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Abstract
We extend all known results about transferred model structures

on algebraically cofibrant and fibrant objects by working with weak
model categories. We show that for an accessible weak model cat-
egory there are always Quillen equivalent transferred weak model
structures on both the categories of algebraically cofibrant and
algebraically fibrant objects. Under additional assumptions, these
transferred weak model structures are shown to be left, right or
Quillen model structures. By combining both constructions, we
show that each combinatorial weak model category is connected,
via a chain of Quillen equivalences, to a combinatorial Quillen
model category in which all objects are fibrant.

1. Introduction

Given a combinatorial Quillen model category C, one can construct a Quillen equiv-
alent combinatorial model category in which all objects are fibrant [8, 25]. This is
achieved by considering the category T-Alg of algebraically fibrant objects in C, which
contains objects of C equipped with chosen lifts against all generating trivial cofibra-
tions and morphisms preserving the chosen lifts. The category T-Alg is itself locally
presentable and comes equipped with an adjunction:

F : C � T-Alg : U,

where U is the forgetful functor and F its left adjoint — the Quillen equivalent model
structure on T-Alg is obtained by right transfer along U . In the original paper of
Nikolaus [25], this was done under the mild assumption that every trivial cofibration
in C is a monomorphism, but this assumption was later removed by the first named
author in [8].

A dual version of this result was developed by Ching and Riehl in [11]. This
uses the notion of algebraic weak factorisation system, which endows the cofibrant
replacement construction with the structure of a comonad Q, whose coalgebras are
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the algebraically cofibrant objects. (The T of the previous example is the correspond-
ing fibrant replacement monad.) Again, Q-Coalg is locally presentable and comes
equipped with an adjunction

U : Q-Coalg � C : G,

where U is the forgetful functor and G its right adjoint, and one can try to left transfer
the model structure along U . Ching and Riehl showed that if C is a combinatorial
simplicial model category, and if Q is the simplicial comonad obtained by running the
enriched algebraic small object argument, then the left transferred model structure
exists and is Quillen equivalent to that on C.

There are, however, some asymmetries in the above. Firstly, there exist combina-
torial model structures for which Q-Coalg does not admit the left-transferred model
structure — a simple example was described to us by Alexander Campbell [10] —
whereas T-Alg always admits the right transferred model structure. We will see,
however, that Q-Coalg is always a right semi-model category. On the other hand,
even if C is only a combinatorial right semi-model category we will see that T-Alg is
a genuine Quillen model category. This result captures, for instance, algebraic Kan
complexes on semi-simplicial sets as well as Nikolaus’ guiding example of algebraic
Kan complexes on simplicial sets.

One of our goals in the present paper is to understand the dualisable aspects of the
above results. Evidently, this should include results about semi-model categories. We
will work using the framework of weak model categories, recently introduced by the
second named author [18, 19], which includes both left and right semi-model cate-
gories. Roughly, weak model categories are like Quillen model categories except that
some properties fail to hold when one considers maps that are not from a cofibrant
to a fibrant object. However, as these are the only maps that are really homotopi-
cally meaningful in a model category, this weakening does not affect the homotopy
theoretic properties of model categories in an essential way.

A key tool in our approach will be the left and right transfer of weak factorisation
systems along adjunctions. To employ the existing transfer results of [14, 20] we will
also assume that our categories are locally presentable and that the weak factorisation
systems are accessible. This leads us to work in the setting of accessible weak model
categories, which cover a very broad range of examples.

Two of our main results, Theorem 5.3 of Section 5 and Theorem 6.4 of Section 6,
are dual. They respectively assert that an accessible weak model structure on C

always left transfers to Q-Coalg and right transfers to T-Alg. If the base C is core
left saturated — for instance, if C is a left or right semi-model category — the weak
model structure on Q-Coalg is always a right semi-model category, with the dual
applying to T-Alg. Finally, we identify, in Theorems’ 5.6 and 6.5, stronger conditions
— concerning lifting of cylinder and path objects respectively — that ensure Q-Coalg
and T-Alg are genuine model categories. Using these results, we recover and extend
the known results on model structures on algebraically cofibrant objects [11] and on
algebraically fibrant objects [8, 25].

In Section 7 we apply the above to obtain the following rigidification results for
weak model categories.
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• Each accessible weak model category is connected, via a zigzag of Quillen equiv-
alences, to an accessible right semi-model category in which all objects are cofi-
brant.

• Similarly, each accessible weak model category is connected, via a zigzag of
Quillen equivalences, to an accessible left semi-model category in which all
objects are fibrant.

• Moreover, each combinatorial weak model category is connected, via a zigzag
of Quillen equivalences, to a combinatorial Quillen model category in which all
objects are fibrant.

This last result enables one to transport known results about Quillen model struc-
tures to semi-model structures or weak model structures as long as these results can
be transported along a Quillen equivalence. As an example of this, Lo Monaco has
used our result in his recent preprint [22] to show that the ∞-category associated
to any combinatorial weak model category via Dwyer–Kan localisation is a locally
presentable ∞-category.

Another application of our results is to facilitate the construction of zig-zags of
Quillen equivalences between various model categories. Generally speaking, model
categories where all objects are cofibrant and model categories where all objects are
fibrant have rather distinct properties, and it is often easier to compare two model
structures of the former kind or two of the latter kind than two arbitrary model
structures. For example, our results here are used in a key way in [16] where a variant
of the model structure for semi-simplicial algebraic Kan complexes from Example 6.8
is used as an intermediate step in a zig-zag between a model structure for n-groupoids
(whose objects are all fibrant) and the semi-simplicial model structure (whose objects
are all cofibrant).

Finally, let us mention that a key tool in the proof of all of these results are new
transfer theorems — see Theorem 4.1 and the dual Theorem 4.4 — of independent
interest. These give necessary and sufficient conditions for the existence of a trans-
ferred weak model structure Quillen equivalent to the original one.

2. Preliminaries on weak model categories

In the present section we review the necessary background on weak model cate-
gories from [18] and [19].

2.1. Weak factorisation systems, premodel categories and Quillen model
categories

Let us begin by recalling the well known concept of a weak factorisation system.
Given morphisms f : A→ B and g : C → D in a category C we say that f has the
left lifting property with respect to g if given a commutative square as on the outside
of the diagram below

A C

B D

f

a

g

b

∃
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there exists a diagonal morphism making both triangles commute. We say that g has
the right lifting property with respect to f .

Given a class J of morphisms in C we sometimes write LLP (J) for the class of
morphisms having the left lifting property with respect to each morphism in J and
RLP (J) for those having the right lifting property to each morphism of J .

A weak factorisation system (L,R) on a category C consists of two classes of maps
L and R such that

• each morphism f ∈ C can be factored as f = me where e ∈ L and m ∈ R;

• L = LLP (R) and R = RLP (L).

Definition 2.1. A premodel category is a category C such that:

1. C is equipped with two weak factorisation systems (cofibration/anodyne fibra-
tion) and (anodyne cofibration/fibration);

2. Each anodyne cofibration is a cofibration, or equivalently, each anodyne fibration
is a fibration;

3. C is both cocomplete and complete.

The notion of premodel category was introduced independently in [2] and [18].

Definition 2.2. A Quillen model category consists of a premodel category C together
with a class of morphisms W , called weak equivalences, such that

1. W contains the isomorphisms and satisfies 2-out-of-3.

2. A cofibration is an anodyne cofibration if and only if it is a weak equivalence.

3. A fibration is an anodyne fibration if and only if it is a weak equivalence.

2.2. Left and right semi-model categories
Next we turn to left and right semi-model categories, which slightly generalise

model categories by restricting certain of the above axioms to core cofibrations and
core fibrations respectively. Let us recall the definitions of these two classes of mor-
phisms now.

Notation 2.3. In a premodel category C:

• A core cofibration is a cofibration between cofibrant objects. Dually, a core
fibration is a fibration between fibrant objects.

