Homology, Homotopy and Applications, vol. 24(1), 2022, pp.117-128

STRUCTURE OF SEMI-CONTINUOUS Q-TAME
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Abstract
Using a result by Chazal, Crawley-Boevey and de Silva con-
cerning radicals of persistence modules, we show that every
lower semi-continuous g-tame persistence module can be decom-
posed as a direct sum of interval modules and that every upper
semi-continuous g-tame persistence module can be decomposed
as a product of interval modules.

1. Introduction

Motivated by the development of topological data analysis, in particular persis-
tent homology, as well as by applications in symplectic topology, there has in recent
years been some theoretical interest in certain algebraic structures called persistence
modules.

For us, a persistence module is a functor M : T — Vecp, where F is some field
and T is the category corresponding to some totally ordered set (T, <). M is called
pointwise finite dimensional (p.f.d.) if M, is a finite dimensional vector space over
F for all t € T and it is called ¢-tame if the linear map M;; has finite rank for all
s,t € T with s < t. We call M ephemeral if M, =0 for all s,t € T with s <.

The category of persistence modules is the functor category VecFT . This category
is abelian since T is small and the category of vector spaces is abelian. Kernels,
cokernels, direct sums, products, etc. are all given by their pointwise analogues.

One of the most important questions in the theory of persistence is when a given
persistence module can be decomposed into elementary building blocks, namely inter-
val modules: For I C T an interval, define a persistence module C(I) via

F iftel
C(I)t:{ 1 S )

0 otherwise,
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with structure maps

CI)s: =

idp if s,t €1,
0 otherwise.

Such persistence modules are called interval modules. We say that a persistence mod-
ule M has a barcode if there exists an index set A and a collection of intervals (I )aeca
such that
M=)
a€cA

By the Krull-Remak—Schmidt—Azumaya Theorem [1], this collection of intervals is
unique up to reordering if it exists. The most important existence result for barcodes
is Crawley-Boevey’s Theorem [2, 4], which states that every p.f.d. persistence mod-
ule has a barcode. It is well-known that this does not extend to g-tame persistence
modules. However, as shown by Chazal et al. in [3], g-tame persistence modules can
be decomposed as direct sums of interval modules up to weak isomorphism, where a
morphism ¢: M — N of persistence modules is called a weak isomorphism if ker ¢
and coker ¢ are ephemeral.

Using the techniques developed by Chazal et al., we will show that, under some
mild assumptions on the index set, an interesting class of g-tame persistence modules
actually admit decompositions into interval modules up to isomorphism and not just
weak isomorphism.

Definition 1.1. A persistence module M is called upper semi-continuous (u.s.c.) if
the canonical map

M — lim M
s>t
is an isomorphism for all ¢ € T'. It is called lower semi-continuous (1.s.c.) if the canon-
ical map
colim My — M;
s<t
is an isomorphism for all ¢t € T.

While not explicitly stated by Chazal et al., the next result is an immediate corol-
lary of [3, Corollary 3.6.]. The terms involving the index set will be introduced in
Definition 2.1. In the important special case T = R, all assumptions are satisfied.

Theorem 1.2. Let T be a dense totally ordered set such that every interval in T has
a countable coinitial subset. Then every gq-tame lower semi-continuous persistence
module indexed by T has a barcode.

With some additional work, we will prove the following novel result.

Theorem 1.3. Let T be a dense totally ordered set such that every interval in T has
a countable coinitial subset. Then for every g-tame upper semi-continuous persistence
module M indezxed by T there exists a collection of intervals (In)aca, unique up to
reordering, such that

M= ] ca).

a€cA
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In general, uniqueness statements for product decompositions are much harder to
come by than in the case of direct sums where one has the Krull-Remak—Schmidt—
Azumaya Theorem. We will also infer our uniqueness statement from this theorem,
rather than from a general statement about products.

In order to distinguish product and direct sum decompositions, we suggest the
following terminology.

Definition 1.4. We say that a persistence module has an additive barcode if it is
isomorphic to the direct sum of a collection of interval modules that is unique up to
reordering, i.e., if it has a barcode in the usual sense. We say that it has a multiplicative
barcode if it is isomorphic to a product of a collection of interval modules that is unique
up to reordering.

In the p.f.d. case, the two notions agree. In the g-tame case, however, there are
persistence modules that have a multiplicative barcode, but no additive barcode and
vice versa (Example 3.3).
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2. Preliminaries
Let us begin by introducing some terminology.

