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POINCARÉ/KOSZUL DUALITY FOR GENERAL OPERADS

ARAMINTA AMABEL

(communicated by Brooke Shipley)

Abstract
We record a result concerning the Koszul dual of the arity fil-

tration on an operad. This result is then used to give conditions
under which, for a general operad, the Poincaré/Koszul dual-
ity arrow of Ayala and Francis is an equivalence, using a proof
similar to theirs. We discuss how the Poincaré/Koszul duality
arrow for the little disks operad En relates to the work of Ayala
and Francis when combined with the self-Koszul duality of En.
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1. Introduction

The focus of this note is a generalization inspired by the Poincaré/Koszul duality
isomorphism studied in [1] and [3] to operads other than the little n-disks operad, En.
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We will focus on operads in Sp, the∞-category of spectra. In [3], the Poincaré/Koszul
duality arrow is notationally a map∫

X∗

K →
∫ X¬

∗

Bar(n)K. (1)

On the left-hand side of (1), X∗ is a zero-pointed n-manifold and K is an n-disk alge-
bra. The notation

∫
X∗

K denotes the factorization homology of X∗ with coefficients
in K. Analogously, given a operad O in Sp, a right O-module M and a O-algebra A,
one can define the factorization homology of M with coefficients in A, denoted

∫
M

A.

On the right-hand side of (1), X¬
∗ is another zero-pointed n-manifold and Bar(n)K

is the nth iterated bar construction on K. The notation
∫X¬

∗ Bar(n)K denotes the
factorization cohomology. We will define an analogous construction for a cooperad P
in Sp that takes in a right P-comodule W and a P-coalgebra C and outputs an object

that we refer to as the factorization cohomology and denote by
∫W

C.

In this note, the Poincaré/Koszul duality arrow will be replaced by a Koszul duality
arrow ∫

M

A→
∫ BarOM

BarOA.

This generalization was proposed in [1, Rmk. 3.3.4]. A version of such a map was
constructed by Ching in [9, Eq. 7.14] using the projective model structure on operads
and the language of trees. Note that for operads other than En, the Koszul duality
arrow does not relate to Poincaré duality.

The main theorem we will prove is the following, for V as in Corollary 6.6, below.

Theorem (Main theorem). Let O be a reduced, nonunital, (−1)-connected operad in
Sp. Let A be a 0-connected O-algebra in V and M a right O-module in Sp that is
uniformaly bounded below. The Koszul duality arrow is an equivalence∫

M

A
∼−→
∫ BarOM

BarOA.

This is Corollary 6.6 below. The connectivity conditions on O and A are the same
as those in a theorem of Ching and Harper, [11]. The relationship between our result
and the Francis–Gaitsgory conjecture [16, Conj. 3.4.5] is discussed in Remark 6.9.

In [10, Prop. 6.1], Ching shows that the related arrow for V = Sp constructed in
[9] is an equivalence under certain conditions. We discuss how their construction,
conditions, and proof differs from ours below, Remark 5.6.

When O = En is the little n-disks operad, one should compare our result with the
framed case of [3, Cor. 2.1.10]. The result from [3] says that the Poincaré/Koszul
duality arrow (1) is an equivalence if and only if the Goodwillie filtration of

∫
X∗

con-
verges. The main theorem of this note allows us to separate the “geometric” content
of the framed case of [3, Cor. 2.1.10] from the more formal aspects. In particular, the
underlying geometric input to [3, Cor. 2.1.10] seems to be that the Koszul dual of En
is En[−n], together with a description of the image of the right En-module associated
to Rn

+ under this identification. The long-standing conjecture that En is self-Koszul
dual (up to a shift) was recently proven by Ching and Salvatore, [12]. We discuss
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what is known about the relationship between our main result, the results in [3], and
the self-Koszul duality of En in the Appendix.

As in [3], we analyze the Koszul duality arrow by filtering both sides and checking
that the arrow is an equivalence on layers. Unlike in [3], the filtrations used here are
defined by filtrations on the right module M alone rather than the whole factorization
homology. One consequence of the work in [3] is that Goodwillie calculus can be
thought of as Koszul dual to manifold calculus. The analogous consequence here is
that, for a general operad O, the Goodwillie filtration of the identity on O-algebras
can be thought of as Koszul dual to the arity filtration.

In §2, we review the theory of operads and cooperads, including the notions of
(co)modules and (co)algebras over such gadgets. The bar and cobar constructions are
also recalled in §2. We discuss the conjecture of Francis and Gaitsgory [16] regarding
when the bar and cobar constructions are equivalences of categories. In §3 we define
a filtration on a general operad and right modules over an operad and describe how
the filtration on operads transforms under the bar construction.

In §4, we study the filtration on algebras over an operad induced from the filtration
on operads defined in §3. This filtration is the subject of [18], where they prove
convergence results and relate one of its layers to topological Quillen homology. These
results are furthered in [27] and [21] where the relationship between the filtration
and the Goodwillie filtration of the identity on algebras is considered. In [27] this is
done for operads in spectra using model structures and in [21] this is done for stable
∞-operads. In [22], they study a generalization of this filtration to a “augmentation
ideal” filtration.

We define notions of factorization (co)homology for a general (co)operad in §5. In
§5.1, we construct the Koszul duality arrow. Using the filtrations defined in §3, the
main theorem is proven in §5. Finally, in the Appendix we discuss the status of the
relationship of our work with [3] in the case of the little n-disks operad.
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1.1. Notation

We adopt the following conventions:

• Sp will denote the∞-category of spectra. The zero object in Sp will be denoted
∗ and the unit in Sp will be denoted 1Sp.

• V will denote an arbitrary stable, symmetric monoidal, ⊗-presentable, ∞-cate-
gory with its canonical enrichment over Sp. The unit of V will be denoted 1V .

• We implicitly regard ordinary categories as ∞-categories.
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2. Background on operads

We review various definitions and concepts about operads for the reader’s conve-
nience and as a means of establishing conventions and notation. A reference for this
material is [9] or [14, §1].

Let Finbij be the category of finite sets and bijections. The∞-category of symmetric
sequences in Sp is the functor∞-category Sseq(Sp) := Fun(Finbij,Sp). Recall from [7,
§4.1.2] that Sseq(Sp) can be given the structure of a monoidal∞-category as follows.
View Sseq(Sp) as a symmetric monoidal∞-category under Day convolution. Following
[7, §4.1.2], there is an equivalence

FunCAlg(PrL)(Sseq(Sp),Sseq(Sp)) ≃ Sseq(Sp). (2)

Here PrL is the ∞-category of presentable ∞-categories and functors between them
which preserve small colimits, with monoidal structure given by the tensor product of
presentable∞-categories. The∞-category CAlg(PrL) is the∞-category of commuta-
tive algebra objects in PrL. Composition of functors in CAlg(PrL) gives the left-hand
side of (2) a (non-symmetric) monoidal structure. Under the equivalence (2), this
monoidal structure becomes a (non-symmetric) monoidal structure on Sseq(Sp). The
composition product is the opposite of this monoidal structure on Sseq(Sp). We take
this convention so that intuition agrees with the ordinary, non-infinity case, see [19,
Pg. 2] or [8, Def. 3.3]. In an ordinary symmetric monoidal category, the composition
product R ◦ S of two symmetric sequences is

(R ◦ S)(n) =
⊕
i

R(i)⊗Σi

 ⊗
j1+···+ji=n

(S(j1)⊗ · · · ⊗ S(ji))×Σj1
×···×Σji

Σn

 . (3)

The unit of the composition product, denoted Otriv, sends a finite set B to the unit
1Sp of Sp if |B| = 1 and to the zero object ∗ of Sp otherwise. More recently, Haugseng
[19, §4] has given an alternative description of the composition product on symmetric
sequences and, for symmetric sequences in Spaces, has shown that monoid objects in
the category recovers Lurie’s notion of ∞-operads, [24, Def. 2.1.1.10].

Definition 2.1. An operad in Sp is a monoid object in Sseq(Sp). A cooperad is a
comonoid object in Sseq(Sp).

An operad O in spectra has an underlying functor Finbij → Sp. For each i ∈ N, we
denote by O(i) the image of the finite set with i elements [i] under this functor.

Example 2.2. The unit Otriv has the structure of both an operad and a cooperad in Sp
since Otriv ◦ Otriv ≃ Otriv. We call Otriv the trivial operad or trivial cooperad. Moreover,
Otriv is the initial object in the ∞-category of operads, and is the final object in the
∞-category of cooperads. We call the unique map ι : Otriv → O of the trivial operad
into a general operad O the unit map. We call the unique map η : P → Otriv from a
general cooperad P into the trivial cooperad the counit map.

Definition 2.3. An augmented operad in Sp is an operad O in Sp together with a
map of operads ϵ : O → Otriv such that ϵ ◦ ι is the identity. An operad O is nonunital
if O(0) ≃ ∗ and reduced if the unit map induces an equivalence O(1) ≃ 1Sp.
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Similarly, a coaugmented cooperad in Sp is a cooperad P in Sp together with a map
of cooperads e : Otriv → P such that η ◦ e is the identity. A cooperad P is nonunital
if P(0) ≃ ∗ and reduced if the counit map induces an equivalence P(1) ≃ 1Sp.

Convention 2.4. Throughout the rest of this note, (co)operads and are assumed to
be nonunital and reduced. We use the notation Oprd for nonunital, reduced operads
in Sp and CoOprd for the ∞-category of nonunital, reduced cooperads in Sp.

Let V be a symmetric monoidal, stable, ⊗-presentable,∞-category with its canon-
ical enrichment over Sp. Here ⊗-presentable means that V is presentable and that the
monoidal structure preserves colimits separately in each variable, see [2, Def. 3.4].

We would like to consider right modules and algebras in V over operads in Sp. For
this, we need to define an action of Sseq(Sp) on Sseq(V) and on V.

Lemma 2.5. Symmetric sequences Sseq(Sp) acts on V on the left and on Sseq(V) on
the right. For S ∈ Sseq(Sp), R ∈ Sseq(V), and V ∈ V, the object R ◦ S ∈ Sseq(V) is
given by (3), and S ◦ V in V is given by⊕

p⩾0

S(p)⊗Σp V ⊗p. (4)

Proof. In [7, §4.1.2], a more general version of (2) is proven. That says, for any
⊗-presentable symmetric monoidal ∞-category D, there is an equivalence

FunCAlg(PrL)(Sseq(Sp),D) ≃ D.

