩾ 1, we have
k∏

i=1

(1 + ni) ⩾ 2k.

1. If k = 1, then 2k = 2 = 21 ⩽ 1 + n1, thus P
π
X(1) ⩽ PX(1).

2. If k = 2, then 2k = 4 = 22 ⩽
∏2

i=1(1 + ni), thus P
π
X(1) ⩽ PX(1).

3. If k ⩾ 3, then 2k < 2k ⩽
∏k

i=1(1 + ni), thus P
π
X(1) < PX(1).

Therefore, in any case we do have Pπ
X(1) ⩽ PX(1).

Corollary 4.5. Let X be a rationally elliptic toric manifold and let

MHX(t, u, v) = MH∏k
i CPni (t, u, v), MHπ

X(t, u, v) = MHπ∏k
i CPni

(t, u, v).

If each ni ⩾ 2, then mhp(X; 1, 1, 1) = 2, and if ni = 1 for some i, then it will be the
case that mhp(X; 1, 1, 1) = 3.

Proof.

MHX(t, u, v) = MH∏k
i CPni (t, u, v) =

k∏
i=1

MHCPni (t, u, v),

and

MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

k∑
i=1

MHπ
CPni (t, u, v).

(1) If each ni ⩾ 2, then it follows from Example 4.1 that

2MHπ
CPni (t, u, v) <

(
MHCPni (t, u, v)

)2
,

hence we have

2
( k∑
i=1

MHπ
CPni (t, u, v)

)
=

k∑
i=1

2MHπ
CPni (t, u, v) <

k∑
i=1

(
MHCPni (t, u, v)

)2
.

Now, for ∀t ⩾ 1,∀u ⩾ 1 and ∀v ⩾ 1 we have

k∑
i=1

(
MHCPni (t, u, v)

)2
<

k∏
i=1

(
MHCPni (t, u, v)

)2
.

To show this, first we note that each MHCPni (t, u, v) ⩾ 2 for ∀t ⩾ 1,∀u ⩾ 1 and
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∀v ⩾ 1. Then it suffices to show that if each di ⩾ 4(1 ⩽ i ⩽ k), then

d1 + d2 + · · ·+ dk < d1d2 · · · dk.

Indeed, this follows by induction. Clearly a1 + a2 < a1a2 since

a1a2 − (a1 + a2) = (a1 − 1)(a2 − 1)− 1 ⩾ 3× 3− 1 > 0.

Suppose that d1 + d2 + · · ·+ dk−1 < d1d2 · · · dk−1. Then

d1 + d2 + · · ·+ dk−1 + dk = (d1 + d2 + · · ·+ dk−1) + dk

< d1d2 · · · dk−1 + dk

< d1d2 · · · dk−1dk .

Therefore we have

2
( k∑
i=1

MHπ
CPni (t, u, v)

)
<
( k∏
i=1

MHCPni (t, u, v)
)2

.

(2) If ni = 1 for some i, then it follows from Example 4.1 that mhp(CP 1; 1, 1, 1) = 3,

i.e., 3MHπ
CP 1(t, u, v) <

(
MHCP 1(t, u, v)

)3
. Surely for the other ones we have

3MHπ
CPnj (t, u, v) <

(
MHCPnj (t, u, v)

)3
.

Hence by the same argument as above we have

3
( k∑
i=1

MHπ
CPni (t, u, v)

)
<
( k∏
i=1

MHCPni (t, u, v)
)3

.

Hence mhp(X; 1, 1, 1) = 3.

Remark 4.6. Even if we fix u = 1 and v = 1 in the above proof of Corollary 4.5, we
have the same proof, therefore we have that if each ni ⩾ 2, then pp(X; 1) = 2, and if
ni = 1 for some i, then pp(X; 1) = 3.

4.1.4. Arrangements of linear subspaces
G. Debongnie (cf. [9]) described the structure of arrangements of subspaces in Cn

which complements are rationally elliptic. If follows that such complements are prod-
ucts of

∏
i

(
Cni+1 \ 0

)
. Combining this with calculation in §4.1.1, we obtain:

Theorem 4.7. The homotopical and cohomological mixed Hodge polynomials of a
simply connected rationally elliptic complement X of an arrangement of linear sub-
spaces are as follows:

1. MHπ
X(t, u, v) = MHπ∏k

i (Cni+1\0)
(t, u, v) =

∑k
i=1 MHπ

Cni+1\0(t, u, v), i.e.,

MHπ
X(t, u, v) =

k∑
i=1

t2ni+1(uv)ni+1.