• A cofibration is said to be acyclic if it has the left lifting property against
all core fibrations. In particular each anodyne cofibration is acyclic. The acyclic
fibrations are defined dually and, as before, we note that each anodyne fibration
is acyclic.

The original definitions of left and right semi-model category [3, 31] do not require
the existence of two fully formed weak factorisation systems. Since we are only inter-
ested in the case where such factorisations do exist, we give the following simplified
definition. Note that the definition, in either case, simply weakens one of the 3 axioms
for a model category.

Definition 2.4. A left semi-model category is a premodel category C equipped with
a class of weak equivalences W such that



ALGEBRAICALLY COFIBRANT AND FIBRANT OBJECTS REVISITED 275

1. W contains the isomorphisms and satisfies 2-out-of-3.

2*. A core cofibration is an anodyne cofibration if and only if it is a weak equiva-
lence.

3. A fibration is an anodyne fibration if and only if it is a weak equivalence.

A right semi-model category is a left-semi model category structure on Cop — thus a
Quillen model category except that (3) above is weakened to (3*), which asserts that
a core fibration is an anodyne fibration if and only if it is a weak equivalence.

Examples 2.5.

(i) The left Bousfield localisation of a combinatorial model category at a set of
maps is known to exist, as a model category, only when the original model
category is simplicial and left proper [3]. On the other hand, it always produces
a left semi-model category — see Theorem 4.2 of [5].

(ii) The original motivation for introducing left semi-model structures in [31] was
that for a monoidal model category C, the category of C-operads (and also the
category of algebras in C for a given Σ-cofibrant operad) in general has only a
left semi-model structure. These are known to be Quillen model structures only
when certain stronger assumptions such as the so-called “monoid axiom” hold.
Indeed, it is shown in [4, Example 2.9] that if C = Ch(F2) is the monoidal cate-
gory of chain complexes over F2 (or more generally over Fp) with its projective
model structure, then the transferred left semi-model structure on the category
of operads in C is not a Quillen model category.

(iii) A simple example of a right semi-model structure, to be used again in Exam-
ple 5.5, is the right semi-model structure on the category Gph of directed graphs
constructed in Section 4.1 of [19]. Here the cofibrations are the monomorphisms
whilst the weak equivalences are those maps f : X → Y inducing a bijection
Π0(X)→ Π0(Y ) on path components. The fibrations are the maps that have
the right lifting property against all cofibrations that are also weak equiva-
lences. Furthermore, one can show that the fibrant objects are the setoids and
the fibrations between fibrant objects are the maps that satisfy the “edge lifting
property”, i.e. those f : X → Y such that any edge y → f(x) in Y is the image
by f of an edge y0 → x in X.
To see that the right semi model structure is not a Quillen model structure, let
• denote the graph with a single object but no edges. Clearly, the codiagonal
•
∐
• → • is not a weak equivalence but it is, in fact, an anodyne fibration.

Indeed, in any square of the form:

X •
∐
•

Y •

i

neither graph X nor Y can have an edge — therefore i is just an injection of
sets, so that there is a diagonal filler as in the category of sets, where injections
have the left lifting property with respect to surjections.

(iv) A higher-dimensional version of the preceding example is the right semi-model
category ssSet of semi-simplicial sets. This was first described as a weak model
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category in [19], and complete details of the right semi-model structure are in
[30]. A semi-simplicial set is a presheaf on the category ∆+ of finite non-empty
ordinals and injective order preserving maps. Its cofibrations are the monomor-
phisms, whilst a map f : X → Y is a weak equivalence if it induces a homotopy
equivalence between the geometric realisation of X and Y . The fibrations are the
maps with the right lifting property against all cofibrations that are also weak
equivalences. Furthermore, the fibrant objects and fibrations between fibrant
objects can be characterised by the Kan lifting conditions exactly as for maps
of simplicial sets.
As in the case of Gph, it is not a Quillen model category. Indeed, if ∆+[0]
denotes the semi-simplicial set with just a single cell in dimension 0 and no
higher-dimensional cells, then the map ∆+[0]

∐
∆+[0]→ ∆+[0] is an anodyne

fibration but not a weak equivalence.

Remark 2.6. A left semi-model category in which each object is cofibrant is a Quillen
model category, whilst a right semi-model category in which each object is fibrant is
a Quillen model category.

2.3. Weak model categories
We now turn to weak model categories, which include both left and right semi-

model categories. Rather than involving weak equivalences, the usual definition
involves cylinder and path objects.

In a premodel category, a relative cylinder object for a cofibration A ↪→ B is a
factorisation:

B
∐
A

B
i
↪→ IAB → B

of the codiagonal map, such that i is a cofibration and the composite B ↪→ B
∐
AB ↪→

IAB with the first pushout coprojection is an acyclic cofibration.1

Dually, a relative path object for a fibration Y � X is a factorisation:

Y → PXY
p
� Y ×X Y

of the diagonal map such that p is a fibration and the composite PXY � Y ×X Y �
Y with the first pullback projection is an acyclic fibration.

Definition 2.7. A (factorisation2) weak model category is a premodel category which
satisfies the following conditions:

• Cylinder object axiom — Each cofibration A ↪→ B with A cofibrant and B
fibrant admits a relative cylinder object.

• Path object axiom — Each fibration Y � X with Y cofibrant and X fibrant
admits a relative path object.

1It does not matter whether one takes the first or second coprojection; the axioms of a weak model
category ultimately imply that both are acyclic cofibrations — see [19].
2The word “factorisation” refers to the fact that the notion of weak model category in [19] is slightly
more general. There, the existence of the weak factorisation systems is also weakened. Here we work
in the framework of accessible and combinatorial weak model categories from [18] in which these
are always present.
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Remark 2.8. Because the cylinder and path object axioms are restricted to maps
from cofibrant to fibrant objects, they only imply the existence of cylinder objects
and path objects for bifibrant objects. Indeed, a cylinder object X

∐
X ↪→ IX → X

for a cofibrant object X is a relative cylinder object for the cofibration ∅ ↪→ X. Hence
we need X to be both fibrant and cofibrant in order to obtain a cylinder object from
the cylinder object axiom as stated.

Although for a general core cofibration A ↪→ B we cannot construct a relative
cylinder object, it was observed in [19] (see Definition 2.1.12 and Remark 2.1.13)
that we can construct a weakening of it called a “weak relative cylinder object”,
which is still sufficient to define the homotopy relation. A weak relative cylinder
object is a diagram of the form:

B
∐
AB IAB

B DAB
∼

in which the first of the two maps B ↪→ IAB is an acyclic cofibration. For instance
DAB might be a fibrant replacement of B. Note that if B is fibrant then the acyclic

cofibration B
∼
↪→ DAB has a section so that one recovers a “strong” cylinder object.

The general theory of weak model categories can be found in [19], but we recom-
mend the reader to start with the preliminary section of [18] for a shorter overview
of the basic theory. Below we highlight a few of basic facts.

• Using the path (or, equivalently, cylinder objects) one can define the homotopy
relation for maps from cofibrant to fibrant objects. This is an equivalence rela-
tion having the usual properties. In particular, one can construct the homotopy
category Ho(C) of C by taking homotopy classes of maps between bifibrant
objects.

• One can show that Ho(C) is equivalent to the localisation of the full subcategory
Cc∪f of C of objects that are either fibrant or cofibrant at the union of the classes
of core acyclic cofibrations and core acyclic fibrations. A weak equivalence is
defined to a morphism that is inverted by Cc∪f → Ho(C). Of course, the notion
of weak equivalence therefore makes sense only for arrows between objects that
are either fibrant or cofibrant.

Example 2.9. One motivation for introducing weak model categories is that they pro-
vide a self-dual axiomatic framework that includes both left and right semi-model
categories as special cases. Moreover, it is often much easier to verify the weak model
category axioms than those for left and right semi-model categories.

