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GENERALIZED PERSISTENCE AND GRADED STRUCTURES

EERO HYRY and MARKUS KLEMETTI

(communicated by Peter Bubenik)

Abstract
We investigate the correspondence between generalized per-

sistence modules and graded modules in the case the indexing
set has a monoid action. We introduce the notion of an action
category over a monoid graded ring. We show that the cate-
gory of additive functors from this category to the category of
Abelian groups is isomorphic to the category of modules graded
over the set with a monoid action, and to the category of unital
modules over a certain smash product. Furthermore, when the
indexing set is a poset, we provide a new characterization for a
generalized persistence module being finitely presented.

1. Introduction

One of the main methods of topological data analysis is persistent homology. In
the simplest case, data is encoded in an increasing nested sequence of simplicial com-
plexes. This filtration reflects the topological and geometric structure of the data at
different scales. By taking homology with coefficients in a field, one obtains the corre-
sponding persistence module – a sequence of vector spaces and linear maps. Carlsson
and Zomorodian [28, p. 259, Thm. 3.1 (Correspondence)] realized that one can view
persistence modules as graded modules over a polynomial ring of one variable. The
variable acts on the module as a shift. Considering filtrations indexed by Nn leads
to the so called multipersistence. In [5, p. 78, Thm. 1], Carlsson and Zomorodian
showed that multipersistence modules now correspond to n-graded modules over a
polynomial ring of n variables. More generally, one can start from a filtration of a
topological space indexed by a preordered set. However, the resulting generalized per-
sistence modules do not necessarily have an immediate expression as a graded module
over a graded ring.

The correspondences by Carlsson and Zomorodian opened the graded perspective
in topological data analysis, leading many researchers to utilize graded module theory
in their investigations (see, for example, [6], [18], [3], [12], [13], [15], [25]). The most
general cases of modules over a ring in this line of research are modules graded
over Abelian groups with monoids as their positive cones, and modules canonically
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graded over cancellative monoids. In this article, we want to propose a new generic
theoretical framework for understanding generalized persistence modules under the
lens of graded algebra by considering monoid actions on preordered sets. Secondly, we
want to investigate finitely presented generalized persistence modules. In particular,
we will give a certain subclass of preordered sets over which finite presentation can
be characterized by a suitable ‘tameness’ condition.

We now want to explain this in more detail. Using the language of category theory,
it is convenient to define a generalized persistence module as a functor from a pre-
ordered set P to the category of k-vector spaces, where k is a field. In representation
theory, given a commutative ring R and a small category C, a functor C → R-Mod is
called an RC-module. In this terminology, a generalized persistence module is then a
kP -vector space. Following Mitchell ([20]), we also regard a small preadditive category
A as a ‘ring with several objects’, and an additive functor A → Ab as an A-module.
The RC-modules may then be seen as modules over the linearization RC, where RC
is a preadditive category with the same objects as C and morphisms R[MorC(c, d)],
where c, d ∈ Ob C (for any set S, we denote by R[S] the free R-module generated by
S).

Suppose now that G is a monoid. To any G-act A, we can associate an action
categoryG∫A, whose objects are the elements of A and for any a, b ∈ A the morphisms
a→ b are pairs (a, g) where g ∈ G with b = ga. It is easy to see that the category of
R(G∫A)-modules is now equivalent to the category of A-graded R[G]-modules. Note
that if the action of G on A is free, then simply G∫A = A.

Given any G-graded ring S, this leads us is to investigate the relationship between
A-graded S-modules and modules over A in general. We define the action category
over S, denoted by G∫SA, with objects A and morphisms

s ∈
⊕

g∈G, ga=b

Sg,

where a, b ∈ A. In the case S = R[G], G∫SA is just the linearization of G∫A. Our first
main result, Theorem 2.9, then says that the categories of A-graded S-modules and
G∫SA-modules are isomorphic.

We can also look at the category algebra R[G∫A]. If C is any category, then the
category algebra R[C] is defined as the free R-module with a basis consisting of the
morphisms of C, and the product of two basis elements is given by their composition, if
defined, and is zero otherwise. It now turns out in Proposition 2.14 that the category
algebra R[G∫A] coincides with the smash product R[G]#A, which has been much
studied in ring theory (see [22]). This leads us to Theorem 2.16, where we identify
G∫SA-modules with the category of unital S#A-modules i.e. the category of S#A-
modules M with M = (S#A)M .

We then turn to consider finitely presented generalized persistence modules. Note
that being finitely presented is a categorical property, so an equivalence between
generalized persistence modules and graded modules preserves this property. Recall
first that an RC-module M is finitely presented if there exists an exact sequence⊕

j∈J
R[MorC(dj ,−)]→

⊕
i∈I

R[MorC(ci,−)]→M → 0,

where I and J are finite sets, and ci, dj ∈ C for all i ∈ I, j ∈ J . We will look at posets
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C which are weakly bounded from above and mub-complete. By ‘weakly bounded’ we
mean that every finite subset S ⊆ C has a finite number of minimal upper bounds in
C, whereas C is mub-complete if given a finite non-empty subset S ⊆ C and an upper
bound c of S, there exists a minimal upper bound s of S such that s 6 c. In our
Theorem 4.15, we characterize finitely presented generalized persistence modules in
this situation. More precisely, we can show that an RC-module M is finitely presented
if and only if the R-modules M(c) are finitely presented for all c ∈ C, and M is S-
determined for some finite set S ⊆ C.