2. MHX(t, u, v) = MH∏k
i (Cni+1\0)(t, u, v) =

∏k
i=1 MHCni+1\0(t, u, v), i.e.,

MHX(t, u, v) =

k∏
i=1

(
1 + t2ni+1(uv)ni+1

)
.
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In particular, we obtain:

Corollary 4.8. In notations of Theorem 4.7, we have

pp(X; 1) = 1 and mhp(X; 1, 1, 1) = 1.

4.2. Homotopical E-function
Specialization t = −1 of the homotopical Poincare polynomial MHπ

X(t, u, v) is a
homotopical analog of E-functions (cf. [2]) and is well behaved in several constructions
described below.

Definition 4.9. The homotopical E-polynomial Eπ(X,u, v) of a complex algebraic
variety X which is rational elliptic is defined as follows:

Eπ(X,u, v) := MHπ
X(−1, u, v).

Recall that the homological E-function is defined as E(X,u, v) := MHc
X(−1, u, v),

where one uses in (1.9) the compactly supported cohomology. E(X,u, v) satisfies the
additivity relation: for an algebraic subvariety Y ⊂ X one has (cf. [2])

E(X,u, v) = E(Y, u, v) + E(X \ Y, u, v). (4.10)

This follows from the long exact sequence of compactly supported cohomology groups:

· · · → Hk
c (X \ Y ) → Hk

c (X) → Hk
c (Y ) → Hk+1

c (X \ Y ) → · · · .

Additivity relation for the homotopical E-polynomials comes in the context of locally
trivial fibrations

F ↪→ E → B (4.11)

of pointed complex algebraic varieties of rationally elliptic E,F,B, which induces
a long exact sequence of homotopy groups with mixed Hodge structures (see [17,
Theorem 4.3.4]):

· · · → πk(F ) → πk(E) → πk(B) → πk−1(F ) → · · · . (4.12)

The sequence (4.12) yields the following:

Proposition 4.13. Let E,F,B be simply connected pointed complex algebraic vari-
eties forming a locally trivial fibration (4.11) such that any two of them are rationally
elliptic. Then we have

Eπ(E, u, v) = Eπ(F, u, v) + Eπ(B, u, v).

In the case of homological E-polynomials one has multiplicativity in the case of
locally trivial fibrations (4.11).3

Theorem 4.14 (see [4, 5, 6, 24]). Let F ↪→ E → B be a smooth complex algebraic
fiber bundles. If the fundamental group π1(B) of the base space B acts trivially on
the cohomology H∗(F ;Q) of the fiber space F , then,

E(E, u, v) = E(F, u, v) · E(B, u, v).

3For which one does not need to assume that spaces are rationally elliptic.
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This is a reformulation of the relation between the Euler characteristics of bigraded
components:

ep,q(X) =
∑
k

(−1)k dim
(
GrpF•GrW•

p+qH
k(X;C)

)
discussed on p. 935 of [6] (the multiplicativity relation is stated in this paper for
χy-genus which is a specialization of E(X,u, v)).

Finally we note that a homotopy theoretical analog of additivity relation (4.10)
holds. To state it, recall (cf. [17], [18]) that if (X,Y ) is a pair of pointed complex
algebraic varieties, the homotopy groups support a mixed Hodge structure such that
the homotopy exact sequence of the pair (X,Y ) is an exact sequence of the mixed
Hodge structures. This sequence implies that for rationally elliptic spaces X and Y
such that πi(X,Y ) = 0 for large i

Eπ(X,Y, u, v) := MHπ
(X,Y )(−1, u, v)

=
∑
k

(−1)k dim
(
Grp

F̃•GrW̃•
p+q((πk(X,Y )⊗ C)∨)

)
upvq

is well-defined and the following additivity relation holds:

Eπ(X,u, v) = Eπ(Y, u, v) + Eπ(X,Y, u, v). (4.15)

Let X be a compact complex algebraic variety and Y be a closed subvariety of X
such that X \ Y is smooth, then for homological E-functions one has:

E(X \ Y, u, v) = E(X,Y, u, v),

which shows that additivity (4.15) corresponds to (4.10).
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[10] P. Deligne, Théorie de Hodge II, Inst. Hautes Études Sci. Publ. Math., 40
(1971), 5–55.
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