Examples of weak model structures which are neither left nor right semi-model
structures are the weak model structures on regular or non-unital strict∞-categories
constructed in [17]. These fail to be left semi-model categories by the same argument
as for graphs and semi-simplicial sets described above. Moreover, they fail to be
right semi-model categories as they are not “left saturated” (see subsection 2.4 and
Proposition 2.13 below).
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However, the left saturation issue can be easily fixed by taking the left saturation
construction of [18], but we do not know whether or not the resulting weak model
categories underlie right semi-model categories.

Remark 2.10. The present paper will not be self-contained, relying on a number of
results from [18, 19]. For the purposes of readability, we now list the various results
about weak model categories that we need. Each of these has a dual version.

(i) In a weak model category C a core cofibration is acyclic if and only if it is a
weak equivalence. This is Proposition 2.2.9(iv) of [19].

(ii) Since weak equivalences satisfy 2-out-of-3, it follows that the acyclic cofibrations
satisfy 2-out-of-3 amongst core cofibrations.

(iii) Conversely, Proposition 2.3.3 of [19] asserts that if a premodel category C

satisfies the cylinder object axiom and the acyclic cofibrations between bifi-
brant objects satisfy the right cancellation property — given core cofibrations
j : A ↪→ B and i : B ↪→ C such that i and i ◦ j are acyclic, then i is acyclic too.
— then C is a weak model category.

(iv) The third item above is useful in recognising weak model structures, but the
condition there on relative cylinder objects can in fact be further relaxed. Indeed,
to construct relative cylinder objects it is enough that:

• given a core cofibration A ↪→ B with B fibrant there exists a cofibration
B
∐
AB ↪→ IAB such that both maps B ↪→ IAB are acyclic cofibrations.

The point here is that there is a “trick” to construct a weak relative cylinder
object for A ↪→ B by considering the pushout IAB

∐
B IAB, and from this one

can deduce the cylinder object axiom. (See Lemma 2.3.6 and Remark 2.3.7
of [19].)

2.4. Saturation conditions and semi-model categories as weak model cat-
egories

A premodel category is said to be

• left saturated if the class of anodyne cofibrations and acyclic cofibrations coin-
cide.

• core left saturated if the classes of anodyne cofibrations and acyclic cofibrations
between cofibrant objects coincide.

• right saturated or core right saturated if the dual conditions hold.

In Section 4 of [18] it is shown that any accessible premodel category can be
made left and right saturated without changing its classes of core cofibrations and
core fibrations, so that one can always assume these conditions are satisfied without
affecting the homotopy theoretic information.

Remark 2.11. Let C be a premodel category.

(i) If every object in C is fibrant then the class of acyclic and anodyne cofibrations
coincide — that is, the premodel category is left saturated.

(ii) More generally, each acyclic cofibration in C with fibrant target is an anodyne
cofibration — this is established in Lemma 2.17 of [18].
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Remark 2.12. In relating semi-model categories and weak model categories, the obvi-
ous distinction is that the former involve a class of weak equivalences whereas the
latter do not.

However, the axioms for a (left) semi-model category ensure that the class of
weak equivalences above is uniquely determined — it is the 2-out-of-3 closure of the
anodyne fibrations and core anodyne cofibrations. The dual remark applies to right
semi-model categories.

In particular, being a left or right semi-model category (or indeed a Quillen model
category) is a property of a premodel category rather than additional structure.

Proposition 2.13. Amongst premodel categories, the left semi-model categories are
precisely those factorisation weak model categories which are right saturated, core left
saturated and for which each cofibrant object X admits a cylinder object X

∐
X ↪→

IX
∼→ X. The dual properties characterise right semi-model categories as weak model

categories.

Proof. See Section 3 of [18].

2.5. Accessible weak factorisation systems and weak model categories

A premodel category (or a weak model category) is said to be accessible (resp.
combinatorial) if its underlying category is locally presentable and its weak factori-
sation systems are accessible (resp. cofibrantly generated). The notion of cofibrantly
generated weak factorisation system is well known, but let us remind the reader what
accessibility means in this context.

To this end, recall that a functorial factorisation on a category C is a functor

C2
(L,E,R)

// C3 : X
f
// Y 7−→ X

Lf
// Ef

Rf
// Y (2.1)

from the category of arrows to that of composable pairs which is a section of the
composition functor C3 → C2.

We say that a weak factorisation system admits a functorial factorisation if such a
functor exists for which the morphisms Lf and Rf always belong to the left and right
class of the given weak factorisation system — furthermore, if C is locally presentable
and the functorial factorisation (L,E,R) : C2 → C3 can be chosen so as to be an
accessible functor, then we say that the weak factorisation system is accessible.

2.6. Quillen equivalences between weak model categories

A Quillen adjunction between premodel categories is an adjunction:

F : C � A : U

such that F preserves cofibrations and U preserves fibrations. By adjointness, these
conditions amount to asking that F preserves cofibrations and anodyne cofibrations,
or equally that U preserves fibrations and anodyne fibrations. Note that since F
then preserves core cofibrations and U preserves core fibrations it follows also — see
Lemma 2.22 of [18] of — that F preserves acyclic cofibrations and that U preserves
acyclic fibrations.
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Now, by Proposition 2.4.3 of [19], if the Quillen adjunction

F : C � A : U (2.2)

is between weak model categories then it induces an adjunction

Ho(F ) : Ho(C) � Ho(A) : Ho(U) (2.3)

between homotopy categories.

Definition 2.14. A Quillen adjunction between weak model categories as in (2.2) is
said to be a Quillen equivalence just when the adjunction (2.3) between homotopy
categories is an equivalence of categories.

Remark 2.15. The following are a few characterisations of Quillen equivalences that
we will need later, given in Proposition 2.4.5 of [19].

(i) For X ∈ C cofibrant and Y ∈ A fibrant a map FX → Y is a weak equivalence
if and only if its adjoint X → UY is.

(ii) At Y ∈ A fibrant the derived counit FQUY → FUY → Y is a weak equivalence
where QUY → UY is a cofibrant replacement and F reflects weak equivalences
between cofibrant objects.

(iii) As in (ii) but asking only that F reflects weak equivalences between bifibrant
objects.

3. Preliminaries on algebraic weak factorisation systems

We now describe the necessary background on algebraic weak factorisation systems
— see, for instance [7, 13, 15, 27]. This background material is mostly a summary of
material in Section 2 of [7], to which we refer the reader for a more detailed account.

3.1. Algebraic weak factorisation systems
A functorial factorisation (L,E,R) : C2 → C3 as in (2.1) induces endofunctors

L,R : C2 → C2 of the arrow category and natural transformations ε : L→ 1 and
η : 1→ R with components as below.

A
1 //

Lf

��

A

f

��

Ef
Rf
// B

A
Lf
//

f

��

Ef

Rf

��

B
1 // B .

An algebraic weak factorisation system consists of a comonad (L, ε,∆) and monad
(R, η, µ) extending the above, together with a distributive law relating L and R whose
details will not be required.

Associated to the algebraic weak factorisation system (L,R) we have the categories
L-Coalg and R-Alg of coalgebras for the comonad L and algebras for the monad R —
these are thought of as the left and right classes of the awfs. We denote a coalgebra by
f = (f, s) : A→ B where f : A→ B is the underlying morphism in C and s : f → Lf
the structure map for the coalgebra; likewise, we write g = (g, r) : A→ B for an R-
algebra where r : Rg → g is the structure map.
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3.2. Double categorical aspects

A morphism in L-Coalg is a commutative square as below which preserves the
L-coalgebra structure.

A

f=(f,s)

��

a // C

g=(g,r)

��

C
b // D.

Composition in L-Coalg witnesses that these squares can be composed horizon-
tally. There is also a vertical composition operation — given L-coalgebras f : A→ B
and g : B → C the composite morphism g ◦ f in C admits an extension to a coal-
gebra g · f : A→ C. This composition is associative and unital when the identity
1A : A→ A is equipped with its unique coalgebra structure 1A : A→ A. This vertical
composition respects L-coalgebra homomorphisms and, in total, makes L-Coalg into
a double category whose objects and horizontal morphisms are as in C, whose vertical
morphisms are the L-coalgebras and whose squares are the L-coalgebra morphisms.
This double categorical structure is used in the proof of Proposition 5.1.

