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Abstract
Let Ng be the mapping class group of a non-orientable closed

surface. We prove that the proper cohomological dimension,
the proper geometric dimension, and the virtual cohomological
dimension ofNg are equal whenever g �= 4, 5. In particular, there
exists a model for the classifying space of Ng for proper actions
of dimension vcd(Ng) = 2g − 5. Similar results are obtained for
the mapping class group of a non-orientable surface with bound-
aries and possibly punctures, and for the pure mapping class
group of a non-orientable surface with punctures and without
boundaries.

1. Introduction

Let G be a group. In the literature we can find several notions of dimension defined
for G. In the present paper we are mainly interested in the proper geometric dimension
gd(G), the proper cohomological dimension cd(G), and the virtual cohomological
dimension vcd(G) of G (provided G is virtually torsion free).

Let F be the family of finite subgroups of G. A model for the classifying space
of G for proper actions EG is a G-CW-complex X such that the fixed point set XF

is empty if F /∈ F and contractible otherwise, in particular, XF is non-empty if F
is a finite subgroup of G. Such a model always exists and is unique up to proper
G-homotopy. The proper geometric dimension of G, denoted gd(G), is the minimum
n for which there exists an n-dimensional model for EG.

On the other hand, we have the so-called restricted orbit category OFG, which has
as objects the homogeneous G-spaces G/H, H ∈ F , and morphisms are G-maps. A
OFG-module is a contravariant functor from OFG to the category of abelian groups,
and a morphism between two OFG-modules is a natural transformation of the under-
lying functors. Denote by OFG-mod the category of OFG-modules. It turns out that
OFG-mod is an abelian category with enough projectives. Thus we can define a G-
cohomology theory for G-spaces H∗

F (−;M) for every OFG-module M (see [MV03,
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p. 7]). The proper cohomological dimension of G—denoted cd(G)—is the largest
non-negative n ∈ Z for which the cohomology group Hn

F (G;M) = Hn
F (EFG;M) is

nontrivial for some M ∈ OFG-mod. Equivalently, cdF (G) is the length of the short-
est projective resolution of the constant OFG-module ZF , where ZF is given by
ZF (G/H) = Z, for all H ∈ F , and every morphism of OFG goes to the identity func-
tion.

The cohomological dimension cd(H) of a group H is the length of shortest projec-
tive resolution, in the category of H-modules, for the trivial H-module Z. Provided
G is virtually torsion free, this is, that G contains a torsion free subgroup H of finite
index, the virtual cohomological dimension of G is defined to be vcd(G) = cd(H). A
well-known theorem of Serre stablishes that vcd(G) is well defined, that is, it does
not depend on the choice of the finite index torsion free subgroup H of G (see for
example [Bro94, p. 190]).

For every group G, by [BLN01, Theorem 2] we have the following inequalities

vcd(G) � cd(G) � gd(G) � max{3, cd(G)}. (1)

As a consequence, if cd(G) � 3, then cd(G) = gd(G). Moreover, the only possible
scenario where cd(G) might be non-equal to gd(G), is provided by the existence of
a group G with cd(G) = 2 and gd(G) = 3. The first inequality in (1) may be strict
as proved in [LN03, LP17, DS17]. Also the second inequality may be strict, this is
known as the (generalized) Eilenberg–Ganea problem. Examples of groups for which
the second inequality is strict are constructed in [BLN01, LP17, SSn20a].

On the other hand, the vcd(G) is known to be equal to cd(G) for the following
classes of groups: elementary amenable groups of type FP∞ [KMPN09], SLn(Z)
[Ash84], Out(Fn) [Vog02], the mapping class group of any orientable surface with
boundary components and punctures [AMP14], any lattice in a classical simple Lie
group [ADMPS17], any lattice in the group of isometries of a symmetric space of
non-compact type without Euclidean factors [Lac19], groups acting chamber transi-
tively on a Euclidean building [DMP16], and groups satisfying properties (M), (NM)
and that admit a cocompact model for EG [SSn20b].

Let N b
g,n denote the connected non-orientable surface of genus g with n dis-

tinguished points (also called punctures) and b boundary components. The map-
ping class group Mcg(N b

g,n) = N b
g,n of N b

g,n is the group of isotopy classes of self-

homeomorphisms of N b
g,n which take the set of distinguished points to itself and

fix the boundary components pointwise. For an orientable surface Sb
g,n of genus g

with n distinguished points and b boundary components, the mapping class group
Mcg(Sb

g,n) = Γb
g,n is defined similarly but now considering only orientation preserv-

ing homeomorphisms. For n � 1, the pure mapping class group of N b
g,n, denoted

PN b
g,n, is the subgroup of N b

g,n of elements that fix pointwise the set of punc-
tures.

Whenever we consider a surface without punctures or boundaries, we will omit
the corresponding index from the notation. For instance, Ng,n is the surface with n
punctures and genus g without boundary components, and Ng,n is its corresponding
mapping class group.

In [AMP14] Aramayona and Mart́ınez-Pérez proved that, for all g � 0,

cd(Γg) = gd(Γg) = vcd(Γg).
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Moreover, since Sb
g,n is torsion free for b > 0, Aramayona and Mart́ınez-Pérez obtained

as a corollary of their theorem that, for all b, g, n � 0,

cd(Γb
g,n) = gd(Γb

g,n) = vcd(Γb
g,n).

In the present paper we obtain the analogue of Aramayona and Mart́ınez-Pérez
theorem for the non-orientable case. We closely follow their strategy. Our main result
is the following.

Theorem 1.1. Let g � 1. If g �= 4, 5, then

vcd(Ng) = cd(Ng) = gd(Ng).

The first natural thing to notice out of our main theorem is that we are excluding
the case g = 4, 5. We do not know whether the conclusion of the main theorem holds
in these cases. Anyway, we obtained the following theorem.

Theorem 1.2.

3 = vcd(N4) � cd(N4) � vcd(N4) + 3 = 6

and

5 = vcd(N5) � cd(N5) � vcd(N5) + 1 = 6.

The following corollary is a straightforward consequence of Theorem 1.1 and the
definition of gd(Ng), but we include it for completeness.

Corollary 1.3. There exists a model for ENg of dimension

vcd(Ng) =

{
0 if g = 1, 2,

2g − 5 if g = 3 or g � 6.

Moreover, this is the minimal dimension possible for a model of ENg.

As a remark, we do not know if the model in the statement of Corollary 1.3 can be
realized as a subspace of the Teichmüller space described in [PP16], i.e. we do not
know whether the Teichmüller space of Ng has a spine of dimension vcd(Ng).

In the case we have a surface Ng,n with n � 1 we obtained the following result as
a consequence of Theorem 1.1 and Theorem 1.2.

Theorem 1.4. Let n � 1.

1. If g = 1, 2, 3 or g � 6, then gd(PNg,n) = cd(PNg,n) = vcd(PNg,n).

2. If g = 4, then vcd(PNg,n) � gd(PNg,n) � vcd(PNg,n) + 3.

3. If g = 5, then vcd(PNg,n) � gd(PNg,n) � vcd(PNg,n) + 1.

Note that the previous theorem deals with the pure mapping class group of N b
g,n

rather than the full mapping class group. See Section 7 for more details.
Finally, in the case we have at least one boundary component we have the following

result.

