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1-SMOOTH PRO-p GROUPS AND BLOCH–KATO PRO-p GROUPS

CLAUDIO QUADRELLI

(communicated by Charles A. Weibel)

Abstract
Let p be a prime. A pro-p group G is said to be 1-smooth

if it can be endowed with a homomorphism of pro-p groups
of the form G → 1 + pZp satisfying a formal version of Hilbert
90. By Kummer theory, maximal pro-p Galois groups of fields
containing a root of 1 of order p, together with the cyclotomic
character, are 1-smooth. We prove that a finitely generated p-
adic analytic pro-p group is 1-smooth if, and only if, it occurs as
the maximal pro-p Galois group of a field containing a root of 1
of order p. This gives a positive answer to De Clercq–Florence’s
“Smoothness Conjecture” — which states that the surjectivity
of the norm residue homomorphism (i.e., the “surjective half”
of the Bloch–Kato Conjecture) follows from 1-smoothness —
for the class of finitely generated p-adic analytic pro-p groups.

1. Introduction

For a field K let K̄s denote the separable closure of K, and GK = Gal(K̄s/K) the
absolute Galois group of K. One of the main open questions in modern Galois theory
is to describe absolute Galois groups of fields among profinite groups. The description
of the maximal pro-p Galois group GK(p) — i.e., the Galois group of the maximal
p-extension K(p)/K — among pro-p groups, for a given prime number p, is already a
challenging task. One of the oldest known obstructions for the realization of a pro-p
group as GK(p) for some field K comes from the Artin–Schreier theorem (whose pro-p
version is due to E. Becker, see [1]): the only non-trivial finite group which occurs as
the absolute Galois group (and maximal pro-p Galois group) of a field is the cyclic
group of order two.

The proof of the celebrated Bloch–Kato conjecture, by M. Rost and V. Voevodsky
(with C. Weibel’s “patch”, see [24, 29–31]), provided a description of the Galois
cohomology of absolute Galois groups of fields in terms of low degree cohomology. In
particular, the Norm Residue Theorem implies that if K contains a root of 1 of order
p, then GK(p) is a Bloch–Kato pro-p group, i.e., the Z/p-cohomology algebra of every
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closed subgroup of GK(p) is a quadratic algebra. This led to the achievement of new
obstructions for the realization of pro-p groups as maximal pro-p Galois groups (see,
e.g., [3,8,18,23]). For instance, one may recover the Artin–Schreier obstruction as
consequence of the Bloch–Kato property (see, e.g., [18, p. 796]).

A pair G = (G, θ), consisting of a pro-p group G together with a morphism of
pro-p groups θ : G → 1 + pZp, is called an oriented pro-p group (see [23]) — here
1 + pZp denotes the multiplicative abelian pro-p group {1 + pλ | λ ∈ Zp}. Given a
field K containing a primitive p-th root of unity of 1, the maximal pro-p Galois group
of K may be completed naturally into an oriented pro-p group GK = (GK(p), θK,p),
where θK,p : GK(p) → 1 + pZp is the cyclotomic character, which describes the action
of GK(p) on the roots of 1 of p-power order lying in K̄(p) (see [9, §4]).

The oriented pro-p group GK satisfies the following formal version of Hilbert 90.
Given an oriented pro-p group G = (G, θ), let Zp(θ) denote the continuous G-module
which is isomorphic to Zp as an abelian pro-p group, and endowed with the left G-
action defined by g.v = θ(g) · v for all g ∈ G and v ∈ Zp(θ). The oriented pro-p group
G is said to be Kummerian if the morphism

H1(G,Zp(θ)/p
nZp(θ)) −→ H1(G,Zp(θ)/pZp(θ)), (1.1)

induced by the epimorphism of G-modules Zp(θ)/p
nZp(θ) → Zp(θ)/pZp(θ), is surjec-

tive for every n ⩾ 1; and moreover G is said to be 1-smooth if the oriented pro-p group
GH = (H, θ|H) is Kummerian for every closed subgroup H ⊆ G. By Kummer theory,
the oriented pro-p group GK is 1-smooth (see [5, Prop. 14.19] and [23, Thm. 1.1]).

In the paper [5] — motivated by the pursuit of an “explicit” proof of the Bloch–
Kato conjecture as an alternative to the proof by Voevodsky — De Clerq and Florence
introduce the 1-smoothness property. In particular, they formulate the “Smoothness
Conjecture”: namely, that it is possible to deduce the surjectivity part of the Bloch–
Kato conjecture (which is known to be the “hard part” of the conjecture) from the fact
that the oriented pro-p group GK arising from a field K containing a root of 1 of order
p, is 1-smooth: in other words, they conjecture that a 1-smooth oriented pro-p group
yields a weakly Bloch–Kato pro-p group (i.e., a pro-p group whose Z/p-cohomology
satisfies the aforementioned surjectivity feature, see Definition 3.3). For example, one
has that 1-smoothness implies the Artin–Schreier obstruction (see Example 2.5).