3.3. Algebraic weak factorisation systems versus weak factorisation sys-
tems

If f admits the structure of an L-coalgebra and g admits the structure of an R-
algebra, then f has the left lifting property with respect to g. It follows that each
algebraic weak factorisation has an underlying weak factorisation system, whose left
and right classes consist of the retract closures of the L-coalgebras and R-algebras
respectively.

In the case that a weak factorisation system underlies an algebraic weak factorisa-
tion system, we call the algebraic weak factorisation system an algebraic realisation
of the weak factorisation system.

3.4. Accessibility of algebraic weak factorisation systems

In the case that C is a locally presentable category the algebraic weak factorisation
is said to be accessible if its functorial factorisation (L,E,R) is accessible. In fact,
each accessible weak factorisation system admits an accessible algebraic realisation
— see Proposition 3.5 of [14].

3.5. Algebraic cofibrant and fibrant replacement

The counit of the comonad L has component εf = (1A, Rf) : Lf → f — in par-
ticular, has identity domain component 1A. It follows that the comultiplication ∆f

has the same property whence the comonad restricts to a comonad on each coslice
A/C. If C has an initial object ∅, we thereby obtain a comonad Q on ∅/C ∼= C which
is often called the cofibrant replacement comonad. Dually, if C has a terminal object
1 then the monad R restricts to a monad T on the slice C/1 ∼= C, often called the
fibrant replacement monad.
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3.6. Cofibrant generation
A set J of morphisms in a locally presentable category C cofibrantly (or freely)

generates an accessible algebraic weak factorisation system (L,R). An R-algebra con-
sists of a morphism g : X → Y together with a lifting function φ, which assigns to
each commutative square as on the outside left below

A X

B Y

j∈J

a

g

b

φ(j,a,b)

A X

B

j∈J

a

x(j,a)

a chosen diagonal filler, as depicted. The morphisms of R-Alg are commutative
squares which preserve the chosen fillers.

The algebraically fibrant objects — that is, the T -algebras — are the algebraically
J-fibrant objects: these are objects X ∈ C together with a lifting function x, which
assigns to the solid part of each diagram as on the right above a filler. Again mor-
phisms of T-Alg preserve the fillers. Of course, the category of algebraically J-fibrant
objects makes sense for any set J and category C, regardless of whether the cofibrantly
generated awfs exists, and we denote it by J-Fib. In particular when (L,R) does
exist, we have T-Alg ∼= J-Fib.

4. The equivalence transfer theorem

The main aim of the present section is to prove Theorem 4.1, which captures pre-
cisely when a weak model category structure can be transferred to a Quillen equiv-
alent weak model category along a Quillen adjunction between premodel categories.
We then establish a minor variant of this result, Proposition 4.3, which we will use
in Section 5 to transfer a weak model structure to the category of algebraically cofi-
brant objects. The dual result will be used in Section 6 to handle the category of
algebraically fibrant objects.

Theorem 4.1. Let C and A be two premodel categories together with a Quillen ad-
junction:

F : C � A : U

and suppose that A is a weak model category. Then C is a weak model category such
that the above adjunction is a Quillen equivalence if and only if the following two
conditions are satisfied:

(i) Given a cofibrant object X ∈ C, a fibrant object Y ∈ A and a morphism:

FX
i→ Y

there exists a cofibration j : X ↪→ Z in C and a factorisation:

FX Y

FZ

i

Fj
w
∼

such that w is a weak equivalence.
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(ii) If i is a core cofibration in C and Fi is an acyclic cofibration, then i is an acyclic
cofibration.

Proof. We first prove that:

• if C is a weak model category and (F,U) is a Quillen equivalence then (i) and
(ii) above are satisfied.

To prove (i) consider a map FX → Y with X cofibrant and Y fibrant. It corresponds
to a morphism X → UY , which we can factor as a cofibration followed by an anodyne
fibration:

X ↪→ Z
∼
� UY.

Since the anodyne fibration Z
∼
� UY is an acyclic fibration between fibrant objects

and C is a weak model category, it is a weak equivalence by the dual of Remark 2.10(i).
As (F,U) is a Quillen equivalence, Z is cofibrant and Y is fibrant it follows from
Remark 2.15(i) that its adjoint map FZ → Y is a weak equivalence in A, which gives
the desired factorisation establishing (i).

With regards (ii), observe that by Remark 2.15(ii) the left Quillen equivalence F
detects weak equivalences between cofibrant objects. Therefore if i is a core cofibration
such that Fi is an acyclic cofibration (and in particular a weak equivalence) it follows
that i is a weak equivalence, and so an acyclic cofibration as in Remark 2.10(ii). This
proves (ii).

Conversely suppose that (i) and (ii) hold. We begin by showing that:

• C is also a weak model category.

To this end, first suppose that in C one has core cofibrations A
j
↪→ B

i
↪→ C such that j

and i ◦ j are acyclic. We will show that i is acyclic too. Indeed, since F is left Quillen
both Fj and F (i ◦ j) are acyclic cofibrations so that, since A is a weak model category,
Fi is an acyclic cofibration too. Therefore, by (ii) of Theorem 4.1, i is acyclic.

In order to show that C is a weak model category, it suffices by Remark 2.10(iv) to
show that given a core cofibration A ↪→ B, one can construct a cofibration B

∐
AB ↪→

IAB such that both maps B ↪→ IAB are acyclic.

To this end, consider the codiagonal map B
∐
AB → B, and let FB

∼
↪→ Y � 1

be a fibrant replacement of FB in A. Applying the factorisation of (i) to the map
F (B

∐
AB)→ Y we obtain a cofibration B

∐
AB ↪→ IAB in C and a weak equivalence

F (IAB)→ Y in A factoring the map above. In particular, by 2-out-of-3 the maps
F (B)→ F (IAB) are weak equivalences, hence acyclic cofibrations, so that by (ii) the
maps B ↪→ IAB are acyclic cofibrations.

Finally, we show that

• (F,U) is a Quillen equivalence between C and A.

Indeed, let Y be a fibrant object in A and u : X
∼
� UY be a cofibrant replacement

of UY in C. The derived counit of the adjunction F a U at Y is then given by the
adjoint map u : FX → Y — we first show this to be a weak equivalence in A. Indeed
using (i) we can factor it as:

FX
Fi
↪→ FZ

w→
∼
Y.

By adjointness we obtain a commutative diagram in C as on the outside of the square
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below

X X

Z UY,

i u
t

w∗

where w∗ denotes the adjoint transpose of w. Since i is a cofibration and u an anodyne
fibration we obtain a diagonal filler t as above. Thus u fits into a retract diagram as
below left

X Z X

UY UY UY

u

i

w∗

t

u

FX FZ FX

Y Y Y

u

Fi

w

Ft

u

so that, by adjointness, we obtain a retract diagram as above right. Then u is a retract
of the weak equivalence w, and so a weak equivalence itself.

To conclude the proof that (F,U) is a Quillen equivalence it suffices, by Re-
mark 2.15(iii), to show that F detects weak equivalences between bifibrant objects.
Thus let f : X → Y be a map between bifibrant objects such that Ff is a weak
equivalence, and consider a (cofibration/anodyne fibration)-factorisation

X
i
↪→ Z

w→
∼
Y

of f . Then w a weak equivalence between cofibrant objects and so is sent by F to a
weak equivalence, so that Fi is also a weak equivalence by 2-out-of-3, and hence is
an acyclic cofibration. It therefore follows by our assumption (ii) that i is an acyclic
cofibration between cofibrant objects and so a weak equivalence. Hence f = w ◦ i is
a weak equivalence too.