Theorem 1.5. If b � 1, then vcd(N b
g,n) = cd(N b

g,n) = gd(N b
g,n).
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The present paper is organized as follows. In Section 2 we state Theorem 2.1, which
is the criterion we will use in order to prove Theorem 1.1. Also in Section 2 we set up
our main technical tools such as the Nielsen realization theorem for non-orientable
surfaces, explicit computations of vcd(N b

g,n) and vcd(Γb
g,n), the Riemann–Hurwitz

formula, and a computation of the vcd of the Weyl group of a finite subgroup F of
Ng in terms of the vcd of certain mapping class groups. In Section 3 we state and
prove several inequalities that will be crucial in the proof of the main theorem. In
Sections 4 and 5, we verify the hypothesis of Theorem 2.1 when the orbifold Ng/F is
non-orientable and orientable respectively. In Section 6 we prove all the results stated
in this introduction. Finally, in Section 7 we state some questions that arise naturally
from the statements of our theorems.
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2. Preliminaries

2.1. Aramayona and Mart́ınez-Pérez criterion

Let F be a finite subgroup of G. We denote NG(F ), and WG(F ) = NG(F )/F the
normalizer, and the Weyl group of F respectively. If there is no risk of confusion we
will omit the parenthesis and subindices, i.e. we will use the notation NF , and WF .

The length λ(F ) of a finite group F is the largest i � 0 for which there is a sequence

1 = F0 < F1 < · · · < Fi = F.

The following theorem is a mild generalization of [AMP14, Theorem 3.3], and the
proof is exactly the same as in the Aramayona and Mart́ınez-Pérez reference.

Theorem 2.1. Let G be a virtually torsion free group and let m � 0. Assume that
for any F � G finite, vcd(WG(F )) + λ(F ) � m. Then cd(G) � m. In particular, if
m = vcd(G), then cd(G) = vcd(G).

The proof of our main theorem will be based on verifying the hypothesis of Theo-
rem 2.1 when G = Ng.

2.2. Nielsen realization theorem

An important result in the study of mapping class groups is the Nielsen realization
theorem, it responds affirmative to the question of whether a finite group of the
mapping class group of a surface arises as a group of isometries of some hyperbolic
structure. In the literature, the theorem is usually enunciated for orientable surfaces
(see [Ker83] and [FM12, Theorem 7.2] ) but, of course is also valid for non-orientable
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ones (see [Ker83, Remark on p. 256]). In this work we need the version for non-
orientable surfaces and for the sake of completeness we state it here. Denote the
Euler characteristic of the surface N by χ(N).

Theorem 2.2. Let N = Ng,n non-orientable and suppose χ(N) < 0. Suppose that

F � Ng,n is a finite group. Then there exists a finite group F̃ � Homeo(N) so that
the natural projection

Homeo(N) −→ Ng,n

restricts to an isomorphism

F̃ −→ F.

Further, F̃ can be chosen to be a subgroup of isometries of some hyperbolic metric of
N .

2.3. Virtual cohomological dimension of mapping class groups
In [Har86] Harer computed the virtual cohomological dimension of an orientable

surface with punctures and boundary components. In [Iva87, Theorem 6.9] Ivanov
computed the virtual cohomological dimension of the mapping class group of a non-
orientable surface Ng of genus g and n marked points. We borrowed the following
formulas from Ivanov’s paper

vcd(Γg,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if g = 0 and n � 3,

n− 3 if g = 0 and n � 3,

1 if g = 1 and n = 0,

n if g = 1 and n � 1,

4g − 5 if g � 2 and n = 0,

4g + n− 4 if g � 2 and n � 1,

vcd(Ng,n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if g = 1 and n � 2,

n− 2 if g = 1 and n � 3,

n if g = 2,

2g − 5 if g � 3 and n = 0,

2g + n− 4 if g � 3 and n � 1.

For our purposes we will need a concrete formula for the virtual cohomological
dimension of a non-orientable surface with boundary components. Since we lack of a
reference for this, we will compute it in Proposition 2.4. Before proving Proposition 2.4
we need the following lemma.

Lemma 2.3. Let b � 1. Then the group N b
g,n is torsion-free.

Proof. First assume χ(N b
g,n) < 0, or equivalently g − 2 + n+ b � 1. Let S = S2b

g−1,2n

be the oriented double cover of N b
g,n and τ : S → S be the covering involution.

Let [f ] ∈ N b
g,n such that [f ]m = [id]. The homeomorphism f can be lifted to a

orientation preserving homeomorphism f̃ of S. Notice that f̃ fix the boundary com-
ponents of S pointwise, even more f̃m � id. As Γ2b

g−1,2n is torsion free (see [FM12,
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Corollary 7.3]) we have that [f̃ ] = [id]. As f̃ is τ -equivariant and isotopic to the
identity map, then it is τ -equivariant isotopic to the identity map (see [Zie73]), in
consequence f � id in N b

g,n.

If χ(N b
g,n) � 0, as g � 1 and b � 1, we necessarily have g = 1, b = 1, n = 0, that

is N b
g,n is the Möbius band, but in this case the mapping class group is trivial (see

[Eps66]).

Proposition 2.4.

vcd(Γb
g,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b if g = 0 and n+ b � 3,

n+ 2b− 3 if g = 0 and n+ b � 3,

1 + b if g = 1 and n+ b = 0,

n+ 2b if g = 1 and n+ b � 1,

4g − 5 if g � 2 and n+ b = 0,

4g + n+ 2b− 4 if g � 2 and n+ b � 1,

vcd(N b
g,n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b if g = 1 and n+ b � 2,

n+ 2b− 2 if g = 1 and n+ b � 3,

n+ 2b if g = 2,

2g − 5 if g � 3 and n+ b = 0,

2g + n+ 2b− 4 if g � 3 and n+ b � 1.

Proof. Suppose b > 0. The following short exact sequence, which is analogous to that
in [FM12, Proposition 3.19], appears in [Stu10, p. 262]

1→ Z
b → P kN b

g,n → P k+bNg,n+b → 1, (2)

where the second and third term of the sequence are finite index subgroups of the
pure mapping class groups PN b

g,n and PNg,n+b, respectively.
On the other hand by [Iva87, Theorem 6.9] we know that Ng,n+b is a virtual

duality group in the sense of Bieri and Eckman. Therefore P k+bNg,n+b and Z
b are

both virtual duality groups of dimension vcd(Ng,n+b) and b respectively. Note that

N b
g,n is torsion-free, by Lemma 2.3, and Ng,n+b is virtually-torsion free. We can choose

a finite index torsion free duality subgroup G of P k+bNg,n+b and from (2) we get a

short exact sequence 1→ Z
b → H → G→ 1, H is finite index subgroup of P kN b

g,n.
By [Iva87, (ii) on page 88], H is a duality group of dimension b+ vcd(Ng,n+b).

Therefore N b
g,n is a virtual duality group of dimension b+ vcd(Ng,n+b). This implies

that vcd(N b
g,n) = b+ vcd(Ng,n+b). Now the result follows from Ivanov’s computations

in the empty-boundary case.
The proof for the orientable case is analogous (see also [Har86, Theorem 4.1]).

2.4. 2-dimensional orbifolds and the Riemann–Hurwitz formula
All the content in this section is standard material and can be found in [Thu97].
Recall that the singular locus of a 2-dimensional (closed) orbifold has one of the

following three local models:

1. The mirror: R2/(Z/2), where Z/2 acts by reflection on one of the axis.
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2. Elliptic points of order n: R2/(Z/n), where Z/n acts by rotations.

3. Corner reflectors of order n: R2/Dn, where Dn is the dihedral group of order
2n, that is generated by reflections about two lines that meet at an angle of
π/n.

Let O be a 2-dimensional orbifold with underlying topological space XO with k
corner reflectors of orders p1, . . . , pk and l elliptic points of orders q1, . . . , ql. The
Riemann–Hurwitz formula for the (orbifold) Euler characteristic is the following

χ(O) = χ(XO)− 1

2

k∑
i=1

(
1− 1

pi

)
−

l∑
i=1

(
1− 1

qi

)
.

All of the orbifolds appearing in this paper arise in the following form. Let F
be a finite group acting on (a possibly non-orientable surface) S = Sb

g,n, then the
quotient space OF is an orbifold with underlying topological space SF . Since F may
have elements acting as non-orientation preserving homeomorphisms, SF may be
orientable or non-orientable (see for instance [GS16, Corollary 3.2] and [Con15]),
and may have elliptic points, mirror points and corner reflectors. In this situation we
will use the following notation:

• gF is the genus of SF .