Take D = Sseq(V) or D = V. By [24, §4.7.3], for any∞-categories C and C′, the func-
tor ∞-category Fun(C, C) acts on the functor ∞-categories Fun(C, C′) and Fun(C′, C).
Applying this to C = Sseq(Sp), we obtain actions of

Sseq(Sp) ≃ FunCAlg(PrL)(Sseq(Sp),Sseq(Sp))

on Sseq(V) ≃ FunCAlg(PrL)(Sseq(Sp),Sseq(V)) and on V ≃ FunCAlg(PrL)(Sseq(Sp),V).

Example 2.6. For R ∈ Sseq(V) and V ∈ V we have identifications R ◦ Otriv ≃ R and
Otriv ◦ V ≃ V .

Definition 2.7. Let O be an operad in Sp with multiplication map m : O ◦ O → O.
• Following [24, Def. 4.2.1.14] together with [24, Var. 4.2.1.36], we write

RModO(V) for the ∞-category of right O-modules in V. We call an object of
RModO(V) a right O-module in V.

• Following [24, Def. 4.2.1.14], we write AlgO(V) for the∞-category of O-algebras
in V. This is the category of left O-module objects in V using Lemma 2.5.

Let P be a cooperad in Sp. Let c : P → P ◦ P be the comonoid structure map.

• Using the fact that cooperads are operads in Spop, we follow [24, Def. 4.2.1.14],
and define the ∞-category of right P-comodules in V, to be the opposite of
the ∞-category of modules over the operad in Spop. We denote the resulting
∞-category by RCoModP(V).
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• Using the action of Lemma 2.5, we can define an∞-category of left P-comodules
in V. Following [16, Def. 3.2.4], we call this ∞-category the ∞-category of
ind-nilpontent P-coalgebras with divided powers in V and we denote it by
CoAlgdp,nilP (V).

Remark 2.8. We give imprecise descriptions of the objects just defined. Informally,

• a right O-module in V is a symmetric sequence M in V together with a map of
symmetric sequences a : M ◦ O →M , chosen homotopies making the following
two diagrams commute:

M ◦ O ◦ O IdM◦m //

a◦IdO
��

M ◦ O

a

��
M ◦ O

a
// M

(associativity)

M ◦ Otriv

≃
��

IdM◦ι // M ◦ O

a

uu
M

(unit)

and infinitely many higher homotopies.

• an O-algebra in V is an object A ∈ V together with a map O ◦A→ A satisfying
associativity and unit conditions.

• a right P-comodule in V is a symmetric sequence W in V together with a
map b : W →W ◦ P, chosen homotopies making the following two diagrams
commute:

W
b //

b

��

W ◦ P

b◦IdP
��

W ◦ P
IdW ◦c

// W ◦ P ◦ P

(coassociativity)

W ◦ P
IdW ◦η // W ◦ Otriv

≃
��

W

b

ii
(counit)

and infinitely many higher homotopies. See also [7, Def. 5.2.10].

• a P-coalgebra in V is an object C ∈ V together with a map C → P ◦ C satisfying
coassociativity and counit conditions.

Note that since our (co)operads are assumed to be nonunital, (co)algebras over a
(co)operad have a zero object and are therefore uniquely (co)augmented, see [11, §1].

Example 2.9. The∞-category RModOtriv(V) is equivalent to the∞-category Sseq(V),
[24, Prop. 4.2.4.9]. Similarly, there are equivalences RCoModOtriv(V) ≃ Sseq(V) and
for (co)algebras AlgOtriv

(V) ≃ V and CoAlgOtriv
(V) ≃ V.
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Let f : O → O′ be a map of operads in Sp. Using [24, Cor. 4.2.3.2], precomposition
defines a functor f∗ : AlgO′(V)→ AlgO(V). By [24, Prop. 3.2.2.1], f∗ preserves limits.
By [20, Cor. 3.9], the category AlgO(V) is presentable. By the adjoint functor theorem
[25, Thm. 5.5.2.9], the functor f∗ has a left adjoint f! given by “induction,”O′ ◦O (−).

Example 2.10. Let O be an augmented operad in Sp with unit ι and augmentation
ϵ. These maps induce adjunctions

AlgOtriv
(V)

ϵ∗
// AlgO(V)

ϵ!
vv

ι∗
// AlgOtriv

(V)

ι!
vv

.

For A ∈ AlgO(V) and V ∈ AlgaugOtriv
(V), we set the following terminology:

• We call ϵ!A the cotangent complex of A. This is sometimes denoted LA, for
example in [3, Def. 1.5.4].

• We refer to ι∗A as the underlying object of A in V.
• We call ι!V the free O-algebra on V . The free O-algebra on V is given by the

object O ◦ V in V with structure map O ◦ (O ◦ V )→ O ◦ V induced from the
structure map O ◦ O → O for the operad O.

• The O-algebra ϵ∗V is the trivial O-algebra on V .

Since the unit for the trivial operad is the identity map, every Otriv-algebra is free.

The analogous story for coalgebras is more complicated, see [16, §3.5]. In particu-
lar, if one uses the notion of coalgebras without the divided powers and ind-nilpotent
additions, cofree coalgebras do not exist in general, [16, Rmk. 3.5.2]. The essential
issue is that the action of symmetric sequences on V defining just a coalgebra is
only a right lax action. This issue does not appear when working with ind-nilpotent
coalgebras with divided powers, as we do here.

We will use the following two results. For P a cooperad, let SP be the comonad
from the action of symmetric sequences on V from Lemma 2.5, see [16, §3.2.1].

Lemma 2.11. Let P ∈ CoOprd. The functor SP ⊗ (−) : V → V is accessible.

Proof. By assumption, V is presentable, and hence accessible. We need to check that
SP ⊗ (−) preserves filtered colimits. This follows from the fact that the action (4)
defining SP consists of taking a direct sum, homotopy orbits, tensor powers, and
smashing with a fixed spectrum, all of which preserve filtered colimits.

Proposition 2.12. Let V be left-tensored over a monoidal category C and S a como-
noid object of C with S ⊗ (−) : V → V accessible. Then LCoModS(V) is accessible.

We will apply this when C = Sseq(Sp) and S = SP . Our proof is modeled off of
[24, Prop. 4.2.3.4]. Therein, what we call a comonoid object is called a coalgebra
object.

Proof. By [24, Prop. 4.2.2.9], the action of C on V can be encoded as a left action
object of Cat∞, [24, Def. 4.2.2.2]. That is, a functor ξ : ∆op × [1]→ Cat∞ which sends
([n], 0) to C×n × V and ([n], 1) to C×n. The functor ξ describes a natural transforma-
tion between functors ∆op → Cat∞. By unstraightening, this natural transformation
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classifies a map of Cartesian fibrations q : V⊗ → C⊗. By [25, Prop. 2.4.2.11], q is
locally Cartesian if it is fiberwise. On the fiber over [n], q is equivalent to the pro-
jection C×n × V → C×n, which is locally Cartesian. Let π denote the Cartesian fibra-
tion C⊗ → ∆ and π′ : (Cop)⊗ → ∆op the coCartesian fibration corresponding to the
monoidal category Cop. By [5, Thm. 1.4], π′ ≃ πop. By [24, Prop. 4.1.3.19], the alge-
bra object in Cop determined by S gives a section ζ of π′, or equivalently, a section ζop

of π. Pulling q back along ζop yields a locally Cartesian fibration p : V⊗ ×C⊗ ∆→ ∆.
Since S is accessible, the associated functors to morphisms in ∆ on fibers of p are
accessible. We may identify the category LCoModS(V) with the category of sections of
p which send inert morphisms in ∆ ([24, Def. 4.1.3.1]) to locally p-Cartesian edges in
V⊗ ×∆ C⊗. Using the opposite version [25, Rmk. 5.4.7.14] of [25, Prop. 5.4.7.11] for
accessible categories ([24, Rmk. 5.4.7.13]), we see that LCoModS(V) is accessible.

Corollary 2.13. Let P ∈ CoOprd. The category CoAlgdp,nilP (V) is presentable.

Proof. By [24, Cor. 3.2.2.5], the category CoAlgdp,nilP (V) has all colimits. It suffices

to show that CoAlgdp,nilP (V) is accessible. By definition, CoAlgdp,nilP (V) is the category
LCoModSP (V) of left comodules over SP . By Lemma 2.11, SP is accessible. Proposi-
tion 2.12 now gives the desired result.

A map g : P → P ′ in CoOprd induces a map g♭ : CoAlgdp,nilP (V)→ CoAlgdp,nilP′ (V).
Heuristically, the functor g♭ takes a P-coalgebra C with action map b : C → P ◦ C to
the P ′-coalgebra with action map

C
b−→ P ◦ C g◦Id−−−→ P ′ ◦ C.

Note that g♭ commutes with colimits. By Corollary 2.13, we may apply the adjoint
functor theorem to obtain a right adjoint g♯ to g♭. The cases we use below, when
either P or P ′ are Otriv, are described in [16, Eq. 3.2.7].

Example 2.14. Let P be a coaugmented cooperad in Sp with counit η and coaugmen-
tation e. These maps induce adjunctions

CoAlgdp,nilOtriv
(V) e♭ // CoAlgdp,nilP (V)

e♯

kk

η♭

// CoAlgdp,nilOtriv
(V)

η♯

jj
.

For C ∈ CoAlgdp,nilP (V) and W ∈ CoAlgdp,nilOtriv
(V), we set the following terminology:

• We call η♭C the underlying object of C in V.
• We call η♯W the cofree P-algebra on W .

• The P-coalgebra e♭W is the trivial P-coalgebra on W .

In particular, since the counit for the trivial cooperad is the identity map, every
Otriv-coalgebra is cofree.

Lemma 2.15. Let g : P → P ′ be a map of cooperads. Let C ∈ CoAlgdp,nilP′ (V). Then
g♯(C) is given by the totalization of the cobar complex,

g♯(C) = Tot(Cobar•(P,P ′, C)).
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Proof. Since g♯ is a right adjoint, it commutes with all limits. Let V ∈ V and consider
the cofree P ′ coalgebra η♯(V ). By functoriality, g♯(η♯V ) = (η ◦ g)♯(V ). Since η ◦ g is
the counit of P, this (η ◦ g)♯(V ) is the cofree P-coalgebra. By [25, Lem. 6.1.3.16], the
totalization of Cobar•(P,P ′, η♯V ) is equivalent to P ◦ V , the cofree coalgebra on V .
Thus the result holds for cofree coalgebras. By [24, Prop. 4.7.3.14], every coalgebra
has a resolution by cofree coalgebras. The result follows.