Remark 4.2. In practice, one typically starts with a weak model structure on A, and
an adjunction F : C � A : U which satisfies Condition (i) of Theorem 4.1 but with
“a cofibration in A” replaced by “a map i in A such that Fi is a cofibration”. Given
this, one then forms the left transferred weak factorisation systems on A — that is,
such that the (anodyne) cofibrations in A are the preimage under F of the (anodyne)
cofibrations in C. Unfortunately, in order to apply Theorem 4.1 one requires that a
map in A is an acyclic cofibration if and only if Fi is an acyclic cofibration, and this
does not appear to be automatic in the situation above.

To avoid this problem there are two solutions. Firstly, one can assume that A is core
left saturated — that is, all core acyclic cofibrations in A are anodyne cofibrations —
or replace A by its core left saturation in which this property holds — see Section 4
of [18]. Alternatively, one can use the following modification of Theorem 4.1 in which
Condition (ii) is restricted to anodyne cofibrations, but Condition (i) is strengthened
with the assumption that FZ is fibrant. We will use this modification in Theorem 5.3,
which establishes the weak model structure on algebraically cofibrant objects. In that
case, the fact that FZ is fibrant is ensured by the construction of FZ → Y as an
anodyne fibration.
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Proposition 4.3. Let C and A be two premodel categories with a Quillen adjunction:

F : C � A : U.

Suppose that A is a weak model category and that the adjunction satisfies the following
two conditions:

(i) Given a cofibrant object X ∈ C, a fibrant object Y ∈ A and a morphism:

FX
i→ Y

there exists a cofibration j : X ↪→ Z in C and a factorisation:

FX Y

FZ

i

Fj
w
∼

such that w is a weak equivalence and FZ is fibrant in A.

(ii) If i is a core cofibration in C and Fi is an anodyne cofibration, then i is an
acyclic cofibration.

Then C is a weak model category and (F,U) is a Quillen equivalence.

Proof. By Theorem 4.1 we need only show that if i : X ↪→ Y is a core cofibration in
C such that Fi is acyclic then i is acyclic. To this end, consider a fibrant replacement:

FX ↪→ FY
∼
↪→ Z.

By Condition (i) there is a cofibration Y ↪→ Z ′ in C and factorisation

FY ↪→ FZ ′
∼→ Z

of the map to the fibrant replacement such that FZ ′ is fibrant and such that the
map FZ ′ → Z is a weak equivalence. In particular the composite X ↪→ Y ↪→ Z ′ is
a core cofibration whose image by F is an acyclic cofibration with fibrant target.
Hence its image under F is an anodyne cofibration (see Remark 2.11(ii)), so the
map X ↪→ Z ′ is acyclic in C by assumption. A similar argument shows that the map
Y ↪→ Z ′ is also acyclic in C. Hence, by the elimination property of acyclic cofibrations
(Remark 2.10.(ii)), the map X ↪→ Y is an acyclic cofibration too.

We also state explicitly the dual version of Theorem 4.1:

Theorem 4.4. Let C and A be two premodel categories together with a Quillen ad-
junction:

F : C � A : U

and suppose that C is a weak model category. Then A is a weak model category and the
adjunction above is a Quillen equivalence if and only if the following two conditions
are satisfied:
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(i) Given a cofibrant object X ∈ C, a fibrant object Y ∈ A and a morphism:

X
i→ UY

there exists a fibration p : Z � Y in A and a factorisation:

UZ

X UY

Upw
∼

i

such that w is a weak equivalence in C.

(ii) If i is a core fibration in A and Ui is an acyclic fibration in C, then i is an
acyclic fibration in A.

It is proved by applying Theorem 4.1 to the Quillen adjunction:

Uop : Aop � Cop : F op.

Remark 4.5. Dualizing Proposition 4.3, if we can further show that in Condition (i)
the object Z can be chosen so that UZ is cofibrant in C, then Condition (ii) can
be weakened to the requirement that if i is a core fibration and Ui is an anodyne
fibration then i is an acyclic fibration.

5. Model structures on algebraically cofibrant objects

In the present section, we prove our main result, Theorem 5.3, about model struc-
tures on algebraically cofibrant objects. This theorem builds on the following result.

Proposition 5.1. Let A be an accessible weak model category endowed with an acces-
sible algebraic factorisation system (L,R) such that if f : X → Y is an arrow in A

from a cofibrant object to a fibrant object then it can be factored as a cofibration
that admits an L-coalgebra structure followed by an acyclic fibration. Let Q be the
comonad on A associated to (L,R). Then there is an accessible weak model structure
on Q-Coalg such that:

1. A map in Q-Coalg is a cofibration or anodyne cofibration if and only if its
underlying map in A is.

2. The adjunction:

U : Q-Coalg � A : G,

where U is the forgetful functor is a Quillen equivalence.

3. A map between cofibrant objects in Q-Coalg is a weak equivalence or an acyclic
cofibration if and only if its underlying map in A is.

4. If A is combinatorial then so is Q-Coalg.

Proof. Since the comonad L is accessible, its restriction Q is also accessible. Since
Q is an accessible comonad on a locally presentable category, and the category of
coalgebras for Q can be constructed using pie limits, it follows from the limit theorem
of Makkai and Pare — Theorem 5.1.6 of [23] — that Q-Coalg is locally presentable.
For a detailed proof of this claim, we refer the reader to Proposition A.1 of [11].
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Since the forgetful functor U is a left adjoint between locally presentable categories,
by Theorem 2.6 of [14], there exist accessible weak factorisation systems on Q-Coalg
whose left classes consist of those maps f for which Uf is a cofibration or anodyne
cofibration respectively. We thus have a Quillen adjunction of premodel categories for
which (1) holds by definition. To prove that this a weak model structure on Q-Coalg
satisfying (2) above, it therefore suffices to verify Condition (i) of Proposition 4.3.

To this end, let (X,x) be a cofibrant Q-coalgebra — such is specified by a cofibrant
object X ∈ A together with an L-coalgebra structure x : ∅ → X. As in Section 3 we
use boldface to indicate that x is a morphism x : ∅ → X equipped with additional
structure. Consider a morphism f : X → Y with Y fibrant in A. By our assumptions,
there exists a factorisation of f

X
i→ E

p
� Y

as a cofibration i admitting an L-coalgebra structure i followed by an acyclic fibration
p. We then consider the composite

∅

x

��

1 // ∅

x

��

X

1

��

1 // X

i
��

X
i
// E

in which the upper square is the identity L-coalgebra map. The lower square is an
L-coalgebra morphism by the coalgebra dual of point (c) of Proposition 5 of [7].
Now since L-Coalg is, as described in Section 3.2, a double category, the composite
square is a morphism of L-coalgebras x→ i ◦ x. This equips the fibrant object E
with the structure of a Q-coalgebra such that i : (X,x)→ (E, i ◦ x) is a morphism of
Q-coalgebras. In particular, it is a cofibration in Q-Coalg whose image under U is i,
therefore verifying Condition (i) of Proposition 4.3, as required.

Then for (3) since U is a left Quillen equivalence it preserves and detects weak
equivalences between cofibrant objects, as acyclic core cofibration are the same as core
cofibration that are weak equivalences by Remark 2.10(i), this immediately implies
the result.

Condition (4) holds by Remark 3.8 in [24], which proves that combinatorial weak
factorisation systems between locally presentable categories can be left transferred
along a left adjoint and, moreover, the transferred weak factorisation system is again
combinatorial.

Proposition 5.2. Under the same assumptions as in Proposition 5.1, suppose fur-
ther that A is core left saturated and that all objects admitting a Q-coalgebra structure
are cofibrant. Then Q-Coalg is a right semi-model category with all objects cofibrant.

Proof. If every object admitting aQ-coalgebra structure is cofibrant then every object
in the weak model category Q-Coalg from Proposition 5.1 is cofibrant. In particular,
every object of Q-Coalg admits a strong path object. Hence Proposition 2.13 implies
that it is a right semi-model category if and only if it is left saturated and core right
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saturated. As every object of Q-Coalg is cofibrant it is automatically right saturated
(see Remark 2.11(i)). For left saturation, we must show that each acyclic cofibration
j in Q-Coalg is anodyne. By Proposition 5.1, U reflects the property of being an
anodyne cofibration or an acyclic cofibration between cofibrant objects. Since all
objects in Q-Coalg are cofibrant, it follows that we only we need to show that Uj is
anodyne. But this follows since Uj is an acyclic cofibration between cofibrant objects
and A is core left saturated.