Our goal is to prove that in the class of finitely generated p-adic analytic pro-
p groups, 1-smoothness implies the Bloch–Kato property and the realizability as
maximal pro-p Galois group.

Theorem 1.1. Let G be a finitely generated p-adic analytic pro-p group. The follow-
ing are equivalent:

(i) G may be completed into a 1-smooth oriented pro-p pair G=(G, θ) (with Im(θ) ⊆
1 + 4Z2, if p = 2);

(ii) G is Bloch–Kato (and moreover α2 = 0 for every α ∈ H1(G,Z/2), if p = 2).

(iii) G occurs as the maximal pro-p Galois group of a field K containing a primitive
p-th root of 1 (and also

√
−1, if p = 2).

(Observe that if K is a field containing
√
−1, then it is well-known that one also has

Im(θK,2) ⊆ 1 + 4Z2 and α2 = 0 for every α ∈ H1(GK(2),Z/2).)
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Implication (i)⇒(ii) of Theorem 1.1 gives a positive answer to the Smoothness
Conjecture for the class of finitely generated p-adic analytic pro-p groups, as a Bloch–
Kato pro-p group is — quite obviously — also weakly Bloch–Kato. Thus, Theorem 1.1
provides a concrete example of a class of pro-p groups for which the (weak) Bloch–
Kato property follows from 1-smoothness — other examples are free pro-p groups and
Demushkin group. (After the publication of this result, the Smoothness Conjecture
has been proved for the class of right-angled Artin pro-p groups by Snopce and
Zalesskĭı, see [27].)

In fact, analytic pro-p groups represent the “upper bound” of the class of Bloch–
Kato pro-p groups (i.e., Bloch–Kato pro-p groups for which H2(G,Z/p) is as large as
possible), while the “lower bound” (i.e., H2(G,Z/p) is as small as possible) consists of
free pro-p groups and Demushkin groups. Thus, by Theorem 1.1, for the two opposite
“pillars” of the class of Bloch–Kato pro-p groups, the Bloch–Kato property follows
from 1-smoothness.

Moreover, the structure of torsion-free p-adic analytic Bloch–Kato pro-p groups
is extremely rigid, and all such pro-p groups occur as maximal pro-p Galois groups
of fields (see, e.g., [4, §3.1–3.2]). By Theorem 1.1, this rigidity in terms of structure
follows also from 1-smoothness: this suggests that 1-smoothness is a very strong and
restrictive condition. We believe that a further investigation of 1-smoothness for pro-p
groups may lead to the discovery of new obstructions for the structure of maximal
pro-p Galois groups — and absolute Galois pro-p groups — of fields (see, e.g., [19]).

Last, but not least, it is worth mentioning that the class of p-adic analytic pro-p
groups is an important class of groups to consider — besides the Bloch–Kato prop-
erty —, for the role such groups play in the p-adic Langlands program (see, e.g.,
[2]).

Remark 1.2. The research carried out in this manuscript was originally made public
in the preprint [21], published on arXiv in April 2019 (in particular, Theorem 1.1
was [21, Thm. 1.3]), and submitted to a refereed journal. Subsequently, we decided
to change strategy, and to split the original paper: this manuscript is one of the two
resulting pieces. In the meanwhile, the research on 1-smooth oriented pro-p groups
went on, and it lead to other results, such as the aforementioned work by Snopce and
Zalesskĭı [27], and [19]. In particular, the results contained in [21] have been quoted
in the subsequent works [19,20,26].
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2. Oriented pro-p groups and Kummerianity

We work in the category of pro-p groups; by an abuse of notation, “subgroup”
will always mean “closed subgroup”, and sets of generators of pro-p groups, and
presentations, are to be intended in the topological sense. Given a pro-p group G,
we denote the closed commutator subgroup of G (i.e., the closed normal subgroup
generated by commutators [g, h] = g−1h−1gh, g, h ∈ G) by G′; the Frattini subgroup
of G is denoted by Φ(G) (cf. [6, Prop. 1.13]).

Recall that 1 + pZp = {1 + pλ | λ ∈ Zp} is a multiplicative abelian pro-p group.
In particular, if p is odd then 1 + pZp ≃ Zp (the latter being considered as an additive
pro-p group), and 1 + pZp is torsion-free; while if p = 2 then

1 + 2Zp = {±1} × (1 + 4Z2) ≃ (Z/2)⊕ Z2 (2.1)

(the latter being considered as an additive pro-2 group).
Following [23], we call a pair G = (G, θ), consisting of a pro-p group G together

with a morphism of pro-p groups θ : G → 1 + pZp, an oriented pro-p group, and the
morphism θ is called an orientation of G. (In [7,9], an oriented pro-p group is called
a “cyclotomic pro-p pair” — for the motivation of the name “orientation”, see the
footnote at the end of p. 1885 in [23].) An orientation θ : G → 1 + pZp is said to be
torsion-free if the group Im(θ) is torsion-free (cf. [9, §2]) — namely, if p = 2 then by
(2.1) we require that Im(θ) ⊆ 1 + 4Z2.