• eF is the number of elliptic points of OF and the orders will be denoted
q1, . . . , qeF .

• cF is the number of corner points of OF and the orders will be denoted p1, . . . ,
pcF .

• bm is the number of boundary components of SF that do not contain any corner
point. In other words, all points in such boundary components are mirror points.

• bc is the number of boundary components of SF that contain at least one corner
point.

• b = bm + bc is the number boundary components of SF .

• EF =
∑eF

i=1

(
1− 1

qi

)
and CF =

∑cF
i=1

(
1− 1

pi

)
. So that the we can rewrite the

Euler characteristic of OF as χ(OF ) = χ(SF )− CF /2− EF .

• If there is no risk of confusion we will not distinguish between an orbifold and
its underlying topological space.

The orbifold Euler characteristic is defined in such a way that satisfies the following
multiplicativity property, which is the so-called Riemann–Hurwitz formula:

|F |χ(OF ) = χ(S). (3)

The following inequalities are clear and they will be useful latter:

eF
2

� EF � eF and
cF
2

� CF � cF . (4)

2.5. Weyl groups of finite groups in the non-orientable mapping class
groups

In this section we prove Lemma 2.5, that is a mild generalization of [Mah11,
Proposition 2.3]. The proof is also an adaptation of Maher’s argument, still we include
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it here for the sake of completeness. Later on we prove Theorem 2.6, this result
provides a way to compute the vcd of Weyl groups of finite subgroups of Ng in terms
of the vcd of other mapping class groups. Theorem 2.6 is one of the main tools in the
proof of Theorem 1.1 and Theorem 1.2.

Let F be a finite subgroup of the mapping class group Ng of Ng with g � 3. By
Theorem 2.2 there exists a hyperbolic metric on N such that F is isomorphic to
a finite group of isometries with respect to that metric. Denote by OF the quotient
orbifold. Define Γ∗

F as the group of isotopy classes of self-homeomorphisms of OF that
send elliptic points of order q to elliptic points of order q, mirror points to mirror
points and corner reflectors of order p to corner reflectors of order p.

Lemma 2.5. Let WF be the Weyl group of F in Ng. Then, there exists an injective
homomorphism WF → Γ∗

F such that the image is a finite index subgroup of Γ∗
F .

Proof. LetK be the subgroup ofNg of elements that admit a representativeNg → Ng

that preserves the fibers of the projection Ng → OF . In particular F � K. By [Zie73,
last paragraph in p. 20], every two isotopic fiber preserving self-homeomorphisms of
N are isotopic via a fiber preserving isotopy. Hence we have a well-defined map
ϕ : K → Γ∗

F with kernel F .
On the other hand, by definition of Γ∗

F all of its elements are represented by an
orbifold map OF → OF . Hence we have an action of Γ∗

F on the orbifold fundamental
group πorb

1 (OF ) by automorphisms. For more details on the orbifold fundamental
group see [BH99, III.G.3].

Let us characterize the elements in ϕ(K). A homeomorphism g : OF → OF is co-
vered by a map g̃ : Ng → Ng if and only if the induced map g∗ : πorb

1 (OF )→ πorb
1 (OF )

restricts to an automorphism of ker(θ), where θ : πorb
1 (OF )→ F is the map given by

the normal covering N → OF . Therefore the elements of ϕ(K) are those elements of
Γ∗
F represented by maps g : OF → OF such that g∗ leave ker(θ) invariant.
Note that ker(θ) is a finite index subgroup of πorb

1 (OF ), say l. Since πorb
1 (OF ) is

a finitely presented group, it has finitely many subgroups of index l. Let X be the
finite set of subgroups of πorb

1 (OF ) of index l. Hence Γ∗
F acts on X and the kernel of

this action is contained in ϕ(K). Since this kernel is clearly a finite index subgroup
of Γ∗

F , we conclude that ϕ(K) is a finite index subgroup of Γ∗
F .

Once we prove that K is equal to the normalizer of F in Ng, we will finish our
proof. This was proved by Zieschang in Corollary 8.7 and the last paragraph on page
20 of [Zie73].

Before setting the next result notice that in the definition on mapping class group
with punctures, we can think of the punctures as boundaries that are not fixed point-
wise by homeomorphisms and where homotopies can move the points of these bound-
aries. With this in mind we think of the underlying topological surface SF of the
orbifold OF as a surface with bc boundary components, the boundaries of SF that
have at least one corner point, and eF + bm punctures where eF punctures come from
the elliptic points of OF and the rest bm punctures are the boundary components that
do not contain any corner point.

Theorem 2.6. Let F be a finite subgroup of Ng, then the Weyl group WF of F , is

commensurable with N bc
gF ,bm+eF

if OF is non-orientable, or with Γbc
gF ,bm+eF

if OF is
orientable.
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In particular

vcd(WF ) =

{
vcd(N bc

gF ,bm+eF
) if OF is a non-orientable surface,

vcd(Γbc
gF ,bm+eF

) if OF is an orientable surface.

Proof. We are going to prove that Γ∗
F is commensurable with N bc

gF ,bm+eF
if OF is

non-orientable or with Γbc
gF ,bm+eF

if OF is orientable.

We think of the underlying surface SF of OF as a surface with bc boundaries
and bm + eF punctures (see the paragraph before the statement of the theorem).
Recall that PN bc

gF ,bm+eF
(respectively PΓbc

gF ,bm+eF
) denotes the finite index subgroup

of N bc
gF ,bm+eF

(respectively Γbc
gF ,bm+eF

) consisting of homotopy classes of those home-
omorphisms which fix the set of punctures pointwise. Similarly denote by PΓ∗

F the
subgroup of Γ∗

F consisting of those elements which fix each elliptic and corner point
and leaves each boundary component of the underlying surface SF invariant as a set.
Notice that in this case we also have that PΓ∗

F is a finite index subgroup. We claim

that if OF is non-orientable, the groups PN bc
gF ,bm+eF

and PΓ∗
F are commensurable.

Consider the map

θ : PN bc
gF ,bm+eF

−→ PΓ∗
F ,

[f ] �−→ [f ].

The map θ is well defined because for every [f ] ∈ PN bc
gF ,bm+eF

, the homeomorphism
f fixes each puncture and each boundary component of SF pointwise, in particular it
fixes those points that correspond to corner points. Even more, if two of those home-
omorphisms are in the same class, the homotopy between them fixes each puncture
and each boundary point. It is clear that θ is a group homomorphism and, even more,
it is injective.

We want to know who is the image of θ. Let [f ] ∈ PΓ∗
F , then f restricts to a

homeomorphism f |bi on each of the bc boundaries with corner points. We define the
following group homomorphism

D : PΓ∗
F −→ Z/2× · · · × Z/2,

[g] �−→ (
dg(g|b1), . . . , dg(g|bbc )

)
,

where dg(f) is the degree of a homeomorphism f from the circle to the circle. Clearly
Im(θ) ⊂ Ker(D) and as every homeomorphism of the circle with dg(f) = 1 is homo-
topic to the identity, we have that every [g] ∈ Ker(D) has a representant g′ that
leaves the boundaries b1, . . . , bbc fixed pointwise. Then Im(θ) = Ker(D). As Ker(D)
has finite index in PΓ∗

F , then PN bc
gF ,bc+eF

is commensurable with PΓ∗
F and therefore

Γ∗
F is commensurable with N bc

gF ,bm+eF
. From the previous lemma we have that

vcd(WF ) = vcd(N bc
gN ,bm+eF

).

If OF is orientable a similar argument proves that

vcd(WF ) = vcd(Γbc
gN ,bm+eF

).
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3. Some useful results

Lemma 3.1. Let F be a finite group, then

λ(F ) � |F |
2

and λ(F ) � log2(|F |).