Remark 2.16. The above constructions of restriction, induction, (co)free, trivial, et
cetera, have analogues for right (co)modules.

2.1. Bar construction
Let M be a monoidal ∞-category with unit 1 and monoidal structure denoted

(−) ◦ (−). Assume that M admits geometric realizations of simplicial objects and
totalizations of cosimplicial objects. The bar construction on an augmented monoid
object X ∈M is given by BarM(X) = 1 ◦X 1. The object BarM(X) can be given the
structure of a comonoid object inM. Moreover, we have the following:

Theorem 2.17. Let M be a monoidal ∞-category with unit 1 that admits geomet-
ric realization of simplicial objects and totalizations of cosimplicial objects. The bar
construction admits a right adjoint,

BarM : Monaug,red,nu(M) ⇄ CoMonaug,red,nu(M) :CobarM.

See [24, Rmk. 5.2.2.19] for the existence of CobarM and the adjoint property. See
also [15, Prop. 2.33]. The bar construction can be realized as the geometric realization
of the two-sided bar construction |Bar•(1, (−),1)|, see [24, Rmk. 5.2.2.8]. The right
adjoint of the bar construction CobarM :M→M, is called the cobar construction.
The cobar construction for M can be realized as the totalization of the two-sided
cobar construction Tot(Cobar•(1, (−),1)), see [24, Rmk. 5.2.2.15(c)].

Example 2.18. Take M to be the monoidal ∞-category of symmetric sequences in
Sp under the composition product. We will drop the ∞-category Sseq(Sp) from the
notation in the bar and cobar constructions for Sseq(Sp). Thus, the bar construction
takes a coaugmented operad O to an augmented cooperad Bar(O) and the cobar
construction takes a coaugmented cooperad P to an augmented operad Cobar(P).
This example is [15, Cor. 2.34].

Example 2.19. The bar construction takes the trivial operad to the trivial cooperad,
Bar(Otriv) ≃ Otriv. Indeed, Otriv is the unit in Sseq(Sp) so that the bar construction is
given by Bar(Otriv) = Otriv ◦Otriv Otriv ≃ Otriv.

The following is the main theorem of [10].

Theorem 2.20 (Ching). The bar-cobar adjunction is an equivalence of∞-categories,

Bar : Monaug,red,nu(Sseq(Sp)) ⇄ CoMonaug,red,nu(Sseq(Sp)) :Cobar.

In [10], the theorem statement does not explicitally state the nonunital assumption.
This is because all operads are nonunital, since they work with nonempty finite sets
in their definition of symmetric sequences.
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In particular, for any nonunital, reduced, augmented operad O, there is an equiv-
alence CobarBar(O) ≃ O.

We can extend the notion of the bar construction to the level of modules and alge-
bras over an operad, and similarly for cooperads. In this setting, the bar construction
on O-algebras will land in CoAlgdp,nilBar(O)(V).

Theorem 2.21. Let O be an augmented operad in Sp. There are adjunctions

• for O-algebras,

BarO : AlgO(V) ⇄ CoAlgdp,nilBar(O)(V) :CobarBar(O)

• for right O-modules,

BarO : RModO(V) ⇄ RCoModBar(O)(V) :CobarBar(O).

For the statement on the level of O-algebras, see [16, Cor. 3.3.5] or [16, Eq. 3.8]
where BarO is written BarenhO . For the right comodule structure on the bar construc-
tion applied to a right module, see [9, §7.3].

Lemma 2.22. Under the identifications AlgOtriv
(V) ≃ V ≃ CoAlgOtriv

(V), the functor
BarOtriv is the identity on V. Under the identifications of right Otriv-(co)modules with
Sseq(V), the functor BarOtriv is the identity on Sseq(V).

Proof. By [24, Rmk. 4.4.2.9], there are equivalences

BarOtriv(A) ≃ Otriv ◦Otriv A ≃ Otriv ◦A ≃ A.

In the right module case, we have

BarOtriv(R) ≃ R ◦Otriv Otriv ≃ R ◦ Otriv ≃ R.

In Theorem 4.11 and Theorem 6.4 below, we will use how the bar and cobar
construction interact with restriction and induction morphisms. The following is a
corollary of [16, Lem. 6.2.6].

Lemma 2.23. Let r : O → O′ be a morphism of augmented operads in Sp. Also let
r denote the morphism Bar(O)→ Bar(O′). There is an equivalence BarO′r! ≃ r♭BarO
of functors AlgO(V)→ CoAlgdp,nilBar(O)′(V).

Example 2.24. Take r to be the augmentation map ϵ : O → Otriv. Then Bar(Otriv) ≃
Otriv and the induced map of cooperads Bar(O)→ Otriv is the counit η of Bar(O).
Using Lemma 2.22, BarOtriv sends an Otriv algebra to itself. Lemma 2.23 then reads
ϵ!A ≃ η♭BarOA. The left-hand side is the cotangent complex, also denoted LA. The
right-hand side is the underlying object of BarOA. For O = En, the little n-disks
operad, one should compare this to [15, Cor. 2.29].

Corollary 2.25. With notation as in Lemma 2.23, there is an equivalence of functors
CoAlgBar(O′)(V)→ AlgO(V),

r∗CobarBar(O′) ≃ CobarBar(O)r♯.

Proof. By Lemma 2.23, there is an equivalence BarO′(r!A) ≃ r♭BarOA. Thus the right
adjoint of BarO′ ◦ r! is equivalent to the right adjoint of r♭ ◦ BarO. Since the right
adjoint of the composition is the composition of the right adjoints, we have an equiv-
alence r∗ ◦ CobarBar(O′) ≃ CobarBar(O) ◦ r♯.
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For the right module case, we will only need the following.

Lemma 2.26. Let O ∈ Oprd be augmented with augmentation map ϵ. Let η denote
the counit of BarO. For S ∈ Sseq(V), we have an equivalence of right BarO-comodules,
BarO(ϵ

∗S) ≃ η♯BarOtrivS and right O-modules, CobarBarO(η♯S) ≃ ϵ∗CobarOtriv(S).

Proof. The trivial right O-comodule ϵ∗S is equivalent to S ◦ Otriv. By associativity
[24, Prop. 4.4.3.14], we have

BarO(ϵ
∗S) = (S ◦ Otriv) ◦O Otriv ≃ S ◦ (Otriv ◦O Otriv) ≃ S ◦ BarO.

By Lemma 2.22, S is equivalent to BarOtrivS. Thus, the cofree right BarO-comodule,
η♯BarOtrivS, is given by S ◦ BarO.

By replacing Cobar, η♯, and ϵ∗ by their left adjoints, the second claim in the lemma
statement follows from the equivalence, for any right O-module M ,

η♭BarOM = M ◦O Otriv = ϵ!M = BarOtriv(ϵ!M).

3. Underlying filtration on operads and right modules

In this section, we define a filtration on operads and a filtration on cooperads. The
goal of this section is to prove that the bar construction interchanges these filtrations.
The filtration on operads considered here is also studied in [21], [22], [27], and [18].
We also define a similar filtration on right modules in Sp.

Let Finbij⩽k ⊂ Finbij be the full ∞-subcategory spanned by those finite sets of
cardinality less than or equal to k. Let Sseq⩽k(Sp) be the functor ∞-category

Fun(Finbij⩽k,Sp). Note that there is a restriction functor r(k)∗ : Sseq(Sp)→ Sseq⩽k(Sp).
Since limits and colimits in Sseq⩽k(Sp) are computed pointwise, we have the following:

Lemma 3.1. The restriction functor r(k)∗ : Sseq(Sp)→ Sseq⩽k(Sp) commutes with
limits and colimits.

Thus r(k)∗ admits both a left and right adjoint given by left and right Kan exten-
sions.

We would like to be able to define k-truncated operads in Sp as monoid objects in
Sseq⩽k(Sp). To do so, we need a monoidal structure on Sseq⩽k(Sp).

Lemma 3.2. There is a unique monoidal structure on Sseq⩽k(Sp) so that the restric-
tion functor r(k)∗ is monoidal. The monoidal structure is given by viewing S, T ∈
Sseq⩽k(Sp) as objects of Sseq(Sp) with S(p) = T (p) = ∗ for p > k, taking the compo-
sition product S ◦ T in Sseq(Sp), and applying r(k)∗.

Proof. By the above discussion, Sseq⩽k(Sp) is a localization of Sseq(Sp). By [24,
Prop. 2.2.1.9], the∞-category Sseq⩽k(Sp) will inherit a monoidal structure such that
the restriction r(k)∗ is monoidal if the following condition holds: LetX → Y be a map
of symmetric sequences that induces an equivalence in arity i for every i ⩽ k. Then
for any symmetric sequence Z, the induced maps X ◦ Z → Y ◦ Z and Z ◦X → Z ◦ Y
also induce equivalences in every arity below k. This condition holds in the case at
hand since below arity k, the contribution of X to the symmetric sequences X ◦ Z
and Z ◦X only involves term X(i) for i ⩽ k, and similarly for Y .
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Uniqueness comes from the fact that the functor r(k)∗ is surjective on objects.
Indeed, given S ∈ Sseq⩽k(Sp), the symmetric sequence S̃ with S̃(p) = S(p) for p ⩽ k

and S̃(p) = ∗ for p > k hits S. Since r(k)∗ is monoidal, the monoidal structure on
Sseq⩽k(Sp) must be given as described in the Lemma statement.

Lemma 3.3. The monoidal structure on Sseq⩽k(Sp) commutes with sifted colimits
in each variable.

Proof. Since Sseq⩽k(Sp) is a localization of Sseq(Sp), it suffices to show the result for
Sseq(Sp). The monoidal structure on symmetric sequences is defined using composi-
tion in FunCAlg(PrL)(Sseq(Sp),Sseq(Sp)), where Sseq(Sp) is viewed with its symmetric
monoidal structure by Day Convolution. Sifted colimits of symmetric monoidal func-
tors are computed on their underlying functors, since Sp is ⊗-presentable.

Convention 3.4. In analogue with Convention 2.4 We denote the ∞-category of
nonunital, reduced monoid objects in Sseq⩽k(Sp) by Oprd⩽k and the ∞-category of
nonunital, reduced comonoid objects by CoOprd⩽k.

