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AN UPPER BOUND ON THE TOPOLOGICAL COMPLEXITY
OF DISCRIMINANTAL VARIETIES
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(communicated by Donald M. Davis)

Abstract
We give an upper bound on the topological complexity

of varieties V obtained as complements in Cm of the zero
locus of a polynomial. As an application, we determine the
topological complexity of unordered configuration spaces of
the plane.

1. Introduction

LetX be a path-connected topological space. The topological complexity TC(X) is
a numerical invariant introduced by Farber [6] to measure the complexity of a motion
planner on X. Denote by X [0,1] the path-space of X, whose points are all continuous
maps γ : [0, 1]→ X, and by pX : X [0,1] → X ×X the fibration which assigns to each
path γ : [0, 1]→ X (i.e. each element γ ∈ X [0,1]) the couple (γ(0), γ(1)) ∈ X ×X.

Definition 1.1 (Topological complexity). A motion planner on a path-connected
space X is the datum of:

• a covering of X ×X with open sets U0, . . . , Uk;

• for each Ui ⊂ X ×X, a section si : Ui → X ×X of the fibration pX .

The topological complexity of X, denoted TC(X), is the minimum k for which there
exists a motion planner on X with k + 1 open sets U0, . . . , Uk as above.

The connection of the previous definition to robotics is immediate: if X is the
space of configurations that a robot (or a system of robots) can assume, a motion
planner on X will give, for each couple x1, x2 of points in X, a path to pass from the
configuration x1 to the configuration x2. The number k measures the “robustness” of
a motion planner: the smaller is k, the less the motion planner is sensitive to small
perturbations of x1 and x2 and thus the more it is reliable.
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A variation of the notion of topological complexity is the equivariant topological
complexity, introduced by Colman and Grant [5]. Let X be a path-connected space
with a continuous action of a topological group G; then G acts diagonally on X ×X
and on X [0,1]: in the second case the “diagonal” is the natural map G 7→ G[0,1] sending
g ∈ G to the constant function [0, 1]→ G with value g; hence (g · γ)(t) := g · (γ(t)).
Note that the fibration pX : X [0,1] → X ×X is a G-equivariant map.

Definition 1.2 (Equivariant topological complexity). A G-motion planner on X is
given by:

• a covering of X ×X by G-invariant open sets U0, . . . , Uk;

• for each Ui ⊂ X ×X, a G-equivariant section si : Ui → X ×X of the fibra-
tion pX .

The G-equivariant topological complexity of X, denoted TCG(X), is the minimum k
for which there exists a G-motion planner on X with k + 1 open sets U0, . . . , Uk as
above.

Clearly a G-motion planner is also a motion planner, hence TC(X) 6 TCG(X)
for all path-connected G-spaces X.

In this paper we address the problem of bounding from above the topological
complexity of algebraic varieties V obtained as complements in Ck of the zero locus
of a polynomial.

Definition 1.3. A discriminantal variety is a complex algebraic variety V obtained
as the complement in Cm of the zero locus of a non-zero polynomial ∆(z1, . . . , zm),
called the discriminant.

As we will see, discriminantal varieties often carry a natural, nice action of an
s-dimensional torus Ts = (S1)s, so that we can compare TC(V) and TCTs(V).

The motivating example for considering discriminantal varieties is given by con-
figuration spaces of points in the plane, which come usually in two different flavours.

Definition 1.4. The ordered configuration space of n points in C is the space

Fn = {(w1, . . . , wn) ∈ Cn |wi 6= wj ∀i 6= j} .

There is a natural action of the symmetric group Sn on Fn, by permuting the labels
of a configuration. The quotient space is the unordered configuration space of n points
in C, and is denoted

Cn := Fn/Sn.

Roughly speaking, the topological complexities TC(Fn) and TC(Cn) measure the
complexity of a motion planner which coordinates n robots in the plane, avoiding
collisions between them. The difference between the two cases is subtle: in the first
case each robot is labeled by a number 1, . . . , n, and the motion planner takes as
input, for each robot, its initial and its final position; in the second case the robots
are indistinguishable, and the motion planner’s task is to move all robots together,
starting from the set of n initial positions, so that at the end the robots occupy (in
some order) the n final positions.
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One can consider the action of T = S1 = SO(2) by rotations on both Fn and Cn:
then the topological complexities TCT(Fn) and TCT(Cn) measure the complexity of
a motion planner coordinating n ordered or unordered robots in the plane, with the
additional hypothesis that the motion planner should be equivariant with respect to
a “change of coordinate system” by rotation. A motion planner with this property
might be particularly useful, for instance, because it prescribes to the robots the same
behaviour independently of the spatial point of view of the observer who measures
their positions while coordinating them. In this paper we restrict for simplicity to the
compact group SO(2), but the reader will see that essentially the same arguments
work when studying the equivariant topological complexity of Fn and Cn with respect
to the entire group Iso+(R2) of orientation-preserving isometries of R2, in which also
translations are taken into account. However there is an intrinsic issue to extending
the discussion to the group Iso(R2) of all isometries of R2: for n > 2, neither Fn nor
Cn is Iso(R2)-connected (see Definition 2.3), hence the Iso(R2)-equivariant topological
complexity of both spaces is not defined (or is equal to infinity).

The topological complexity of Fn was computed by Farber and Yuzvinsky [7] and
is equal to 2n− 3. For the space Cn, Recio-Mitter and the author [3] proved the
bounds 2n− 2b

√
n/2c − 3 6 TC(Cn) 6 2n− 2, conjectured that TC(Cn) = 2n− 3,

and showed that the lower bound 2n− 3 6 TC(Cn) would follow from a proof that
the cohomological dimension cd([Pn, Pn]) is equal to n− 2, where Pn = π1(Fn) is
the pure braid group on n strands and [Pn, Pn] is its commutator subgroup. The
equality cd([Pn, Pn]) = n− 2 was then proved by the author [2]. In this paper we
prove the upper bound for TC(Cn), and compute also the T-equivariant topological
complexities of Fn and Cn.

Theorem 1.5. Consider the action of T = S1 = SO(2) on Fn and Cn by rotation of
configurations of points in the plane. For all n > 2 we have TCT(Fn) 6 2n− 3 and
TCT(Cn) 6 2n− 3.

Note that, together with the already known lower bound estimate, we obtain
the chain of equalities TC(Fn) = TCT(Fn) = TC(Cn) = TCT(Cn) = 2n− 3 for all
n > 2. We will obtain Theorem 1.5 as an application of the following, more general
statement.

Theorem 1.6. Let V ⊂ Cm be a discriminantal variety. Assume that, for some s > 0,
the torus Ts = (S1)s acts by scalar multiplication on V (see Definition 5.2), and
assume that all stabilisers of the action have dimension 6 t. Then we have

TC(V) 6 TCTs(V) 6 2m− s+ t.

The paper is organised as follows. In Sections 2, 3 and 4 we recall some standard
material about actions of groups on spaces, equivariant Morse theory and CW com-
plexes in the equivariant setting. The exposition is in a few points non-standard, and
it is adapted to the content of the rest of the paper. In Section 5 we prove Theo-
rem 1.6 up to finding a Ts-invariant Morse function on V × V which satisfies some
additional properties. The existence of such a function is shown in Section 6. Finally,
in Section 7 we apply Theorem 1.6 to prove Theorem 1.5, and in Section 8 we briefly
discuss the problem of finding an explicit, T-equivariant motion planner on Cn (the
case of Fn being quite analogous).
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2. Actions of groups on spaces

Before starting we introduce some classical notions and some notation related to
spaces with an action of a group. We fix a compact, connected Lie group G throughout
the next three sections.

Definition 2.1. Two G-spaces X and Y are G-equivariantly homotopy equivalent if
there are two G-equivariant maps α : X → Y and β : Y → X such that β ◦ α : X → X
is homotopic to IdX through G-equivariant maps X → X, and α ◦ β is homotopic to
IdY through G-equivariant maps Y → Y .

Definition 2.2. Let H 6 G be a closed subgroup and let X be a G-space. We denote
by XH ⊆ X the subspace of points x ∈ X which are fixed by the action of H, i.e.
satisfy H 6 Stabx 6 G.

Note that if X and Y are G-homotopy equivalent G-spaces, then XH and Y H

are homotopy equivalent spaces for all closed H 6 G. The following definition differs
slightly from the one usually given in the literature, e.g. in [5].

Definition 2.3. A G-space X is G-connected if XH is path-connected or empty for
all closed subgroups H 6 G.

The G-equivariant Lyusternik-Schnirelmann category was first introduced in [9].
We give a slightly non-standard definition of it.

Definition 2.4. Let X be a G-space; an open set U ⊂ X is G-categorical if U is
G-invariant and there is a G-equivariant homotopy U × [0, 1]→ X starting from the
inclusion U ↪→ X and ending with a map with values in a finite union of G-orbits
of X. The G-equivariant Lyusternik-Schnirelmann category of X, denoted catG(X),
is the minimum k such that X can be covered by k + 1 G-categorical open sets
U0, . . . , Uk.

The previous definition differs from the usual one because we allow a G-categorical
set U ⊂ X to deform G-equivariantly into the union of more than a single G-orbit of
X (clearly, this is in principle possible only if U is disconnected).

Similarly to the classical Lyusternik-Schnirelmann category, catG is a G-homotopy
invariant of G-spaces: if two G-spaces X and Y are G-equivariantly homotopy equiv-
alent, then catG(X) = catG(Y ). The argument of the proof is the usual one also with
our slightly different definition, and we repeat it for completeness. Let α : X → Y be
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a G-equivariant homotopy equivalence with G-homotopy inverse β : Y → X, and sup-
pose that Y is covered by G-categorical sets U0, . . . , Uk (in the sense of Definition 2.4);
then we claim that V0 = α−1(U0), . . . , Vk = α−1(Uk) are G-categorical sets covering
X. To see that Vi is G-categorical, note that the G-homotopy β ◦ α 'G IdX restricts
to a G-homotopy from the inclusion Vi ↪→ X to the composition β ◦ α : Vi → X; more-
over α : Vi → Y has image in Ui, so we can G-equivariantly deform α : Vi → Y to a
map Vi → Y with image contained in finitely many orbits. Composing this latter
homotopy with β yields a G-homotopy from β ◦ α : Vi → X to a map Vi → X with
image in finitely many orbits.

The following is [5, Proposition 5.6].

Proposition 2.5. Let X be a G-connected G-space; then TCG(X) 6 catG(X ×X),
where X ×X is endowed with the diagonal action of G.

The proof given in [5] works also using our slightly different Definitions 2.3 and 2.4.
The main difference is that, in our setting, we have to remark that for each closed
subgroup H 6 G, either (X ×X)H = XH ×XH is empty, or it is path-connected
and intersects the diagonal of X ×X in some point.

3. Equivariant Morse theory

Recall that if M is a smooth manifold and f : M → R is a proper and bounded
below Morse function, then M is homotopy equivalent to a CW complex X whose
k-cells are in one-to-one correspondence with critical points of f of index k, for all
k > 0.

In this section we establish the analogous result for manifolds M endowed with
a smooth left action of a compact connected Lie group G: if M is endowed with a
G-invariant Morse function, then M is G-equivariantly homotopy equivalent to a G-
cell complex X whose k-cells are in one-to-one correspondence with critical manifolds
N ⊂M of index k.

We will consider equivariant Morse theory and equivariant cell complexes in the
general case, although later we will specialise to manifolds M with an action of a
torus Ts. The material of this section is an adaptation of the results of [12, §4].

Let M be a smooth real manifold, let G be a compact Lie group, and assume G
acts smoothly on the left on M .

Let f : M → R be a smooth function, and assume that f is proper (i.e. for all closed
intervals [a, b] ⊂ R the preimage f−1([a, b]) ⊂M is compact) and f is G-invariant.

Definition 3.1. A submanifold N ⊂M is called critical for f if the following condi-
tions hold:

• N is an orbit of the action of G on M ;

• every point p ∈ N is critical for f , i.e. df(p) = 0.

If N is critical for f and p ∈ N , then the Hessian H(f)p is a well-defined bilinear
form on Tp(M), with Tp(N) ⊂ kerH(f)p, i.e. H(f) 〈v, w〉 = 0 for all v ∈ Tp(N) and
w ∈ Tp(M). It follows that there is an induced bilinear form H̄(f)p on the vector
space Tp(M)/Tp(N).
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Definition 3.2. A critical manifold N ⊂M for f is non-degenerate if H̄(f)p is a
non-degenerate bilinear form on Tp(M)/Tp(N). The index of N , denoted ind(N), is
the negativity index ι− of the bilinear form H̄(f)p on Tp(M)/Tp(N).

To see that the index of N does not depend on the choice of p ∈ N , note that
the signature of H̄(f)p always has the form (ι0(p), ι−(p), ι+(p)) with ι0(p) = 0, for all
p ∈ N ; since the positivity and negativity indices ι+ and ι− are lower semicontinuous
functions N → N and the sum ι− + ι+ is constantly equal to dimM − dimN on
N , it follows that ι+ and ι− are continuous, hence constant functions on N . Thus
Definition 3.2 is well-posed.

Definition 3.3. A G-invariant function f : M → R is a G-invariant Morse function
if it is bounded below, is proper and the critical locus of f is the union of finitely
many non-degenerate critical manifolds N1, . . . , Nr ⊂M .

Lemma 4.8 in [12] is stated only for closed manifolds, but it can be generalised to
the following lemma with the same proof.

Lemma 3.4. Let f̃ : M → R be a smooth, proper, G-invariant function, and assume
that f̃ has no critical points outside a compact set K ⊂M . Let U be a G-invariant,
relatively compact open neighbourhood of K in M . Then for all l > 1 there is a G-
invariant Morse function f : M → R such that f̃ − f vanishes outside U , and f̃ is
arbitrarily close to f in the Cl norm.

We will need the case l = 2. To state the main result about G-invariant Morse
functions we need the following definition.

Definition 3.5. Let H 6 G be a closed subgroup, let R be an orthogonal represen-
tation of H of real dimension k, and denote by D(R) ⊂ R the closed unit ball, and by
S(R) = ∂D(R) ⊂ D(R) the unit sphere. We say that the G-space Y is obtained from
the G-space X by a cell attachment of type (H,R) if there is a pushout diagram of
G-spaces

G×H S(R) X

G×H D(R) Y

ϕ

⊂

for some G-equivariant map ϕ : G×H S(R)→ X. We denote by ψ : G×H D(R)→ Y
the induced map, which is called a characteristic map of a cell, whereas ϕ is referred
to as an attaching map. We represent a cell by its characteristic map ψ; the index of
ψ is defined as the real dimension of R.

A finite G-cell complex X is a space obtained starting from ∅ and applying finitely
many cell attachments as above. The index of a G-cell complex X, denoted by ind(X),
is the maximal index of its cells.

Clearly the first cell that we attach to ∅ while constructing a G-cell complex X
must have index 0. Note however that we do not require in Definition 3.5 that the
cells are attached in an order for which the index is weakly increasing; in particular,
if X is a finite G-cell complex and H, R and ϕ are as in Definition 3.5, it may
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happen that ϕ hits points belonging to cells with index greater or equal than the
one we are currently attaching. It is not true in general that we can homotope ϕ in
a G-equivariant way to a new attaching map ϕ′ hitting only points of X belonging
to cells of index lower than dimR: in other words, there is no G-equivariant cellular
approximation theorem for G-cell complexes as in Definition 3.5.

The index ind(X) coincides with the geometric dimension of X (seen as a space
homeomorphic to a plain CW complex) only when all G-cells of X are defined using
subgroups H 6 G of finite index, i.e. codimension 0. Our case of interest will be quite
the opposite, namely the one in which every G-cell is defined using a subgroup H 6 G
of small dimension.

Corollary 4.11 in [12] is stated for compact manifolds, but it can be generalised,
with the same proof, to the following theorem.

Theorem 3.6. Let M be a smooth manifold with a smooth action of G, and let
f : M → R be a G-invariant Morse function. Then M is G-equivariantly homotopy
equivalent to a finite G-cell complex X, whose cells ψ1, . . . , ψr are in one-to-one cor-
respondence with the critical manifolds N1, . . . , Nr of f , such that ind(ψi) = ind(Ni)
for all 1 6 i 6 r.

4. Equivariant CW complexes

The results of this section are probably standard, but I could not find a source
stating them explicitly; nevertheless they are straightforward consequences of results
that can be found in [11, II] and [8], which are the main references for this section.

Our aim is to replace, up to G-equivariant homotopy equivalence, a G-cell complex
by a G-CW complex, which is defined as follows.

Definition 4.1. A finite G-pre-CW complex X is a finite G-cell complex X obtained
by attaching cells of type (H, εk), where εk is the trivial k-dimensional representation
of some closed subgroup H 6 G, for some k > 0.

A finite G-CW complex X is a particular type of finite G-pre-CW-complex: it is
a G-space X filtered by G-invariant subspaces ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xν = X,
for some ν > 0, such that, for all 0 6 k 6 ν, Xk is obtained from Xk−1 by simulta-
neously attaching finitely many G-cells of type εk. More precisely, for all 0 6 k 6 ν
there are:

• a finite set Ik;

• a closed subgroup Hj < G for all j ∈ Ik;

• a G-equivariant map ϕj : G×Hj
S(εk)→ Xk−1 for all j ∈ Ik,

such that Xk is obtained as pushout of the following diagram:∐
j∈Ik G×Hj S(εk) Xk−1

∐
j∈Ik G×Hj

D(εk) Xk.

⊂

∐
ϕj

The following proposition is a direct consequence of [11, Theorem II.2.1].
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Proposition 4.2. Every G-pre-CW complex X is G-equivariantly homotopy equiva-
lent to a G-CW complex Y with the same number of cells in every index.

Thus our aim reduces to replacing a G-cell complex by a G-pre-CW complex up
to G-equivariant homotopy equivalence. Before proceeding, we state the following
theorem, which is a weak form of [8, Theorem 7.1].

Theorem 4.3. Let W be a smooth, compact manifold of dimension k with a smooth
action of G; then W is homeomorphic to a G-CW complex with G-cells of index 6 k.

Suppose now that we are given a G-pre-CW complex X, a closed subgroup H 6 G,
a possibly non-trivial representation R of H of some dimension k and a G-equivariant
map ϕ : G×H S(R)→ X. Then G×H S(R) is a compact manifold (it is the total
space of a bundle over G/H with fibre S(R)), so by Theorem 4.3 there is a decom-
position of G×H S(R) as a G-CW complex.

We can extend this to a structure of G-CW-complex on G×H D(R), by using a
cell of index 0 to represent the zero section of the disc bundle G×H D(R)→ G/H,
and then by coning off the G-CW structure on G×H S(R) inside G×H D(R): note
that the cells filling the cone have index precisely 1 more than the corresponding ones
in G×H S(R). We thus obtain a structure of G-pre-CW complex on the pushout of
G×H D(R) and X along ϕ.

Repeating this argument for all cells in aG-cell complex, we obtain a decomposition
of any G-cell complex X as a G-pre-CW complex: the total number of cells will
increase, but the index of X is the same when X is considered as a G-cell complex
(before the decomposition) or as a G-pre-CW complex (after the decomposition).

Putting together this argument, Theorem 3.6 and Proposition 4.2 we obtain the
following theorem, for which I could not find a direct reference in the literature.

Theorem 4.4. Let M be a smooth manifold with a smooth action of G, and let
f : M → R be a G-invariant Morse function whose critical manifolds have index 6 k.
Then M is G-equivariantly homotopy equivalent to a finite G-CW complex X with
ind(X) 6 k.

The index of a G-CW complex X gives an upper bound for the G-equivariant
Lyusternik-Schnirelmann category catG(X), as we see in the following proposition.

Proposition 4.5. Let X be a finite G-CW complex of index ν; then catG(X) 6 ν.

Proof. Let ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xν be the filtration of X as in Definition 4.1,
and for 0 6 k 6 ν let Uk ⊂ X be a G-invariant neighbourhood of Xk \Xk−1 inside
X \Xk−1, such that Uk deformation retracts G-equivariantly onto Xk \Xk−1. Each
difference Xk \Xk−1 takes the form

∐
i∈Ik G/Hi × D̊(εk), where Ik is the finite set

indexing cells of index k in X, Hi is a closed subgroup of G for all i ∈ Ik, and D̊
denotes the open unit disc. There is a G-equivariant retraction of G/Hi × D̊(εk) onto
its core G/Hi × {0}; carrying out these retractions simultaneously shows that Uk is
G-categorical.

Note that in the previous proof we crucially used our non-standard definition of
the G-equivariant Lyusternik-Schnirelmann category.
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5. Strategy of proof of Theorem 1.6

We fix m > 1 and consider the complex vector space Cm with complex coordinates
z1, . . . , zm; the real coordinates of Cm are xi = <(zi) and yi = =(zi) for all 1 6 i 6 m.
Let ∆(z1, . . . , zm) be a non-zero polynomial with complex coefficients and denote by
V ⊂ Cm the subspace of points of Cm where ∆ does not vanish. We write explicitly

∆(z1, . . . , zm) =
∑
i∈I

αi · zi11 . . . zimm ,

where I ⊂ Zm>0 is a finite set of multi-indices i = (i1, . . . , im), and αi ∈ C \ {0} for all
i ∈ I.

Definition 5.1. A homogenisation of ∆ is the assignment of a degree di ∈ Z to
each of the variables zi, such that ∆ becomes a homogeneous polynomial of some
degree N = N(d1, . . . , dm). We represent a homogenisation by a vector of integers
(d1, . . . , dm) ∈ Zm. The set of all homogenisations of ∆ is denoted by Homog(∆) ⊂
Zm.

In formulas, the condition for (d1, . . . , dm) to lie in Homog(∆) is that the integer
N = i1d1 + · · ·+ imdm be the same for all i ∈ I.

For example, if m = 3 and ∆ = z21 − z2z3, then (1, 1, 1) and (2, 4, 0) are homogeni-
sations of ∆: in the two cases ∆ becomes homogeneous, of degree 2 and 4 respec-
tively. Note that (0, . . . , 0) is always a homogenisation of ∆, making it homogeneous
of degree 0; in some cases this is the only possible homogenisation, e.g. for m = 2 and
∆ = z1 + z21 + z22 + z32 . Note that Homog(∆) is a sub-Z-module of Zm.

Definition 5.2. For s > 0 let Ts = (S1)s be the s-dimensional torus, considered as a
Lie group (it is the trivial group for s = 0). We denote by θ = (θ1, . . . , θs) a generic
element of Ts, where θi ∈ S1 ⊂ C is a unit complex number. Assume that we are given
a matrix Ξ = (ξi,j)16i6s,16j6m with coefficients in Z, whose rows (of length m) lie
in Homog(∆). Then Ξ induces an action of Ts on V by scalar multiplication by the
formula

θ · (z1, . . . , zm) = (z′1, . . . , z
′
m),

where for all 1 6 j 6 m we set z′j = θ
ξ1,j
1 · θξ2,j2 . . . θ

ξs,j
s · zj .

The condition that all rows of Ξ lie in Homog(∆) ensures the equality

∆(z′1, . . . , z
′
m) = θ

N(ξ1,1,...,ξ1,m)
1 · θN(ξ2,1,...,ξ2,m)

2 . . . θN(ξs,1,...,ξs,m)
s ·∆(z1, . . . , zm).

In particular (z1, . . . , zm) lies in V (i.e. ∆(z1, . . . , zm) 6= 0) if and only if (z′1, . . . , z
′
m)

lies in V (i.e. ∆(z′1, . . . , z
′
m) 6= 0), and thus the formula gives a well-defined action of

Ts on V. The action is not assumed to be free or faithful in any way: for instance we
allow Ξ to be the zero matrix, yielding a trivial action of Ts on V. In the rest of the
section and in the next section we fix a matrix Ξ as in Definition 5.2. We will prove
the following proposition.

Proposition 5.3. Assume that all stabilisers of the action of Ts on V have dimension
6 t, for some 0 6 t 6 s. Then V × V is G-equivariantly homotopy equivalent to a G-
CW complex X with ind(X) 6 2m− s+ t.
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Using Theorem 4.4, in order to prove Proposition 5.3 it suffices to exhibit a Ts-
invariant Morse function on the manifold M = V × V with indices 6 2m− s+ t: we
will do it in the next section. In the remainder of this section we will see how Theo-
rem 1.6 follows from Proposition 5.3.

Lemma 5.4. The Ts-space V is G-connected.

Proof. First, note that V is path-connected, since V is the complement in Cm of the
zero-locus of a (non-zero) polynomial (incidentally, this shows that our attempt to
estimate TC(V) is not completely pointless!). Let H 6 Ts be a non-trivial closed
subgroup. For a point (z1, . . . , zm) ∈ V, the property that (z1, . . . , zm) belongs to VH
can be characterised as follows: for all θ ∈ H and for all 1 6 j 6 m, either zj = 0 or

θ
ξ1,j
1 · . . . θξs,js = 1 ∈ S1. In particular every θ ∈ H imposes a finite, possibly empty

collection of restrictions for points of VH , taking the form zj = 0 for some 1 6 j 6 m.
Reasoning the other way around, let {j1, . . . , jl} ⊂ {1, . . . ,m} be the subset of

indices j for which there exists θ ∈ H with θ
ξ1,j
1 · . . . θξs,js 6= 1: then VH is the inter-

section of V with the sub-vector space of Cm determined by the equations zji = 0
for all 1 6 i 6 l. This intersection is again the complement of the zero locus of a
polynomial in a smaller complex vector space, so it is either empty (if the polynomial
restricts to the zero polynomial on the subspace) or path-connected.

By Lemma 5.4 and Proposition 2.5 we have TCG(V) 6 catG(M ×M), and since
the G-equivariant Lyusternik-Schnirelmann category is a G-homotopy invariant, we
can write TCG(M) 6 catG(X), where X is given by Proposition 5.3. Since X is a
G-CW complex of index 6 2m− s+ t, using Proposition 4.5 we obtain catG(X) 6
2m− s+ t.

6. A good Morse function on V × V
We need to find a Ts-equivariant Morse function f : V × V → R with indices 6

2m− s+ t, using the notation from Proposition 5.3. We will use essentially the same
method used by Andreotti and Frankel [1] in their proof of the Lefschetz hyperplane
theorem.

We first define a function g : V → R by the equation

g(z1, . . . , zm) = |z1|2 + · · ·+ |zm|2 +

∣∣∣∣ 1

∆(z1, . . . , zm)

∣∣∣∣2 .
Note that g is invariant with respect to the action of Ts by scalar multiplication.
Note also that g takes values > 0 and is proper: for λ > 0 let {g 6 λ} ⊂ V denote
the subspace of points (z1, . . . , zm) ∈ V for which g(z1, . . . , zm) 6 λ; then {g 6 λ} is

contained in the closed subspace
{
|∆| > 1√

λ

}
⊂ Cm, so {g 6 λ} is also closed in Cm;

moreover {g 6 λ} is contained in the closed ball of radius
√
λ centred at 0, hence

{g 6 λ} is compact.
The critical locus crit(g) ⊆ V, i.e. the subspace of points of V where dg vanishes,

can be characterised by algebraic equations and inequalities in the real coordinates
xi = <(zi) and yi = =(zi), hence crit(g) is a real semi-algebraic subset of Cm = R2m.
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As such, crit(g) has finitely many connected components (see for instance [4, Theo-
rem 2.4.4]).

Note also that the vanishing of dg on a connected component of crit(g) implies
that g is constant on this connected component. Since g is proper on V and since
crit(g) is closed in V, every component of crit(g) is compact; since crit(g) has finitely
many connected components, also crit(g) is compact.

Recall that if p ∈ Cm is a point, U is a neighbourhood of p and h : U → R is a
smooth function, we can define a Euclidean Hessian H(h)p as the 2m× 2m matrix
of second partial derivatives, computed with respect to the Euclidean coordinates xi
and yi of Cm. The Euclidean Hessian H(h)p can be considered as a bilinear form on
Tp(Cm), but its definition strongly depends on the choice of the coordinates we use
to parametrise a neighbourhood of p, in our case the Euclidean coordinates. On the
other hand, if p happens to be a critical point for h, i.e. dh vanishes at p, then the
Hessian H(h)p is a bilinear form on TpCm which only depends on p and g but not
on the coordinates used to parametrise a neighbourhood of p; moreover H(h)p and
H(h)p agree if p ∈ crit(h).

Lemma 6.1. Let p ∈ Cm be a point and let U be an open neighbourhood of p; let
η : U → C \ {0} be a holomorphic function, and define h : U → Cm by h(p) = |η(p)|2.
Consider the Euclidean Hessian H(h)p: then the negativity index of H(h)p is at
most m.

Proof. Up to a change of coordinates of U by translation in Cm, we can assume p = 0.
We consider the Taylor expansion of η around 0:

η(z1, . . . , zm) = c+

m∑
i=1

λizi +

m∑
i,j=1

µi,jzizj + h.o.t.,

where c = η(0), λi = ∂η
∂zi

(0), µi,j = ∂2η
∂zi∂zj

and the higher order terms are those of

degree > 3. Up to multiplying η by 1/c (and consequently h by the positive number
1/|c|2), we can assume c = 1. Up to a C-linear change of coordinates of U , we can
further assume that the m×m matrix (µi,j) is diagonal, with entries µ1,1, . . . , µr,r
equal to 1 and entries µr+1,r+1, . . . , µm,m equal to 0, for some 0 6 r 6 m. We can
therefore assume that the Taylor expansion of η has the form:

η(z1, . . . , zm) = 1 +
m∑
i=1

λizi + z21 + z22 + · · ·+ z2r + h.o.t.

Then the Taylor expansion of h is the following, using the variables z1, . . . , zm and
their conjugates z̄1, . . . , z̄m, and recalling the identity h = η · η̄:

h(z1, . . . , zm) = 1 +

(
m∑
i=1

λizi + λ̄iz̄i

)
+

 m∑
i,j=1

λiλ̄jziz̄j

+

(
r∑
i=1

z2i + z̄2i

)
+ l.o.t.

The Euclidean Hessian H(h)0 can be regarded as the sum of two R-bilinear forms H1

and H2, the first corresponding to the quadratic form
(∑m

i,j=1 λiλ̄jziz̄j
)
, the second

corresponding to the quadratic form
(∑r

i=1 z
2
i + z̄2i

)
.

The bilinear form H2 can be written, with respect to the coordinates xi and yi,
as a 2m× 2m real diagonal matrix, with r occurrences of 2, r occurrences of −2
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and 2m− 2r occurrences of 0 on the main diagonal: this follows from the equality
z2i + z̄2i = 2x2i − 2y2i for all 1 6 i 6 r. In particular H2 has signature (2m− 2r, r, r),
so it has negativity index r 6 m.

The bilinear form H1 comes from the sesquilinear form on Cm represented by the
m×m complex matrix Λ · Λ̄T , where Λ is the m× 1 matrix with entries λ1, . . . , λm.
Every sesquilinear form of type Λ · Λ̄T is positive semidefinite on Cm, and hence pos-
itive semidefinite when considered as a R-bilinear form on R2m; hence H1 is positive
semidefinite.

It follows that the negativity index of H(h)0 = H1 + H2 is at most r 6 m.

We apply Lemma 6.1 to the function η(z1, . . . , zm) = 1/∆(z1, . . . , zm), obtaining
that for all p ∈ V the matrix H(|η|2) has negativity index 6 m; in other words, the
sum of its nullity and positivity indices is at least m.

On the other hand H(|z1|2 + · · ·+ |zm|2)p is (strictly) positive definite: we have
indeed that H(|z1|2 + · · ·+ |zm|2)p is the 2m× 2m identity matrix, independently of
p ∈ V. We obtain therefore that for all p ∈ V the matrix H(g)p has positivity index
> m.

Now we consider the function f̃ : V × V → R defined by f̃(p, p′) = g(p) + g(p′).
Note that f̃ is invariant with respect to the diagonal action of Ts, takes values > 0
and is proper.

The differential of f̃ is the “direct” sum of the pullbacks of the differentials of g at
p and p′: this implies that a critical point (p, p′) for f̃ is precisely a couple of critical

points p, p′ for g; as a consequence crit
(
f̃
)

= crit(g)× crit(g) is compact.

The Euclidean Hessian H(f̃)(p,p′) computed at any point (p, p′) ∈ V × V is the
block sum of the Euclidean Hessians H(g)p and H(g)p′ : in particular the positivity

index of H(f̃)(p,p′) is at least 2m for all (p, p′) ∈ V × V.

By Lemma 3.4 we can find a Ts-invariant Morse approximation f : V × V → R of
f̃ ; we can ensure that f̃ and f agree outside a Ts-invariant relatively compact open

subspace U ⊂ V × V containing crit
(
f̃
)

in its interior; and we can ask that f̃ and

f be close in the C2 norm, so that in particular also f , as f̃ , has the property that
H(f)(p,p′) has positivity index at least 2m for all (p, p′) ∈ U .

We claim that f has critical points of index 6 2m+ s− t. Let (p, p′) be a criti-
cal point for f : then H(f)(p,p′) can be represented in coordinates as H(f)(p,p′), and
thus it has positivity index at least 2m. Denote by N ⊂ V × V the critical mani-
fold containing (p, p′); then N ∼= Ts/H, for some closed subgroup H 6 Ts. We have
that H is the intersection of the stabilisers of p and p′ by the action of Ts on V,
therefore our hypothesis on t implies that dimH 6 t, and hence dimN > s− t. Since
the bilinear form H(f)(p,p′) vanishes on T(p,p′)N , we have that the nullity index of
H(f)(p,p′) is at least s− t. It follows that the negativity index of H(f)(p,p′) is at most
4m− (2m+ s− t) = 2m− s+ t.

7. Applications

In this section we apply Theorem 1.6 to configuration spaces. Fix n > 2, and
note that Fn deformation retracts onto its subspace F 0

n of ordered configurations
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(w1, . . . , wn) whose barycentre (w1 + · · ·+ wn)/n is equal to 0. The explicit deforma-
tion retraction ρ : Fn × [0, 1]→ Fn is given by the following formula:

ρ(w1, . . . , wn; t) =

(
w1 − t

w1 + · · ·+ wn
n

, . . . , wn − t
w1 + · · ·+ wn

n

)
.

Note that F 0
n is a T-invariant subspace of Fn and that ρ is a T-equivariant deforma-

tion retraction, so that F 0
n and Fn are T-equivariantly homotopy equivalent: we can

study the space F 0
n instead of Fn. Note also that ρ is equivariant with respect to the

action of the symmetric group Sn on Fn by permutation of labels: thus ρ induces
a T-equivariant deformation retraction of Cn onto its T-invariant subspace C0

n of
unordered configurations {w1, . . . , wn} with barycentre (w1 + · · ·+ wn)/n equal to 0.

We first focus on the unordered case, so we want to apply Theorem 1.6 to the
space C0

n. For each {w1, . . . , wn} ∈ C0
n we can form the polynomial

P (w) = wn +

n∑
i=2

(−1)iaiw
n−i := (w − w1) · (w − w2) · · · · · (w − wn),

where the coefficient ai is the i-th elementary symmetric function in w1, . . . , wn; note
that a1 =

∑n
i=1 wi vanishes by hypothesis, therefore we have omitted the correspond-

ing term from the sum above. The discriminant

∆(P ) =
∏

16i<j6n

(wi − wj)2

is a symmetric polynomial in the variables w1, . . . , wn, hence it can be expressed as a
polynomial ∆C(a2, . . . , an) in the elementary symmetric functions a2, . . . , an: again
we omit a1 because this elementary symmetric function is constantly zero on C0

n.

Note also that for 2 6 i 6 n the elementary symmetric function ai has total degree
i in the variables wi, whereas the polynomial ∆C has total degree n(n− 1): in par-
ticular, for all θ ∈ T = S1, if we rotate the configuration {w1, . . . , wn} ∈ C0

n by θ, i.e.
we replace it with the configuration {θw1, . . . , θwn}, then the symmetric function ai
is multiplied by θi and the value of ∆C is multiplied by θn(n−1).

Consider now Cn−1 with coordinates z2, . . . , zn, and let VC be the complement of
the zero locus of the polynomial ∆C(z2, . . . , zn). The fundamental theorem of algebra
establishes a homeomorphism between C0

n and VC ; moreover the previous discussion
shows that (2, 3, . . . , n) is a homogenisation of ∆C(z2, . . . , zn), so we can consider the
corresponding action of T on VC by scalar multiplication: this action corresponds
under the homeomorphism C0

n
∼= VC to the action of T on C0

n by rotations.

It is left to check that the stabilisers of the action of T on VC have dimension at
most 0, i.e. they are finite groups. Since the only closed subgroups of T are either
finite cyclic groups or the entire T, it suffices to check that no point of VC is fixed
by the entire T, or equivalently no point of C0

n is fixed by the entire T: the second
statement is a straightforward consequence of the assumption n > 2.

Applying Theorem 1.6 we obtain that TCT(C0
n) = TCT(VC) 6 2(n− 1)− 1 + 0 =

2n− 3.

We pass now to the ordered case. Similarly as above, we can parametrise F 0
n

using the coordinates w1, . . . , wn−1, because on F 0
n we can express the last coor-

dinate as wn = −(w1 + · · ·+ wn−1). The defining inequality for Fn ⊂ Cm, which is



174 ANDREA BIANCHI∏
16i<j6n(wi−wj) 6= 0, restricts to the following defining inequality for F 0

n , expressed
only in terms of the variables w1, . . . , wn−1:

∆F (w1, . . . , wn−1) :=

 ∏
16i<j6n−1

(wi − wj)

(n−1∏
i=1

(wi + (w1 + · · ·+ wn−1))

)
6= 0.

In particular F 0
n is homeomorphic to the complement VF ⊂ Cn−1 of the zero locus

of the polynomial ∆F (z1, . . . , zn−1). Since the polynomial ∆F is homogeneous in the
variables z1, . . . , zn−1 we have that (1, . . . , 1) is a homogenisation for ∆F ; the corre-
sponding action of T on V by scalar multiplication corresponds, under the homeo-
morphism F 0

n
∼= VF , to the action of T on F 0

n by rotation.
It is left to check that the stabilisers of the action of T on VF , or equivalently on F 0

n ,
are finite groups, and this follows again, as in the unordered case, from the inequality
n > 2. Theorem 1.6 applies again to give TCT(F 0

n) = TCT(VF ) 6 2(n− 1)− 1 + 0 =
2n− 3.

8. Outlook: finding explicit motion planners

In principle one can use the strategy of the proof of Theorem 1.5 to construct an
explicit T-equivariant motion planner on Cn (or on Fn). One fixes a T-invariant Morse
function f : C0

n × C0
n → R, and makes a list of its critical manifolds N1, . . . , Nr ⊂

C0
n × C0

n. For each Ni ∼= T/Hi, where Hi is some finite cyclic group, one chooses a
point (qi, q

′
i) ∈ Ni and fixes a path from qi to q′i inside the subspace (C0

n)Hi , which we
know is path-connected (see Lemma 5.4); we extend this path, in the unique possible
way, to a T-equivariant motion rule on each Ni.

Now, given two configurations p, p′ ∈ Cn, the motion planner will connect p to p′

as follows:

1. we connect both p and p′, respectively, with the configurations ρ(p, 1) and
ρ(p′, 1) in C0

n, using the homotopy ρ;

2. we use the gradient flow of f on C0
n × C0

n to move the couple (ρ(p, 1), ρ(p′, 1))
to a new couple (q, q′) belonging to some critical manifold Ni, thus connecting
p to q and p′ to q′;

3. we connect q to q′ using the fixed motion rule on Ni.

We can define, for all 0 6 i 6 2n− 4, the subspace Ki ⊂ Cn × Cn as the (not neces-
sarily open) subspace containing pairs (p, p′) that in step (2) are mapped to a pair
(q, q′) belonging to a critical manifold Nj of index precisely i. Then the hope is that
the above motion rule is continuous on each Ki: if this is the case, one can argue that
each Ki admits a T-invariant open neighbourhood Ui that deformation retracts onto
Ki, and thus one can define a continuous motion rule on Ui. Since Ki is a subspace
of a manifold, one can expect that the deformation of Ui onto Ki can be given by a
very explicit formula, for example by selecting, for all (p, p′) ∈ Ui, the shortest path
(with respect to the Euclidean metric on VC ⊂ Cm−1) joining (p, p′) with a pair in
Ki; so one can expect that passing from Ki to Ui is not a big issue. As far as I can
see, there are three other, major issues in implementing this strategy:

• Lemma 3.4 does not give an explicit way to perturb the explicit function f̃ given
in Section 6 to a T-invariant Morse function f .
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• The motion rule described above may not be continuous on the subspaces Ki:
this problem is reflected in the fact that Theorem 3.6 only produces a T-cell
complex, and we need to further subdivide cells (and to change the attaching
maps by a T-equivariant homotopy) in order to obtain a T-CW complex.

• We need to list all critical manifolds Ni for f .

For the first issue, one can use directly the gradient flow of f̃ to perturb a pair in

C0
n × C0

n to one in crit
(
f̃
)

= crit(g)× crit(g), using the function g : C0
n → R. Even

assuming that g is Morse (something we did not speculate on, and for a good reason, as

we will see soon), the connected components of crit
(
f̃
)

have the form T/H1 × T/H2

and are thus 2-dimensional, so f̃ is surely not a T-invariant Morse function. Nev-

ertheless one can fairly easily decompose each component T/H1 × T/H2 of crit
(
f̃
)

into two T-invariant pieces, each of which has a T-equivariant deformation retraction
onto an orbit of the action of T on C0

n × C0
n. So up to assuming that g is Morse, the

first issue can be solved or bypassed.

For the second issue, we need to understand the representation theory (over R) of
T and of its finite subgroups, in order to decompose the T-cell complex from Theo-
rem 3.6 into a T-pre-CW complex: this is due to the actual construction underlying
Theorem 4.3. The representation theory of T and of finite cyclic groups is well under-
stood, so we can assume to be able to obtain an explicit T-pre-CW complex X onto
which C0

n × C0
n deformation retracts T-equivariantly. We can also hope that X is

already a T-CW complex, and redefine Ki as the set of pairs (p, p′) that are mapped
by the first two steps of the motion planner to a pair (q, q′) in Xi \Xi−1. Let us
assume for a moment that the second issue can also be solved.

The third issue is, in my opinion, the biggest obstacle to implementing an explicit

motion planner. Understanding crit
(
f̃
)

= crit(g)× crit(g) boils down to understand-

ing crit(g), and even assuming that g is a T-invariant Morse function we would need
to make a list of the components of crit(g). And anyway, we would still have to prove
that g is Morse!

We have given an explicit formula for g, and all properties that we used are essen-
tially the following: g is a proper T-invariant function on C0

n obtained as a sum of
absolute values of (locally defined) algebraic holomorphic functions.

Let us try to replace g : C0
n → R with another, similar function g′ : C0

n → R, given
by the formula

g′(w1, . . . , wn) =

n∑
i=1

|wi|2 +
∑

16i<j6n

1

|wi − wj |
,

for all {w1, . . . , wn} ∈ C0
n.

The configurations in crit(g′) are known in celestial mechanics as the central con-
figurations for the planar n-body problem; for n 6 7 it is known that g′ is a T-invariant
Morse function, and there is a complete list of components of crit(g′) [10], but for
higher n there is no such a list, and it is even unknown whether g is a T-equivariant
Morse function or not: this latter question is also known as the 6th problem in Smale’s
eighteen problems for the 21st century. If the third issue is such a hard problem for g′,
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I do not expect that it can be easily solved for g (or for any other function with similar
properties).
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