Proof. For F = 1 the result is trivially true. Since for |F | = 2, 3 the length λ(F ) = 1,

the result is clearly true in these cases. For |F | � 4, log2(|F |) � |F |
2 . Hence it is enough

to prove the second inequality.
As a consequence of Lagrange’s theorem λ(|F |) � p where p is the number of prime

factors in the prime decomposition of |F |. The number p can be as large as possible
exactly when all prime divisors of |F | are equal to 2, that is p � log2(|F |). Now the
result follows.

Lemma 3.2. Let a and b be natural numbers such that a � 1 and b � 2. Consider
the following inequality

a+
b

2
� b(a− ε)− 1.

1. If ε = 0, then the inequality holds except when (a, b) = (1, 2) or (1, 3).

2. If ε = 1
2 , then the inequality holds except when (a, b) = (1, b) or (2, 2).

3. If ε = 1, then the inequality holds except when (a, b) = (1, b), (2, 2), (2, 3), (2, 4),
(2, 5) or (3, 2).

Proof. The inequality in our statement is equivalent to each of the following inequal-
ities:

2a+ b � 2b(a− ε)− 2,

2a+ b � 2ab− 2bε− 2,

2 � 2ab− 2bε− 2a− b.

Let us proceed to prove each one of the claims.

1. Let ε = 0. Assume a � 1. Then a(2b− 2)− b � (2b− 2)− b = b− 2. Hence we
want b− 2 � 2 which is true if and only if b � 4. We conclude our inequality is
true if a � 1 and b � 4.
Now assume that b � 2. Then b(2a− 1)− 2a � 2(2a− 2)− 2a = 2a− 4. Hence
we want 2a− 4 � 2 which is true if and only if a � 3. We conclude our inequality
is true if a � 3 and b � 2. Therefore the inequality is true except possibly when
(a, b) = (1, 2), (1, 3), (2, 2), and (2, 3). One can verify by hand that the inequality
holds for (2, 2) and (2, 3).

2. Let ε = 1
2 . Clearly the inequality is not true when a = 1. Assume a � 2, then,

a(2b− 2)− 2b � 2(2b− 2)− 2b = 2b− 4. We want 2b− 4 � 2 which is true if
and only if b � 3. Therefore the inequality is true when a � 2 and b � 3.
Now assume b � 2. Then b(2a− 2)− 2a � 2(2a− 2)− 2a = 2a− 4. We want
2a− 4 � 2 which is true if and only if a � 3. Therefore the inequality is true
when a � 3 and b � 2. We conclude the inequality is true with the exception of
the pairs (a, b) = (1, b), and (2, 2).

3. This part can be proved under the same lines as the previous ones.
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Proposition 3.3. Let F be a finite subgroup of Ng and assume that there is an ε
such that

vcd(Ng) + 1

|F | � vcd(WF )− ε.

Then:

1. If ε = 0, then vcd(WF ) + λ(F ) � vcd(Ng) when g � 4 and vcd(WF ) � 1.

2. If ε = 1
2 , then vcd(WF ) + λ(F ) � vcd(Ng) when g � 4 and vcd(WF ) � 2.

3. If ε = 1, then vcd(WF ) + λ(F ) � vcd(Ng) when g � 5 and vcd(WF ) � 2.
Moreover, if g = 4, then vcd(WF ) + λ(F ) � vcd(Ng) + 1 = 4 provided that
vcd(WF ) � 2.

Proof. The inequality of the statement is equivalent to

|F |(vcd(WF )− ε)− 1 � vcd(Ng).

If we want to prove vcd(WF ) + λ(F ) � vcd(Ng), it is enough to prove

vcd(WF ) + λ(F ) � |F |(vcd(WF )− ε)− 1.

On the other hand by Lemma 3.1, it will suffice to prove

vcd(WF ) +
|F |
2

� |F |(vcd(WF )− ε)− 1. (5)

Let’s proceed to prove each item in our statement.

1. Let ε = 0. Then by Lemma 3.2 (1), equation (5) is true except when
(vcd(F ), |F |) = (1, 2) or (1, 3). Now, we only have to prove our claim for these
exceptional cases. For |F | = 2 or 3, λ(|F |) = 1. Hence, for the exceptional cases
we have vcd(WF ) + λ(F ) � 2. By Proposition 2.4, vcd(Ng) = 2g − 5 for g � 3.
Therefore vcd(WF ) + λ(F ) � vcd(Ng) for g � 4.

2. Let ε = 1
2 . Then by Lemma 3.2 (2), equation (5) is true except when

(vcd(F ), |F |) = (1, |F |) or (2, 2). For |F | = 2, λ(|F |) = 1. Hence, for the excep-
tional case we have vcd(WF ) + λ(F ) � 3. By Proposition 2.4, vcd(Ng) = 2g − 5
for g � 3. Therefore vcd(WF ) + λ(F ) � vcd(Ng) for g � 4.

3. Let ε = 1. Then by Lemma 3.2 (3), equation (5) is true except when
(vcd(F ), |F |) = (1, |F |), (2, 2), (2, 3), (2, 4), (2, 5), or (3, 2). For |F | = 2, 3, 5,
λ(|F |) = 1 and for |F | = 4 we get λ(|F |) = 1. Hence, for the exceptional case
we have vcd(WF ) + λ(F ) � 4. By Proposition 2.4, vcd(Ng) = 2g − 5 for g �
3. Therefore vcd(WF ) + λ(F ) � vcd(Ng) for g � 4. The moreover part also
follows now.

Proposition 3.4. Let g � 3, and let F be a finite subgroup of Ng. Then

vcd(Ng) + 1

|F | � αgF − 4 + eF + bm + 2bc + bm +
cF
2
,

where α = 2 if OF is non-orientable or α = 4 if OF is orientable.
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Proof. The claim follows from the following chain of equalities and inequalities.

vcd(Ng) + 1

|F | =
2g − 4

|F | =
−2χ(Ng)

|F | = −2χ(OF )

= αgF + 2b− 4 + CF + 2EF

� αgF + 2b+−4 + cF
2

+ eF ,

where the first equality is by Proposition 2.4, the third equality is by the Riemann–
Hurwitz formula (3), and the last inequality follows from (4).

Now we state our last auxiliary result.

Lemma 3.5. Let 2 � q � r � s be natural numbers. Then the smallest possible posi-
tive value for

k = 1− 1

q
− 1

r
− 1

s

is 1
42 and it is reached exactly when (q, r, s) = (2, 3, 7). If we additionally assume that

two of the numbers q , r, s are equal, then the smallest possible value for k is 1
12 and

it is reached when (q, r, s) = (3, 3, 4).

Proof. It is clear that for (q, r, s) = (2, 3, 7), k = 1
42 . By hypothesis

1

q
� 1

r
� 1

s
.

If 4 � q � r � s, then k � 1
4 . Thus q can only be equal to 2 or 3.

If q = 2, then 1
r + 1

s < 1
2 . Thus 3 � r � s. If 5 � r � s, then k � 1

10 > 1
42 , thus we

only have to consider r to be equal 3 or 4. In the case r = 3 we have 1
s < 1

2 − 1
3 = 1

6 ,
hence the smallest possible value for s is 7 and we get the triple (q, r, s) = (2, 3, 7).
In the case r = 4 we have 1

s < 1
2 − 1

4 = 1
4 , hence the smallest possible value for s is 5

we get the triple (q, r, s) = (2, 3, 5).

If q = 3, then 1
r + 1

s < 2
3 . Thus 3 � r � s. If 5 � r � s, then k � 4

15 > 1
42 , thus we

only have to consider r to be equal 3 or 4. In the case r = 3 we have 1
s < 2

3 − 1
3 = 1

3 ,
hence the smallest possible value for s is 4 we get the triple (q, r, s) = (3, 3, 4). In the
case r = 4 we have 1

s < 2
3 − 1

4 = 5
12 , hence the smallest possible value for s is 4 we

get the triple (q, r, s) = (2, 4, 4).