By Lemma 3.2, the ∞-category Sseq⩽k(Sp) has a monoidal structure. Moreover,
Sseq⩽k(Sp) has limits and colimits. By Theorem 2.17, we have a bar-cobar adjunction.
Note that Theorem 2.17 does not require any compatibility between the monoidal
structure and certain limits or colimits. Let Bar⩽k = BarSseq⩽k(Sp)

and similarly set

Cobar⩽k = CobarSseq⩽k(Sp)
. We will need the analogue of Theorem 2.20 for Sseq⩽k(Sp).

Theorem 3.5. The bar and cobar constructions

Bar⩽k : Oprd
aug
⩽k ⇄ CoOprdaug⩽k :Cobar⩽k

define an equivalence of categories.

In particular, for any such monoid Q, there is an equivalence Cobar⩽kBar⩽kQ ≃ Q.

Proof. By Lemma 3.1, the restriction functor r(k)∗ commutes with geometric real-
izations and totalizations of cosimplicial objects. By Lemma 3.2, the functor r(k)∗ is
monoidal. Thus r(k)∗ commutes with the bar and cobar constructions. Explicitly, by
[24, Ex. 5.2.3.11], we have an equivalence of cooperads, Bar⩽k(r(k)

∗O) ≃ r(k)∗Bar(O)
and an equivalence of operads, Cobar⩽k(r(k)

∗P) ≃ r(k)∗Cobar(P). By Theorem 2.20,
CobarBar ≃ Id. Thus we have equivalences,

Cobar⩽kBar⩽kQ ≃ Cobar⩽kBar⩽k(r(k)
∗r(k)∗Q)

≃ r(k)∗CobarBar(r(k)∗Q)

≃ r(k)∗r(k)∗Q.

Since r(k)∗r(k)∗ ≃ Id, we have r(k)∗r(k)∗Q ≃ Q.

By Lemma 3.2, the restriction functor r(k)∗ induces functors on monoid and
comonoid objects,

r(k)∗ : Oprd→ Oprd⩽k, (5)

r(k)∗ : CoOprd→ CoOprd⩽k. (6)

By Lemma 3.1, the underlying restriction functor admits a right and left adjoint.
Applying [24, Cor. 7.3.2.7], these lift to the level of monoid and comonoid objects,
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respectively. Let r(k)∗ denote the right adjoint to (5) and r(k)♭ the left adjoint to (6).
The following is [21, Thm. 4.5].

Theorem 3.6 (Heuts). Restriction r(k)∗ : Oprd→Oprd⩽k admits a left adjoint r!(k).

To show that the restriction functor, r(k)∗, on comonoid objects admits a right
adjoint, we need CoOprd⩽k to be presentable. This follows from a more general result.
The proof of which uses similar techniques to Proposition 2.12, and should be com-
pared to the proof of [26, Prop. 3.1.3] applied to associative, rather than commutative,
algebras. Again, the reader should note that what we refer to as (co)monoid objects
are called (co)algebra objects by Lurie.

Proposition 3.7. Suppose D is a monoidal category which is presentable, and that
the monoidal structure commutes with filtered colimits. Then, the category of como-
noid objects, CoMon(D), is presentable.

Proof. By [24, Cor. 3.2.2.5], CoMon(D) has all colimits. It therefore suffices to show
that it is accessible. By [24, Prop. 4.1.2.10], the monoidal structure onD is determined
by a functor ∆op → Cat∞, given informally by [n] 7→ D×n. This functor classifies a
Cartesian fibration q : D⊗ → ∆. The category CoMon(D) may be identified with the
category of sections of q which send inert morphisms in ∆ to q-Cartesian morphisms in
D⊗. Since D is accessible, [25, Prop. 5.4.7.11] implies that CoMon(D) is accessible.

Corollary 3.8. The category CoOprd⩽k is presentable.

Proof. By Lemma 3.3, we can apply Proposition 3.7 to Sseq⩽k(Sp).

Corollary 3.9. The restriction functor r(k)∗ on comonoid objects admits a right
adjoint r(k)♯.

Definition 3.10. Let O ∈ Oprd. Define a filtration of O in Oprd

O → · · · → O⩽k → O⩽k−1 → · · ·

by O⩽k = r(k)∗r(k)
∗O.

The above filtration of operads is considered in [27, Def. 4.1], [18, Eq. 3.5], and in
[21], where O⩽k is referred to as the “k-truncation.”

We can define a similar filtration on right modules over an operad O. The restric-
tion r(k) induces a functor (−)⩽k on right O-modules in Sp, by Lemma 3.2. The
underlying symmetric sequence of the right module M⩽k obtained from a right mod-
ule M agrees with M up to arity k and is zero above. The module maps agree with
those of M or are projections. This filtration M⩽• of right O-modules is considered
in the proof of [10, Prop. 6.1]. We will use this filtration in §6 below.

Definition 3.11. Let P ∈ CoOprd. Define a filtration of P in CoOprd

P → · · · → P⩽k → P⩽k−1 → · · ·

by P⩽k = r(k)♯r(k)
∗P.

Example 3.12. For any O ∈ Oprd, we have an equivalence of operads O⩽1 ≃ Otriv

which defines a canonical augmentation of O. For any P ∈ CoOprd, we have an equiv-
alence of cooperads P⩽1 ≃ Otriv under which the map P → P⩽1 is identified with the
counit η : P → Otriv.
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Convention 3.13. By Example 3.12, nonunital, reduced operads are canonically
augmented. We regard objects O ∈ Oprd as augmented via this augmentation.

Theorem 3.14. Let O ∈ Oprd. There is an equivalence of filtrations in CoOprd

Bar(O⩽•) ≃ (Bar(O))⩽•
.

Proof. As argued in the proof of Theorem 3.5, we have an equivalence of cooperads
Bar⩽k(r(k)

∗O) ≃ r(k)∗Bar(O). We show that for Q ∈ Oprd⩽k, there is an equivalence
of operads Cobar(r(k)♯Q) ≃ r(k)∗Cobar⩽k(Q) by showing that the two operads in Sp
corepresent the same functor. Let R ∈ Oprd be a test object. We have a string of
equivalences,

HomOprd(R,Cobar(r(k)♯Q)) ≃ HomCoOprd(BarR, r(k)♯Q)
≃ HomCoOprd⩽k

(r(k)∗BarR,Q)
≃ HomCoOprd⩽k

(Bar⩽k(r(k)
∗R),Q)

≃ HomOprd⩽k
(r(k)∗R,Cobar⩽kQ)

≃ HomOprd(R, r(k)∗Cobar⩽kQ)

so that Cobar(r(k)♯Q) ≃ r(k)∗Cobar⩽k(Q), as desired.
Finally, we show that Bar(O⩽k) ≃ (Bar(O))⩽k. By Theorem 2.20, it suffices to

show that there is an equivalence after applying Cobar; in other words, that there is
an equivalence of augmented operads CobarBar(O⩽k) ≃ Cobar(Bar(O))⩽k. Note that
by Theorem 2.20, there is an equivalence CobarBar(O⩽k) ≃ O⩽k and by Theorem 3.5,
there is an equivalence Cobar⩽kBar⩽k(Q) ≃ Q for any nonunital, reduced augmented
monoid in Sseq⩽k(Sp). We have a string of equivalences,

Cobar(Bar(O))⩽k ≃ Cobar (r(k)♯r(k)
∗(Bar(O)))

≃ r(k)∗Cobar⩽kBar⩽k(r(k)
∗O)

≃ r(k)∗r(k)
∗O

≃ O⩽k.

Thus there is an equivalence O⩽k ≃ CobarBar(O⩽k) ≃ Cobar(Bar(O))⩽k and hence,
for every k, an equivalence Bar(O⩽k) ≃ (Bar(O))⩽k.

4. Induced filtration on algebras

In this section, we define a filtration on algebras over an operad induced from
the filtration in Definition 3.10. The goal of this section is to prove that the bar
construction sends this induced filtration to a filtration on coalgebras induced from
the filtration in Definition 3.11.

Convention 4.1. Throughout this section, O will be an object in Oprd and A will
be a O-algebra in V.

Recall from Definition 3.10 that we have a filtration O⩽• in Oprd. For each k, let
rk : O → O⩽k denote the map in the filtration. Then rk induces an adjunction

(rk)! : AlgO(V) ⇄ AlgO⩽k
(V) : r∗k.
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Definition 4.2. Define a filtration of the O-algebra A by O-algebras

A→ · · · → ρkA→ ρk−1A→ · · ·

with ρkA := r∗k(rk)!A.

Remark 4.3. For V = Sp, the filtration ρ•A is considered in [27], [22], [13], and
[18]. In [27, Thm. 4.3] and [18, Rmk. 1.14] the filtration ρ•A is identified with the
Goodwillie filtration of the identity on O-algebras, ρ•A ≃ (P•Id)A. Moreover, by [18,
Thm. 1.12], if A is 0-connected, then the Goodwillie filtration ρ•A converges.

Let P ∈ CoOprd. Recall from Definition 3.11 that we have a filtration P⩽• in
CoOprd. For each k, let sk : P → P⩽k denote the map in the filtration. Using the
equivalence of Theorem 3.14, the morphism sk agrees with the morphism Bar(rk).
Then sk induces an adjunction

s♭k : CoAlg
dp,nil
P (V) ⇄ CoAlgdp,nilP⩽k (V) : (sk)♯.

Definition 4.4. Let C be a P-coalgebra in V. Define a filtration of C by P-coalgebras

C → · · · → τ⩽kC → τ⩽k−1C → · · ·

with τ⩽kC := (sk)♯s
♭
kC.

Remark 4.5. By [21, Lem. C30], the filtration τ⩽•(−) converges for any P-coalgebra.

Example 4.6. Take k = 1. Then ρ1A is equivalent to the trivial O-algebra on the
cotangent complex, ρ1A ≃ ϵ∗ϵ!A. Indeed, by Example 3.12, we have an equivalence
O⩽1 ≃ Otriv under which r1 corresponds to the augmentation map ϵ. According to
the definitions in Example 2.10, ϵ!A ≃ LA and ϵ∗(LA) is the trivial O-algebra.

Similarly, P⩽1 is equivalent to Otriv, which identifies s1 with the counit η. Thus
τ⩽1C ≃ η♯η

♭C is the cofree P-coalgebra on the underlying object of C.