An oriented pro-p group G = (G, θ) has a distinguished continuous pro-p (left) G-
module Zp(θ), which is equal to the additive group Zp, and it is endowed with left
G-action given by

g · z = θ(g) · z, for all g ∈ G, z ∈ Zp(θ).

The G-module Zp(θ)/p is a trivial G-module isomorphic to Z/p, as θ(g) ≡ 1 mod p
for all g ∈ G. Similarly, if p = 2 and θ is a torsion-free orientation, then Z2(θ)/4 is a
trivial G-module isomorphic to Z/4, as θ(g) ≡ 1 mod 4 for all g ∈ G.

A morphism of oriented pro-p groups G1 → G2, with Gi = (Gi, θi) for i = 1, 2, is
a homomorphism of pro-p groups ϕ : G1 → G2 such that θ1 = θ2 ◦ ϕ (cf. [23, §3,
p. 1888]). In the continuation, we will use the following constructions of oriented
pro-p groups. Let G = (G, θ) be an oriented pro-p group.

(a) If N is a normal subgroup of G contained in Ker(θ), one has the oriented pro-p
group

G/N = (G/N, θ̄), (2.2)

where θ̄ : G/N → 1 + pZp is the orientation such that θ̄ ◦ π = θ, for the canonical
projection π : G → G/N .

(b) If A is an abelian pro-p group (written multiplicatively), one has the oriented
pro-p pair

A⋊ G = (A⋊G, θ̃), (2.3)

with action given by gag−1 = aθ(g) for every g ∈ G, a ∈ A, where the orientation
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θ̃ : A⋊G → 1 + pZp is the composition of the canonical projection A⋊G → G
with θ (this construction was introduced by I. Efrat in [7, §3]).

Definition 2.1. An oriented pro-p group G = (G, θ) is said to be θ-abelian if G ≃
A⋊ G/Ker(θ) for some free abelian pro-p group A.

An oriented pro-p group G = (G, θ) has a distinguished subgroup: the subgroup

K(G) =
〈
ghg−1h−θ(g) | g ∈ G, h ∈ Ker(θ)

〉
(2.4)

(cf. [9, §3]). The subgroup K(G) is normal in G, and moreover one has

Φ(G) ⊇ K(G) and Ker(θ) ⊇ K(G) ⊇ Ker(θ)′, (2.5)

so that Ker(θ)/K(G) is an abelian pro-p group. Observe that for every g ∈ G and
h ∈ Ker(θ) one has ghg−1 ≡ hθ(g) modulo K(G), and hence

G/K(G) ≃ Ker(θ)/K(G)⋊ G/Ker(θ) (2.6)

in the sense of (2.3). Moreover, if G = (G, θ) is a θ-abelian oriented pro-p group, then
K(G) = {1}.

The following result gives a group-theoretic characterization of finitely generated
Kummerian oriented pro-p groups (cf. [9, Thm. 5.6 and Thm. 7.1]).

Theorem 2.2. Let G = (G, θ) be an oriented pro-p group, with G finitely generated
and θ : G → 1 + pZp a torsion-free orientation. The following are equivalent.

(i) G is Kummerian.

(ii) Ker(θ)/K(G) is a free abelian pro-p group.

(iii) G/K(G) = (G/K(G), θ̄) is a θ̄-abelian oriented pro-p group.

In particular, by (2.6) and Theorem 2.2, a finitely generated oriented pro-p group
G = (G, θ), with θ a torsion-free orientation and K(G) = {1}, is Kummerian if, and
only if, G is θ-abelian.

Remark 2.3. If G = (G,1) is an oriented pro-p group with 1 : G → 1 + pZp the ori-
entation constantly equal to 1, then K(G) = G′. By Theorem 2.2, the oriented pro-p
group G is Kummerian if, and only if, the abelianization G/G′ = Ker(1)/K(G) of G is
a free abelian pro-p group. In particular, if G is also 1-smooth, then the abelianization
of every finitely generated subgroup of G is a free abelian pro-p group.

Example 2.4.

(a) Let G be a free pro-p group. Then the oriented pro-p group G = (G, θ) is, in
fact, 1-smooth for any orientation θ (cf. [23, §2.2]).

(b) Let G be a Demushkin group (cf., e.g., [16, Def. 3.9.9]). Then there exists one —
and only one — orientation θ : G → 1 + pZp which completes G into a 1-smooth
oriented pro-p group G = (G, θ) (cf. [13, Thm. 4] and [23, Cor. 5.7]).

From the following example (cf. [9, Ex. 3.5]), one may recover the Artin–Schreier
obstruction as a consequence of 1-smoothness.
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Example 2.5. For p odd, let G be a finite p group, and let G = (G, θ) be an oriented
pro-p group. Then θ ≡ 1, as 1 + pZp is torsion-free, and thus Ker(θ) = G and K(G) =
{1}. Hence G is not Kummerian.