Summarizing we get as possible candidates for the triple (q, r, s) the following
triples (2, 3, 7), (2, 4, 5), (3, 3, 4), and (3, 4, 4). Now the conclusions follow from a
straightforward computation.

Now we are ready to verify the hypothesis of Theorem 2.1. For this we will dis-
tinguish two cases: when OF is non-orientable and when OF is orientable. This cases
are natural to be considered in separate arguments due to the difference in nature of
vcd(WF ) depending on the orientability of the associated orbifold OF as proved in
Theorem 2.6.
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4. Verifying the hypothesis of Theorem 2.1 when OF is non-
orientable

Let F be a finite group of Ng such that the orbifold OF = Ng/F is non-orientable.
As a consequence of Theorem 2.6 and Proposition 2.4, we have

vcd(WF )= vcd(N bc
gF ,eF+bm

)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

bc if gF =1 and eF + b� 2,

eF + bm +2bc− 2 if gF =1 and eF + b� 3,

eF + bm +2bc if gF =2,

2gF − 5 if gF � 3 and eF + b=0,

2gF + eF + bm +2bc− 4 if gF � 3 and eF + b� 1.

(6)

Theorem 4.1. Let F be a finite subgroup of Ng such that OF is non-orientable.
Assume that gF � 2. Then, for all g � 4

vcd(WF ) + λ(F ) � vcd(Ng).

Proof. First note that the statement is trivially true if F = 1. From now on we will
assume F �= 1.

By Proposition 3.4,

vcd(Ng) + 1

|F | � 2gF − 4 + eF + bm + 2bc + bm +
cF
2

= (
).

Once we prove that vcd(WF ) � 1 and (
) � vcd(WF ), using Proposition 3.3 (1), the
proof will be done. We will proceed by cases.

Case 1: gF � 3 and eF + b� 1 By (6) we get (
)= vcd(WF )+ cF
2 + bm � vcd(WF )

since cF
2 + bm � 0. On the other hand it is clear from (6) that vcd(WF ) � 1.

Case 2: gF � 3 and eF + b=0 By (6) we get (
)= 2gF − 4� 2gF − 5= vcd(WF ).
In this case vcd(WF ) � 1 since we are assuming gF � 3.

Case 3: gF = 2 and eF + bm + 2bc � 1 By (6) we get we get

(
) = vcd(WF ) +
cF
2

+ bm � vcd(WF )

since cF
2 + bm � 0. Clearly in this case vcd(WF ) � 1.

Case 4: gF = 2 and eF + bm + 2bc = 0 This case is impossible. In fact, we would
have |F |χ(Ng) = χ(OF ) = 0, but the left hand side is positive as g � 3.

Theorem 4.2. Let F be a finite subgroup of Ng such that OF is non-orientable.
Assume that gF = 1. Then, for all g � 5

vcd(WF ) + λ(F ) � vcd(Ng).

Proof. The statement is trivially true if F = 1. From now on we will assume F �= 1.
By Proposition 3.4,

vcd(Ng) + 1

|F | � −2 + eF + bm + 2bc + bm +
cF
2

= (
).

If eF + b � 3, then by (6), we get (
) = −2 + b+ eF + bc + bm + cF
2 � vcd(WF )

since bm + cF
2 � 0. It is also clear that vcd(WF ) � 1. Therefore the conclusion follows

in this case from Proposition 3.3 (1).
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Now we have to deal with the case eF + b � 2. In this case vcd(WF ) = bc by (6).
We will split this case into three subcases.

Case 1: gF = 1 and eF + b = 0 This case is impossible. In fact, we would have
χ(Ng) = |F |χ(OF ) = |F |, but the left hand side is negative as g � 3.

Case 2: gF = 1 and eF + b = 2 In this case either bc �= 0 or bc = 0.
Assume that bc �= 0. Then (
) = bc +

cF
2 + bm � vcd(WF ) � 1. Now the claim

follows from Proposition 3.3 (1).
Assume that bc = 0, then we have that vcd(WF ) = 0 and therefore we need to
prove that

vcd(Ng) � λ(F ).

If bm �= 0 then eF = 1 or 0. In both cases, it follows from (
) that

vcd(Ng) + 1

|F | � 1

and therefore

vcd(Ng) � |F | − 1 � λ(F ).

If bm = 0 then eF = 2. As g � 3, by (3) we have at least one elliptic point with
order greater than or equal to three. Then

vcd(Ng) + 1

|F | = −2χ(OF ) �
1

3

and therefore

vcd(Ng) �
|F |
3
− 1 > log2(|F |) � λ(F ),

where the second inequality is true when |F | > 14. Then λ(F ) � vcd(Ng) when
|F | > 14. If |F | � 14, then λ(F ) � 3, thus λ(F ) � 3 � vcd(Ng) provided g � 4.

Case 3: gF = 1 and eF + b = 1 In this case either eF = 0 and b = 1, or eF = 1 and
b = 0.
Assume that eF = 1 and b = 0. Then χ(OF ) = 1− (1− 1

q ) =
1
q . Therefore by

(3) we have |F | 1q = 2− g < 0 as g � 4. This is a contradiction, and this case is
impossible.
Assume that eF = 0 and b = 1. We have 2− g = |F |(− 1

2CF ). Since 2− g < 0,
then we conclude CF > 0 and therefore cF > 0. This implies vcd(WF ) = bc = 1
and bm = 0. Next, note that (
) = cF

2 . If cF � 2, then (
) � 1 = vcd(WF ), thus
the claim follows from Proposition 3.3 (1). If cF = 1, then

vcd(Ng) �
|F |
2
− 1 > log2(|F |) � λ(F ),

where the first inequality comes from Proposition 3.4, the second one is true
when |F | > 8 and the third one comes from Lemma 3.1. We conclude that
vcd(WF ) + λ(F ) = 1 + λ(F ) � vcd(NG) when |F | > 8. If |F | � 8, then
λ(F ) � log2(|F |) � 3, thus vcd(WF ) + λ(F ) � 4 � vcd(Ng) provided g � 5.

Remark 4.3. Note that, in the proof of the previous theorem, the case g = 4 was
excluded only at the end of Case 3. Moreover, the only possible problem comes from
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the existence of a group F of order 8 and with vcd(WF ) = 1. In conclusion, we get
vcd(WF ) + λ(F ) � 4 = vcd(N4) + 1 for all finite subgroup F of N4 with OF non-
orientable.

5. Verifying the hypothesis of Theorem 2.1 when OF is
orientable

Let F be a finite subgroup of Ng such that OF is orientable. As a consequence of
Theorem 2.6 and Proposition 2.4, we have

vcd(WF )= vcd(Γbc
gF ,eF+bm

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bc if gF =0 and eF + b� 2,

eF + bm +2bc− 3 if gF =0 and eF + b� 3,

1+ bc if gF =1 and eF + b=0,

eF + bm +2bc if gF =1 and eF + b� 1,

4gF − 5 if gF � 2 and eF + b=0,

4gF + eF + bm +2bc− 4 if gF � 2 and eF + b� 1.

(7)
The proof of the following result is completely analogous to the proof of Theo-

rem 4.1, the details are left to the reader.

Theorem 5.1. Let F be a finite subgroup of Ng such that OF is orientable. Assume
that gF � 1. Then, for all g � 4

vcd(WF ) + λ(F ) � vcd(Ng).

Theorem 5.2. Let F be a finite subgroup of Ng such that OF is orientable. Assume
that gF = 0 and eF + b � 3. Then, for all g � 5

vcd(WF ) + λ(F ) � vcd(Ng).

Proof. We may assume that F is non trivial.
We distinguish two cases, when vcd(WF ) � 1 and when vcd(WF ) = 0.
Case 1: Suppose vcd(WF ) � 1. By Proposition 3.4, we have

vcd(Ng) + 1

|F | � −4 + eF + 2bm + 2bc +
cF
2

(8)

= vcd(WF ) + bm +
cF
2
− 1. (9)

Note that if bm � 1 or cF � 2, then (9) is greater than or equal to vcd(WF ). Using
Proposition 3.3 (1), we obtain, in this situation, the result for all g � 4. It remains
to consider the cases: (bm, cF ) = (0, 1) and (bm, cF ) = (0, 0).