We would like to identify the image of the filtration ρ•A under the bar construc-
tion. To do so, we will need to know when the functors BarO and CobarBar(O) are
equivalences. In [16, Conj. 3.4.5], it is conjectured that there are equivalences

BarO : AlgnilO (V) ⇄ CoAlgdp,nilBar(O)(V) :CobarBar(O). (7)

For V = Sp, the conjecture was proven in the 0-connective case in [11, Thm. 1.2].
Following [18, Rmk. 1.4], we call a spectral operad O (−1)-connected if, for each
arity n, the spectrum O(n) is (−1)-connected. An O-algebra A in Sp is 0-connected
if the underlying spectrum of A is 0-connected.

Theorem 4.7 (Ching–Harper). Let O be a nonunital, reduced, augmented, (−1)-
connected operad in Sp. Then the bar construction on AlgO(Sp) restricts to an equiv-
alence on 0-connected objects.

We offer an independent proof of part of Theorem 4.7 below, see Corollary 6.8.
We will also use the following special case of (7) which is proven in [21, Prop. 6.9].

Proposition 4.8 (Heuts). Let O ∈ Oprd. For any k, the bar and cobar constructions

BarO⩽k
: AlgO⩽k

(Sp) ⇄ CoAlgnil,dpBar(O⩽k)
(Sp) :CobarBar(O⩽k)

define an equivalence of categories.
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In particular, for A ∈ AlgO⩽k
(Sp), there is an equivalence CobarBar(O⩽k)BarO⩽k

A ≃
A.

We will need the following in the proof of Lemma 4.10 and Corollary 6.6.

Lemma 4.9. Let O ∈ Oprd be (−1)-connected, A be a 0-connected O-algebra in Sp,
and M be a d-connected right O-module in Sp. Then BarO is (−1)-connected, BarOA
is 0-connected, and BarOM is d-connected.

Proof. The bar construction BarOA is given by the geometric realization of a simpli-
cial object |Bar•(1,O, A)|. Since 1 and O are (−1)-connected and A is 0-connected,
each term 1 ◦ O◦• ◦A is 0-connected. By [24, Cor. 1.2.1.6], the geometric realiza-
tion of a simplex whose terms are each 0-connected, is 0-connected. Applying [24,
Cor. 1.2.1.6] to the bar complexes defining BarO and BarOM completes the proof in
the other cases.

Lemma 4.10. Let O ∈ Oprd be (−1)-connected. Let A be a 0-connected O-algebra in
Sp. For any k, the Bar(O)-coalgebras BarO(ρkA) and τ⩽k(BarOA) are 0-connected.

Proof. By Lemma 4.9, the coalgebra BarO(A) takes 0-connected O-algebras to 0-
connected coalgebras. Thus it suffices to show that ρk and τ⩽k preserve 0-connected-
ness. The fact that ρkA is 0-connected is part of [18, Prop. 4.33]. Let P = Bar(O)
and let C be a 0-connected P-coalgebra. By Lemma 2.15, τ⩽kC can be computed as
Tot(Cobar•(P,P⩽k, C)). By Lemma 4.9, the bar construction takes a (−1)-connected
operad to a (−1)-connected cooperad. Thus P is (−1)-connected. By Theorem 3.14,
the cooperad P⩽k is (−1)-connected. Let Q := P⩽k. We use the Bousfield–Kan spec-
tral sequence to compute πi(τ

⩽kC) = πi (Tot(Cobar
•(P,Q, C))). For the set-up of the

Bousfield–Kan spectral sequence in this setting, see [24, §1.2.4].
We would like to show that πi(τ

⩽kC) vanish for i ⩽ 0. Let X• denote the cosim-
plicial object X• := Cobar•(P,Q, C). By [6, Ch. X, Prop. 6.3], the Bousfield–Kan
spectral sequence has E1 page Ep,q

1 X• = NπpX
q where NπpX

q is the intersection of
the codegeneracy maps on πp,

NπpX
q = πpX

q ∩ ker(s0∗) ∩ · · · ∩ ker(sq−1
∗ ).

The spectral sequence converges to πp−qTot(X
•). To check that Tot(X•) is 0-connect-

ed, it suffices to check that Ep,q
1 X• = 0 for p ⩽ q. We prove this by induction on q.

First, we check the rather trivial case of q = 0 and then our base case of q = 1.

Take q = 0. Then we have equivalences

NπpX
0 = πpX

0 = πp(P ◦ C) = πp

(∨
i

P(i) ∧Σi
C∧i

)
.

Since P(i) is (−1)-connected for every i, and C is 0-connected, the resulting spectrum
P ◦ C is 0-connected. Thus NπpX

0 vanishes for p ⩽ 0.

Take q = 1. Then we have equivalences

NπpX
1 = πpX

1 ∩ ker(s0∗) = πp(P ◦ Q ◦ C) ∩ ker(s0∗).

The codegeneracy map s0∗ : πpX
1 → πpX

0 is induced from the counit Q → Otriv. More
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explicitly, s0 is the projection

P ◦ Q ◦ C = P ◦

(∨
i

Q(i) ∧Σi C
∧i

)
→ P ◦ (Q(1) ∧ C) ≃ P ◦ C.

The kernel of the induced map on πp is NπpX
1 = πp (P ◦ U1) where U1 is the spec-

trum U1 =
∨

i⩾2Q(i) ∧Σi C
∧i. The least connected term in the wedge sum U1 is

Q(2) ∧Σ2
C∧2. This term is 1-connected. Since P is (−1)-connected, NπpX

1 is the
pth homotopy group of a 1-connected spectrum.

Let Uq is the subset of Q◦q ◦ C given by the intersection Uq = kers0 ∩ · · · ∩ kersq

of the kernels of the counit maps on each factor of Q. Assume that Uq is (2q − 1)-
connected. Since NπpX

q = πp(P ◦ Uq), this implies that NπpX
q is the pth homotopy

group of a (2q − 1)-connected spectrum. In particular, NπpX
q = 0 for p ⩽ q.

We now prove the inductive step. The term Uq+1 is (Q ◦ Uq) ∩ ker(sq+1). The
kernel ker(sq+1

∗ ) is

ker(sq+1) =
∨
i⩾2

Q(i) ∧Σi
(Q◦q ◦ C)∧i.

Thus the intersection (Q ◦ Uq) ∩ ker(sq+1) is Uq+1 =
∨

i⩾2Q(i) ∧Σi (U
q)∧i. The least

connected term in this wedge sum is Q(2) ∧Σ2
(Uq)∧2, which is (2q+1 − 1)-connected.

This completes the inductive step.
Our inductive argument shows that NπpX

q = 0 for p ⩽ q for all q. Thus the terms
on the E1 page of the Bousfield–Kan spectral sequence that contribute to π0Tot(X

•)
all vanish. Hence, π0Tot(X

•) = 0. This proves that τ⩽kC is 0-connected for all k.

Theorem 4.11. Let O ∈ Oprd be (−1)-connected and let A be a 0-connected O-
algebra in Sp. Then there is an equivalence of filtrations of Bar(O)-coalgebras in Sp,

BarO(ρ•A) ≃ τ⩽•(BarOA).

Proof. By Lemma 4.10, BarO(ρ•A) and τ⩽•(BarOA) are both 0-connected Bar(O)-
coalgebras. By [11, Thm. 1.2], it suffices to show that there is an equivalence after
applying CobarBar(O),

CobarBar(O)BarO(ρkA) ≃ CobarBar(O)τ
⩽k(BarOA).

By Theorem 2.20, the left-hand side is equivalent to ρkA = (rk)
∗(rk)!A. By definition,

τ⩽kBarOA = (sk)♯(sk)
♭BarOA.

Using the equivalence of Theorem 3.14, sk = Bar(rk), so that we have

(sk)♯(sk)
♭BarOA = Bar(rk)♯Bar(rk)

♭BarOA.

Applying Lemma 2.23 and Corollary 2.25, we have an equivalence

CobarBar(O)Bar(rk)♯Bar(rk)
♭(BarO(A)) ≃ (rk)

∗CobarBar(O⩽k)BarO⩽k
((rk)!A).

By Proposition 4.8, there is an equivalence CobarBar(O⩽k)BarO⩽k
((rk)!A) ≃ (rk)!A.

Thus there is an equivalence

CobarBar(O)τ
⩽k(BarO(A)) ≃ (rk)

∗(rk)!A = ρkA.
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Remark 4.12. If the Francis–Gaitsgory conjecture (7) is proven true, Theorem 4.11
can be generalized from 0-connected O-algebras in Sp to homotopy pro-nilpotent O-
algebras in V, using the same proof. In order to discuss connectivity in a more general
∞-category V, one needs to assume that V has a t-structure compatible with the sym-
metric monoidal structure. If V has a t-structure, one could apply similar techniques
to those employed in [11] and to analyze whether the bar construction on AlgO(V)
is an equivalence when restricted to 0-connected O-algebras. If this generalization of
Theorem 4.7 and of Proposition 4.8 hold, then Theorem 4.11 holds over V as well.

Example 4.13. We reinterpret the result of Theorem 4.11 when k = 1. By Exam-
ple 4.6, we can identify ρ1A as the trivial augmented O-algebra on the cotangent
space, ϵ∗ϵ!A and τ⩽1BarOA as the cofree coaugmented Bar(O)-coalgebra on the under-
lying object of BarOA. Theorem 4.11 then says that the bar construction sends the
trivial augmented algebra to the cofree coaugmented coalgebra. See [16, Eq. (3.4)].

5. Factorization homology for general operads

For a general operad O, factorization homology for O will take as input a right
O-module and an O-algebra, both in V, and output an object of V. This construction
is an example of a relative tensor product, or two-sided bar construction.

Definition 5.1. Let O ∈ Oprd. Let M be a right O-module in V and A be an O-
algebra in V. The factorization homology of M with coefficients in A is the relative
tensor product

∫
M

N := M ◦O A = |Bar•(M,O, A)| which is an object of V.

Example 5.2. Let O be an operad in Sp. We compute the factorization homology of
a free O-algebra. Let M be a right O-module in V and let V ∈ V. Recall that the free
O-algebra on V is ι!V ≃ O ◦ V . There are equivalences in V,

M ◦O ι!V ≃M ◦O O ◦ V ≃M ◦ V =
⊕
p

M(p)⊗Σp
V ⊗p.