Similarly, for p = 2 let G a group of order 4, and let G = (G, θ) be an oriented pro-2
group. By (2.1) Ker(θ) ̸= {1}, while K(G) = {1} (cf. [9, Ex. 3.5–(4)–(5)]). Hence G is
not Kummerian. By contrast, the oriented pro-2 group G = (G, θ) with G ≃ Z/2 and
Im(θ) = {±1} is Kummerian (and thus 1-smooth).

Remark 2.6. In the original definition given in [9, Def. 3.4], an oriented pro-p group
G = (G, θ) is said to be Kummerian if the quotient Ker(θ)/K(G) is torsion-free. By
Theorem 2.2 this original definition and the “cohomological” definition given in the
Introduction — i.e., the morphism (1.1) is surjective for every n ⩾ 1 —, which we
use throughout the paper, are equivalent if G is finitely generated. In [22, Thm. 1.2]
it is shown that these two definitions of Kummerianity are equivalent also in the
non-finitely generated case.

Finally, note that in [23], the orientation θ of a 1-smooth oriented pro-p group
G = (G, θ) is said to be 1-cyclotomic.

3. Bloch–Kato pro-p groups and the smoothness conjecture

Here all graded algebras A• =
⊕

n∈Z An over a field F are assumed to be locally
finite-dimensional with An = 0 for n < 0 and A0 = F. A graded algebra A• is called
a quadratic algebra if it is 1-generated — i.e., every element is a combination of
products of elements of degree 1 —, and its relations are generated by homogeneous
relations of degree 2 (cf. [17, Ch. 1, §2]). In other words, one has an isomorphism of
graded algebras T•(A1)/I

∼→ A•, where T•(A1) =
⊕

n⩾0 A
⊗n
1 is the tensor F-algebra

generated by A1, and I is a two-sided ideal of T•(A1) generated as a two-sided ideal
by a subset of A⊗

1 .

Example 3.1. Let V be a finite-dimensional vector space over Z/p.

(a) The tensor Z/p-algebra T•(V ) is quadratic.

(b) The exterior algebra Λ•(V ) is quadratic, as T•(V )/I ≃ Λ•(V ), with I the two-
sided ideal generated by {v ⊗ v | v ∈ V } ⊆ V ⊗2.

Remark 3.2. If A• =
⊕

n⩾0 An is a quadratic algebra such that a2 = 0 for every
choice of a ∈ A1, then one has an epimorphism of quadratic algebras Λ•(A1) ↠ A•.

Definition 3.3. Let G be a pro-p group, and let n ⩾ 1. Cohomology classes in the
image of the natural cup-product

H1(G,Z/p)× · · · ×H1(G,Z/p) ∪−→ Hn(G,Z/p)

are called symbols (relative to Z/p).

(i) If for every open subgroup U ⊆ G every element α ∈ Hn(U,Z/p), for every
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n ⩾ 1, can be written as

α = cornV1,U (α1) + · · ·+ cornVr,U (αr), r ⩾ 1,

where αi ∈ Hn(Vi,Z/p) is a symbol and

cornVi,U : Hn(Vi,Z/p) −→ Hn(U,Z/p)

is the corestriction map (cf. [16, Ch. I, §5]), for some open subgroups Vi ⊆ U ,
then G is called a weakly Bloch–Kato pro-p group (cf. [5, Def. 14.23]).

(ii) If for every subgroup H ⊆ G, the Z/p-cohomology algebra

H•(H,Z/p) :=
∐
n⩾0

Hn(H,Z/p),

endowed with the cup-product, is a quadratic algebra over Z/p, then G is called
a Bloch–Kato pro-p group (cf. [18]).

Clearly, a Bloch–Kato pro-p group is also weakly Bloch–Kato.

Examples 3.4.

(a) A free pro-p group G is Bloch–Kato, as Hn(G,Z/p) = 0 for n ⩾ 2, and also
every subgroup H ⊆ G is a free pro-p group (cf. [25, Ch. I, §4.2, Cor. 2–3]).

(b) A Demushkin group is Bloch–Kato (cf. [23, Thm. 6.8]). In particular, every
open subgroup of G is again a Demushkin group (cf. [16, Thm. 3.9.15]), while
every closed non-open subgroup of G is a free pro-p group (cf. [25, Ch. I, §4.5,
Ex. 5–(b)]).

Let K be a field containing a primitive p-th root of 1. By the Norm Residue
Theorem, the Z/p-cohomology algebra H•(GK,Z/p) of the absolute Galois group GK
is quadratic. By the Hochschild–Serre exact sequence associated to the short exact
sequence of profinite groups

{1} // Gal(K̄s/K(p)) // GK // GK(p) // {1} ,

one has an isomorphism of graded Z/p algebras H•(GK(p),Z/p) ≃ H•(GK,Z/p) (cf.,
e.g., [18, §2]), so that also H•(GK(p),Z/p) is quadratic. Thus, GK(p) is a Bloch–Kato
pro-p group.

The following is the pro-p version of the Smoothness Conjecture formulated by
C. De Clerq and M. Florence (cf. [5, Conj. 14.25]).