Case 1 (a): If bm = 0 and cF = 1, then b = bc = 1 and by hypothesis we have
that eF � 2. Note that vcd(WF ) = eF − 1, then

−4 + eF + 2bm + 2bc +
cF
2

= −4 + eF + 2 +
1

2

= eF − 3

2

= vcd(WF )− 1

2
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from (8) and Proposition 3.3 (2) we conclude that vcd(WF ) + λ(F ) � vcd(Ng) when
vcd(WF ) � 2. On the other hand, if vcd(WF ) = 1, then vcd(WF )− 1

2 = 1
2 , by (8)

and the above equality we have that

vcd(Ng) �
1

2
|F | − 1. (10)

By Lemma 3.1 we have

λ(F ) � log2(|F |) <
1

2
|F | − 1, (11)

where the last inequality holds when |F | > 8. Combining (10) and (11) we conclude
that λ(F ) + vcd(WF ) � vcd(Ng) when |F | > 8. Finally, if |F | � 8, then λ(F ) � 3,
therefore vcd(WF ) + λ(F ) � 4 � vcd(Ng) since g � 5.

Case 1 (b): If bm = 0 and cF = 0, then bc = 0, therefore vcd(WF ) = eF − 3. By
Proposition 3.4, we have

vcd(Ng) + 1

|F | � −4 + eF + 2bm + 2bc +
cF
2

= −4 + eF

= vcd(WF )− 1.

Thus by Proposition 3.3 (3) we conclude that λ(F ) + vcd(WF ) � vcd(Ng) when
vcd(WF ) � 2. Now suppose vcd(WF ) = 1, then eF = 4. If qi = 2 for i = 1, . . . , 4,
where the qi’s are the order of the elliptic points of OF , then

−χ(OF ) = −2 + EF = −2 +
4∑

i=1

(1− 1

qi
) = 0,

which is not possible by (3). In case that some qi �= 2, we have

vcd(Ng) + 1

|F | = −4 + 2EF

= −4 + 2

4∑
i=1

(
1− 1

qi

)
� −4 + 2

(
1

2
+

1

2
+

1

2
+

2

3

)
=

1

3
,

thus we have that λ(F ) � log2(|F |) < |F |
3 − 1 � vcd(Ng), where the second inequal-

ity holds when |F | > 14. In case |F | � 14, we have that λ(F ) � 3, therefore
λ(F ) + vcd(WF ) � 4 � vcd(Ng) since g � 5.

Case 2: If vcd(WF ) = eF + bm + 2bc − 3 = 0, then eF + bm + 2bc = 3, but
eF + b � 3 by hypothesis, therefore bc = 0, which implies cF = 0. Thus

vcd(Ng) + 1

|F | = −4 + 2bm + EF . (12)

Since eF + bm = 3, below we will explore all possibilities for eF and bm.
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Note that the cases (eF , bm) = (3, 0) and (eF , bm) = (2, 1) are not possible because
(12) would be negative.

If eF = 1 and bm = 2, then

−4 + 2bm + EF = EF = 1− 1

p
� 1

2

using (12) and if |F | � 8, we have

λ(F ) � log2(|F |) �
|F |
2
− 1 � vcd(Ng).

If |F | < 8, then λ(F ) � 3 � vcd(Ng) as g � 4.
Finally, if eF = 0 and bm = 3, using (12) we obtain

λ(F ) � |F | � 2|F | − 1 = vcd(Ng).

Remark 5.3. Note that the previous theorem is valid when g � 5. The case g = 4 was
ruled out in the following situations:

• In Case 1(a) when we have vcd(WF ) = 1 and |F | = 8. This in this case
vcd(WF ) + λ(F ) = 4 = vcd(N4) + 1.

• In Case 1(b) when we use Proposition 3.3 (3), and when vcd(WF ) = 1 and
|F | � 14. In the first situation we can use the moreover part of Proposition 3.3
(3) to conclude vcd(WF ) + λ(F ) = 4 = vcd(N4) + 1, while in the second situa-
tion we have λ(F ) � 3 hence we also have vcd(WF ) + λ(F ) = 4 = vcd(N4) + 1.

Theorem 5.4. Let F be a finite subgroup of Ng such that OF is orientable. Assume
that gF = 0 and eF + b � 2. Then vcd(WF ) � 1, and for all g � 7

vcd(WF ) + λ(F ) � vcd(Ng).

Proof. The statement is trivially true if F = 1. From now on we will assume F �= 1.
In this case

vcd(Ng) + 1

|F | = 2b− 4 + CF + 2EF = (
).

If g > 3, from (3) and (4) we get

b+ eF +
cF
2

� b+ EF +
1

2
CF > 2.

It follows that eF + b �= 0, and even more as eF + b � 2 we have cF � 1, in particular
vcd(WF ) = bc � 1. Then, it remains to deal with the cases eF + b = 1 and eF + b = 2.
In most of our cases, the proof will be reduced to verify for which values of |F | the
first and second inequalities in the following chain

vcd(Ng) �
|F |
n
− 1 > log2(|F |) � λ(F ) (13)

are true for certain n ∈ N. The third inequality is always true by Lemma 3.1.

Case 1: eF + b = 1 As cF � 1, we have vcd(WF ) = bc = 1 and eF + bm = 0. By (3)
we have

−1 + 1

2
CF > 0

and therefore by (4) we get cF � CF > 2.
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If cF = 3, then

0 < (
) = −2 + CF = −1 + 1

p1
+

1

p2
+

1

p3
,

where p1, p2, p3 are the orders of the elliptic points. By Lemma 3.5 we get
(
) � 1

42 . Therefore we obtain (13) with n = 42 which is true when |F | > 405.
We conclude that vcd(WF ) + λ(F ) = 1 + λ(F ) � vcd(NG) when |F | > 405. If
|F | � 405, then λ(F ) � log2(|F |) < 9, thus vcd(WF ) + λ(F ) � 9 � vcd(Ng)
provided g � 7.
If cF = 4, then

0 < (
) = −2 + CF = −2 + 1

p1
+

1

p2
+

1

p3
+

1

p4
,

where p1, p2, p3, p4 are the orders of the elliptic points. Since pi � 2 and
p1 = p2 = p3 = p4 = 2 is impossible, the smallest possible value for −2 + CF in
this case is reached when p1 = p2 = p3 = 2 and p4 = 3, Hence CF � 13

6 . Then
(
) � 1

6 . Therefore we obtain (13) with n = 6 which is true when |F | > 37.
Therefore vcd(WF ) + λ(F ) = 1 + λ(F ) � vcd(Ng) when |F | > 37. If |F | � 37
we have λ(F ) � log2(|F |) < 6, thus vcd(WF ) + λ(F ) � 6 � vcd(Ng) provided
g � 6.
If cF = 5, using an argument very similar to that in the previous paragraph we
have that CF � 5

2 since the smallest possible value for −3 + CF is reached when
p1 = · · · = p5 = 2. Thus (
) � 1

2 . Therefore we obtain (13) with n = 2 which is
true when |F | > 8. We conclude that vcd(WF ) + λ(F ) = 1 + λ(F ) � vcd(Ng)
when |F | > 8. If |F | � 8, then λ(F ) � log2(|F |) � 3, thus

vcd(WF ) + λ(F ) � 4 � vcd(Ng)

provided g � 5.
If cF � 6, by Proposition 3.4 we have (
) � 1 = vcd(WF ), then the claim follows
from Proposition 3.3 (1).