One can also phrase these two results in the following theorem:

Theorem 5.3. Let A be an accessible weak model category endowed with (L,R) an
accessible algebraic realisation of the (cofibration, anodyne fibration)-weak factorisa-
tion system. Let Q be the associated cofibrant replacement comonad on A.

Then there is an accessible weak model structure on Q-Coalg such that:

(i) A map in Q-Coalg is a cofibration or anodyne cofibration if and only if its
underlying map in A is.

(ii) The adjunction:

U : Q-Coalg � A : G,

where U is the forgetful functor, is a Quillen equivalence.

(iii) Each object is cofibrant in Q-Coalg.

(iv) An arrow in Q-Coalg is a weak equivalence or an acyclic cofibration if and only
if its underlying map in A is.

(v) If A is core left saturated then Q-Coalg is an accessible right semi-model cate-
gory.

(vi) If A is combinatorial then so is Q-Coalg.

Proof. In this case, the (L,R)-factorisation of a map f produces a factorisation in
a cofibration that is a L-coalgebra followed by an anodyne (hence acyclic) fibration.
Hence applying Proposition 5.1 gives us points (i), (ii), (vi) and the restriction of (iv)
to maps between cofibrant objects. Moreover, every L-coalgebra is a cofibration, so
it follows that every object in Q-Coalg is cofibrant, this gives (iii) and (iv) for all
objects. Finally, (v) is exactly Proposition 5.2.

Remark 5.4. We can also formulate a version of Propositions 5.1 and 5.2 and Theo-
rem 5.3 that does not involve an algebraic weak factorisation system but merely an
accessible weak factorisation system, with a chosen functorial factorisation (L,R).
The only interest in this is that it avoids the theory of algebraic weak factorisation
systems. In this case L is not a comonad but merely a copointed endofunctor, whilst R
is a pointed endofunctor. Nonetheless we can consider L-coalgebras (for the copointed
endofunctor) and R-algebras respectively and we require either that every arrow from
a cofibrant object to a fibrant object can be factored as in Proposition 5.1 or, more
simply that the underlying weak factorisation system of (L,R) is the (cofibration,
anodyne fibration) weak factorisation system as in Theorem 5.3.

Restricting L to the coslice under the initial object, we obtain the copointed
endofunctor Q as before and the accessibility assumption ensures that the category
Q-Coalg of coalgebras for the copointed endofunctor is locally presentable and that
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U : Q-Coalg→ A has a left adjoint. We claim that the conclusions of Propositions 5.1
and 5.2 and Theorem 5.3 hold in this modified setting with largely the same proof.
The main difference is that in the proof of (the analogue of) Proposition 5.1, given
(X,x) a cofibrant Q-coalgebra and X → Z → Y a factorisation as a cofibration with
an L-coalgebra structure followed by an acyclic fibration, we use the argument of
Lemma 2.12 of [14] to put an L-coalgebra structure on ∅ → Z that makes X → Z a
morphism (and hence a cofibration) of Q-coalgebras instead of Proposition 5 of [7].

Example 5.5. In the present example we describe a combinatorial model structure on
the category of small categories Cat for which the induced right model structure on
the category of algebraically cofibrant objects — simply the category of graphs —
is not a full Quillen model structure. This is a modification of an example that we
learned from Alexander Campbell, and which will appear in [10].

To begin with, we equip Cat with the Quillen model structure in which:

• A functor f : X → Y is a weak equivalence if and only if the induced function
π0(f) : π0(X)→ π0(Y ) between sets of path components is a bijection.

• The cofibrations are generated by the two inclusions J = {∅ → •, (• •)→ (• →
•)}. In particular the anodyne fibrations are functors that are full and surjective
on objects.

In order to verify that this is a Quillen model structure, let us check that the two
classes satisfy the conditions of Smith’s theorem, Theorem 1.7 of [6]. Certainly each
anodyne fibration is a weak equivalence. The latter class, being the preimage under
Π0 : Cat→ Set of the isomorphisms, satisfies 2-out-of-3 and is retract stable. Since
Π0 is cocontinuous, having right adjoint the discrete category functor, it follows that
the weak equivalences are stable under pushout and, moreover, accessibly embedded
in the category of morphisms Cat2. Since cofibrations are always pushout stable it
follows that the intersection of the cofibrations and weak equivalences is also pushout
stable. Therefore the conditions of Smith’s theorem are met — the model structure
exists.

Next consider the forgetful functor U : Cat→ Gph to the category of graphs and
F its left adjoint with η : 1→ UF and ε : FU → 1 denoting the unit and counit. We
will prove that FU is the algebraic cofibrant replacement comonad on Cat induced by
the set of generating cofibrations J . Letting (L,R) denote the cofibrantly generated
algebraic weak factorisation system an R-map is specified by a functor f : Y → Z
equipped with (1) for each z ∈ Z an object φz ∈ Y with fφz = z and (2) for each
(y, α : fy → fz, z) a morphism φα : y → z such that fφα = α. Observe that if f is
bijective on objects, this amounts to giving a section of Uf in Gph. In particular, since
ε : FUX → X is the identity on objects the unit component ηUX : UX → UFUX
equips it with the structure of an R-map. It is easy to say that this is the free R-map
on ∅ → X, in the sense that if f : Y → Z is an R-map and g : Y → Z arbitrary, then
there exists a unique morphism g : FUX → Y making the square below left

FUX

εX

��

g
// Y

f

��

X
g
// Z

FUX

εX

��

∆X // FUFUX

εX◦εFUX

��

X
1 // X
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into a morphism of R-maps. It then follows, by definition of the algebraic cofibrant
replacement comonad, that its underlying copointed endofunctor is ε : FU → 1. By
Equation 2.11 of [7] the comultiplication ∆X : FUX → FUFUX has the property
that the square above right is an R-map morphism where the right hand side uses the
composition of R-maps. In our setting, this commutativity amounts to commutativity
with sections at the level of underlying graphs — that is, to the equation

U∆X ◦ ηUX = ηUFUX ◦ ηUX .

Now this equation is satisfied by ∆X = FηUX and, by the universal property of FUX,
by FηUX alone. Therefore the cofibrant replacement comonad is given by (FU, ε, FηU )
as claimed.

Now since the monad T = UF is parametric right adjoint — see, for instance
Example 2.5 of [32] — it preserves all connected limits. Since U creates limits it
follows that F preserves connected limits — in particular, coreflexive equalisers. As
is well known, the monad T is also cartesian so that, in particular, its unit 1→ UF
is a cartesian natural transformation. Since the pullback of an isomorphism is an
isomorphism, it follows that F reflects isomorphisms. Therefore, by the comonad
dual of Beck’s monadicity theorem, the adjunction F a U is comonadic and so Gph '
FU-Coalg is the category of algebraically cofibrant objects.

Applying Theorem 5.3 we left transfer the model structure on Cat to a right
semi-model structure on Gph in which all objects are cofibrant. Let us examine,
firstly, its cofibrations and weak equivalences. Let f : X → Y ∈ Gph. To say that
Ff : FX → FY induces a bijection on path components is equally to say that f : X →
Y induces a bijection on path components of the graphs. By the simple nature of the
generating cofibrations J in Cat it is also straightforward to see that Ff : FX →
FY is a cofibration just when f : X → Y is a monomorphism — in fact, the J-
cellular maps g : FX → FY are precisely those of the form g = Ff for f : X → Y
a monomorphism. Therefore, this is the right semi-model structure for setoids of
Example 2.5(iii) and, in particular, it is not a Quillen model structure.

The following theorem refines Theorem 5.3, showing that under additional hypo-
theses, one obtains a genuine Quillen model structure on Q-Coalg.