Conjecture 3.5. Let G = (G, θ) be a 1-smooth oriented pro-p group, with θ a torsion-
free orientation. Then G is a weakly Bloch–Kato pro-p group.

A positive answer to the Smoothness Conjecture would provide a new proof of
the “1-generation half” of the Bloch–Kato conjecture (cf. [5, §1.1]), alternative to
the proof by Rost and Voevodsky. Indeed, by Milnor K-theory one has that the
weak Bloch–Kato property of the maximal pro-p group GK(p) of a field K, containing
a primitive p-th root of 1, implies that the algebra H•(G,Z/p) is 1-generated (cf.
[5, Rem. 14.26]).



60 CLAUDIO QUADRELLI

4. Locally uniform pro-p groups

We recall the following definition.

Definition 4.1. Let G be a pro-p group.

(a) G is powerful ifG′ is contained in the subgroup ofG generated by {gpϵ | g ∈ G},
where ϵ = 2 if p = 2, ϵ = 1 otherwise.

(b) If G is finitely generated, then G is uniformly powerful (or simply uniform) if
G is powerful and torsion-free.

(c) G is locally uniform if every finitely generated subgroup of G is uniform.

(For a detailed account on powerful and uniform pro-p groups and their properties
we refer to [6, Ch. 3–4].)

By Lazard’s work [14], if G is a uniform pro-p group one has an isomorphism of
quadratic Z/p-algebras

Λ•
(
H1(G,Z/p)

) ∼−→ H•(G,Z/p) (4.1)

(cf., e.g., [28, Thm. 5.1.5]). Therefore, a finitely generated locally uniform pro-p group
is Bloch–Kato. Moreover, for locally uniform pro-p groups one has the following (cf.
[18, Thm. A] and [4, Prop. 3.5]).

Proposition 4.2. A pro-p group G is locally uniform if, and only if, there exists a
torsion-free orientation θ : G → 1 + pZp such that the oriented pro-p group G = (G, θ)
is θ-abelian.

Consequently, a locally uniform pro-p group may complete into a Kummerian ori-
ented pro-p group, as a θ-abelian oriented pro-p group is Kummerian by Theorem 2.2.
In fact, locally uniform pro-p groups are the only uniform pro-p groups which can do
this.

Proposition 4.3. Let G be a uniform pro-p group. Then G may complete into a
Kummerian oriented pro-p group G = (G, θ) if, and only if, G is locally uniform.

Proof. By Proposition 4.2, it is enough to prove the following implication: if G may
complete into a Kummerian oriented pro-p group G = (G, θ), then G is locally uni-
form.

If G is Kummerian, then by Theorem 2.2 the oriented pro-p group G/K(G) =
(G/K(G), θ̄) is θ̄-abelian, and thus G/K(G) is locally uniform by Proposition 4.2. So,
both G and G/K(G) are uniform, and by (4.1) one has

H2(G,Z/p) ≃ Λ2

(
H1(G,Z/p)

)
,

H2(G/K(G),Z/p) ≃ Λ2

(
H1(G/K(G),Z/p)

)
.

(4.2)

On the other hand, the canonical projection G → G/K(G) induces maps

infnG,K(G) : H
n(G/K(G),Z/p) −→ Hn(G,Z/p)

for every n ⩾ 1 such that

inf1G,K(G)(α) ∪ inf1G,K(G)(α
′) = inf2G,K(G)(α ∪ α′)

for every α, α′ ∈ H1(G/K(G),Z/p) (cf. [16, Prop. 1.5.3]). Moreover, inf1G,K(G) is
an isomorphism, as K(G) ⊆ Φ(G) (cf. [25, Ch. I, §4.2, Remark]). Therefore, also
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inf2G,K(G) is an isomorphism, and by the 5-term exact sequence in cohomology

0 H1(G/K(G),Z/p) H1(G,Z/p) H1(K(G),Z/p)G

H2(G/K(G),Z/p) H2(G,Z/p)

inf1G,K(G) res1G,K(G)

trg

inf2G,K(G)

(cf. [16, Prop. 1.6.7]) one has H1(K(G),Z/p)G = 0. Since G is a pro-p group and
H1(K(G),Z/p) is a p-elementary abelian group, this implies that H1(K(G),Z/p) = 0,
i.e., K(G) is trivial, and G ≃ G/K(G) is locally uniform.

Remark 4.4. It is well-known that a finitely generated locally uniform pro-p group
may be realized as the maximal pro-p Galois group of a field (cf. [7, Rem. 3.4]). For
example, let ℓ is a prime number, ℓ ̸= p, and for k ⩾ 1 set F = Fℓ(ξ), with ξ ∈ (F̄ℓ)s
a root of 1 of order pk. Let K = Fℓn((X1, . . . , Xd)) be the field of Laurent series in the
indeterminates X1, . . . , Xd, d ⩾ 1, and with coefficients in F. Then

GK = (GK(p), θK,p) ≃ Zd
p ⋊ GK/Ker(θK,p),

and Im(θK,p) = 1 + pkZp (cf. [18, Ex. 4.10]).