Case 2: eF + b = 2 As cF � 1 we have two possibilities b = 2 or b = 1.
If b = 1, as bc � 1 we have that vcd(WF ) = 1, bm = 0 and eF = 1, even more,
from (3) we have that

EF +
1

2
CF > 1. (14)

Now we have different cases depending on cF . If cF = 1, then

(
) = 1− 1

p
− 2

q

for p, q � 2 natural numbers. By Lemma 3.5, we have (
) � 1
12 . Therefore we

have (13) with n = 12 which implies 1 + λ(F ) = vcd(WF ) + λ(F ) � vcd(Ng)
provided g � 6. Similarly if cF = 2 or cF = 3, we can easily see that (
) � 1

6 or
(
) � 1

2 . Therefore we have (13) with n = 6 and n = 2 respectively, then we have
1 + λ(F ) = vcd(WF ) + λ(F ) � vcd(Ng) provided g � 6. Finally if cF � 4, from
Proposition 3.4 we have (
) � 1

2cF − 1 � 1 = vcd(WF ), then the claim follows
from Proposition 3.3 (1).
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If b = 2, then eF = 0 and from (4) we have (
) = CF � cF
2 . If cF = 1, then

vcd(WF ) = 1 and (
) � 1
2 , therefore we have (13) with n = 2 and thus

1 + λ(F ) = vcd(WF ) + λ(F ) � vcd(Ng) provided g � 5.
If b = 2 and cF � 2 we have bc = 1 or bc = 2. If bc = vcd(WF ) = 1, from (
) we
get

vcd(Ng) + 1

|F | � 1

and the claim follows from Proposition 3.3 (1). Similarly, if bc = vcd(WF ) = 2
the claim follows from Proposition 3.3 (3).

Remark 5.5. Note that the previous theorem is valid only when g � 7. The cases
g = 4, 5 where ruled out in the following situations:

• In Case 1, where we actually have vcd(WF ) = 1.

• In Case 2, where we either have vcd(WF ) = 1, or vcd(WF ) = 2 and we make use
of Proposition 3.3 (3). In the latter case we conclude that vcd(WF ) + λ(F ) � 4

We will deal with this situations in Section 6.2.

6. Proof of the main theorems

6.1. The closed case
Proof of Theorem 1.1. First note that Ng for g = 1, 2 is finite [Ham65, Lic63],
thus the claim follows since the three dimensions are zero for a finite group. Next
vcd(N3) = 1, hence by a well-known theorem of Stallings [Sta68], N3 is virtually free
and so it acts on a tree with finite stabilizers. Therefore gd(N3) = 1 and the claim
follows from (1).

Since 3 � vcd(Ng) � cd(Ng) for g � 4, by (1), cd(Ng) = gd(Ng). Thus we only
have to prove vcd(Ng) = cd(Ng).

The proof of the remaining cases is obtained through the verification of the
hypothesis of Theorem 2.1 for Ng, this is, for every finite subgroup F of Ng, we
want to verify

vcd(WF ) + λ(F ) � vcd(Ng). (15)

We proceed by cases

1. If OF is non-orientable, gF � 2, then (15) is true for all g � 4 by Theorem 4.1.

2. If OF is non-orientable, gF = 1, then (15) is true for all g � 5 by Theorem 4.2.

3. If OF is orientable, gF � 1 then (15) is true for all g � 4 by Theorem 5.1.

4. If OF is orientable, gF = 0 then (15) is true for all g � 7 by Theorem 5.2 and
Theorem 5.4.

Now the claim follows for g � 7.
The last remaining case is when g = 6. In this case vcd(N6) = 7. Note that the

strategy used above cannot be carried out in this case only because the conclusion of
Theorem 5.4 does not include g = 6. Moreover, analyzing the proof of Theorem 5.4
we can see that the case g = 6 only is excluded in “Case 1: eF + b = 1”, where we
have vcd(WF ) = 1. Hence it is enough to verify (15) in this situation. By [Con15]
we know that the largest finite group F acting on N6 has order 160 = (25)(5), and
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therefore its length is at most 6. On the other hand N6 does not admit the action
of a group with order 128 = 27. Hence every finite group acting on N6 has length at
most 6. Therefore, in the particular case we are dealing with

vcd(WF ) + λ(F ) = 1 + λ(F ) � 7 = vcd(N6).

And this concludes the proof.

6.2. The exceptional cases: g = 4, 5
In this section we deal with the cases g = 4, 5, that is, we prove Theorem 1.2. To

deal with these cases we make use of the data base [Con15].

Proof of Theorem 1.2. The first inequality in both claims follows from (1).
Let us first work with N4. Note that vcd(N4) = 3. Let F be a finite subgroup of

N4. By Remark 4.3 we obtain vcd(WF ) + λ(F ) � 4 provided OF is non-orientable.
Assume now that OF is orientable. If gF � 1 then vcd(WF ) + λ(F ) � 3.

By Remark 5.3 we conclude that vcd(WF ) + λ(F ) � 4 whenever gF = 0 and
eF + b � 3.

Finally, by Remark 5.5 we only have to deal with F such that vcd(WF ) = 1. In
[Con15] we see that F has either order less than 12 or it has order 48, 24, 16, 12.
In either case λ(F ) � 5 since λ(F ) is bounded by the number of prime factors of |F |.
Therefore, in this case, vcd(WF ) + λ(F ) = 1 + λ(F ) � 1 + 5 = 6. Now the second
inequality in our claim follows from Theorem 2.1.

Now we work with N5. By Theorem 4.1, and Theorem 4.2 we get that
vcd(WF ) + λ(F ) � vcd(N5) provided OF is non-orientable. By Theorem 5.1, and
Theorem 5.2 we get vcd(WF ) + λ(F ) � vcd(N5) provided OF is orientable and
gF � 1, or gF = 0 and eF + b � 3. If gF = 0 and eF + b � 2, by Remark 5.5
vcd(WF ) + λ(F ) � 4 unless possibly when vcd(WF ) = 1. By [Con15] the order of
F is either less than 12 or it has order 120, 72, 60, 36, 24, 20, 18, or 16. In either case
λ(F ) � 5 since λ(F ) is bounded by the number of prime factors in |F |. Therefore
if vcd(WF ) = 1 we get vcd(WF ) + λ(F ) � 1 + 5 = 6. Hence cd(N5) � 6 by Theo-
rem 2.1.

Remark 6.1. Let F be a subgroup of N4 of order 48, which exists as showed in
[Con15]. Since 48 = (24)(3), then we know that there exists a subgroup H of F
of order 24 = 16. Hence λ(H) = 4. Therefore λ(F ) = 5. On the other hand, we can
see in [Con15] that OF has signature (0;+; [−]; {(2, 4, 6)}), thus OF is orientable,
gF = 0 and bc = 1. Hence by (7) we get vcd(F ) = 1. In conclusion, for this group we
get vcd(WF ) + λ(F ) = 6, hence the upper bound for vcd(N4) given in Theorem 1.2
is the lowest one that can be obtained using Theorem 2.1.

Remark 6.2. By [Con15], we can find a finite group F of order 120 that acts on N5

such that OF is orientable, gF = 0, and it has exactly one boundary component with
three corner points of orders (2, 4, 5). Hence by (7), vcd(WF ) = 1.

In [Pol20] Francesco Polizzi pointed out that this 120 element group F is iso-
morphic to S5, thus we have the chain 1 < Z/2 < Z/2× Z/2 < A4 < A5 < S5. Thus
λ(F ) � 5. On the other hand, since 120 = (23)(3)(5) we get λ(F ) = 5. Hence
vcd(WF ) + λ(F ) = 6. Therefore the upper bound for vcd(N5) given in Theorem 1.2
is the lowest one that can be obtained using Theorem 2.1.



ON THE DIMENSIONS OF MAPPING CLASS GROUPS 367

6.3. The case with punctures and no boundary components
For g � 3 and n � 1 we have the following Birman short exact sequence

1 −→ π1(Ng,n−1) −→ PNg,n −→ PNg,n−1 −→ 1, (16)

where π1(Ng,n−1) is the fundamental group of the surface Ng minus n− 1 points.
It can be deduced from [Gra73, Theorem 1] and [Kor02, Theorem 2.1]. For g = 2
and n � 2 a Birman short exact sequence can be deduced from [Gra73, Theorem 2,
Proposition 2] and [Kor02, Theorem 2.1].