Theorem 5.6. Under the assumptions of Theorem 5.3 suppose further that A is a left
semi-model category and that cylinder objects lift along U : Q-Coalg→ A — in the
sense that if (X,x) is a Q-coalgebra, then there exists a cylinder object factorisation
X

∐
X → IX → X ∈ A that lifts to a factorisation of (X,x)

∐
(X,x)→ (X,x) ∈ A.

Then Q-Coalg is a Quillen model category.

Proof. As A is a left semi-model category, its core acyclic cofibrations are anodyne
cofibrations. Now by Theorem 5.3, U reflects anodyne and acyclic cofibrations. Since
all objects are cofibrant in Q-Coalg it follows that it is left saturated — that is, its
acyclic and anodyne cofibrations coincide. Since all objects are cofibrant it is auto-
matically right saturated by Remark 2.11(i). Furthermore, since cylinder objects lift
along U , Q-Coalg has cylinder objects for all cofibrant objects. Therefore, by Propo-
sition 2.13, Q-Coalg is a left semi-model category. But a left semi-model category
in which all objects are cofibrant is a Quillen model category, so this concludes the
proof.
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In the main theorem of [11], Ching and Riehl use simplicial enrichment to lift
the model structure on a combinatorial simplicial model category to its category
of algebraically cofibrant objects. We now give a generalisation of this result with
a somewhat different proof, since our argument uses liftings of cylinder objects as
opposed to a bar construction.

To begin with, let us suppose that V is an accessible monoidal model category
with cofibrant unit and that A, to begin with, is a combinatorial left semi-model V-
category — here, by a left semi-model V-category, we mean one in which the tensoring
functor −.− : V×A→ A is a left Quillen bifunctor in the usual sense [21].3 We need,
in this setting, to suppose further that for each object X of V the tensor functor
X ⊗− : A→ A preserves cofibrations. Then — as described in Corollary 13.2.4 of [28]
— the generating set of cofibrations in A permits the enriched algebraic small object
argument. In particular, one obtains an accessible enriched cofibrant replacement
comonad Q on A so that Q-Coalg has the structure of a V-category.

Theorem 5.7. Let V be an accessible monoidal model category with cofibrant unit
and A a combinatorial left semi-model V-category such that for each object X of V

the tensor functor X ⊗− : A→ A preserves cofibrations. Let Q be the V-enriched
cofibrant replacement comonad on Q. Then the transferred weak model structure on
Q-Coalg is in fact an enriched Quillen model structure and the Quillen equivalence
with A an enriched Quillen equivalence.

Proof. Since Q is an enriched comonad the category of Q-coalgebras is an enriched
category and the adjunction Q-Coalg � A an enriched adjunction. Now since U
creates colimits, Q-Coalg has tensors by objects of V and these are preserved by U .
Since U creates anodyne cofibrations and cofibrations as well as tensors, it follows
that −.− : V× Q-Coalg→ Q-Coalg is a left Quillen bifunctor. By Theorem 5.6, it
remains to check that cylinder objects lift along U .

Consider a (cofibration/anodyne fibration)-factorisation I
∐
I → J → I in V where

I is the monoidal unit. Since I is cofibrant the coproduct inclusion I → I + I is a
cofibration, so that the composite I → I

∐
I → J is too. By 2 from 3 it is therefore

an anodyne cofibration, and so a cylinder object for I in the sense of Section 2.3.
Now X ∈ A is cofibrant, then −.X : V→ A is left Quillen, so that applying it to the
above produces a cylinder object

X
∐
X // J.X // X

for X. Furthermore, if (X,x) is a coalgebra, then since U creates both tensors and
coproducts, the factorisation lifts to a factorisation of the codiagonal on (X,x) as
required.

As an instance of the above, we obtain

Theorem 5.8 (Ching–Riehl [11]). Let A be a combinatorial simplicial model cate-
gory and Q the simplicially enriched cofibrant replacement comonad on A. Then the
transferred weak model structure on Q-Coalg is in fact a simplicial Quillen model
structure and the Quillen equivalence with A an enriched Quillen equivalence.

3In fact, for our purposes it suffices that the two properties for −.− : V×A to be a left Quillen
bifunctor are required only for morphisms having cofibrant domains and codomains.
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6. Model structures on algebraically fibrant objects

The following proposition is dual in form to Proposition 5.1. The only subtlety here
is that it involves the notions of locally presentable category and accessible functor,
which are not self-dual, so that we cannot appeal to duality to prove the parts of the
result that involve these concepts.

Proposition 6.1. Let A be an accessible weak model category endowed with an acces-
sible algebraic weak factorisation system (L,R) such that if f : X → Y is an arrow in
A from a cofibrant object to a fibrant object then it can be factored as an acyclic fibra-
tion followed by a fibration that admits an R-algebra structure. Let T be the monad
on A associated to (L,R). Then there is an accessible weak model structure on T-Alg
such that:

1. A map in T-Alg is a fibration or anodyne fibration if and only if its underlying
map in A is.

2. The adjunction:

F : A � T-Alg : U,

where U is the forgetful functor is a Quillen equivalence.

3. A map between fibrant objects in T-Alg is a weak equivalence or an acyclic
fibration if and only if its underlying map in A is.

4. If A is combinatorial then so is T-Alg.

Proof. Since the monad R is accessible, its restriction T is also accessible. Since T is
an accessible monad on a locally presentable category, it again follows from the limit
theorem of Makkai and Pare that T-Alg is locally presentable. A self-contained proof
of this claim is in Theorem 2.78 of [1].

Since the forgetful functor U is a right adjoint between locally presentable cate-
gories, by Theorem 2.6 of [14], there exist accessible weak factorisation systems on
T-Alg whose right classes consist of those maps f for which Uf is a fibration or
anodyne fibration respectively. The existence of right transfer of combinatorial weak
factorisation systems is standard and follows directly from the small object argument.

The remainder of the proof is the exact dual of the proof of Proposition 5.1.

Exactly as in Proposition 5.2, we also have:

Proposition 6.2. Under the same assumptions as in Proposition 6.1, if in addition
A is core right saturated and if all objects admitting a T -algebra structure are fibrant,
then T-Alg is a left semi-model category in which all objects are fibrant.

Example 6.3. Let C be an accessible weak model category and J a (not necessarily
generating) set of acyclic cofibrations. We consider the algebraic weak factorisation
system (L,R) cofibrantly generated by J , so that R-algebras are the J-algebraic
fibrations and the T -algebras are the algebraically J-fibrant objects. This algebraic
weak factorisation system always satisfies the assumptions of Proposition 6.1: indeed,
an arrow from a cofibrant object to a fibrant object can be factored as an acyclic
cofibration followed by a (core) fibration, and every core fibration is a J-fibration and
hence admits an R-algebra structure. Therefore we obtain a Quillen equivalent weak
model structure on the category of algebraically J-fibrant objects.
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If C is core right saturated and the lifting property against arrows in J is sufficient
to characterise the fibrant objects, then Proposition 6.2 implies that this weak model
structure is a left semi-model structure in which every object is fibrant.

Combining Propositions 6.1 and 6.2 we have:

Theorem 6.4. Let C be an accessible weak model category endowed with an accessible
algebraic realisation (L,R) of the (anodyne cofibration, fibration)-weak factorisation
system, and let T be the corresponding fibrant replacement monad.

Then there is an accessible weak model structure on T-Alg such that:

(i) A map in T-Alg is a fibration or anodyne fibration if and only if its underlying
map in C is.

(ii) The adjunction:

F : C � T-Alg : U,

where U is the forgetful functor, is a Quillen equivalence.

(iii) All objects of T-Alg are fibrant.

(iv) An arrow in T-Alg is a weak equivalence or an acyclic fibration if and only if
its underlying map in C is.

(v) If C is core right saturated then T-Alg is an accessible left semi-model category.

(vi) If C is combinatorial then so is T-Alg.

By a dual argument to Theorem 5.6 we also have.