5. p-adic analytic pro-p groups

For a pro-p group G let d(G) denote the minimal number of generators of G, i.e.,
d(G) = dim(G/Φ(G)), and let the rank of G be the supremum of all d(H) with H
running through all closed subgroups of G (cf. [6, §3.2]). Then every finitely generated
powerful pro-p group has finite rank (cf. [6, Thm. 3.13]).

The following result defines finitely generated p-adic analytic pro-p groups (cf.
[6, Thm. 8.32 and Cor. 8.33]).

Theorem 5.1. Let G be a finitely generated pro-p group. The following are equiva-
lent:

(i) G is a p-adic analytic manifold and the map (x, y) 7→ x−1y is analytic;

(ii) G contains an open subgroup which is uniformly powerful;

(iii) G has finite rank.

A finitely generated pro-p groups satisfying the above properties is a p-adic analytic
pro-p group.

Hence, a subgroup of a finitely generated p-adic analytic pro-p group has finite
rank, and thus is p-adic analytic. Moreover, if N is a normal subgroup of a p-adic
analytic pro-p group G, then also G/N has finite rank, and thus it is p-adic analytic
(cf. [6, Exercise 3.1]).

The dimension dim(G) of a p-adic analytic pro-p group G is the minimal number
of generators d(U) of a uniform subgroup U of G (by [6, Lemma 4.6] dim(G) does
not depend on the choice of the uniform subgroup). One has the following (cf. [6,
Thm. 4.8]).
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Proposition 5.2. Let G be a p-adic analytic pro-p group, and let N ⊆ G be a normal
subgroup of G. Then

dim(G) = dim(N) + dim(G/N). (5.1)

Example 5.3.

(a) A finitely generated abelian pro-p group G is p-adic analytic. In particular, if
G ≃ Zn

p ⊕A, with A a finite abelian p-group, then dim(G) = n.

(b) If G is a finitely generated locally powerful pro-p group, then G is p-adic analytic
by Theorem 5.1, and dim(G) = d(G).

Example 5.4. Let p be a odd prime. The Heisenberg group over Zp is the group G of
upper uni-triangular matrices over Zp, and it is a torsion-free p-adic analytic pro-p
group of dimension 3 (cf. [10, Thm. 7.4–(2)]). In particular, G has a presentation

G = ⟨ x, y, z | [x, y] = z, [x, z] = [y.z] = 1 ⟩,

and one has G/G′ ≃ Z2
p and G′ = ⟨z⟩ ≃ Zp. Thus, the oriented pro-p group G1 =

(G,1) is Kummerian by Remark 2.3. Set t = xp, and let U be the subgroup of G
generated by t, y, z. Then

U = ⟨ t, y, z | [t, y] = zp, [t, z] = [y, z] = 1 ⟩

(cf. [11, Ex. 7.2]). Hence, U is uniform, and consequently dim(U) = d(U) = 3. Yet, U
is not locally uniform, and therefore U cannot complete into a Kummerian oriented
pro-p group by Proposition 4.3. Altogether, G cannot complete into a 1-smooth ori-
ented pro-p group.

Proposition 5.5. Let G be a finitely generated p-adic analytic pro-p group, and sup-
pose that the oriented pro-p group G = (G,1), with 1 : G → 1 + pZp the orientation
constantly equal to 1, is 1-smooth. Then G is a free abelian pro-p group.

Proof. Since G is p-adic analytic, every subgroup of G is finitely generated by The-
orem 5.1. Thus, by Remark 2.3 every subgroup of G has torsion-free abelianization,
i.e., G is an absolutely torsion-free pro-p group (absolutely torsion free pro-p groups
were introduced by T. Würfel in [32]).

Let G(n), n ⩾ 1, denote the derived series of G, i.e., G(1) = G and G(n+1) =
[G(n), G(n)]. Since G is a finitely generated p-adic analytic pro-p group, also the
subgroups G(n) and the quotients G(n)/(G(n))′ = G(n)/G(n+1) are finitely generated
p-adic analytic pro-p groups. Moreover, since G is absolutely torsion-free, one has

G(n)/G(n+1) = G(n)/(G(n))′ ≃ Zd(G(n))
p for all n ⩾ 1. (5.2)

Consequently, dim(G(n)/G(n+1)) = d(G(n)). From Proposition 5.2 and from (5.2), one
deduces

dim(G(n+1)) = dim(G(n))− d(G(n)). (5.3)

Since dim(G) is finite, one has dim(G(n)) = 0 for some n. Again by Proposition 5.2,
this implies that dim(G(n)/(G(n))′) = d(G(n)) = 0, i.e., G(n) = {1}. This proves that
G is a solvable pro-p group. By [32, Prop. 2], an absolutely torsion-free solvable pro-p
group is a free abelian pro-p group, and this concludes the proof.
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Proposition 5.6. Let G = (G, θ) be a 1-smooth oriented pro-p group with θ a torsion-
free orientation. If Ker(θ) is abelian, then G is θ-abelian.