Definition 2.1. A totally ordered set T is called dense if for all s,t € T with s <t
there exists u € T with s <u < t. If N C I C T are subsets, N is said to be coinitial
in [ if for all ¢t € I there exists s € N with s < t. N is said to be cofinal in I if for all
t € I there exists s € N with t < s.

A central tool in proving our results is the radical of a persistence module.

Definition 2.2 ([3, Definition 2.10., Remark 2.12., Definition 3.4.]). If M is a per-
sistence module, we define a persistence module M by

M, = lim M,
s>t

with the obvious structure maps. The canonical maps M; — limg~; M form a mor-
phism M — M. We also define a persistence module M by

M, = colim M,
s<t

again with the obvious structure maps. The canonical maps colims<; M; — M; form
a morphism M — M. We define the radical of M as
rad M = im(M — M).

The assignments (—), (=) and rad(—) extend to endofunctors on the category of
persistence modules by acting on morphisms via the universal properties of limits,
colimits and images.
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By convention, we assume limits and colimits over empty index sets to be 0 in
the definition above. The radical of a g-tame persistence module need not be p.f.d.
([3, Example 3.7.]). Still, a barcode existence theorem involving descending chain
conditions for images and kernels of structure maps yields the following.

Theorem 2.3 ([3, Corollary 3.6.]). Let T be a dense totally ordered set such that
every interval in T has a countable coinitial subset. If M is a q-tame persistence
module indexed by T, its radical rad M has a barcode.

This is already all we need in order to prove that l.s.c. g-tame persistence modules
have a barcode.

Proof of Theorem 1.2. By definition, a persistence module M is lower semi-continu-
ous if the canonical morphism M — M is an isomorphism. In particular, a lower
semi-continuous persistence module is isomorphic to its radical. Thus, the claim is an
immediate consequence of Theorem 2.3. O

Next, we will analyze how the functors defined above behave on interval modules.

Definition 2.4. For t € T, we write

tt={seT]|s>t}
lt={seT|s<t}
for the strict upset and the strict downset of ¢t. If I C T is an interval, we define
I={teT|IN1Ttis non-empty and coinitial in ¢},
I={teT|In]tis non-empty and cofinal in | ¢},
radl =1N1.

Lemma 2.5. Let I C T be an interval. Then the sets I, I and rad I are again inter-
vals in T if they are non-empty.

Proof. We only show the claim for I, the other ones can be shown similarly. Let
s,u € I and t € T with s <t < u. We need to show that t € I, i.e. for a €1 t we need
to find b € IN 1t with b < a.

First, we show that w € I: Since u € I, there exists some v € IN 1 u. Since u €T s
and s € I, there exists ¢ € IN T s with ¢ < u. We have ¢ < u < v and ¢,v € I. Since [
is an interval, we get v € I. In particular, we have u € IN 71 ¢, so this set is non-empty.

Now consider a €7 t again. We have u € IN T t, so if u < a, we can set b = u and
are done. If a < u, pick ¢ € IN 1 s with ¢ < a. This is possible since a €1t C1 s and
s € I. Then, we have ¢ < a < w and c,u € I, which implies a € I. So in this case, we
can simply set b = a and the proof is finished. O

For the proof of our main theorem, we will need the following.

Lemma 2.6. Let T be a dense totally ordered set and I CT an interval. If I =1,
then rad I is non-empty and rad I = I.
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Proof. First, note that I = I implies that I is non-empty. In other words, there exists
t € T such that IN 1t # 0 is coinitial in 1 ¢. We will show that IN1¢=rad IN 1 t.
This immediately implies that rad I is non-empty. It also shows that I C rad I. The
other inclusion obviously also holds, so in total we get rad I = I = I as claimed.

It is clear that IN 1 ¢ 2 rad IN T ¢t. To see the other inclusion, consider s € IN 7 t.
We need to show that s € radI = I N1, so it is enough to check that s € I. So let
a €] s. We need to find b € IN | s with b > a.

If a > t, we have a € I: Since IN 1t is coinitial in 1 ¢, we may choose s’ € IN 1 ¢
with s’ <a. Now s’ < a < s and s,s' € I, so a € I because I is an interval. In this
case, we can set b = a and are done.