Given S ⊆ C, we call an RC-module M S-determined if SuppM ⊆ ↑S and the
implication

S ∩ ↓c = S ∩ ↓d ⇒ the morphism M(c 6 d) is an isomorphism

holds for every c 6 d in C. Here Supp(M) := {c ∈ C |M(c) 6= 0} denotes the support
of M , and for any T ⊆ C, we use the usual notations

↑T := {c ∈ C | t 6 c for some t ∈ T} and ↓T := {c ∈ C | c 6 t for some t ∈ T}

for the upset generated and the downset cogenerated by T , respectively. Our intuition
for this definition comes from topological data analysis, where one tracks how the
elements of each M(c) evolve in the morphisms M(c 6 c′) (c, c′ ∈ C). One says that
an element m ∈M(c) is born at c if it is not in the image of any morphism M(c′ 6
c), where c′ < c, and dies at c′′ if M(c 6 c′′)(m) = 0 and M(c 6 c′)(m) 6= 0 for all
c 6 c′ < c′′. Suppose that there exists a set S such that all births and deaths occur
inside S. The condition S ∩ ↓c = S ∩ ↓d then implies that looking down from both
c and d, we see the same deaths and births. In particular, the morphism M(c 6 d)
must be an isomorphism.

Our proof for Theorem 4.15 starts from the fact that an RC-module M is finitely
presented if and only if the R-modules M(c) are finitely presented for all c ∈ C and
M is S-presented for some finite subset S ⊆ C. Here S-presented means the existence
of a set S ⊆ C and an exact sequence of the type⊕

s∈S
Bs[MorC(s,−)]→

⊕
s∈S

As[MorC(s,−)]→M → 0,

where As and Bs are R-modules for all s ∈ S. It is easily seen that if M is S-presented,
then M is S-determined. We denote the set of minimal upper bounds of non-empty
subsets of a finite set S ⊆ C by

Ŝ :=
⋃

∅6=S′⊆S

mubC(S
′).

In Corollary 4.13 we now make the crucial observation that M is
ˆ̂
S-presented if S ⊆ C

is a finite set such that M is S-determined.
As a useful tool we introduce the sets of births and deaths relative to S by

BS(M) := {c ∈ C | colims<c, s∈SM(s)→M(c) is a non-epimorphism}

and

DS(M) := {c ∈ C | colims<c, s∈SM(s)→M(c) is a non-monomorphism}.

An RC-module M is known to be S-presented if and only if the natural morphism
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indS resSM →M is an isomorphism. Here resS denotes the restriction functor from
the category of RC-modules to the category of RS-modules, and indS its left adjoint,
the induction functor, in the opposite direction. Note the pointwise formula

(indS resSM)(c) = colims6c, s∈SM(s)

for all c ∈ C. We observe in Proposition 3.9 that the module M is S-presented if and
only if BS(M) ∪DS(M) ⊆ S. Interestingly, if S is Artinian, then BS(M) ∪DS(M) is
the minimal subset T ⊆ S such that M is T -presented (see Proposition 3.25). Suppose
that C = Zn, R = k is a field and

0→ L→ N
f→M → 0,

is an exact sequence, where N is a free module and f a minimal epimorphism. In
this case our Theorem 3.28 says that DS(M) = BS(L) confirming the intuition that
deaths should correspond to ‘relations’.

This work unifies several earlier results. In the context of topological data analysis,
monoid actions have been considered by Bubenik et al. in their article [4], where they
looked at the action on any preordered set given by the monoid of its translations. In
the article [7] of de Silva et al., an indexing category with an additional structure of
a [0,∞)-action is called a category with a coherent flow. Recently, Bubenik and Mil-
icevic considered modules graded over Abelian groups with monoids as their positive
cones ([3]). We have in particular been motivated by the article [6] of Corbet and
Kerber, who generalized the result of Carlsson and Zomorodian to the case where the
indexing set is a so called good monoid. We point out that if G is a monoid, then
RG-modules of finitely presented type of Corbet and Kerber ([6, p. 19, Def. 15]) are
the same thing as finitely presented RG-modules. The set Ŝ is a framing set in the
sense of [6, p. 19, Def. 15]. If the set S happens to be a closed interval in Zn, then, up
to translation, ‘S-determined’ means the same as ‘positively a-determined’ for some
a ∈ Nn as defined by Miller in [19, p. 186, Def. 2.1]. Note that this is a special instance
of ‘finite encoding’ investigated in [18]. Our sets of births and deaths relative to S are
related to the invariants ξ0 and ξ1 studied by Carlsson and Zomorodian in [5], and
also by Knudson in [13]. For a finitely generated Zn-graded k[X1, . . . , Xn]-module
M , the invariants ξ0(M) and ξ1(M) are multisets indicating the degrees of minimal
generators and minimal relations of M equipped with the multiplicities they occur.
The underlying sets of ξ0(M) and ξ1(M) are now BS(M) and DS(M).

We assume that the reader is familiar with the basic notions of category theory,
see for example [17]. For more details on RC-modules, we refer to [16] and [27].

2. Modules over a monoid act

2.1. Monoid action
In this section we recall some basic properties of monoid actions. Let G be a monoid

and let A be a set. If there exists an operation · : G×A→ A such that (gh)a = g(ha)
and 1G · a = a for all g, h ∈ G and a ∈ A, we say that A is a (left) G-act. We then
get a preorder on A by setting a 6 b if b = ga for some g ∈ G. The action naturally
gives rise to two categories having A as the set of objects.

First, we have a small thin category A, where for all a, b ∈ A there exists a unique
morphism a→ b if a 6 b in the preorder. By abuse of notation we write a 6 b for
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this morphism. Recall that in general a category is thin if there exists at most one
morphism between any two objects.

Secondly, there is an action category G∫A, where morphisms a→ b are pairs (a, g)
such that b = ga for some g ∈ G. If there is no possibility of confusion, we sometimes
denote the morphism (a, g) by g. Composition of morphisms in G∫A is defined by
the multiplication of G:

(ga, h) ◦ (a, g) = (a, hg).

There is an obvious functor G∫A→ A where

a 7→ a and (a, g) 7→ (a 6 ga).