Proof. If the orientation θ is constantly equal to 1, then Ker(θ) = G. Thus, by
Remark 2.3 G = G/G′ is a free abelian pro-p group, so that G is θ-abelian.

Suppose now that θ ̸≡ 1. We assume first that p ̸= 2. Pick two arbitrary elements
x, y ∈ G such that θ(x) ̸= 1 and y ∈ Ker(θ), and put z = [x, y] and t = yp. Clearly,
z, t ∈ Ker(θ). Since z, y ∈ Ker(θ), which is abelian by hypothesis, one has zy = z, and
hence commutator calculus yields

[x, t] = [x, yp] = z · zy · · · zy
p−1

= zp. (5.4)

Let H be the subgroup of G generated by x, y, and let U be the subgroup of H
generated by x, t, z. Then the oriented pro-p groups GH = (H, θ|H) and GU = (U, θ|U )
are 1-smooth.

Put λ = 1− θ(x)−1. Then 0 ̸= λ ∈ pZp, as 1 ̸= θ(x)−1 ∈ 1 + pZp. By definition,
[x, t] · t−λ ∈ K(GU ). Since t and z commute, from (5.4) one deduces(

zt−λ/p
)p

= zpt−
λ
p p = zpt−λ = [x, t]t−λ ∈ K(GU ). (5.5)

Moreover, zt−λ/p ∈ Ker(θ|U ). Since GU is 1-smooth (and thus Kummerian), by The-
orem 2.2 the quotient Ker(θ|U )/K(GU ) is a free abelian pro-p group, and therefore
(5.5) implies that also zt−λ/p is an element of K(GU ).

Since K(GU ) ⊆ Φ(U), one has z ≡ tλ/p mod Φ(U). Then by [6, Prop. 1.9], U is
generated by x and t. Since [x, t] ∈ Up by (5.4), the pro-p group U is powerful —
and hence uniformly powerful, as it is torsion-free (cf. Example 2.5). Therefore, GU is
θU -abelian by Proposition 4.3. In particular, K(GU ) = {1} by (2.6) and Theorem 2.2,
and thus

[x, y] = z = tλ/p = y1−θ(x)−1

. (5.6)

Since Ker(θ) is abelian by hypothesis, and since x ∈ G∖Ker(θ) and y ∈ Ker(θ) were
arbitrarily chosen, (5.6) implies that G ≃ Ker(θ)⋊ G/Ker(θ) in the sense of (2.3).
Since Ker(θ) is torsion-free (cf. Example 2.5), G is θ-abelian.

Finally, assume that θ ̸≡ 1 and p = 2. Since G is torsion-free, Im(θ) ⊆ 1 + 4Z2,
and the above argument works verbatim if one replaces p with 4: indeed, one has
0 ̸= λ ∈ 4Z2, as 1 ̸= θ(x)−1 ∈ 1 + 4Z2, and [x, t] ∈ U4, so that the pro-2 group U is
powerful also in this case. Hence, G is a θ-abelian oriented pro-2 group.

Theorem 5.7. Let G = (G, θ) be an oriented pro-p group with G a finitely generated
p-adic analytic pro-p group and θ a torsion-free orientation. If G is 1-smooth, then it
is θ-abelian.

Proof. Since G is p-adic analytic, also Ker(θ) is p-adic analytic. Since the oriented
pro-p group GKer(θ) = (Ker(θ),1) is 1-smooth, Proposition 5.5 implies that Ker(θ) is
a free abelian pro-p group. Thus, Proposition 5.6 implies the claim.

Let p = 2, and let G be a pro-2 group. Also, let Z/4 be a trivial G-module. The
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short exact sequence of trivial G-modules

0 // Z/2 2· // Z/4 π // Z/2 // 0

induces an exact sequence in cohomology

H1(G,Z/2) H1(G,Z/4) H1(G,Z/2)

H2(G,Z/2) H2(G,Z/4) · · ·

π∗

b (5.7)

and the connecting homomorphism b is called the Bockstein morphism. Clearly, the
map b is trivial if, and only if, the map π∗ : H1(G,Z/4) → H1(G,Z/2) is surjective.
Moreover, the map b is trivial if, and only if α2 = 0 for every α ∈ H1(G,Z/2) (cf.
[8, Lemma 2.4]).

Remark 5.8. Set p = 2.

(i) Let K be a field containing
√
−1. Then Im(θK,2) ⊆ 1 + 4Z2, and Z2(θK,2)/4 is

isomorphic to Z/4 as a (trivial) GK(2)-module. Since the oriented pro-2 group
GK = (GK(2), θK,2) is Kummerian, the map

π∗ : H1(GK(2),Z/4) −→ H1(GK(2),Z/2)

is surjective, and thus b is trivial.

(ii) Let G be a pro-2 group. If H•(G,Z/2) is a quadratic Z/2-algebra and the
Bockstein morphism b is trivial, then by Remark 3.2 one has an epimorphism
of quadratic Z/2-algebras

Λ•
(
H1(G,Z/2)

)
// // H•(G,Z/2) .