The reader should compare this to the calculation [3, Thm. 2.4.1] of the factorization
homology of a free n-disk algebra. To make these computations agree, one should
take the operad to be the little n-disks operad En and the right En-module EX

corresponding to configurations of a framed n-manifold X. See also §A.2.

Definition 5.3. Let P ∈ CoOprd. Let W be a right P-comodule in V and C be a
ind-nilpotent P-coalgebra with divided powers in V. The factorization cohomology of
W with coefficients in C is the relative cotensor product∫ W

C : = W□PK = Tot(Cobar•(W,P, C)).

We compute factorization homology and cohomology over Otriv.

Lemma 5.4. Let S be a symmetric sequence in V and T an object in V. Viewing S
as a right Otriv-module and T as a Otriv-algebra, there is an equivalence in V,∫

S

T ≃
⊕
p

S(p)⊗Σp T⊗p.

Viewing S as a right Otriv-comodule and T as a ind-nilpotent Otriv-coalgebra with
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divided powers, there is an equivalence in V,∫ S

T ≃
⊕
p

S(p)⊗Σp T⊗p.

Proof. This is true more generally, see [24, Rmk. 4.4.2.9]. The operad Otriv is the triv-
ial monoid object in Sseq(Sp). Hence the bar construction

∫
S
T = |Bar•(S,Otriv, T )|

reduces to its zeroeth space, Bar0(S,Otriv, T ) = S ◦ T . Since the cobar construction is
defined as the bar construction in the opposite category, the same proof applied to
the trivial monoid object Otriv in Sseq(Sp)op proves the second claim. Indeed, S ◦ T
for ind-nilpotent coalgebras with divided powers is defined by the same formula (4)
appearing in the Lemma statement.

5.1. Koszul duality arrow

We show that for O ∈ Oprd, M a right O-module, and A an O-algebra, there is

an arrow
∫
M

A→
∫ BarOM

BarOA. Following [1], we refer to this arrow as the Koszul
duality arrow. Our goal is to find conditions under which this arrow is an equivalence.

Convention 5.5. For convenience, in the remainder of this paper, we restrict our
attention to right (co)modules in Sp. We continue to allow (co)algebras to be in a
more general category V.

Note that this corresponds to the level of generality considered in [3]. The operad
En and the right En-module corresponding to a framed n-manifold are symmetric
sequences in the same underlying category, whereas the n-disk algebras in [3] are
allowed to exist in a more general V.

Remark 5.6. Ching has given a construction of a Koszul duality arrow using the
language of trees, [9, Eq. 7.18]. This construction applies to a left O-module, rather
than an O-algebra. Moreover, algebras are taken in Sp, rather than a general V.
Ching’s Koszul duality arrow is also discussed in [10, Prop. 6.1], where it is proven
to be an equivalence, under certain cofibrancy conditions. The proof in [10] is similar
to ours in concept, but differs in implementation. In particular, we use the language
of ∞-categories, rather than model categories.

Let C be a monoidal ∞-category acting on a presentable stable ∞-categoryM on
the left. For an ∞-category D, let TwArr(D) denote the twisted arrow ∞-category of
D. For a definition of twisted arrow∞-categories, see [23, Def. 7.29], [17, Def. 2.1], or
§5.2.1 of [24, Cons. 5.2.1.1]. Let π1 denote the functor TwArr(D)→ D and similarly
π2 : TwArr(D)→ Dop.

By [24, Ex. 5.2.2.23], the twisted arrow categories TwArr(C) and TwArr(M) are
monoidal and the action of C on M induces an action of TwArr(C) on TwArr(M).
Let Q = (O → P), a monoid object in TwArr(C), be fixed throughout the rest of this
section.

We warn the reader that our notation differs from that in [24]. In particular, what
we refer to as monoid objects, Lurie calls algebra objects. What we call AlgQ, Lurie
refers to as left modules. With this notational difficulty in mind, by [24, Ex. 5.2.2.23],
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the functors π1 and π2 induce functors

Mon(TwArr(C))→ Mon(C) Mon(TwArr(C))→ CoMon(C)op

RModQ(TwArr(C))→ RModO(C) and RModQ(TwArr(C))→ RCoModP (C)op

AlgQ(TwArr(M))→ AlgO(M) AlgQ(TwArr(M))→ CoAlgP(M)op.

Let (M → L,A→ C) ∈ RModQ(TwArr(C))× AlgQ(TwArr(M)). Apply [24, 4.4.2.7]
in the case Ca− = TwArr(C), Ca+ is trivial, Cm = TwArr(M), B = Q, and when A and
C are trivial. The result is the two-sided bar complex in TwArr(M)

B• = Bar•(M → L,O → P, A→ C). (8)

By [24, Ex. 5.2.2.23], the functors π1, π2 are monoidal, so π1B• ≃ Bar•(M,O, A) and
π2B• ≃ Cobar•(L,P, C).

Lemma 5.7. Let K be a sifted simplicial set. Let D be an∞-category that admits K-
indexed colimits. Then TwArr(D) has all D-indexed colimits and these are preserved
by π1 and π2.

In particular, the geometric realization of the complex B• of (8) exists in
TwArr(M). The resulting functor is called the relative tensor product,

T : RModQ(TwArr(C))× AlgQ(TwArr(M))→ TwArr(M).

Proof. By [24, Prop. 5.2.1.3], the map λ : TwArr(D)→ D ×Dop is a right fibra-
tion. This right fibration is classified by the functor Map: Dop ×D → Spaces, [24,
Prop. 5.2.1.11]. Thus, TwArr(D) is the pullback,

TwArr(D) //

λ

��

Spacesop∗

γ

��
D ×Dop

Mapop
// Spacesop,

where γ, the universal right fibration, is the forgetful functor. By [25, Prop. 1.2.13.8],
the functor γ preserves all colimits. The functor Mapop preserves all K-indexed col-
imits by [25, Prop. 5.1.3.2] and [25, Prop. 5.5.8.6]. By [25, Lem. 5.4.5.5], the pullback
TwArr(D) has all K-indexed colimits and the functor λ preserves them.

Corollary 5.8. Let (M → L,A→ C)∈RModQ(TwArr(C))× AlgQ(TwArr(M)). The
relative tensor product T (M → L,A→ C) determines a morphism inM

|Bar•(M,O, A)| → Tot(Cobar•(L,P, C)).

Apply the above in the case M = Sp and C = Sseq(Sp). By [24, Thm. 5.2.2.17],
O ∈ Oprd has a universal monoid object living over it in TwArr(Sseq(Sp)), which is
given by an arrow O → BarO. Similarly, using [8, Prop. 3.37], we obtain universal
lifts M → BarOM and A→ BarOA.

Definition 5.9. Let O ∈ Oprd be an operad, A be an O-algebra in V, and M a right
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O-module in Sp. The Koszul duality arrow∫
M

A→
∫ BarOM

BarOA

is the arrow from Corollary 5.8 applied to the universal objects in the twisted arrow
categories living above M,O, and A.

Example 5.10. Let O ∈ Oprd and A an O-algebra. Consider O as a right O-module.
Then we have

∫
O A = O ◦O A ≃ A. One can compare this computation to the compu-

tation of factorization homology of an En-algebra over Rn, [4, Ex. 3.18]. The Koszul
dual of the free O-algebra O is the trivial coalgebra, BarO(O) = O ◦O Otriv = Otriv.
Thus we have equivalences∫ BarOO

BarOA = Tot(Cobar•(Otriv,BarO,BarOA)) = CobarBarO(BarOA).

The Koszul duality arrow for the right O-module O is then a map of the form
A→ CobarBarO(BarOA).

We prove that the Koszul duality arrow is an equivalence for the trivial operad.

Lemma 5.11. Let S ∈ RModOtriv(Sp) and T ∈ AlgOtriv
(V). Then the Koszul duality

arrow is an equivalence, ∫
S

T
∼−→
∫ BarOtriv

S

BarOtrivT.

Proof. By Lemma 2.22, we can identify BarOtriv with the identity functor so that the

arrow in question is between
∫
S
T and

∫ S
T . By Lemma 5.4, we have an identification∫

S

T ≃
⊕
p

S(p)⊗Σp
T⊗p ≃

∫ S

T.

5.2. Bar constructions and adjoints
Proposition 5.12. Let l : O′ → O be a morphism in Oprd. Let M be a right O-
module in Sp and A an O′-algebra in V. Then there is an equivalence in V,∫

M

l!A ≃
∫
l∗M

A.

Proof. By associativity of the relative tensor product, [24, Prop. 4.4.3.14], we have
equivalences ∫

M

l!A = M ◦O (O ◦O′ A) ≃ (M ◦O O) ◦O′ A.

By [24, Prop. 4.4.3.16], we have equivalences (M ◦O O) ◦O′ A ≃ l∗M ◦O′ A.

Proposition 5.13. Let η : P → Otriv be the counit of P ∈ CoOprd. For S ∈ Sseq(Sp)
and C ∈ CoAlgP(V), there is an equivalence of objects in V,∫ η♯S

C ≃
∫ S

η♭C.
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Proof. The comodule η♯C is equivalent to C ◦ P. Thus we have equivalences∫ η♯S

C = Tot(Cobar•(η♯S,P, C)) ≃ Tot(Cobar•(S ◦ P,P, C)).

Now Cobar•(S ◦ P,P, C)← S ◦ C is a split coaugmented cosimplicial object. By [25,
Lem. 6.1.3.16] applied to the opposite ∞-category, the induced map from S ◦ C to
the totalization of the cobar complex is an equivalence,

Tot(Cobar•(S ◦ P,P, C))
∼←− S ◦ C.

Lastly, by Lemma 5.4, we have an equivalence S ◦ C ≃
∫ S

η♭V .

6. Proof of the main theorem

The Koszul duality arrow was constructed using twisted arrow categories. To prove
our result regarding when the Koszul duality arrow is an equivalence, we would like to
enhance Lemmas 2.23 and 2.26 and Propositions 5.12 and 5.13 to the level of twisted
arrow categories.

For this, we use the following notation. Let O ∈ Oprd. Let Q = (O → BarO) be the
universal monoid object in TwArr(Sseq(Sp)) living over O. Set P = BarO. Let ϵ be
the augmentation of O and η the counit of BarO. Use 1Tw to denote the unit monoid
object Id: Otriv → Otriv.