Theorem 6.5. Under the assumptions of Theorem 6.4 suppose further that C is a
right semi-model category and that path objects lift along U : T-Alg→ C — in the
sense that if (X,x) is a T -algebra, then there exists a cylinder object factorisation
X → PX → X ×X ∈ C that lifts to a factorisation of (X,x)→ (X,x)× (X,x) ∈
T-Alg. Then T-Alg is a Quillen model category.

Up to this point the situation is perfectly symmetric. However, even if C is com-
binatorial the model structure on algebraically cofibrant objects can produce right
semi-model structures that are not Quillen model categories (see Example 5.5). On
the other hand it is known from Theorem 19 of [8], which builds on [25], that if C is a
combinatorial Quillen model category then the weak model structure on algebraically
fibrant objects is again a genuine Quillen model category.

In Theorem 6.7 below we generalise this result of [8] to the setting of an algebraic
weak factorisation system cofibrantly generated by a set of morphisms. The key is
the following technical lemma, which is an abstraction of the path object obstruction
given in Theorem 19 of [8].

Lemma 6.6. Let J be a set of morphisms in C and consider the category J-Fib of
algebraically J-fibrant objects.

Let f : X → Y be an arrow in J-Fib which admits a factorisation in C:

Z

X Y

qi

f

such that i is a monomorphism and q is a J-fibration. Then Z can be equipped with
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the structure of an algebraically J-fibrant object with respect to which i and q are
morphisms of J-Fib.

Proof. The structure of an algebraically J-fibrant object on Z is specified by the
choice of a dotted lifting:

A Z

B

j∈J

k

z(j,k)

for all j ∈ J and k as above. We specify this choice in two stages.

1. Firstly, if the map k = i ◦ k0 factors through i : X → Z, then the factorisation
k0 is unique and we define z(j, k) = i ◦ x(j, k0) as below.

A X Z

B.

j∈J

k0

k

i

x(j,k0)
z(j,k)

2. On the other hand, if k does not factor through X then firstly we use the J-Fib
structure on Y to obtain a chosen lift as in the outer square below.

A Z

B Y.

j∈J

k

q

y(j,k)

Since q is a J-fibration there exists a dotted lifting, and we define z(k, j) to be one
such lifting — the particular choice proves to be irrelevant.

It remains to check that for this choice of structure on Z, both i and q are mor-
phisms of J-Fib, which is to say that they preserve the chosen liftings. Firstly, we
consider i : X → Z and a map l : A→ X. Then i ◦ l : A→ X → Z factors uniquely
through X as l = (i ◦ l)0 so that the lifting z(j, i ◦ l) is constructed according to the
first rule above — the first diagram above interpreted at k = i ◦ l then states exactly
that i : X → Z is a morphism of J-Fib.

For q, we need to consider the different two cases. If k : A→ Z factors through
i : X → Z as k0 then we are in the first situation above, so that z(j, k) = i ◦ x(j, k0).
Then

q ◦ z(j, k) = q ◦ i ◦ x(j, k0) = f ◦ x(j, k0) = y(j, f ◦ k0) = y(j, q ◦ k),

where in the second last equation, we use that f : X → Z is a morphism of J-Fib.

In the second case, where k : A→ Z does not factor through X, q preserves the
lifting y by construction.

The following result improves Theorem 19 of [8] by weakening the hypothesis that
C is a model category to merely a right semi-model category, and we are grateful to
Martin Bidlingmaier for a remark that led us to further sharpen the hypotheses on J .
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Theorem 6.7. Let C be an accessible right semi-model category with a set J of ano-
dyne cofibrations such that every J-fibrant object is fibrant. Then there is a Quillen
model structure on the category of algebraically J-fibrant objects J-Fib and a Quillen
equivalence

F : C � J-Fib : U,

where U is the forgetful functor. The fibrations, weak equivalences, anodyne fibrations
and acyclic fibrations in J-Fib are the maps f such that Uf has the corresponding
property in C.

Proof. We consider the algebraic weak factorisation system (L,R) cofibrantly gen-
erated by the set J . Since each member of J is an anodyne cofibration and the
morphisms of J suffice to characterise the fibrant objects, by Example 6.3, we obtain
a transferred left semi-model structure on J-Fib in which all objects are fibrant.

Now consider an object (X,x) of J-Fib and the diagonal (X,x)→ (X,x)2. Since
C is a right semi-model structure its underlying map admits a path object as below.

X
δ→ PX � X ×X.

Since δ is a (split) monomorphism and the fibration PX � X×X belongs to RLP (J),
Lemma 6.6 ensures that the factorisation lifts along U to J-Fib. Therefore path
objects lift along U , so that by Theorem 6.5, we obtain the full model structure on
J-Fib.

Example 6.8. Consider again the right semi-model structure on semi-simplicial sets
described in Example 2.5.(iv), whose fibrations between fibrant objects are those
morphisms with the Kan lifting property. Let J be the set of semi-simplicial horn
inclusions, so that J-Fib is the category AlgKan of semi-simplicial algebraic Kan
complexes — semi-simplicial sets equipped with chosen Kan fillers. The maps in J
are anodyne cofibrations and although J is not quite a generating set of anodyne
cofibrations, the fibrant semi-simplicial sets are precisely the objects with the right
lifting property against all maps in J , or semi-simplicial Kan complexes. Therefore
we can apply Theorem 6.7 and the right semi-model structure of Example 2.5.(iv)
transfers along the adjunction

F : ssSet � AlgKan : U

to a Quillen equivalent Quillen model structure on AlgKan. The fibrations and weak
equivalences are the maps that are fibrations or weak equivalences on underlying semi-
simplicial sets.

7. Replacing weak model categories by genuine ones

The main goal of this short section is to apply the results established so far to show
that each combinatorial weak model category is connected, via a zigzag of Quillen
equivalences, to a genuine model category. We begin by recalling from Section 4 of
[18] the core left and right saturation of an accessible weak model category.

Let C be an accessible weak model category. Then C admits a second accessible
weak model structure called its core left saturation, LcC, with the same cofibrations,
anodyne fibrations and core fibrations as C. Furthermore LcC is core left saturated
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and the identity functor C→ LcC is a left Quillen equivalence — in fact it induces
an equivalence between the ordinary categories of bifibrant objects preserving all the
relevant structure.

Similarly, there is the core right saturation RcC, for which the identity functor
RcC→ C is a right Quillen equivalence. Again this is an accessible weak model cate-
gory.

Theorem 7.1. Let C be an accessible weak model category. Then C is connected, via
a zigzag of Quillen equivalences, to an accessible right semi-model category in which
all objects are cofibrant, and also to an accessible left semi-model category in which
all objects are fibrant.

Proof. In the first case, we consider the zigzag C→ LcC← Q-Coalg in which Q is
the cofibrant replacement comonad for an algebraic realisation of the (cofibration,
anodyne fibration) weak factorisation system on LcC. In fact, this is the same Q as
on C itself, but the weak model structure might differ.

The first component is a left Quillen equivalence as mentioned above, and by
Theorem 5.3 the second component is a left Quillen equivalence. Moreover since LcC
is core left saturated, by Theorem 5.3 the second component is a right semi-model
category with all objects cofibrant.

The proof of the second claim proceeds in the same manner, but now using the
core right saturation and Theorem 6.4.

Theorem 7.2. Let C be a combinatorial weak model category. Then C is connected,
via a zigzag of Quillen equivalences, to a combinatorial model category in which all
objects are fibrant.

Proof. We consider the zigzag of left Quillen equivalences C→ LcC← Q-Coalg of
Theorem 7.1. Since C is combinatorial, so too are LcC and Q-Coalg. Then letting
T denotes the induced fibrant replacement monad for the combinatorial right semi-
model structure Q-Coalg, it follows from Theorem 6.7 that T-Alg is a combinatorial
model category with all objects fibrant and the free functor C→ T-Alg a left Quillen
equivalence, so that we have a zigzag of left Quillen equivalences as below

C→ LcC← Q-Coalg→ T-Alg.
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