If a < t, we use the fact that T' is dense to choose ¢ € T' with t < ¢ < s. By the
same argument as before, we get ¢ € I and can set b = ¢. This finishes the proof. [

Recall that for an interval I, we denote the corresponding interval module as
defined in the introduction by C(I). While we do not consider the empty set to be
an interval, we set C'()) = 0. Then, the lemma below still holds true if the involved
sets are empty.

Lemma 2.7. For any interval I C T we have
o) =c),
ca) =,
rad C(I) = C(rad I).

Proof. Again, we only show the first isomorphism and the others can be shown anal-
ogously. For all t € I, we have

o), = i, c0. = L, 0. = L, F=F

For ¢ ¢ I, we have that IN 1 ¢ is empty or that there exists tg €1 ¢ such that there is
no s € IN 1Tt with s < tg. In the first case, we have

C(I)t = li%C(I)S = 111%0 = 0.
——t  se s€

In the second case, we have

C(I)t:Slier%C(I)S: lim C(I)s= lim 0=0.

t<s<to t<s<to

Thus, C(I) and C(I) agree pointwise. Clearly, their structure maps also agree and
we obtain the claim. O

3. Semi-continuous persistence modules

Recall that a persistence module is u.s.c. if the canonical morphism M — M is
an isomorphism and l.s.c. if the canonical morphism M — M is an isomorphism. We
start with a basic observation for direct sums and products.

Lemma 3.1. Let (M, )aca be a collection of persistence modules.

1. @, ca My is Ls.c. if and only if all M, are Ls.c.

2. [lpca Mq is w.s.c. if and only if all My are u.s.c.
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Proof. 1t is easy to check that taking direct sums of persistence modules is conser-
vative, so the canonical map @, 4 Mo = @,c4 Mo is an isomorphism if and only
if all M, are lL.s.c. Colimits commute with each other, so we also have a canonical

isomorphism
.= @,
acA acA

This implies the first claim. The second claim follows analogously because taking
products of persistence modules is also conservative and limits commute with each
other. O

Semi-continuity is also easy to characterize for interval modules.

Lemma 3.2. Let I C T be an interval.
1. C(I) is Ls.c. if and only if [ = 1.
2. C(I) is uw.s.c. if and only if I = I.

Proof. Both claims follow immediately from Lemma 2.7 and the fact that for any two
interval modules C(J) and C(J") we have C(J) = C(J') if and only if J = J'. O

In particular, the two lemmas imply that if an l.s.c. persistence module has an
additive barcode, then all intervals I appearing in this barcode satisfy I = I. Similarly,
if a u.s.c. persistence module has a multiplicative barcode, then all intervals I in this
barcode satisfy I = I.

As an illustration, observe that a real interval I C R satisfies I = I if and only if
I'=Ror I =]la,b) for some a € R and b € RU {occ}. Analogously, we have I = [ if
and only if I =R or I = (a,b] for some a € RU{—o0} and b € R.

Semi-continuous persistence modules appear naturally in many different contexts.
Some authors, especially within symplectic topology, even go as far as to consider
almost exclusively semi-continuous persistence modules, see e.g. [11].

Example 3.3. e One of the standard examples of a g-tame persistence module
indexed by R that does not have a barcode in the usual sense is

HNC([Om‘l)).

It is upper semi-continuous by the previous two lemmas, so it has a multi-
plicative barcode by Theorem 1.3. Clearly, this is given by ([0,77!))nen. In
particular, this persistence module has a multiplicative barcode but no additive
barcode.

e Consider the R-indexed persistence module
@ C((-n"",0]).
neN

It is lower semi-continuous by the previous two lemmas and also g-tame. It has
an additive barcode but no multiplicative barcode.

e Let X: T — Top be a diagram of topological spaces. If X; is a compact Haus-
dorff space for all t € T and X is upper semi-continuous, i.e., X; — limgss X
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is an isomorphism for all ¢ € T, then the persistent Cech homology H., (X,F) is
upper semi-continuous by [5, Theorem X.3.1.]. This persistent Cech homology
is studied by Morse in a project extending his calculus of variations in the large
to the study of minimal surfaces, see e.g. [8-10]. To our knowledge, this is the
first instance of persistent homology in the mathematical literature.