Proof of Theorem 1.4. To prove (1), we will proceed by cases.
Case I: g=1. If n = 1 then N1,1 is finite by [Kor02, Theorem 4.1]. From now on

we assume n � 2. From [Sco70, pp. 617] we have the following exact sequence

1→ Z/2→ Pn(N1)→ PN1,n → 1, (17)

where Pn(N1) denotes the n-th pure braid group of N1.
We claim that gd(Pn(N1)) = gd(PN1,n). In fact, let X be a model for EPN1,n,

then the induced Pn(N1)-action endowsX with the structure of a model for EPn(N1).
Thus gd(Pn(N1)) � gd(PN1,n). On the other hand, if Y is a model for EPn(N1), then

the fixed point set Y Z/2 admits a natural action of the normalizer of Z/2 in EPn(N1),
and therefore, an action of the Weyl group of Z/2, which in this case is isomorphic to
PN1,n. Moreover Y Z/2 is a model for EPN1,n (see for instance [Lüc00, Lemma 1.3]).
Therefore gd(Pn(N1)) � gd(PN1,n) and the claim follows.

We will show that gd(Pn(N1)) = n− 2. By the Fadell–Neuwirth short exact se-
quence given in [vB66], we have

1→ π1(N1,n)→ Pn+1(N1)→ Pn(N1)→ 1. (18)

Since P2(N1) is finite (see [GG04]), then gd(P2(N1)) = 0. From an inductive argu-
ment and using [Lüc05, Theorem 5.16] we conclude that gd(Pn(N1)) � n− 2 =
vcd(Pn(N1)). Therefore gd(Pn(N1)) = n− 2.

Case II: g = 2. We will use induction over n. For n = 1, from [Stu06, The-
orem A.5], we know that N2,1 = (Z � Z/2)× Z/2, then N2,1 is virtually free and
infinite and therefore

gd(PN2,1) = 1 = vcd(PN2,1).

Suppose the conclusion hold for n− 1 with n � 2, applying Theorem 1.1, [Lüc05,
Theorem 5.16] and [Mis10, Lemma 4.4 (1)] to the Birman short exact sequence (16),
we have that

gd(PN2,n) � gd(π1(N2,n−1)) + gd(PN2,n−1) = 1 + vcd(PN2,n−1) = vcd(PN2,n).

Case III: g = 3 or g � 6. We will use induction over n. For the first case, if n = 1,
by (16) we have

1 −→ π1(Ng) −→ PNg,1 −→ PNg −→ 1

using Theorem 1.1, [Lüc05, Theorem 5.16], and a non-orientable version of [Mis10,
Lemma 4.4 (2)] (the proof is completely analogous), we have that

gd(PNg,1) � gd(π1(Ng)) + gd(PNg) = 2 + vcd(PNg) = 2g − 3 = vcd(PNg,1).

Now suppose the conclusion holds for n− 1. Again, applying Theorem 1.1, [Lüc05,
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Theorem 5.16] and [Mis10, Lemma 4.4 (1)] to the Birman short exact sequence (16),
we have that

gd(PNg,n) � gd(π1(Ng,n−1)) + gd(PNg,n−1) = 1 + vcd(PNg,n−1) = vcd(PNg,n).

The second and third part of our statement can be proved as in Case III above using
Theorem 1.2 instead of Theorem 1.1.

6.4. The case with at least one boundary component
Proof of Theorem 1.5. As N b

g,n is torsion free when b � 1, it is clear that

vcd(N b
g,n) = cd(N b

g,n) = cd(N b
g,n). If cd(N b

g,n) �= 2, then

vcd(N b
g,n) = cd(N b

g,n) = gd(N b
g,n)

(see the paragraph right below equation (1)). By Proposition 2.4, the only cases when
cd(N b

g,n) = 2 areN 2
1,0,N 1

1,2 andN 1
2,0. It is known thatN 2

1,0
∼= Z× Z andN 1

2,0
∼= Z � Z

(see [Stu06, p. 141] and [Stu06, Theorem A.7] respectively), therefore in these cases
the proper cohomological and geometric dimension coincide, since in both cases R

2

is a model for the classifying space for proper actions.
Finally, we deal with the case N 1

1,2. We have the following short exact sequence,
which appears in [Stu10, p. 262],

1→ Z → P kN 1
1,2 → P k+1N1,3 → 1,

where Z ∼= Z is generated by the Dehn twist along the boundary component, and the
second and third term of the sequence are finite index subgroups of the pure mapping
class groups PN 1

1,2 and PN1,3, respectively. Moreover, by [Stu06, Theorem 6.2], Z
is the centre of N 1

1,2. Therefore P k+1N1,3 is a finite index subgroup of N 1
1,2/Z. Note

that, by Proposition 2.4, vcd(N1,3) = 1, therefore N1,3, P
k+1N1,3, and N 1

1,2/Z are
virtually free. In consequence gd(N 1

1,2/Z) = 1. Applying [Lüc05, Thm. 5.16] to the
short exact sequence

1→ Z → N 1
1,2 → N 1

1,2/Z → 1

we have that gd(N 1
1,2) � 2, therefore gdN 1

1,2 = cdN 1
1,2 = 2.

7. Questions and final remarks

In this section we state several questions that are related to the scope of our main
results.

In Theorem 1.1 we proved that the proper cohomological dimension, the proper
geometric dimension, and the virtual cohomological dimension of Ng are equal for
g �= 4, 5. We were not able to deal with g = 4, 5 due to the existence of finite subgroups
in N4 and N5 of large length compared to the virtual cohomological dimension of
the corresponding ambient group. For g = 4, 5 we provide bounds for the proper
cohomological dimension ofNg in Theorem 1.2. The following question is very natural.

Question 7.1. Is it true that gd(Ng) = cd(Ng) = vcd(Ng) for g = 4, 5?

The following question has to do with the cases not covered in the statement of
Theorem 1.4.
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Question 7.2. Is it true that gd(PNg,n) = cd(PNg,n) = vcd(PNg,n) for all n � 1
and g = 4, 5?

In Theorem 1.4 we proved that the proper cohomological dimension, the proper
geometric dimension, and the virtual cohomological dimension of the pure mapping
class group PNg,n are equal for g �= 4, 5 and n � 1. In order to have an analogous
statement for the full mapping class group Ng,n it is enough to have a positive answer
for the following question.

Question 7.3. Let g � 1 and n � 0. Is it true that cd(PNg,n) = cd(Ng,n)?

Remark 7.4. By [Sau06], we know that cd(PN b
g,n) = cd(N b

g,n) for b � 1 since both

N b
g,n and PN b

g,n are torsion-free (see Lemma 2.3) and the former has finite index in
the latter group.
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[GS16] Grzegorz Gromadzki and B�lażej Szepietowski. On topological type
of periodic self-homeomorphisms of closed non-orientable surfaces.
Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM,
110(2):303–320, 2016.

[Ham65] Mary-Elizabeth Hamstrom. Homotopy properties of the space of
homeomorphisms on P 2 and the Klein bottle. Trans. Amer. Math.
Soc., 120:37–45, 1965.

[Har86] John L. Harer. The virtual cohomological dimension of the mapping
class group of an orientable surface. Invent. Math., 84(1):157–176,
1986.

[Iva87] Nikolai V. Ivanov. Complexes of curves and the Teichmüller modular
group. Russ. Math. Surv., 42(3):55–107, 1987.

[Ker83] Steven P. Kerckhoff. The Nielsen realization problem. Ann. of Math.
(2), 117(2):235–265, 1983.

[KMPN09] Peter H. Kropholler, Conchita Mart́ınez-Pérez, and Brita E. A.
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