Let λ : TwArr(V)→ V × Vop and λ′ : TwArr(Sseq(Sp))→ Sseq(Sp)× (Sseq(Sp))op

be the canonical right fibrations. Let µ : AlgQ(TwArr(V))→AlgO(V)× (CoAlgP(V))op
and µ′ : RModQ(TwArr(Sseq(Sp)))→RModO(Sp)× (RCoModP(Sp))

op be the induced
pairings.

Our proofs will use the notation of right and left representable pairings [24,
Def. 5.2.1.8] and morphisms between these [24, Var. 5.2.1.16], as well as the duality
functor associated to a representable pairing, [24, Con. 5.2.1.9].

Lemma 6.1. The functors ϵ∗ on right modules and η♯ on right comodules induce a
functor

(ϵ∗, η♯) : RMod1Tw(TwArr(Sseq(Sp)))→ RModQ(TwArr(Sseq(Sp))).

The functors ϵ! on algebras and η♭ on coalgebras induce a functor

(ϵ!, η
♭) : AlgQ(TwArr(V))→ Alg1Tw

(TwArr(V)).

Proof. As in Example 2.9, there are equivalences

RMod1Tw(TwArr(Sseq(Sp))) ≃ TwArr(Sseq(Sp))

and Alg1Tw
(TwArr(V)) ≃ TwArr(V). By [8, Prop. 3.37], λ, λ′, µ, and µ′ are both left

and right representable with associated duality functors given by the appropriate
bar-cobar adjoint pair. By the universal property of twisted arrow categories, [24,
Prop. 5.2.1.18], the functors

ϵ! : AlgO(V)→ V and ηop♯ : (Sseq(Sp))op → (RCoModP(Sp))
op

define morphisms of right representable pairings µ→ λ and λ′ → µ′, respectively. By
the proof of [24, Prop. 5.2.1.18], the resulting functor, AlgQ(TwArr(V))→ TwArr(V),
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is given on O-algebras by ϵ! and on P-coalgebras by the duality functor applied to ϵ!.
By [8, Prop. 3.37], the duality functor is BarOtriv . By Lemma 2.23, BarOtriv(ϵ!) ≃ η♭.

Similarly, the resulting functor on right modules

RMod1Tw
(TwArr(Sseq(Sp)))→ RModQ(TwArr(Sseq(Sp))),

is given on right P-comodules by η♯ and right O-modules by Cobar(η♯). By Lem-
ma 2.26, Cobar(η♯) ≃ ϵ∗.

Lemma 6.2. Let TQ denote the relative tensor product functor over Q, and T1Tw

that for 1Tw. Then there is a natural isomorphism of functors

RMod1Tw(TwArr(Sseq(Sp)))× AlgQ(TwArr(V))→ TwArr(V)

between T1Tw
◦ (Id× (ϵ!, η

♭)) and TQ ◦ ((ϵ∗, η♯)× Id).

Proof. Let F = λ ◦ T1Tw
◦ (Id× (ϵ!, η

♭)) and G = λ ◦ TQ ◦ ((ϵ∗, η♯)× Id). By project-
ing onto the second factor of the twisted arrow categories, the functors F and G
determine functors π2F, π2G : Sseq(Sp)× AlgO(V)→ V. For a symmetric sequence S
and an O-algebra A, we have π2F (S,A) =

∫
S
ϵ!A and π2G(S,A) =

∫
ϵ∗S

A. By the uni-
versal property of the twisted arrow category TwArr(V), [24, Prop. 5.2.1.18], applied
to the right representable pairing λ′ × µ, the functors F and G are determined by
the functors π2F and π2G. By Proposition 5.12, π2F and π2G, and therefore F and
G, are naturally isomorphic.

Next, we identify the layer of the filtration on right modules.

Lemma 6.3. Let O ∈ Oprd and M a right O-module in Sp. Denote by M=k the
symmetric sequence M(k) concentrated in degree k. There is a fiber sequence of right
O-modules,

ϵ∗M=k →M⩽k →M⩽k−1.

Proof. Let L denote the fiber of the map M⩽k →M⩽k−1. There is a map of the
form l : L→ ϵ∗ι∗L, from L to the trivial right module on the underlying symmetric
sequence ι∗L of L. To show that the morphism l of right O-modules is an equivalence,
it suffices to show that it is an equivalence on underlying symmetric sequences. The
lemma follows from the observation that the underlying symmetric sequence of L is
M=k.

Theorem 6.4. Let O ∈ Oprd. Let A ∈ AlgO(V) and M ∈ RModO(Sp). Then the
Koszul duality arrows form an equivalence of filtrations,∫

M⩽•

A
∼−→
∫ BarO(M⩽•)

BarOA.

Proof. To show that the arrow is an equivalence of filtrations, it suffices to show that
the Koszul duality arrow restricts to an equivalence on layers.

By [24, Cor. 4.2.3.5], cofiber sequences in RModO(Sp) and fiber sequences in
RCoModBarO(Sp) are computed on underlying objects of Sseq(Sp). Thus RModO(Sp)
and RCoModBarO(Sp) are stable. This implies that the fiber sequence from Lemma 6.3
is also a cofiber sequence.
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Since Sp is ⊗-presentable, we get an induced cofiber sequence on bar complexes,

Bar•(ϵ
∗(M=k),O, A)→ Bar•(M⩽k,O, A)→ Bar•(M⩽k−1,O, A).

Taking geometric realization of simplicial complexes in Sp preserves cofiber sequences,
so that we have cofiber sequences∫

ϵ∗(M=k)

A→
∫
M⩽k

A→
∫
M⩽k−1

A

and as the special case when A is trivial,

BarO(ϵ
∗M=k)→ BarO(M⩽k)→ BarO(M⩽k−1).

Since Sp and RCoModBarO(Sp) are stable, these are also a fiber sequences. Now taking
totalizations preserves fiber sequences, so we get a (co)fiber sequence in Sp∫ BarOϵ∗(M=k)

BarOA→
∫ BarO(M⩽k)

BarOA→
∫ BarO(M⩽k−1)

BarOA.

The reader should compare the above argument with [10, Lem. 6.2].
It therefore suffices to show that the Koszul duality arrow∫

ϵ∗(M=k)

A→
∫ BarOϵ∗(M=k)

BarOA (9)

is an equivalence.
By Lemma 9, we have a commutative diagram∫

ϵ∗(M=k)
A

(9) //

≀

��

∫ BarOϵ∗(M=k) BarOA
∫ η♯BarOtriv

(M=k) BarOA
∼

2.26
oo

∫
M=k

ϵ!A
K
//
∫ BarOtriv

(M=k) BarOtriv(ϵ!A)
∼
2.23
//
∫ BarOtriv

(M=k) η♭BarOA.

≀

OO

Here we have used Lemma 2.26 and Lemma 2.23 to say that the right horizontal
arrows are equivalences, as indicated. The Koszul duality arrow K over the trivial
operad is an equivalence by Lemma 5.11. Since (9) factors through a series of equiv-
alences, it is an equivalence.

Thus the Koszul duality arrow is an equivalence on layers, and hence an equivalence
of filtrations.

Remark 6.5. Note that we cannot prove this theorem by using the filtration ρ•A since∫
M

does not take fiber sequences of O-algebras to fiber sequences.

As a corollary, we obtain the main theorem. Similar to in [3, Thm. 2.1.7], we need V
to have a t-structure [24, Def. 1.2.1.4] that is compatible with the symmetric monoidal
structure on V [24, Ex. 2.2.1.3], is cocomplete (i.e. left complete) [24, Pg. 45], and
for which V⩾0 is closed under countable products.

Corollary 6.6. Let V have a cocomplete t-structure that is compatible with the sym-
metric monoidal structure on V and for which V⩾0 is closed under countable products.
Let O ∈ Oprd be (−1)-connected and A be a 0-connected O-algebra in V. Let M be
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a right O-module in Sp that is uniformaly bounded below. Then the Koszul duality
arrow is an equivalence ∫

M

A
∼−→
∫ BarOM

BarOA.

Proof. It suffices to show that, under the additional connectivity assumptions, the

filtrations
∫
M⩽•

A and
∫ BarO(M⩽•) converge.

We would like to show that the arrow
∫
M

A→ limk

∫
M⩽k

A is an equivalence. Since

the t-structure is cocomplete, it suffices to check that the morphism to the inverse
limit |Bar•(M,O, A)| → limk |Bar•(M⩽k,O, A)| is an isomorphism on πi for all i, [24,
Def. 1.2.1.11]. Fix i. By the connectivity conditions on O and A, and the boundedness
of M , the terms of the bar complex are d-connected, for some d. By the Dold–Kan
correspondence [24, Thm. 1.2.4.1], the cofiber of the skeleta,

skp−1Bar•(M⩽k,O, A)→ skpBar•(M⩽k,O, A)→ cofib(f)

is a summand of the suspension ΣpBarp(M⩽k,O, A). This suspension is (p+ d)-
connected, since the terms of the bar complex are d-connected. Thus, for the purposes
of computing πi, we may replace the geometric realization with the (i− d)-skeleton,
which is a finite colimit. Since V is stable, limits commute with finite colimits. Thus
we have an equivalence

| lim
k

Bar•(M⩽k,O, A)|
∼−→ lim

k
|Bar•(M⩽k,O, A)|.

We are left with identifying the left-hand side with |Bar•(M,O, A)|. Fix a degree
p. Let U be O◦p ◦A. Note that by the connectivity assumptions on O and A, and
the compatibility of the t-structure with the monoidal structure, the object U is
0-connected. We may compute limk M⩽k ◦ U as follows,

lim
k

M⩽k ◦ U = lim
k

⊕
j

M⩽k(j)⊗Σj
U⊗j

 =
∏
j

M(j)⊗Σj
U⊗j .

Since U is 0-connected, and the t-structure is compatible with the monoidal structure,
the terms U⊗j become increasingly connected as j increases. By the boundedness
condition on M , this increasing connectivity is not counteracted by tensoring with
M(j). By our assumptions on the t-structure of V, the fiber of the map from the
coproduct to the product is infinitely connected, and hence zero, [24, Prop. 1.2.1.19].
Thus, we may identify the product with the coproduct,

M ◦ U =
⊕
j

M(j)⊗Σj
U⊗j ≃

∏
j

M(j)⊗Σj
U⊗j .

This completes the proof that
∫
M⩽k

A converges to
∫
M

A.