e Let X be a topological space and f: X — R a continuous map. Write f-; for the
open sublevel set of f at ¢. Since f is continuous, we have f_; = colimg<; f< for
all ¢, where the colimit is taken in the category of topological spaces. Using the
fact that the interval (—oo,t) has a countable cofinal subset, the main theorem
in [7, Section 14.6.] implies that the sublevel set persistence H(f<o) is lower
semi-continuous. Here, H is any generalized homology theory with values in
Vecg.

e For any persistence module M indexed by T, we get a dual persistence module
M* indexed by T°P defined by composing the functor M : T — Vecy with the
contravariant functor Hom(—,F): Vecy — Vecy. If M is lower semi-continuous,
then M* is upper semi-continuous:

M*, = lim Hom (M, F)
s<t
= Hom(col<i¥n M;,TF)

= Hom(M,,F)
= Mt*7
where equality should be interpreted as ‘canonically isomorphic’.

However, if M is upper semi-continuous, M* need not be lower semi-continuous:
Consider M =[], C ([O,n’l)) as in the first example. An easy calculation

shows that
M, = EBIF,
neN
but we also have

M = Hom (H IE‘,IE‘) ,
neN
which is isomorphic to the double dual space of €, . F. Since no infinite dimen-

sional vector space is isomorphic to its double dual, we obtain that M* is not
lower semi-continuous at O.

Finally, we want to prove our decomposition theorem for the u.s.c. case. An essen-
tial fact for our proof is that in the g-tame case, direct sums and products of persis-
tence modules do not differ too much. Recall that a morphism of persistence modules
is called a weak isomorphism if its kernel and cokernel are ephemeral.

Proposition 3.4. Let (My)aca be a collection of persistence modules such that
[loca Mo is g-tame. Then the canonical map

P Mo - ] Ma

a€cA acA

is a weak isomorphism.
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Proof. Denote the map above by ¢. Clearly, ¢ has trivial kernel. Thus, it suffices to

show that coker ¢ is ephemeral. So let s,t € T' with s < ¢ and consider the diagram

a€cA acA

Us,tT Ws,tT Vs, t

(@ Ma> SR (H Ma> —2 5 coker s,

acA acA s

(@ Ma> SN (H Ma> —P y coker ¢,
¢ t

where we added some shorthand notation for the structure maps of the persistence
modules we consider. We need to check that ~,; = 0. Since p; is epi, it is enough to
show s+ o ps = 0. Commutativity of the above diagram implies that

Vs,t ©Ps = Pt O Ts,t-

Note that p; o ¢, =0, so we are done if we can show that 7, ; factors through ¢;.
To see that this is the case, we factor o, and 75 through their images to obtain a
diagram

acA a€A

T

. s,t .
imos; ———— imm,,

f f

(@) = (mm) -

We can canonically identify

(80, = (1),

imog; = @ im(Mgy)s

and
imws,t = H im(Ma)M.

From commutativity of the previous diagram, it is easy to see that under this identi-
fication 15+ is simply the canonical inclusion of the direct sum into the product. But
here, this map is an isomorphism since im 7, ; is finite dimensional by our g-tameness
assumption. Thus, we can invert v, +, yielding a factorization of 7+ as

Yor .
<H Ma) — imTy — imog,; (@ Ma> RN (H Ma> .
acA s acA t acA t

As explained above, this finishes the proof. O

Before proceeding to the main proof, we show two more lemmas.
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Lemma 3.5. Let o: M — N be a weak isomorphism of persistence modules. Then ¢
induces an isomorphism

P M — N.
Proof. Since taking direct limits of vector spaces is exact, the same is true for the
functor (—). Thus, this functor commutes with kernels and cokernels, so we get
ker @ = ker
and
coker @ 22 coker .

Since ker ¢ and coker ¢ are ephemeral by assumption, we get that in both cases
the right-hand side vanishes. So % has trivial kernel and cokernel, which proves the
claim. O

Lemma 3.6. Assume that every interval in T has a countable coinitial subset. Let
p: M — N be a weak isomorphism of persistence modules. Then ¢ induces an iso-
morphism

w: M — N.
Proof. Consider the epi-mono-factorization of ¢ as
M —L % imyp <~ N.

In order to show that ¢ is an isomorphism, it suffices to prove that p and i are
isomorphisms. First, consider the short exact sequence

0 imp ‘s N coker p —— 0.

Since taking inverse limits of vector spaces is left-exact, the functor (—) is also left-
exact. Thus, we get an exact sequence

0 ime N coker ¢.