This functor is an isomorphism if and only if the G-action on A is free, i.e. for all
g, h ∈ G,

ga = ha for some a ∈ A ⇒ g = h.

Remark 2.1. We often consider the monoid G itself as a G-act, so it gives rise to a
thin category G and the action category G ∫ G. Sometimes, the monoid G is viewed as
a category BG with a single object. Then a monoid act could be defined as a functor
F : BG→ Set. The corresponding action category coincides with the category of
elements of F (see [24, p. 66, Ex. 2.4.10]).

Example 2.2. An Abelian group G is called preordered if it is equipped with a preorder
6 such that g 6 g′ implies g + h 6 g′ + h for all g, g′, h ∈ G. If G+ = {g ∈ G | g > 0}
is its positive cone, then g 6 g′ is equivalent to g′ − g ∈ G+. The action of the monoid
G+ on G is free, and we may identify the action category G+∫G with G.

A translation on a preordered set P is an order-preserving function F : P → P that
satisfies the condition p 6 F (p) for all p ∈ P . The translations of P form a monoid
Trans(P ) with composition as the operation.

Let A be a G-act. The action by an element g ∈ G now determines a translation on
A if and only if a 6 b implies ga 6 gb. If this implication holds for all g ∈ G, then we
say that A is an order-preserving G-act. Note that any G-act A is order-preserving if
G is commutative. For an order-preserving G-act A, we get a monoid homomorphism
ϕ from G into the monoid of translations Trans(A). This induces a monoid embedding
ϕ̂ : G/Kerϕ→ Trans(A), where Kerϕ is the congruence relation defined by

(g, h) ∈ Kerϕ ⇔ ga = ha for all a ∈ A.

In particular, ϕ is an embedding if and only if the G-action on A is faithful : for all
g, h ∈ G, ga = ha for all a ∈ A implies that g = h.

We next give a slight generalization of [11, p. 4, Thm. 2.2].

Proposition 2.3. For any preordered set P , there exists a monoid G and a G-act A
such that P and A are isomorphic as thin categories.

Proof. We present the proof here for the convenience of the reader. Let G denote
the submonoid of the monoid of all functions P → P consisting of the functions
g : P → P for which a 6P g(a) for all a ∈ P . Define the G-action on A := P by setting
g · a = g(a) for all g ∈ G and a ∈ A. Then A is a G-act. It remains to show that a 6P b
if and only if a 6A b.
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Assume first that a 6A b. By definition, there exists an element g ∈ G such that
b = ga. But this means that a 6P g(a) = ga = b. Conversely, if a 6P b, we define a
function g : P → P by setting

g(p) =

{
b, if p = a;

p, otherwise.

We then immediately see that g ∈ G and ga = g(a) = b, so that a 6A b.

Remark 2.4. The monoid G in Proposition 2.3 does not need to be unique: For ex-
ample, the one element set P = {∗} has the trivial monoid action for any monoid G.
Note that if G is the monoid of the proof of Proposition 2.3, then the order-preserving
elements in G are exactly the translations on A, so that Trans(A) ⊆ G.

2.2. Action categories over a graded ring
Theorem 2.9 will generalize the equivalence of the correspondence theorem of

Carlsson and Zomorodian [28, p. 259, Thm. 3.1] mentioned in the Introduction.
Moreover, it generalizes the multi-parameter version of the theorem by Carlsson and
Zomorodian ([5, p. 78, Thm. 1]) as well as the generalization given by Corbet and
Kerber ([6, p. 18, Lemma 14]). For a discussion on related finiteness conditions,
see [6, p. 3] and Remark 4.16.

We begin by defining a certain preadditive category.

Definition 2.5. Let A be a G-act, and let S := ⊕g∈GSg be a G-graded ring. The
action category over S, denoted G∫SA, is the category with the set A as objects, and
morphisms (a, s) : a→ b, where a, b ∈ A and

s ∈
⊕

g∈G, ga=b

Sg.

Composition for morphisms (a, s) : a→ ga and (ga, t) : ga→ hga is defined by

(ga, t) ◦ (a, s) = (a, ts).

Remark 2.6. Keeping a close eye on the domains, we may write s := (a, s). With this
notation, composition is just the multiplication in S.

Example 2.7. Let A be a G-act. If R is a commutative ring, then the action category
G∫R[G]A over the monoid ring R[G] coincides with the linearized action category
R(G∫A). Indeed, by definition ObR(G∫A) = A, and

HomR(G∫A)(a, b) = R[{(a, g) | g ∈ G and ga = b}],

for all a, b ∈ A.

Example 2.8. If G is an Abelian group and S :=
⊕

g∈G Sg is a G-graded ring, the
category G∫SG is called in [8, p. 358, Def. 2.1] a companion category. In this case,
we may identify HomG∫SG(g, h) with Sh−g.

Let A be a G-act. Let S :=
⊕

g∈G Sg be a G-graded ring. Recall that a (left)
S-module M is A-graded, if

1) M =
⊕

a∈AMa, where Ma is an Abelian group for all a ∈ A;
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2) SgMa ⊆Mga for all g ∈ G and a ∈ A.

Preparing for Theorem 2.9, we will now define two functors, Φ and Ψ, that connect
A-graded S-modules to (G∫SA)-modules.

Let M be a G∫SA-module. By setting sm = M(s)(m) for all g ∈ G, s ∈ Sg and
m ∈M(a), we can define an A-graded S-module

ΦM :=
⊕
a∈A

M(a).

A morphism f : M → N of G ∫S A-modules consists of homomorphisms of Abelian
groups fa : M(a)→ N(a) with commutative diagrams

M(a)

fa

��

M(s)
// M(ga)

fga

��

N(a)
N(s)

// N(ga)

for all a ∈ A, g ∈ G and s ∈ Sg. These homomorphisms and diagrams obviously give
rise to a homomorphism Φf : ΦM → ΦN of A-graded S-modules with (Φf)a = fa for
all a ∈ A.