Hence, cd(G) ⩽ dim(H1(G,Z/2)) (here cd(G) denotes the cohomological dimen-
sion, cf. [16, Def. 3.3.1] ). Consequently, G is torsion-free, as a pro-p group with
non-trivial torsion has infinite cohomological dimension.

Corollary 5.9. Let G be a finitely generated p-adic analytic pro-p group. The follow-
ing are equivalent.

(i) G may be completed into a 1-smooth oriented pro-p group G = (G, θ) with θ a
torsion-free orientation.

(ii) G is a Bloch–Kato pro-p group, and the Bockstein morphism b is trivial if p = 2.

(iii) G occurs as the maximal pro-p Galois group of a field K containing a primitive
p-th root of 1 (and also

√
−1 if p = 2).

Proof. Let G be a finitely generated p-adic analytic pro-p group. First, we show
that each of the three conditions implies that G may be completed into a θ-abelian
oriented pro-p group G = (G, θ) with θ a torsion-free orientation. Then, we show that
if G = (G, θ) is a θ-abelian oriented pro-p group with θ torsion-free, then all three
conditions (i), (ii), (iii) hold.

If G may be completed into a 1-smooth oriented pro-p group G = (G, θ) with θ a
torsion-free orientation, then G is θ-abelian by Theorem 5.7. On the other hand, if G
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is a Bloch–Kato pro-p group (satisfying the further condition b ≡ 0 if p = 2), then G
may be completed into a θ-abelian oriented pro-p group G = (G, θ) by [18, Thm. 4.6]
if p ̸= 2 and by [18, Thm. 4.11] if p = 2 (note that in this case G is torsion-free by
Remark 5.8–(ii)). Moreover, if G ≃ GK(p) for some field containing a primitive p-th
root of 1 (and

√
−1 if p = 2) then G is a Bloch–Kato pro-p group by the Norm Residue

Theorem (and by Remark 5.8–(i) b ≡ 0 if p = 2), so that (iii) implies (ii).
Conversely, if G = (G, θ) is a θ-abelian oriented pro-p group with θ torsion-free,

then G is a finitely generated locally uniform pro-p group by Proposition 4.2. There-
fore: (i) for every subgroup H of G, the oriented pro-p group GH = (H, θ|H) is Kum-
merian by Theorem 2.2, and thus G is 1-smooth; (ii) G is a Bloch–Kato pro-p group
by (4.1) — and moreover b ≡ 0 as H2(G,Z/2) ≃ Λ2(H

1(G,Z/2)), if p = 2; (iii) G
occurs as the maximal pro-p Galois group of a field containing a primitive p-th root
of 1 by Remark 4.4.

Corollary 5.9 implies Theorem 1.1. As mentioned in the Introduction, this result is
particularly relevant because p-adic analytic Bloch–Kato pro-p groups are the “upper
bound” of the class of Bloch–Kato pro-p groups, in the following sense: if a finitely
generated (non-trivial) pro-p group G is Bloch–Kato, then by [18, Prop. 4.1] for the
cohomological dimension cd(G) and the number of defining relations r(G) — the
latter being equal to dimH2(G,Z/p) (cf. [25, Ch. I, §4.3]) — one has bounds

1 ⩽ cd(G) ⩽ d(G) and 0 ⩽ r(G) ⩽

(
d(G)

2

)
.

The lower bounds occur if G is a free pro-p group (and thus G is 1-smooth, cf.
Example 2.4–(a)). The upper bounds occur when G is p-adic analytic. In particular,
if G is a finitely generated Bloch–Kato pro-p group (satisfying b ≡ 0, if p = 2), the

following three conditions are equivalent: (i) cd(G) = d(G); (ii) r(G) =
(
d(G)
2

)
; (iii) G

is p-adic analytic (cf. [18, Cor. 4.8]).
We conclude with the following remark, which states two open questions on 1-

smooth oriented pro-p groups.

Remark 5.10.

(i) Bloch–Kato pro-p groups satisfy the following Tits’ alternative: if a Bloch–
Kato pro-p group G is not locally uniform, then it contains a non-abelian free
subgroup (cf. [18, Thm. B]). In [20], we conjecture that 1-smooth oriented pro-p
groups satisfy the same alternative: namely, if a 1-smooth oriented pro-p group
G = (G, θ) is not θ-abelian, then G contains a non-abelian free subgroup.

(ii) Torsion-free p-adic analytic pro-p groups G are Poincaré duality pro-p groups
of cohomological dimension cd(G) = dim(G) (cf. [28, §5]). On the opposite side
there are Poincaré duality pro-p groups of cohomological dimension cd(G) =
2, namely, infinite Demushkin groups, which are both 1-smooth and Bloch–
Kato by Examples 2.4–(b) and 3.4–(b). This raises the following sub-question
of Conjecture 3.5: are 1-smooth Poincaré duality pro-p groups (weakly) Bloch–
Kato?
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