Consider the morphism of right comodules BarOM → limk BarO(M⩽k). It suffices
to show that this map if an equivalence on underlying symmetric sequences. For this,
we may check one arity at a time. That the arrow is an equivalence now follows from
the fact that inn fixed arity, the filtration M⩽k is eventually constant.
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Now,
∫ BarO(M⩽•) BarOA is given by the totalization of a cobar complex. Totaliza-

tion commutes with limits, so it remains to show that the arrow

Cobar•(BarOM,BarO,BarOA)→ lim
k

Cobar•(BarOM⩽k,BarO,BarOA), (10)

is an equivalence. Since the t-structure on V is compatible with the tensor product,
the proof of Lemma 4.9 applies to give that BarO is (−1)-connected and BarOA is 0-
connected. Thus, for fixed p, the object U ′ = (BarO)◦p ◦ BarOA is 0-connected. Since
M is uniformaly bounded below, by Lemma 4.9, BarO(M⩽k) is uniformaly bounded

below for each k. Since the action (4) of Sseq(Sp) on V defining CoAlgdp,nilO (V) is the
same as that for algebras, we may reason as we did for moving the limit inside the
bar complex to say that (10) is an equivalence.

Remark 6.7. Since we are only considering modules and algebras valued in a stable
∞-category, we can recover results about operads in Spaces from the corresponding
results about operads in Sp. In particular, taking O to be the operad in Sp obtained by
taking suspension spectra in each arity of an operad O′ in Spaces, Theorem 6.4 implies
that the Koszul duality arrow for O′ is an equivalence (under the corresponding
conditions).

For the right O-module O of Example 5.10, Corollary 6.6 gives the following.

Corollary 6.8. Let O ∈ Oprd be (−1)-connected and let A be a 0-connected O-algebra
in V. Then the Koszul duality arrow is an equivalence A→ CobarBarO(BarOA).

Remark 6.9. Note that the connectivity assumptions on O and A in Corollary 6.8 are
the same as those in Theorem 4.7. As Corollary 6.8 is a special case of the Koszul
duality arrow being an equivalence, one would not expect Corollary 6.6 to hold for
a larger class of algebras without a more general version of the Francis–Gaitsgory
conjecture (7) being proven.

Corollary 6.6 may also be applied to the filtration of algebras in Theorem 4.11.

Corollary 6.10. Take V = Sp. Let O, A, and M as in Corollary 6.6. Then the Koszul
duality arrow factors through an equivalence of filtrations∫

M

ρ•A→
∫ BarO(M)

τ⩽•(BarOA).

Appendix A. Factorization homology as a coend

The point of this section is to show that our notion of factorization homology over
a general operad agrees with the notion considered in [1, Rmk. 3.3.4]. We do this by
computing the factorization homology of a free algebra over a general operad using the
definition of factorization homology as defined in [1, Rmk. 3.3.4]. This construction is
an example of a coend. We begin by discussing general results about ends and coends
and then specialize to factorization homology.

A.1. Preliminaries on ends and coends
To define the (co)end for ∞-categories, we will use the notion of twisted arrow

∞-categories. The following is [23, Def. 7.31] or [17, Def. 2.2].



POINCARÉ/KOSZUL DUALITY FOR GENERAL OPERADS 27

Definition A.1. Let C and D be ∞-categories. Let F : Cop × C → D be a functor.
The coend of F is the colimit over the twisted arrow ∞-category,

coendCF : = colim
(
TwAr(C)op → Cop × C F−→ D

)
,

where we have used the identification (Cop × C)op ≃ Cop × C. The end of F is the
limit over the twisted arrow ∞-category,

endCF : = lim
(
TwAr(C)op → Cop × C F−→ D

)
.

Definition A.2. Let C be an ∞-category and D a symmetric monoidal ∞-category.
LetX : Cop → D and Y : C → D be functors. The tensor ofX and Y , denotedX

⊗
C Y

is the coend of X ⊗ Y : Cop × C → D. The cotensor of X and Y , denoted X□CY is
end of X ⊗ Y : Cop × C → D.

The following, which describes how the tensor of functors interacts with left Kan
extensions, is [17, Prop. 2.4].

Proposition A.3. Let C, C′ be ∞-categories and D a symmetric monoidal ∞-catego-
ry. Let j : C′ → C be a functor. Let j∗ denote the restriction Fun(C,D)→ Fun(C′,D)
from C to C′ and let j! denote the left Kan extension along j. For functors X : Cop → D
and Y : C′ → D, there is an equivalence of objects in D,

X
⊗
C

j!Y ≃ j∗X
⊗
C′

Y.

In [1, Rmk. 3.3.4], factorization homology over an operad O in Spaces is defined
as a coend over the symmetric monoidal envelope Env(O) of O. Let M be a right
O-module and A an O-algebra, both valued in V. In our terminology, that means that
M is a symmetric sequence in V together with a map M ◦ O → O and A is an object
of V with a map O ◦A→ O. In the setting used in [1], the right O-module M is
viewed as a functor M̃ : Env(O)op → V. The functor M̃ sends an object n ∈ Env(O)
to M(n) ∈ V. Similarly, in the setting used in [1], the O-algebra A is viewed as a
symmetric monoidal functor Ã : Env(O)→ V with Ã(n) = A⊗n. In [1], the symbol∫
M̃

Ã is used to denote the coend

coend
(
(Env(O))op × Env(O) M⊗A−−−−→ V

)
.

We would like to check that factorization homology over an operad O, as defined in
Definition 5.1, agrees with the coend just described. To do so, we compute the coend
for the operad Otriv. The analogous computation using Definition 5.1 is Lemma 5.4.

Lemma A.4. Let S be a symmetric sequence in V and T an object in V. View S as
a right Otriv-module and T as a Otriv-algebra. There is an equivalence in V,

S
⊗

Env(Otriv)

T ≃
⊕
p

S(p)⊗Σp
T⊗p.

Proof. By definition, S
⊗

Env(Otriv)
T is the coend over Env(Otriv) of S ⊗ T . One can

identify Env(Otriv) with Finbij. Under this identification, the coend in question becomes
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a coend over Finbij. By definition, the coend is a colimit over the twisted arrow ∞-
category,

S
⊗
Finbij

T = colim
(
TwAr(Finbij)op → (Finbij)op × Finbij

S⊗T−−−→ V
)
.

For any ∞-groupoid G, there are equivalence TwAr(G) ≃ G ≃ Gop. In particular, for
the ∞-groupoid Finbij, the twisted arrow ∞-category splits as a coproduct of ∞-
categories, TwAr(Finbij) ≃ Finbij ∼

∐
p BΣp. Hence the colimit of interest splits as a

direct sum,

colim
(
TwAr(Finbij)→ (Finbij)op × Finbij

S⊗T−−−→ V
)

≃
⊕
p

colim
(
BΣp → (Finbij)op × Finbij

S⊗T−−−→ V
)
.

The functor

BΣp → (Finbij)op × Finbij
S⊗T−−−→ V

factors through (BΣp)
op ×BΣp. Tracing through the identifications, the functor

BΣp → (BΣp)
op ×BΣp is simply the one induced from the morphism of groups

σ 7→ (σ−1, σ). By definition, the colimit can be identified with the coinvariants,

colim

(
BΣp → (BΣp)

op ×BΣp
S(p)×T (p)−−−−−−−→ V

)
≃ S(p)⊗Σp

T (p).

Thus S
⊗

Finbij T ≃
⊕

p S(p)⊗Σp T (p) and the lemma follows.

Remark A.5. We check that our notion of factorization homology over O agrees with
the definition in [1, Rmk. 3.3.4] in the case that O is an operad in spaces. We restrict
to operads in spaces since, at the time of writing, there does not exist a developed
theory of symmetric monoidal envelopes of operads in more general ∞-categories.

Note that every O-algebra has a resolution by free O-algebras. As is done for the
little disks operad in [3, Lem. 2.5.2], one can show this using the∞-categorical Barr–
Beck theorem [24, Thm. 4.7.3.5]. Say A ≃ |ι!V•|. Since both the coend

∫
M̃
(−) and the

relative tensor product M ◦O (−) commute with sifted colimits, it suffices to check
that the two notations agree on free O-algebras. By Example 5.2, we have

M ◦O ι!V ≃
⊕
p

M(p)⊗Σp
V ⊗p.

By Proposition A.3 combined with the computation of Lemma A.4, the coend of M̃
and Ã is

∫
M̃

Ã ≃
⊕

p M(p)⊗Σp
A⊗p.

Let P be a cooperad in spaces. One can similarly identify factorization cohomology
for P as defined in [1] as an cotensor with the definition used here.

A.2. The little disks operad
In this section, we discuss the Koszul duality arrow used in [1] and [3]. We describe

differences between their approach and our approach applied to the little disks operad.
Let Enun be the nonunital little n-disks operad. The monoidal envelope of Enun is

equivalent to the∞-category of framed n-disks, see [2, Ex. 2.10] or [24, Rmk. 5.1.0.5].
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One can therefore reconstruct factorization homology of a framed n-manifold M as
the Enun factorization homology of the right Enun -module EM ,∫

M

(−) ≃ EM ◦Enu
n

(−).

Here, the underlying symmetric sequence of EM is EM (i) = Confi(M).
The main question addressed in [3] is when the Poincaré/Koszul duality arrow∫

M∗

A→
∫ (M∗)

¬

Bar(n)A

is an equivalence. Here, Bar(n) is an iterated bar construction. The identification of
BarEnu

n
(−) with an iterated bar construction can be found in [24, §5.2].

In order to identify the Poincaré/Koszul duality arrow studied in [3] with the
Koszul duality arrow for Enun factorization homology, one would need to use the
self-Koszul duality (up to a shift) of Enun , which was recently proven by Ching and
Salvatore, [12]. Under such an identification, one would need to understand how our
definition of the Koszul duality arrow relates to that in [1, §3.1], and how EM∗ relates
to E(M∗)¬ .

In [3], the Poincaré/Koszul duality arrow is shown to be an equivalence by factoring
the map through a filtration of equivalences,

P•

∫
M∗

A
∼−→ τ⩽•

∫ (M∗)
¬

Bar(n)A. (11)

The filtration on the left is a Goodwillie filtration. The filtration on the right is
referred to as the cardinality filtration. It would be interesting to study the relation-
ship between the filtrations used in [3] and the filtrations (−)⩽•, ρ•, and τ⩽•.
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