Next, let Q be an A-graded S-module. We set (ΨQ)(a) = Qa for all a ∈ A. If
(a, s) : a→ ga is a morphism, where a ∈ A, g ∈ G and s ∈ Sg, we can define a homo-
morphism

(ΨQ)((a, s)) : (ΨQ)(a)→ (ΨQ)(ga)

by setting (ΨQ)((a, s))(q) = s · q for all q ∈ Qa. It is clear that ΨQ is an additive func-
tor G ∫S A→ Ab, i.e., a G ∫S A-module. Moreover, if h : Q→ P is a homomorphism
of A-graded S-modules, we have a morphism of G ∫S A-modules Ψh : ΨQ→ ΨP given
by (Ψh)a = ha for all a ∈ A.

We are now ready to state

Theorem 2.9. Let A be a G-act, and let S := ⊕g∈GSg be a G-graded ring. The above
functors Φ and Ψ give an isomorphism of categories

(G∫SA)-Mod ∼= A-gr S-Mod.

Proof. It remains to prove that Φ ◦Ψ = id and Ψ ◦ Φ = id, which is straightforward.

Combining this theorem with Example 2.7 gives

Corollary 2.10. Let A be a G-act, and let R be a commutative ring. There is an
isomorphism of categories

R(G∫A)-Mod ∼= A-gr R[G]-Mod.

In particular, if the G-action on A is free, we obtain an isomorphism

RA-Mod ∼= A-gr R[G]-Mod.
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Example 2.11. If A = {e} is a one object set, Theorem 2.9 gives us an isomorphism
G∫S{e}-Mod ∼= S-Mod. In the case S = R[G], where R is a commutative ring, this
means that RG-Mod ∼= R[G]-Mod, where RG is the linearization of the 1-object
category G.

Example 2.12. Let G be a preordered Abelian group with the positive cone G+ (see
Example 2.2). If R is a commutative ring, then by Corollary 2.10 the categories
RG-Mod and G-gr R[G+]-Mod are isomorphic.

2.3. Category algebras and smash products

Let C be a small category, and let R be a commutative ring. A category algebra
R[C] is the free R-module with the basis consisting of the elements eu, where u : c→ d
is a morphism in C, and with multiplication defined by

ev · eu =

{
evu, if c′ = d;

0, otherwise

for morphisms u : c→ d and v : c′ → d′ in C. Equipped with this product, R[C] be-
comes a ring that has a unit if C is finite.

Let A be a G-act and S a G-graded ring. We recall (see [21, p. 390]) that a
smash product S#A is the free (left) S-module with the basis {pa | a ∈ A}, and with
multiplication defined by the bilinear extension of

(sgpa)(thpb) =

{
(sgth)pb, if hb = a;

0, otherwise,

where g, h ∈ G, sg ∈ Sg, th ∈ Sh and a, b ∈ A. Equipped with this multiplication,
S#A is a non-unital ring, i.e. a ring possibly without identity. However, S#A has local
units. This means that every finite subset of S#A is contained in a subring of the form
w(S#A)w, where w is an idempotent of S#A. More precisely, let T := {t1, . . . , tn}
be a finite subset of S#A. We may assume that ti = sipai , where gi ∈ G, ai ∈ A and
si ∈ Sgi for all i ∈ {1, . . . , n}. We denote

B := {a ∈ A | a = ai or a = giai for some i ∈ {1, . . . , n}}

and w :=
∑
a∈B pa. It is now straightforward to see that w is idempotent and wtiw =

wti = ti for all i ∈ {1, . . . , n}.
Let R′ be a non-unital ring. An R′-module M is unital if it satisfies the condition

M = R′M .

The next proposition and its proof are inspired by [2, p. 221, Cor. 2.4].

Proposition 2.13. Let M be an S#A-module. Then M is unital if and only if for
every finite subset N ⊆M there exists a finite subset B ⊆ A such that wn = n for all
n ∈ N , where w :=

∑
a∈B pa.

Proof. Assume first that M is unital. Let N := {n1, . . . , np} ⊆M be a finite set.
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Now, for all i ∈ {1, . . . , p}, the element ni may be written as

ni =

q∑
j=1

si,jni,j ,

where si,j ∈ S#A and ni,j ∈M for all j ∈ {1, . . . , q}. This gives us a finite set

T = {si,j | i ∈ {1, . . . , p}, j ∈ {1, . . . , q}} ⊆ S#A.

As stated above, we then have a finite subset B ⊆ A such that w = ws for all s ∈ T ,
where w :=

∑
a∈B pa. Thus for all i ∈ {1, . . . , p},

wni = w

( q∑
i=1

si,jni,j

)
=

q∑
i=1

(wsi,j)ni,j =

q∑
i=1

si,jni,j = ni.

Conversely, suppose that for every finite subset N ⊆M there exists a finite subset
B ⊆ A such that wn = n for all n ∈ N , where w :=

∑
a∈B pa. Taking N = {m} for

m ∈M , we get m = wm ∈ S#A.

Proposition 2.14. Let R be a commutative ring, G a monoid, and A a G-act. There
exists an isomorphism of non-unital rings

ϕ : R[G∫A]→ R[G]#A

defined by e(a,g) 7→ egpa for all a ∈ A and g ∈ G.

Proof. It is easy to see that ϕ is an isomorphism of R-modules. It is also a ring
homomorphism, since for all a, b ∈ A and g, h ∈ G,

ϕ(e(b,h)e(a,g)) =

{
ϕ(e(a,hg)), if b = ga;

0, else

=

{
ehgpa, if b = ga;

0, else

= (ehpb)(egpa)

= ϕ(e(b,h))ϕ(e(a,g)).

Proposition 2.15. Let M be an S#A-module. Then M =
⊕

a∈A paM if and only if
M is unital.

Proof. Assume first that M =
⊕

a∈A paM . Let N := {n1, . . . , np} ⊆M . Since for all
i ∈ {1, . . . , p}, the element ni may be written as

ni =

q∑
j=1

pai,jni,j ,

where ai,j ∈ A and ni,j ∈M for all j ∈ {1, . . . , q}, there exists a finite subset

B := {ai,j | i ∈ {1, . . . , p}, j ∈ {1, . . . , q}}
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of A. Let w :=
∑
a∈B pa. Then

wni = w

( q∑
j=1

pai,jni,j

)
=

q∑
j=1

wpai,jni,j = ni,

so M is unital by Proposition 2.13.
Assume next that M is unital. Let m ∈M . By Proposition 2.13, we may write

m = wm for some w =
∑
a∈B pa, where B ⊆ A is finite. Thus

m =

(∑
a∈B

pa

)
m =

∑
a∈B

pam,

so that M =
∑
a∈A paM . Furthermore, since the elements pa are orthogonal, the sum

is direct.

Let us denote by S#A-Mod the category of unital S#A-modules. We will now
define two functors, Γ and Λ, that connect unital (S#A)-modules to (G∫SA)-modules.
Let M be a G∫SA-module. Set

ΓM :=
⊕
a∈A

M(a).

It is not difficult to check that by setting (spa)m = M((a, s))(ma) for all g ∈ G,
s ∈ Sg, a ∈ A and m :=

∑
b∈Amb ∈ ΓM , ΓM becomes an S#A-module. To show

unitality, notice that pa(ΓM) = M(a) for all a ∈ A, which implies that ΓM =⊕
a∈A pa(ΓM). Thus ΓM is unital by Proposition 2.15. If f : M → N is a morphism

of G∫SA-modules, we can define a homomorphism Γf : ΓM → ΓN of (S#A)-modules
by setting

(Γf)(m) =
∑
a∈A

fa(ma)

for all m =
∑
a∈Ama ∈ ΓM .

Next, let Q be a unital S#A-module. We define a G∫SA-module ΛQ by first
setting (ΛQ)(a) = paQ for all a ∈ A. Let a ∈ A and g ∈ G, s ∈ Sg. Given a morphism
(a, s) : a→ ga, we then have a homomorphism of Abelian groups

(ΛQ)((a, s)) : (ΛQ)(a)→ (ΛQ)(ga), q 7→ (spa)q.

Finally, for a homomorphism h : Q→ P of S#A-modules, there is a morphism of
G∫SA-modules Λh : ΛQ→ ΛP with (Λh)a(q) = h(q) for all a ∈ A and q ∈ (ΛQ)(a).

Theorem 2.16. Let A be a G-act, and let S := ⊕g∈GSg be a G-graded ring. The
functors Γ and Λ give an isomorphism of categories

(G∫SA)-Mod ∼= S#A-Mod.

Proof. We need to show that ΓΛ = id and ΛΓ = id.
Let Q be a unital S#A-module. By Proposition 2.15 we then have

(ΓΛ)Q =
⊕
a∈A

(ΛQ)(a) =
⊕
a∈A

paQ = Q.

Moreover, the S#A-module structures of Q and (ΓΛ)Q are the same. Indeed, writing



GENERALIZED PERSISTENCE AND GRADED STRUCTURES 37

∗ for the multiplication by S#A on (ΓΛ)Q, we get

(spa) ∗ q = (ΛQ)((a, s))(paqa) = (spa)(paqa) = (spa)q

for all a ∈ A, g ∈ G, s ∈ Sg and q :=
∑
a∈A paqa ∈ Q.

On the other hand, let M be a G∫SA-module. For an object a ∈ A,

((ΛΓ)M)(a) = pa(ΓM) = M(a).

Furthermore, if (a, s) : a→ ga is a morphism in G∫SA, then

((ΛΓ)M)((a, s))(m) = (spa)m = M((a, s))(m)

for all m ∈M(a), so that ((ΛΓ)M)((a, s)) = M((a, s)).

Corollary 2.17. Let A be a G-act, and let R be a commutative ring. There exists
an isomorphism of categories between the categories of R(G∫A)-modules and unital
R[G∫A]-modules.

Proof. This follows from Proposition 2.14 and Theorem 2.16.

3. Finitely presented RC-modules

We will assume in the following that C is a small category and R a commutative
ring. Recall first that an RC-module M is

• finitely generated if there exists an epimorphism⊕
i∈I

R[MorC(ci,−)]→M,

where I is a finite set, and ci ∈ C for all i ∈ I;

• finitely presented if there exists an exact sequence⊕
j∈J

R[MorC(dj ,−)]→
⊕
i∈I

R[MorC(ci,−)]→M → 0,

where I and J are finite sets, and ci, dj ∈ C for all i ∈ I and j ∈ J .

For more details on finitely generated and finitely presented objects in an Abelian
category, we refer the reader to [23, Ch. 3.5].

3.1. S-presented and S-generated RC-modules
Let S ⊆ C be a full subcategory. The notions of S-generated and S-presented mod-

ules will play an important role in the rest of this article. Before going into details, we
will recall some facts about the restriction and induction functors along the inclusion
i : S ⊆ C.

The restriction resS : RC-Mod→ RS-Mod is defined by precomposition with i,
and the induction indS : RS-Mod→ RC-Mod is its left Kan extension along i. The
induction is the left adjoint of the restriction. Note, in particular, that it thus com-
mutes with colimits. The counit of this adjunction gives us for every RC-module M
the canonical morphism

µM : indS resSM →M,

which we will use frequently.
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More explicitly, for any RC-module M and RS-module N , we have the pointwise
formulas

(resSM)(s) = M(s) and (indS N)(c) = colim(t,u)∈(i/c)N(t)

for all s ∈ S and c ∈ C. Here (i/c) denotes the slice category. Its objects are pairs
(s, u), where s ∈ S and u : s→ c is a morphism in C. For (s, u), (t, v) ∈ Ob(i/c), a
morphism (s, u)→ (t, v) is a morphism α : s→ t in S with vα = u. If C is a poset,
the latter formula yields

(indS N)(c) = colimt∈S, t6cN(t).

Let A be an R-module and c ∈ C. We define an RC-module

A[MorC(c,−)] := A⊗R R[MorC(c,−)]

by taking a pointwise tensor product. We note that the functor R-Mod→ RC-Mod
that sends A to A[MorC(c,−)] is right exact for all c ∈ C.

Proposition 3.1. Let S ⊆ C be a full subcategory, A an R-module, and s ∈ S. Then

indS resS A[MorC(s,−)] ∼= A[MorC(s,−)].

Proof. By Yoneda’s lemma and the aforementioned adjunction, we have the following
isomorphisms:

HomRC(R[MorC(s,−)],M) ∼= M(s)
∼= HomRS(R[MorS(s,−)], resSM)
∼= HomRC(indS R[MorS(s,−)],M).

This shows us that indS resS R[MorC(s,−)] ∼= R[MorC(s,−)]. In particular

colim(t,u)∈(i/d)R[MorC(s, t)] ∼= R[MorC(s, d)]

for d ∈ C. Since tensoring commutes with colimits, we see that for all d ∈ C,

(indS resS A[MorC(s,−)])(d) = colim(t,u)∈(i/d)A[MorC(s, t)]
∼= A⊗R colim(t,u)∈(i/d)R[MorC(s, t)]
∼= A⊗R R[MorC(s, d)]
∼= A[MorC(s, d)].

Therefore indS resS A[MorC(s,−)] ∼= A[MorC(s,−)] as wanted.

An RC-module M is said to be S-generated if the natural morphism⊕
s∈S

M(s)[MorC(s,−)]→M

is an epimorphism. Since this morphism factors through the canonical morphism
µM : indS resSM → M , we see that M is S-generated if and only if µM is an epi-
morphism.
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Proposition 3.2. Let S ⊆ C be a full subcategory. Assume that M is an S-generated
RC-module, so that we have an exact sequence of RC-modules

0→ K →
⊕
s∈S

M(s)[MorC(s,−)]→M → 0.

Then the following are equivalent:

1) The canonical morphism µM : indS resSM →M is an isomorphism;

2) If there exists an exact sequence of RC-modules

0→ L→ N →M → 0,

where N is S-generated, then L is S-generated;

3) K is S-generated;

4) The sequence⊕
s∈S

K(s)[MorC(s,−)]→
⊕
s∈S

M(s)[MorC(s,−)]→M → 0

is exact;

5) For each s ∈ S, there exist R-modules As and Bs such that the sequence⊕
s∈S

Bs[MorC(s,−)]→
⊕
s∈S

As[MorC(s,−)]→M → 0

is exact.

When these equivalent conditions hold, we say that M is S-presented.

Proof. We will show that 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 5) ⇒ 1). Assume first that 1) holds,
and that there is an exact sequence of RC-modules

0→ L→ N →M → 0.

Since the functor resS is exact and the functor indS right exact, we get a commutative
diagram with exact rows

indS resS L

µL

��

// indS resS N

µN

��

// indS resSM

µM

��

// 0

��

0 // L // N // M // 0,

where µM is an isomorphism and µN is an epimorphism. An easy diagram chase
shows us that µL is an epimorphism, so 2) holds.

The implication 2) ⇒ 3) is trivial. Assume next that 3) holds. Now the morphism⊕
s∈S K(s)[MorC(s,−)]→ K is an epimorphism, so both

⊕
s∈S K(s)[MorC(s,−)] and

K have the same image in
⊕

s∈SM(s)[MorC(s,−)]. The required exactness then
follows immediately.

Trivially 4) implies 5). Finally, let us assume that 5) holds. By Proposition 3.1, we
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get a commutative diagram with exact rows⊕
s∈S Bs[MorC(s,−)]

∼=
��

//
⊕

s∈S As[MorC(s,−)]

∼=
��

// indS resSM

µM

��

// 0

��⊕
s∈S Bs[MorC(s,−)] //

⊕
s∈S As[MorC(s,−)] // M // 0

from which we can see that µM is an isomorphism by the five lemma.

Remark 3.3. Proposition 3.2 is due to Djament [9, p. 11, Prop. 2.14]. The reader
should be cautious, since we use the term ‘support’ in a different meaning as in [9].

The following proposition is a special case of [10, p. 83, Prop.]. For the sake of
clarity, we present a proof using our notation. A small category is said to be locally
finite if every morphism set is finite.

Proposition 3.4. Let C be locally finite. An RC-module M is finitely presented if
and only if there exists a finite full subcategory S ⊆ C such that

1) M(s) is finitely presented for all s ∈ S;

2) M is S-presented.

Proof. Assume first thatM is finitely presented, so that there exists an exact sequence⊕
j∈J

R[MorC(bj ,−)]→
⊕
i∈I

R[MorC(ai,−)]→M → 0,

where I and J are finite sets, and ai, bj ∈ C for all i ∈ I and j ∈ J . Evaluating this
at point c ∈ C gives us an exact sequence

Rmc → Rnc →M(c)→ 0

for some mc, nc ∈ N, so that 1) holds. For 2), by setting

S := {ai | i ∈ I} ∪ {bj | j ∈ J}

we immediately see that M is S-presented by Proposition 3.2 5).

Assume next that there exists a finite full subcategory S ⊆ C such that 1) and 2)
hold. Now M is S-generated, so the natural morphism

⊕
s∈SM(s)[MorC(s,−)]→M

is an epimorphism. Since M(s) is finitely generated for all s ∈ S, there exists an epi-
morphism Rns →M(s) for all s ∈ S, where ns ∈ N. Combining these epimorphisms,
we get an epimorphism⊕

t∈S
Rnt [MorC(t,−)]→

⊕
t∈S

M(t)[MorC(t,−)]→M

and an exact sequence

0→ N →
⊕
t∈S

Rnt [MorC(t,−)]→M → 0.

Because M is S-presented, N must be S-generated by Proposition 3.2 2), so there ex-
ists an epimorphism

⊕
t∈S N(t)[MorS(t,−)]→ N . On the other hand, M(s) is finitely
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presented, so N(s) is finitely generated for all s ∈ S. Thus there exists an epimorphism
Rms → N(s) for all s ∈ S, where ms ∈ N. Hence we get an exact sequence⊕

t∈S
Rmt [MorC(t,−)]→

⊕
t∈S

Rnt [MorC(t,−)]→M → 0.

From the proof of Proposition 3.4 we immediately get the following corollary:

Corollary 3.5. Let C be locally finite. An RC-module M is finitely generated if and
only if there exists a finite full subcategory S ⊆ C such that

1) M(s) is finitely generated for all s ∈ S;

2) M is S-generated.

3.2. Births and deaths relative to S
From now on, we will assume that C is a poset.
Let M be an RC-module, S ⊆ C a subset, and c ∈ C. Write S′ := S\{c}. We note

that

colimd<c, d∈SM(d) = colimd6c, d∈S′ M(d) = (indS′ resS′ M)(c).

Since resS′ is exact and indS′ is right exact, we then see that the functor

RC-Mod→ R-Mod, M 7→ colimd<c, d∈SM(d)

is also right exact.

Definition 3.6. Let C be a poset, M an RC-module, S ⊆ C a subset and c ∈ C. Let

λM,c : colimd<c, d∈SM(d)→M(c)

be the natural homomorphism. We define the set of births relative to S by

BS(M) := {c ∈ C | λM,c is a non-epimorphism}

and the set of deaths relative to S by

DS(M) := {c ∈ C | λM,c is a non-monomorphism}.

Remark 3.7. Note that λM,c is an epimorphism if and only if the natural homomor-
phism

⊕
d<c, d∈SM(d)→M(c) is an epimorphism. This implies that if T ⊆ S ⊆ C,

then BS(M) ⊆ BT (M).

Example 3.8. Let C be a poset. Let I be an interval of C i.e. a non-empty subset of
C satisfying the condition that if a, b ∈ I, c ∈ C and a 6 c 6 b, then c ∈ I. Let RI be
the RC-module defined on objects by

RI(c) =

{
R, when c ∈ I;

0, otherwise,

and with identity morphisms inside the interval. Then the sets of births BC(RI) and
BI(RI) both consist of the minimal elements of I. To find the deaths, we note that
RI is ↑I-presented, so deaths must either be inside I or above it (see Remark 4.2).

First, let c ∈ S1 := (↑ I)\I. Now RI(c) = 0. Since S1 ⊆ ↑Supp(RI), we see that
colimd<c, d∈I RI(d) 6= 0. Thus c ∈ DI(RI), so S1 ⊆ DI(RI). Furthermore, it is clear
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that colimd<cRI(d) 6= 0 if and only if c is minimal in S1. This implies that exactly
the minimal elements of S1 are in DC(RI).

Secondly, let c ∈ I. It is straightforward to see that c ∈ DI(RI) if and only if the
set (I ∩ ↓c)\{c} is not connected as a poset. This applies also to DC(RI). Set

S2 := {c ∈ I | (I ∩ ↓c)\{c} is not connected}.

We conclude that DI(RI) = S1 ∪ S2, while DC(RI) is the union of the set of the
minimal elements of S1, and the set S2.

Proposition 3.9. Let C be a poset, M an RC-module, and S ⊆ C a subset. Then

1) M is S-generated if and only if BS(M) ⊆ S;

2) M is S-presented if and only if BS(M) ∪DS(M) ⊆ S.

Proof. Both 1) and 2) are proved similarly. We only prove 2) here. Directly from the
definitions,

M is S-presented

⇔ µM,c : colimd6c, d∈SM(d)→M(c) is an isomorphism for all c ∈ C

⇔ λM,c : colimd<c, d∈SM(d)→M(c) is an isomorphism for all c ∈ C\S

⇔ BS(M) ∪DS(M) ⊆ S.

Let S ⊆ C. We may think of BC(M) as the set of ‘real’ births of M . The following
proposition shows that for S-generated modules we may focus only on births relative
to S.

Proposition 3.10. Let M be an S-generated RC-module. Then BC(M) = BS(M).

Proof. By Remark 3.7 it is enough to show that BS(M) ⊆ BC(M). Let c ∈ C\BC(M),
so that the natural homomorphism

⊕
d<cM(d)→M(c) is an epimorphism. Since M

is S-generated, there is an epimorphism
⊕

d′6d, d′∈SM(d′)→M(d) for all d < c. We
may combine these epimorphisms to get an epimorphism

⊕
d<c, d∈SM(d)→M(c),

implying that c ∈ C\BS(M).

3.3. S-splitting
Definition 3.11. Let S ⊆ C a subset and c ∈ C. If M is an RC-module, denote by
SS,cM the R-module defined by the exact sequence

colimd<c, d∈SM(d)
λM,c→ M(c)

πM,c→ SS,cM → 0,

where πM,c is the canonical epimorphism. This gives rise to a functor SS,c, the S-
splitting functor at c. More explicitly,

SS,cM = M(c)/ Im(λM,c).

Remark 3.12. The S-splitting functor at c could equivalently be defined as the com-
position of the splitting functor Sc ([16, p. 156]) and the restriction functor resS∪{c}
by setting SS,c = Sc ◦ resS∪{c}. Since both Sc and resS∪{c} are left adjoints, we see
that SS,c is a left adjoint, and thus additive.
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The concept of a splitting functor is due to Lück ([16]). The basic example for us
is the following:

Example 3.13. Let k be a field, S ⊆ Zn a subset, and M a k(Nn∫Zn)-module. We
identify M with the corresponding Zn-graded k[X1, . . . , Xn]-module. Denote by m :=
〈X1, . . . , Xn〉 the maximal homogeneous ideal of k[X1, . . . , Xn]. If N is the homoge-
neous submodule of M generated by the union of Ms, where s ∈ S, we notice that

(M/mN)c = Mc/(mN)c = M(c)/ Im(λM,c) = SS,cM

for all c ∈ Zn. In particular, this yields an isomorphism of k-vector spaces,

M/mN ∼=
⊕
c∈Zn

SS,cM.

Remark 3.14. Let M be an RC-module and S ⊆ C a subset. Note that for all c ∈ C,
we have c ∈ BS(M) if and only if SS,cM 6= 0.

Remark 3.15. Let A be an R-module, S ⊆ C a subset, s ∈ S, and c ∈ C. Let S′ :=
S\{c}. If s 6= c, we see that

colimd<c, d∈S A[MorC(s, d)] = colimd6c, d∈S′ A[MorC(s, d)] ∼= A[MorC(s, c)]

by Proposition 3.1. If s = c, then obviously colimd<c, d∈S A[MorC(s, d)] = 0. In par-
ticular

SS,c(A[MorC(s,−)]) =

{
A, when s = c;

0, otherwise.

Next, we prove a version of Nakayama’s lemma (cf. [26, p. 12, Lemma 6.2]).

Lemma 3.16. Let M be an RC-module and S ⊆ C a subset. If Supp(M) ∩ S has a
minimal element c, then SS,cM 6= 0.

Proof. Assume that c ∈ Supp(M) ∩ S is minimal. Then M(d) = 0 for all d ∈ S with
d < c. In particular, colimd<c, d∈SM(d) = 0. Thus SS,cM 6= 0.

Recall that a poset P is called Artinian, if there are no infinite strictly descending
chains of elements of P , or equivalently, if every non-empty subset S ⊆ P has a
minimal element.

Proposition 3.17. Let f : L→M be a morphism of RC-modules, where M is S-
generated with an Artinian S ⊆ C. If SS,cf : SS,cL→ SS,cM is an epimorphism for
all c ∈ BS(M), then f is an epimorphism.

Proof. We first note that Coker f is S-generated, since M is S-generated. Sup-
pose that f is not an epimorphism. Then Coker f 6= 0, so there exists s ∈ S such
that (Coker f)(s) 6= 0. Hence Supp(Coker f) ∩ S has a minimal element c by the
Artinian property. Now SS,c(Coker f) 6= 0 by Lemma 3.16, which implies that c ∈
BS(Coker f) ⊆ BS(M). Since SS,c is right exact, we get CokerSS,cf 6= 0, so SS,cf is
not an epimorphism.
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Lemma 3.18. Let S ⊆ C be a subset and

0→ L
j→ N

f→M → 0

an exact sequence of RC-modules. The following are equivalent for all c ∈ C:

1) (Ker f)(c) ⊆ ImλN,c;

2) SS,c(j) = 0;

3) SS,c(f) is a monomorphism;

4) SS,c(f) is an isomorphism.

Proof. The equivalence of 1) and 3) immediately follows from the fact that

KerSS,c(f) = ((Ker f)(c) + ImλN,c)/ ImλN,c.

Since SS,c is right exact, we have KerSS,c(f) = ImSS,c(j). Therefore 2) is equivalent
to 3). The equivalence of 3) and 4) holds, because SS,c preserves epimorphisms.

We recall that an epimorphism of RC-modules f : N →M is called minimal, if for
all morphisms g : L→ N , fg is an epimorphism if and only if g is an epimorphism. It
is known that an epimorphism f is minimal if and only if for all submodules N ′ ⊆ N

N ′ + Ker f = N ⇒ N ′ = N.

A minimal epimorphism f : N →M , where N is projective, is called a projective cover
of M (see e.g. [1, p. 28]).

Remark 3.19. Let A be an R-module and c ∈ C. Then A may be thought of as an
R{c}-module, and we note that A[MorC(c,−)] ∼= ind{c}A. In particular, the func-
tor A 7→ A[MorC(c,−)] preserves projectives, since it is the left adjoint of the exact
functor res{c}.

Proposition 3.20. Let f : N →M be an epimorphism of S-generated RC-modules,
where S ⊆ C is Artinian. If (Ker f)(c) ⊆ ImλN,c for all c ∈ C, then f is minimal. The
converse implication holds if SS,cM is projective for all c ∈ S.

Proof. Let (Ker f)(c) ⊆ ImλN,c for all c ∈ C. Suppose that N ′ + Ker f = N for some
submodule N ′ ⊆ N . We note that for all c ∈ C, (N ′)(c) + ImλN,c = N(c). This im-
plies that SS,cN

′ = SS,cN for all c ∈ C. Since S is Artinian, we may use Proposi-
tion 3.17 to conclude that N ′ = N , so f is minimal.

Next, let f be minimal, and let SS,cM be projective for all c ∈ S. Thus we can
find sections SS,cM →M(c) for all c ∈ S. These induce a morphism

h :
⊕
s∈S

SS,sM [MorC(s,−)]→
⊕
s∈S

M(s)[MorC(s,−)]→M.

Remark 3.15 now implies that SS,ch = idSS,cM for all c ