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Abstract
We compare existence and equivariance phenomena for weak

moment maps and homotopy moment maps in multisymplectic
geometry.

1. Introduction

Multisymplectic (or n-plectic) geometry is a generalization of symplectic geom-
etry, where n = 1 corresponds to the symplectic case. Just as symplectic geometry
has its origins in classical mechanics, multisymplectic geometry arose from classical
field theory in the works of Tulczyjew, Kijowski and Szczyrba (see [8] and [9]). In
[3], Cantrijn, Ibort, and de León investigated multisymplectic manifolds from purely
geometric viewpoint. Since then, there have been multiple attempts at generalizing
the notion of a moment map from symplectic to multisymplectic geometry. Moment
maps are an important concept in symplectic geometry: they formalize the Noether
principle and have applications like the Marsden–Weinstein reduction, the Atiyah–
Guillemin–Sternberg convexity theorem, and classification of toric manifolds.

In this paper, we compare two generalizations of symplectic moment maps to n-
plectic geometry. One of them is the homotopy moment map introduced in [1] by
Callies, Fregier, Rogers and Zambon. This map is an L∞-morphisms between the Lie
algebra g acting on (M,ω) and the L∞-algebra L∞(M,ω) associated to (M,ω). The
other map is the weak moment map introduced in [6, 7] by Herman, extending the
notion introduced by Madsen and Swann in [11] and [12]. Components of this map,
restricted to certain subspaces of Λkg, are required to satisfy the first n equalities
satisfied by the components of a homotopy moment map. Hence, a homotopy moment
map induces a weak moment map. In this paper, we answer some questions posed in
[6], including the question of the reverse implication.

This paper is organized as follows. We begin with background material on mul-
tisymplectic geometry, Lie group/algebra actions and Cartan calculus in Section 2.
In Section 3, we investigate the question of whether the existence of a weak moment
map implies the existence of a homotopy moment map. This question is answered
in Theorem 3.8, which is the main result of Section 3. Section 4 addresses questions
of existence of equivariant homotopy (weak) moment maps using the framework of
Section 3 and reproves a result from [6] extending it to the case of homotopy moment
maps.
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2. Background

In this section, we recall the relevant notions and results from multisymplectic
geometry, Lie group/algebra actions and Cartan calculus.

2.1. Lie group and Lie algebra actions
Let G be a Lie group acting on a smooth finite-dimensional manifold M from the

left.

Definition 2.1. The vector field

vx|m =
d

dt
exp(−tx) ·m|t=0, ∀m ∈M

is called the infinitesimal generator of the action corresponding to x ∈ g.

Definition 2.2. Let vxi be the infinitesimal generator corresponding to xi ∈ g. Then
for x := x1 ∧ · · · ∧ xk ∈ Λkg, we call vx := vx1

∧ · · · ∧ vxk the infinitesimal generator
of the action corresponding to x.

Next, we briefly recall the Lie algebra homology differential, which we will need in
particular to define homotopy moment maps.

Definition 2.3. Let g be a Lie algebra. The map δk : Λkg→ Λk−1g defined by

δk : x1 ∧ · · · ∧ xk 7→
∑

16i<j6k

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk, (1)

where k > 1 and xi ∈ g, is called k-th Lie algebra homology differential of g. We
will denote the space of k-cycles of this complex by Zk(g) = ker(δk) and the space

of all cycles by Z(g) :=
⊕dim g

k=0 Zk(g). We will also be interested in the subspace

Z>1(g) :=
⊕dim g

k=1 Zk(g).

Remark 2.4. In the multisymplectic literature the space Zk(g) is typically called the
k-th Lie kernel of g and denoted by Pk,g. The spaces Λkg are commonly denoted by
Ck(g) and their homology is the classical Lie algebra homology Hk(g).

Remark 2.5. Let g act on manifold M , and let δ̄k : ΛkRΓ(TM)→ Λk−1R Γ(TM) be
defined analogously to (1). Then, as g→ X(M) is a Lie algebra homomorphism,
we have δ̄kvx = vδkx for x ∈ Λkg. In particular, for x ∈ Z(g), δ̄kvx = vδkx = 0.
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The following formula is known as the “Extended Cartan Formula” and can be
found in [12, Lemma 3.4].

Lemma 2.6. Let α ∈ Ωm(M). Then for all k > 2 and all vector fields v1, . . . , vk, we
have:

(−1)kdι(v1 ∧ · · · ∧ vk)α =ι(δ̄k(v1 ∧ · · · ∧ vk))α

+

k∑
i=1

(−1)iι(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk)£viα

+ ι(v1 ∧ · · · ∧ vk)dα,

where ι(v1 ∧ · · · ∧ vk)α = ιvk · · · ιv1α, etc.

2.2. Lie algebra cohomology
We briefly recall some notions from the realm of Lie algebra cohomology with

values in a module. For a more detailed and systematic exposition, we refer the
reader to [15].
Let g be a Lie algebra and M a g-module, i.e. a vector space equipped with a Lie
algebra homomorphism a : g→ End(M), a 7→ ax. When no confusion is possible, we
will write x ·m for ax(m). We equip the vector space C•(g,M) = Λg∗ ⊗M with a
differential dg,M as follows. For α ∈ Λkg∗ ⊗M, dkg,M(α) = dg,M(α) ∈ Λk+1g∗ ⊗M
is given by

dg,M(α)(x1 ∧ · · · ∧ xk+1)

= α(δ(x1 ∧ · · · ∧ xk+1)) +

k+1∑
i=1

(−1)i+1xi · α(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk+1).

This differential squares to zero, so we can define its cohomology groups:

Definition 2.7. We define the k-th Lie algebra cohomology group of g with values in
M as

Hk(g,M) =
ker(dkg,M)

im(dk−1g,M)
.

The following two special cases will be of particular interest in the sequel.

Example 2.8. In case M = R is the trivial g-module dg := dg,R is the dual of δ and
we recover Chevalley–Eilenberg cohomology Hk(g,R) = Hk(g).

Example 2.9. The group H0(g,M) = ker(d1g,M) ⊂M is just the subspace of Mg of
g-invariant elements in M.

2.3. Multisymplectic geometry
In this subsection, we recall the relevant notions from multisymplectic geometry.

We begin with the definition of a multisymplectic manifold.

Definition 2.10. A pair (M,ω) is an n-plectic manifold, if ω is a closed nondegen-
erate n+ 1 form, i.e.,

dω = 0

and the map ι ω : TM → ΛnT ∗M, v 7→ ιvω is injective.
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Thus, a symplectic manifold is a 1-plectic manifold. As in symplectic geometry, in
n-plectic geometry there is also a notion of Hamiltonian vector fields.

Definition 2.11. An (n− 1)-form α on an n-plectic manifold (M,ω) is Hamiltonian
if there exists a vector field vα ∈ X(M) such that

dα = −ιvαω.

The vector field vα is the Hamiltonian vector field corresponding to α.

The space of smooth functions C∞(M) on a symplectic manifold forms a Lie
(Poisson) algebra. An n-plectic manifold is canonically equipped with a Lie n-algebra
L∞(M,ω) defined in the following way [13, Thm. 5.2]:

Proposition-Definition 2.12. Given an n-plectic manifold, there is a corresponding
Lie n-algebra L∞(M,ω) = (L, {[−, . . . ,−]′k}) with underlying graded vector space

Li =

{
Ωn−1Ham(M) i = 0

Ωn−1+i(M) 1− n 6 i < 0

and maps {[−, . . . ,−]′k : L⊗k → L | 1 6 k <∞} defined as

[α]′1 = dα, if |α| < 0

and, for k > 1,

[α1, . . . , αk]′k =

{
ζ(k)ι(vα1

∧ · · · ∧ vαk)ω if |α1 ⊗ · · · ⊗ αk| = 0

0 if |α1 ⊗ · · · ⊗ αk| < 0,

where vαi is any Hamiltonian vector field associated to αi ∈ Ωn−1Ham(M), ζ(k) =

−(−1)
k(k+1)

2 , and ι(−) denotes contraction with a multivector field.

Remark 2.13. A Lie n-algebra is an L∞-algebra concentrated in degrees 0,−1, . . . ,
1− n. For definition and properties of L∞-algebras see [10].

Remark 2.14. For n = 1 in the above definition, we get the Lie algebra C∞(M) asso-
ciated to a symplectic manifold (M,ω).

2.4. Homotopy moment maps and weak moment maps

In this subsection, we introduce the main characters of this paper: the homotopy
moment map and the weak moment map.

Following [1], we recall:

Definition 2.15. Let g→ X(M), x 7→ vx be a Lie algebra action on an n-plectic man-
ifold (M,ω) by Hamiltonian vector fields. A homotopy moment map for this action
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is an L∞-morphism

(f̃k) : g→ L∞(M,ω)

such that

−ιvxω = d(f̃1(x)), ∀x ∈ g.

This is equivalent to a collection of n linear maps

f̃1 : g→ Ωn−1Ham(M)

f̃k : Λkg→ Ωn−k(M), 2 6 k 6 n

such that

− f̃k−1(δx) = df̃k(x) + ζ(k)ιvxω (2)

for 1 6 k 6 n+ 1, where f̃0, f̃n+1 ≡ 0, and vx is the infinitesimal generator of the
action corresponding to x ∈ Λkg.

The next definition is taken from [7, Def. 3.11].

Definition 2.16. Let g→ X(M), x 7→ vx be a Lie algebra action on an n-plectic man-
ifold (M,ω) by Hamiltonian vector fields. A weak moment map is a collection of linear

maps f̂k : Zk(g)→ Ωn−k(M), where 1 6 k 6 n, satisfying

df̂k(x) = −ζ(k)ιvxω

for k ∈ 1, . . . , n and all x ∈ Zk(g).

Remark 2.17. We stress that we have n equations in the definition of a weak moment
map, while a homotopy moment map has to obey n+ 1 equations.

3. Existence

Every homotopy moment map induces a weak moment map by restriction to the
“Lie kernel” Z>1(g), i.e., if there is a homotopy moment map for a given Lie algebra
action, there is also a weak moment map. In this section, we will show that under an
additional assumption the converse is also true. Throughout this section, (M,ω) is
an n-plectic manifold, and g acts on (M,ω) preserving ω.

3.1. Existence of homotopy moment maps
We recall the existence result for homotopy moment maps from [5] and [14]. We

consider the double complex

(Λ>1g∗ ⊗ Ω(M), dg, d), (3)

where dg is the Chevalley–Eilenberg differential of g, and d is the de Rham differential

of M . Let C̃ be the total complex with differential

d̃tot := dg ⊗ 1 + 1⊗ d. (4)

Define

ωk : Λkg→ Ωn+1−k(M)

x 7→ ιvxω
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and

ω̃ :=

n+1∑
k=1

(−1)k−1ωk. (5)

We recall the following result from [5] and [14].

Proposition 3.1. Let α̃ := α̃1 + · · ·+ α̃n, with α̃k ∈Λkg∗ ⊗ Ωn−k(M). Then d̃totα̃ =
ω̃ if and only if

f̃k := ζ(k)α̃k : Λkg→ Ωn−k(M), k = 1, . . . , n,

are the components of a homotopy moment map for the action of G on (M,ω).

In other words, a homotopy moment map for the action of g on (M,ω) exists if

and only if the class [ω̃] = 0 in Hn+1(C̃).

By the Kuenneth theorem Hn+1(C̃) =
⊕n+1

i=1 H
i(g)⊗Hn+1−i(M), where Hi(g)

are the Lie algebra cohomology groups and Hn+1−i(M) the de Rham cohomol-
ogy groups. In particular, the class [ω̃] can be decomposed into individual classes
in Hi(g)⊗Hn+1−i(M). The case of i = n+ 1 will be of particular interest to us and
can be described in the following non-cohomological manner:

Lemma 3.2. If there exists a homotopy moment map for g acting on (M,ω), then
the map

φ : Zn+1(g)→ C∞(M)

x 7→ ιvxω

vanishes identically.

Proof. If there exists a homotopy moment map f for the action of g on (M,ω), then
it has to satisfy equation (2) for k = n+ 1, i.e.,

−f̃n(δx) = ζ(n+ 1)ιvxω

for all x ∈ Λn+1g. This means that for x ∈ Zn+1(g), we have ιvxω = 0.

Remark 3.3. In [1, Cor. 9.3], the following map was introduced:

cgm : Λn+1g→ R, x 7→ (−1)nζ(n+ 1)ιvxω|m, (6)

for some m ∈M . It was shown in [1] that this map is a (n+ 1)-cocycle in Lie algebra
cohomology, and, for connected M , the cohomology class [cgm] ∈ Hn+1(g) does not
depend on the point m ∈M . Moreover, [1, Prop. 9.5] states that if a connected
n-plectic manifold (M,ω) is equipped with a G-action which induces a homotopy
moment map, then

[cgm] = 0.

Up to sign, the class [cgm] can be interpreted as the evaluation at m of the Hn+1(g)⊗
H0(M) component of [ω̃].
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Lemma 3.4. Let (M,ω) be a connected n-plectic manifold equipped with a G-action
preserving ω. Let cgm be defined as in equation (6), and φ be defined as in Lemma 3.2.
Then the condition

[cgm] = 0

is equivalent to φ ≡ 0.

Proof. Indeed, assume φ ≡ 0. Then, for x ∈ Zn+1(g)

cgm(x) = (−1)nζ(n+ 1)(ιvxω)|m = 0

for any m ∈M . That means that cgm ∈ (Zn+1(g))◦, where (Zn+1(g))◦ is the annihi-
lator of Zn+1(g). Therefore cgm ∈ (Zn+1(g))◦ = (ker δn+1)◦ = im dng , i.e., [cgm] = 0.

Conversely, suppose [cgm] = 0. Since M is connected, this holds at all m ∈M . Then
cgm = dgξ for some ξ ∈ Λng∗. For any x ∈ Zn+1(g) and m ∈M this means

ιvxω|m = (−1)nζ(n+ 1)cgm(x) = (−1)nζ(n+ 1)(dgξ)(x) = (−1)nζ(n+ 1)ξ(δx) = 0.

3.2. Existence of weak moment maps
We will need the following lemma.

Lemma 3.5. For p ∈ Zk(g), k = 1, . . . , n+ 1, the form ιvxω is closed, i.e.,

d(ιvxω) = 0.

In particular, x 7→ ιvxω induce well-defined maps Zk(g)→ Hn+1−k(M).

Proof. This follows from Remark 2.5 and Lemma 2.6.

Lemma 3.6. A weak moment map exists if and only if the maps

Zk(g)→ Hn+1−k(M)

x 7→ [ιvxω]

are identically zero for 1 6 k 6 n.

Proof. By definition of weak moment maps, for all x ∈ Zk(g) and all k, the form ιvxω
has to be exact.

Analogously to Proposition 3.1, we can encode weak moment maps as primitives
of a certain element in the double complex

(Z>1(g)∗ ⊗ Ω(M), 0, d) (7)

with zero differential on Z>1(g)∗ and de Rham differential on M . Let Ĉ be the total

complex with differential d̂tot := 1⊗ d. We define ω̂ ∈ Ĉ as

ω̂ :=

n∑
k=1

(−1)k−1(ωk|Zk(g)).

From the discussion above, it follows that:
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Proposition 3.7. Let α̂ := α̂1 + · · ·+ α̂n, with α̂k ∈ Zk(g)∗ ⊗ Ωn−k(M). Then

d̂totα̂ = ω̂ if and only if

f̂k := ζ(k)α̂k : Zk(g)→ Ωn−k(M), k = 1, . . . , n

are the components of a weak moment map for the action of G on (M,ω). I.e., the

existence of a weak moment map is equivalent to the vanishing of [ω̂] ∈ Hn+1(Ĉ).

3.3. Main result of the section

Theorem 3.8. Let g act on (M,ω) by preserving ω. The following statements are
equivalent:

1. The action admits a homotopy moment map.

2. The action admits a weak moment map and φ ∈ Zn+1(g)∗ ⊗ C∞(M) as defined
in Lemma 3.2 vanishes identically.

Proof. The implication (1)→ (2) is an immediate consequence of the fact that any
homotopy moment map restricts to a weak moment map and Lemma 3.2. To prove
the converse, we first observe that ω̃|Z>1(g) = ω̂ + φ. In other words, the restriction

(res⊗ id) : C̃ = Λ>1g∗ ⊗ Ω(M)→ Z>1(g)∗ ⊗ Ω(M) = Ĉ (8)

maps ω̃ to ω̂ + φ. The restriction is a chain map, so to complete the proof we just have
to verify that its induced map in cohomology [res⊗ id] : H(C̃)→ H(Ĉ) is injective.
By using the naturality of the Kuenneth isomorphism we get the following commu-
tative diagram:

Hn+1(Λ>1g∗ ⊗ Ω(M)) Hn+1(Z(g)∗ ⊗ Ω(M))

⊕
k>1H

kg⊗Hn+1−k(M)
⊕

k>1Zk(g)∗ ⊗Hn+1−k(M)

[res⊗ id]

∼=

[res]⊗ [id]

∼=

.

Thus, to prove our claim it suffices to verify that [res] : Hk(g)→ Zk(g)∗ is injective.
To see this, consider the exact sequence

0→ Zk(g)
i−→ Λkg

δk−→ Λk−1g.

Dualizing it leads to the exact sequence

0← Zk(g)∗
π←− Λkg∗

dk−1
g←−−− Λk−1g∗.

Therefore,

Zk(g)∗ = Λkg∗/ im(dk−1g )←↩ ker(dkg)/ im(dk−1g ) = Hk(g).
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Corollary 3.9. A weak moment exists if and only if the projection of the class [ω̃] to

n⊕
k=1

Hk(g)⊗Hn−k+1(M)

vanishes, where ω̃ is the cocycle defined by (5).

Proof. Let xki , where i = 1, . . . ,dimZk(g) be a basis of Zk(g). Then ωk|Zk(g) can

be written as ωk|Zk(g) =
∑
i

(xki )∗ ⊗ ωk(xki ). Note that, since each ωk(xki ) is closed by

Lemma 3.5, each ωk|Zk(g) is also closed under d̂tot = 1⊗ d. Thus, the image of [ω̂ + φ]
under the Kuenneth isomorphism κ is

κ([ω̂ + φ]) : =

n∑
k=1

(−1)k−1κ[ωk|Zk(g)] + (−1)nκ[φ]

=

n∑
k=1

(−1)k−1
∑
i

(xki )∗ ⊗ [ωk(xki )] + (−1)nκ[φ]

so κ([ω̂ + φ]) can be divided into two parts:

n∑
k=1

(−1)k−1κ[ωk|Zk(g)] ∈
n⊕
k=1

Zk(g)∗ ⊗Hn−k+1(M)

and

(−1)nκ[φ] ∈ Zn+1(g)∗ ⊗H0(M).

In particular,

κ([ω̂]) =

n∑
k=1

(−1)k−1κ[ωk|Zk(g)] ∈
n⊕
k=1

Zk(g)∗ ⊗Hn−k+1(M).

Since [res]⊗ [id](κ[ω̃]) = κ([ω̂]) + κ([φ]), it is clear from the nature of the map
[res]⊗ [id] that the preimage of κ([ω̂]) under [res]⊗ [id] is the projection of κ([ω̃]) to⊕n

k=1H
k(g)⊗Hn−k+1(M). Since the map [res]⊗ [id] is injective, κ([ω̂]) vanishes if

and only if that preimage vanishes. Noting that the Kuenneth map is an isomorphism,
we get the statement of the corollary.

With this corollary, we can recover the following results from [6]:

Proposition 3.10 (5.12 in [6]). If H1(g) = · · · = Hn(g) = 0, then a weak moment
map exists.

Theorem 3.11 (5.6 in [6]). If H0(g,Zk(g)) = 0 for k = 1, . . . , n, then a weak moment
map exists, where the g-module structure on Zk(g) is induced by the adjoint action.

Proof. Recall that the zeroth Lie algebra cohomology H0(g,M) equals the sub-
space of g invariants Mg in M. As Hk(g) ⊂ Zk(g)∗, we have Hk(g)g ⊂ (Zk(g)∗)g.
But Hk(g)g = Hk(g), so if H0(g,Zk(g)) = (Zk(g)∗)g = 0 for k = 1, . . . , n, then also
Hk(g) = 0 and a weak moment exists.
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Below we provide two examples illustrating the necessity of requiring φ to vanish
in the assumptions of Theorem 3.8. The first example deals with the more familiar
symplectic case:

Example 3.12. Let n = 1, i.e., consider a connected Lie group G acting on a connected
symplectic manifold (M,ω). In this case, a weak moment map is a map f̂ : g→
C∞(M) that satisfies

df̂(x) = −ιvxω,

and a homotopy moment map is a map f̃ : g→ C∞(M) that satisfies

df̃(x) = −ιvxω

f̃([x, y]) = {f̃(x), f̃(y)} = ω(vx, vy).

In symplectic geometry, the latter map is called an equivariant moment map. It is
then well-known (see, e.g., [2, §26 ]) that if there exists a weak moment map, then
the obstruction to the existence of an equivariant moment map lies in H2(g).

More specifically, let f̂ be a weak moment map. Consider

h(x, y) : = {f̂(x), f̂(y)} − f̂([x, y])

= ω(vx, vy)− f̂([x, y]).

Since d(ω(vx, vy)) = −ι[vx,vy ](ω) = df̂([x, y]), it follows that h(x, y) is a constant func-
tion on M , and therefore it defines an element h ∈ Λ2g∗. Evaluating h(x, y) at any
point m ∈M , we get

h(x, y) = ω(vx, vy)|m − f̂ |m([x, y])

= cgm(x, y) + dgf̂(x, y)|m.

If we assume that cgm is exact, then h ∈ Λ2g∗ is exact, i.e., there exists b ∈ g∗ such

that h = dgb. Then f̃ := f̂ − b is an equivariant moment map. Indeed,

f̃([x, y])− ω(vx, vy) = f̂([x, y])− b([x, y])− ω(vx, vy)

= f̂([x, y]) + dgb(x, y)− ω(vx, vy)

= f̂([x, y]) + h(x, y)− ω(vx, vy)

= 0.

Note that, by Lemma 3.4, the exactness of cgm is equivalent to the vanishing of φ.
Thus, if there exists a weak moment map for a Lie group acting on a symplectic
manifold, then there exists a homotopy moment map if and only if φ ≡ 0.

Thus, the example above yields many instances in symplectic geometry where a
weak moment map exists, but a homotopy moment map does not. The next example
illustrates such a case in 2-plectic geometry.

Example 3.13 ([1]). Let G be a connected compact semi-simple Lie group acting on
itself by left multiplication. The Lie algebra g of G is equipped with a non-degenerate
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skew-symmetric form defined by

θ(x, y, z) := 〈x, [y, z]〉,

where 〈 , 〉 is the Killing form. Let ω be the left-invariant form which equals θ at the
identity element e. This form is closed and non-degenerate, i.e., (G,ω) is a 2-plectic
manifold. It is well-known that H1(g) = H2(g) = 0 (see, e.g., [4]), so a weak homotopy
moment map exists for this action. However, the map φ defined in Lemma 3.2 does
not vanish, hence, there is no homotopy moment map.

In the next example, we will explicitly construct a 2-plectic homotopy moment
map from a weak moment map.

Example 3.14. Consider the action of SO(3) on (M = R3, ω = dx1 ∧ dx2 ∧ dx3) by
rotations. Note that, since H1(M) = 0, the first component of a weak moment map
for this action exists. The Lie algebra so(3) is spanned by the following elements:

e1 =

0 −1 0
1 0 0
0 0 0

 , e2 =

0 0 −1
0 0 0
1 0 0

 , e3 =

0 0 0
0 0 −1
0 1 0

.

These elements satisfy the following bracket relations:

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1,

therefore, P2,so(3) ≡ 0, P3,so(3) = Λ3so(3), and a weak homotopy moment map for
this action has only one component. Note further, that the orbits of this action are
of dimensions 0 and 2, hence φ ∈ P ∗3,so(3) ⊗ C

∞(M) = Λ3so(3)∗ ⊗ C∞(M) defined in
Lemma 3.2 vanishes. Therefore, by Theorem 3.8, there exists a homotopy moment
map for this action.

The infinitesimal generators vi corresponding to elements ei are given by

v1 = x2
∂
∂x1
− x1 ∂

∂x2
, v2 = x3

∂
∂x1
− x1 ∂

∂x3
, v3 = x3

∂
∂x2
− x2 ∂

∂x3
.

Defining

f̂1(e1) = ω(v2, v3), f̂1(e2) = −ω(v1, v3), f̂1(e3) = ω(v1, v2)

on basis elements gives the weak moment map.
Note that f̃ = (f̃1 = f̂1, f̃2 ≡ 0) is a pre-image of f̂ under the map (8). To construct

a homotopy moment map out of f̂ , note that ψ̃ := ω̃ − d̃totf̃ is d̃tot-exact and the sum
of any primitive with f̃ gives a homotopy moment map. So, to construct a homotopy
moment map, we need to find a primitive of ψ̃, i.e., find a h̃ = (h1, h2) ∈ C̃2 that
satisfies the following equations:

−dh1 = 0

dgh1 + dh2 = −ω2 − dgf̂1
dgh2 = ω3.

Note that ω3 = 0. Also, evaluating −ω2 − dgf̂1 on basis elements, we get, using the
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definition of f̂1 and bracket relations between the ei,

ω2(ei, ej)−f1([ei, ej ]) = 0.

Therefore the equations above become:

−dh1 = 0

dgh1 + dh2 = 0

dgh2 = 0.

Note that the last equation is satisfied for any h2∈Λ2so(3)
∗ ⊗ C∞(M), since P3,so(3) =

Λ3so(3). Therefore, the equations above become:

−dh1 = 0

dgh1 + dh2 = 0.

It is easy to see that a trivial map h1 ≡ 0, h2 ≡ 0 satisfies this equation, and therefore,
f̃ = (f̃1 = f̂1, f̃2 ≡ 0) is a homotopy moment map for this action.

Remark 3.15. According to [1, Thm. 9.6], if G acts on a connected n-plectic manifold
(M,ω) for which Hi(M) = 0 for 1 6 i 6 n− 1, and

[cgm] = 0

for cgm defined in Remark 3.3, then there exists a homotopy moment map for this
action. In the above example φ ≡ 0, hence, by Lemma 3.4, the assumptions of the
theorem stated above are satisfied, and a homotopy moment map exists. Thus, the
example above is consistent with [1, Thm. 9.6].

3.4. Strict extensions
The fact that, assuming φ ≡ 0, the existence of weak moment maps implies the

existence of homotopy moment maps raises the following question: Given a weak
moment map and assuming φ ≡ 0, does there always exist a homotopy moment map
that restricts to the given weak moment map? The following proposition answers this
question:

Proposition 3.16. Let f̂ be a weak moment map, and φ = 0. There exists a well-
defined class [γ]d̃tot ∈ H

n+1(C̃) such that the following are equivalent:

1. [γ]d̃tot = 0 and γ admits a primitive in
⊕n

k=1 dg(Λkg∗)⊗ Ωn−k−1(M).

2. There exists a homotopy moment map f̃ , such that f̃ |Z(g) = f̂ .

Proof. Let α̂ = α̂1 + · · ·+ α̂n ∈ Ĉ be a potential of ω̂ ∈ Ĉ corresponding to f̂ under
the bijection in Proposition 3.7. Let β ∈ C̃ be any preimage of α̂ under the map (8).

Such a preimage exists as the restriction C̃ → Ĉ is surjective. However, it might not
be a potential of ω̃. We can thus consider the element γ = ω̃ − d̃totβ ∈ C̃. Note that
γ ∈ ker(res⊗ id) = dg(Λ>1g∗)⊗ Ω(M).

First of all, we will show that γ admitting a primitive in dg(Λig)⊗ Ωn−i(M) does

not depend on the choice of β. Indeed, if γ = ω̃ − d̃totβ = d̃totµ for µ ∈ dg(Λ>1g∗)⊗
Ω(M), then choosing β′ = β + b yields γ′ = ω̃ − d̃tot(β′) = ω̃ − d̃tot(β + b) = d̃totµ−
d̃totb = d̃tot(µ− b). Now note that b ∈ ker(res⊗ id) = dg(Λ>1g∗)⊗ Ω(M).
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Now, let’s assume there exists a β that corresponds to a homotopy moment
map restricting to â. Then γ = ω̃ − d̃totβ = 0. Choosing another β′ = β + b, we
have γ = ω̃ − d̃totβ′ = ω̃ − d̃tot(β + b) = −d̃totb. Again, note that b ∈ ker(res⊗ id) =
dg(Λ>1g∗)⊗ Ω(M).

Conversely, assume that for some β, γ = ω̃ − d̃totβ = d̃totµ for µ ∈ dg(Λ>1g∗)⊗
Ω(M). Then, ω̃ = d̃tot(β + µ), i.e., β + µ corresponds to a homotopy moment map

that restricts to f̂ , since µ ∈ ker(res⊗ id).

Remark 3.17. Denote by γi+1 the component of γ in dgΛig∗ ⊗ Ωn−i(M). Note that,

since d̃tot = 1⊗ d on dg(Λ>1g∗)⊗ Ω(M), it follows from dtotγ = 0 that dγi = 0 for
all γi. Requiring γ to have a primitive µ ∈ dg(Λ>1g∗)⊗ Ω(M) is equivalent to saying
that each γi+1 = dηi, where ηi ∈ dgΛig∗ ⊗ Ωn−i−1(M).

Indeed, suppose γ = d̃totµ, where µ ∈ dg(Λ>1g∗)⊗ Ω(M). Denote the component
of µ in dgΛig∗ ⊗ Ωn−i−1(M) by µi. Then γi+1 = (−1)i+1dµi.

Conversely, let each γi+1 satisfy γi+1 = dηi for some ηi ∈ dgΛig∗ ⊗ Ωn−i−1(M).

Then d̃tot(
∑
i

(−1)i+1ηi) = γ.

Also note that γn+1 ∈ dgΛng∗ ⊗ C∞(M), and therefore γn+1 = dη if and only if
γn+1 = 0.

Corollary 3.18. Let G act on an n-plectic manifold M , let f̂ be a weak moment
map for this action, and let γ be defined as in Proposition 3.16. If Hi(M) = 0 for

i ∈ {1, . . . , n− 1}, then there exists a homotopy moment map restricting to f̂ if and
only if γn+1 = 0.

Definition 3.19. Let f̂ be a weak moment map for an action ofG on (M,ω). A homo-

topy moment map f̃ is called a strict extension of f̂ if f̃ |Z(g) = f̂ , i.e., if f̃ restricts

to f̂ .

Example 3.20. For n = 1, i.e., in symplectic geometry, P1,g = g. Therefore, if a given
weak moment map is not already a homotopy moment map, there is no homotopy
moment map restricting to it.

To see this in terms of the results of Proposition 3.16, let f̂ be a symplectic weak
moment map. Note that in this case γ = γ2, and so by Remark 3.17 and Proposi-
tion 3.16, there exists a homotopy moment map restricting to f̂ if and only if

γ(x, y) = −ω2(x, y)− dgf̂(x, y)

= −ω(vx, vy) + f̂([x, y])

vanishes, i.e., if and only if f̂ is already an equivariant moment map, i.e., a homotopy
moment map.

For an example of a symplectic weak moment map that cannot be strictly extended
to a homotopy moment map, consider a Lie algebra g such that H1(g) = 0. If there

exists a homotopy moment map f̃ for the action of g, then it is unique (see, e.g.,

[2, §26]). On the other hand, for an arbitrary nonzero ξ ∈ g∗ the map f̂ := f̃ + ξ,

satisfies the condition df̂(x) = −ιvxω for all x ∈ g, i.e., is a weak moment map, but
not a homotopy moment map.
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Example 3.21. Consider the homotopy moment map f̃ constructed in Example 3.14
for the action of SO(3) on (R3, ω = dx1 ∧ dx2 ∧ dx3), given by f̃1(e1) = ω(v2, v3),

f̃1(e2) = −ω(v1, v3), f̃1(e3) = ω(v1, v2) and f̃2 ≡ 0. This homotopy moment map coin-
cided with the original weak moment map, i.e., in this case the original weak moment
map admitted an obvious “strict extension” to a homotopy map. To see this in the
context of Proposition 3.16, note that in this case

γ = ω1 − ω2 + ω3 − dgf̃1 + df̃1

= ω3

= 0,

since in this case ω2(ei, ej)−f̃1([ei, ej ]) = 0 and ω3 = φ = 0 (see the discussion in
Example 3.14), i.e., γ = γ3 vanishes in this example, and by Remark 3.17 there indeed
exists a strict extension of the weak moment map to a homotopy moment map.

Moreover, any weak moment map for this action can be strictly extended to a
homotopy moment map. Indeed, let f̂ = (f̂1, f̂2 ≡ 0) be a weak moment map for this
action. The equations for a homotopy moment map are

df̃1 = −ιvxω

f̃1([x, y]) = df̃2(x, y) + ω(vx, vy)

−f̃2(δ(x, y, z)) = −ω(vx, vy, vz).

Note that any f̃2 ∈ Λ2so(3)∗ ⊗ C∞(M) restricts to f̂2 ≡ 0 and satisfies the third equa-
tion above, since P2,so(3) = 0, P3,so(3) = Λ3so(3), and ω3 ≡ 0. Also note that, if the

first one of the above equations is satisfied, then df̃1([x, y]) = −ι[vx,vy ] = dω(vx, vy),

and therefore the difference f̃1([x, y])− ω(vx, vy) is a closed 1-form on R3 for all

x, y ∈ so(3). Since H1(R3) = 0, this form is exact, and there exists a f̃2 satisfying

the second of the equations above. Therefore, f̃1 = (f̂1, f̃2), is a homotopy moment

map that restricts to the given weak moment map f̂ = (f̂1, f̂2 ≡ 0). This result is

consistent with Corollary 3.18 and the fact that γ3 = ω3 − dgf̃2 = 0, since both ω3

and dgf̃2 vanish.

4. Equivariance

Definition 4.1 ([1, 6]). Let G be a Lie group acting on (M,ω) preserving ω. A homo-
topy moment map f : g→ L∞(M,ω) is called equivariant if for all g ∈ G, x ∈ Λkg,
and 1 6 k 6 n

fk(Adgx) = Φ∗gfk(x), (9)

where Φ∗g denotes the pullback action. It is infinitesimally equivariant or g-equivariant

if and only if for all ξ ∈ g, x ∈ Λkg and 1 6 k 6 n

fk(adξx)−£vξfk(x) = 0, (10)

where ad denotes the adjoint action of g on Λkg. In complete analogy, a weak homo-
topy moment map is equivariant if (9) holds for all x ∈ Zk(g) resp. infinitesimally
equivariant if (10) holds for all ξ ∈ g, x ∈ Zk(g) and 1 6 k 6 n.



ON THE EXTENSION PROBLEM FOR WEAK MOMENT MAPS 157

Remark 4.2. For a connected Lie group G, a homotopy (or weak) moment map is
equivariant if and only if it is infinitesimally equivariant. We will treat the case of
infinitesimal equivariance in the sequel. The (globally) equivariant case works com-
pletely analogously.

Consider the complex C̃g = (Λ>1g∗ ⊗ Ω(M))g, consisting of all g-invariant ele-

ments of (3). The total differential (4) restricts to C̃g, because dg is g-equivariant
and d commutes with the Lie derivative. Since the adjoint action ad : g→ End(Λg)
preserves the subspace of δ-closed elements, it defines an action on Z(g) and thus on

Ĉ = Z(g)∗ ⊗ Ω(M). Again, the total differential d̂tot restricts to a differential on Ĉg.

Lemma 4.3. The element ω̃ (resp. ω̂) lies in C̃g (resp. Ĉg).

Proof. We will prove the statement for ω̃, the statement for ω̂, follows as the image of
a g-invariant element under the equivariant map (res⊗ id) is necessarily g-invariant.
I.e., we have to show that for k ∈ {1, . . . , n+ 1} ωk is g-invariant. We calculate

£vξωk(x) = dιvξ ιvxω = dιx∧ξω = (−1)kdιξ∧xω
(a)
= −ιδ(ξ∧x)ω

(b)
= ιadξxω = ωk(adξx),

where we used Lemma 2.6 for equality (a) and Cartan’s magic formula adξ(x) =
δ(ξ ∧ x)− ξ ∧ δ(x) for equality (b).

The correspondences between potentials and moment maps established in Propo-
sitions 3.1 and 3.7 carry over to the g-equivariant setting and we have the following:

Theorem 4.4. Let g act on (M,ω) by preserving ω. The action admits

1. a g-equivariant weak moment map if and only if [ω̂] = 0 ∈ H(Ĉg);

2. a g-equivariant homotopy moment map if and only if [ω̃] = 0 ∈ H(C̃g).

Moreover, the respective moments are in one-to-one correspondence with potentials
of the respective cohomology classes.

This theorem recovers the following result:

Corollary 4.5 (Proposition 7.3 and Theorem 7.4 in [6]). g-equivariant weak moment

maps are unique up to elements of
⊕n

k=1

(
Zk(g)∗ ⊗ Ωn−k+1

cl (M)
)g

. In particular, if
these groups vanish, then g-equivariant weak moment maps are unique.

4.1. Equivariantization
In this subsection, we will determine the condition that determines when homotopy

and weak moment maps can be made equivariant. We review Theorem 4.10 from [6]
in the terms of this paper and derive its analogue for homotopy moment maps. To
do this, we need some Lie algebra cohomology:

LetM be a g-module and N a g-submodule. Let α inM be an element satisfying
ξ · α ∈ N for all ξ ∈ g. We can ask ourselves, whether α can be changed by an element
β in N such that (α− β) ∈Mg. This is equivalent to finding β ∈ N , such that
ξ · α = ξ · β for all ξ ∈ g. The map ξ 7→ ξ · α interpreted as the element dg,M(α) in
g∗ ⊗N is closed with respect to the Lie algebra cohomology differential dg,N , and
potentials correspond to elements β ∈ N such that dg,M(α) = dg,N (β).
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Now, takeM = Ĉ and α ∈ Ĉ a potential of ω̂ corresponding to some weak moment
map. Then dg,M(α) ∈ N , where N = Z>1(g)∗ ⊗ Ωcl(M) is the space of admissible
changes for weak moment maps (cf. Proposition 3.7). The above discussion implies:

Theorem 4.6 (Theorem 4.10 in [6]). Let α̂ ∈ Ĉ be a potential of ω̂ correspond-

ing to a weak moment map f̂ . Then dg,Ĉ(α) yields a well-defined cohomology class

in H1(g,Z>1(g)∗⊗Ωcl(M)). Furthermore, [dg,Ĉ(α)]∈H1(g,Z>1(g)∗ ⊗ Ωcl(M)) van-
ishes if and only if there exists a g-equivariant weak moment map.

An analogous construction works for homotopy moment maps:

Proposition 4.7. Let α̃ ∈ C̃ be a potential of ω̃ corresponding to a homotopy moment
map f̃ . Then C̃(α) yields a well-defined cohomology class in H1(g,N ), where N
is the subspace of d̃tot-closed elements in Λk>1g⊗ Ω(M). Furthermore, [dg,N (α)] ∈
H1(g,N ) vanishes if and only if there exists a g-equivariant homotopy moment map.

Remark 4.8. We end the paper by noting that, in symplectic geometry, considering
actions of connected Lie groups, the conditions for being a homotopy moment map
and an equivariant moment map coincide, i.e., a symplectic homotopy moment map
is automatically equivariant.
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