By assumption, coker ¢ is ephemeral, so we have coker ¢ = 0, which implies that 2 is
an isomorphism. Next, consider the short exact sequence

0*>kercp—>ML>imap—>0.

For eacht € T, the interval {s € T'| s > t} has a countable coinitial subset by assump-
tion. Since ker ¢ is ephemeral, the inverse system (ker ;)s> satisfies the Mittag-
Leffler property for all ¢ € T. Thus, by [6, Proposition 13.2.2.] the sequence

0 —— limker py, —— lim My —— limimpy, —— 0
s>t s>t s>t
is exact for all ¢ € T'. Consequently, the sequence
O—>kerg0—>Mi>img0*>O

is also exact. We have ker ¢ = 0 since ker ¢ is assumed to be ephemeral. Hence, p is
an isomorphism and the proof is finished. O
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Remark 3.7. The previous lemma also holds if we replace the assumption on 7' by
the assumption that T be a dense order. In this case, the lemma is a consequence of
the fact that (—) defines a functor on the observable category of persistence modules
and that weak isomorphisms turn to isomorphisms when mapped to the observable
category ([3, Remark 2.12., Theorem 2.9.]).

Proof of Theorem 1.3. Under our assumptions, rad M has a barcode by Theorem 2.3,
say (In)aca. We clalm that M is isomorphic to the product over the interval modules
Cla)-

First, we have
M=M

since we assume M to be u.s.c. Since the canonical map rad M — M is a weak
isomorphism (as a consequence of [3, Proposition 2.11.]), Lemma 3.6 implies

M = rad M.

Recall that (—) is a functor, so

because the barcode of rad M is given by the I,,. The inclusion of the direct sum into
the product is a weak isomorphism in the g-tame case (Proposition 3.4), so Lemma 3.6

implies
P o) =[] et

acA a€cA

Since limits commute with products we also get

II ct) = ] cu)

a€cA a€cA

We have C(I,) = C(I,) by Lemma 2.7, so that

[[cto)=]] ct

acA a€cA

Putting everything together yields that M is indeed isomorphic to the product over
the C(1,).

The uniqueness part of the statement essentially follows by reversing the above
argument. Suppose (J3)gep are also intervals such that

M= ] c(p).
BeB

We want to prove that (Jg)sep and (Ia)aca agree up to reordering. Note that this
in particular implies that each I, is non-empty. Since M = H C(J3) is u.s.c. each
factor C'(Jg) must be u.s.c. as well by Lemma 3.1. Together Wlth Lemma 3.2 this
yields

Js = Js.

Thus, by Lemma 2.6 we get that rad .Jg is non-empty and consequently an interval
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for all 5. Next, we will show that (rad Jg)gep is a barcode for rad M: Consider

rad M 2 rad [[ C(Jg) =im | [] C(Jp) = [] C(Js)
BEB BeB BEB
Recall that the inclusion of the direct sum into the product is a weak isomorphism
in our case, so together with Lemma 3.5 we obtain that

im | [[ C(Js) = [] CUs) | =im [ D C(Js) = [] CUs) |,

BeB BeB BeB BeB

where the map on the right is equal to the composition of the natural map

P c(1s) - P cs)

BeEB BeEB

and the inclusion P4 p C(Jp) = [[c5 C(Jp)- Since this inclusion is mono, we get

im | @ C(Jp) = [ Cp) | =im [ @ C(Js) = B C(Jp)
BeB BeB BEB BEB

Direct sums and the functor (—) commute. The same is true for direct sums and
images, so we get,

im | @ C(Js) = @ C(Jp) | = @ im(C(Js) = C(Js)) = EP rad C(Jy).

BeB BeB BeB BeB

We have rad C(Jg) = C(rad J3) by Lemma 2.7, so we get
@ rad C(Jg) = @ C(rad Jg).

peEB BEB

In total, we have shown that (rad Jg)gep is indeed a barcode for rad M.

Using the Krull-Remak-Schmidt—Azumaya Theorem, we obtain that (I,)aca and
(rad Jg)pep agree up to reordering. This implies that also (Io)aca and (rad Jg)sen
agree up to reordering. Now recall that we have Jg = Jj3 for all 8 because M is u.s.c.

By Lemma 2.6, we get that (rad Jg)gen = (J3)s. Thus, (Ia)aca and (Jg)gep agree
up to reordering. This finishes the proof. O
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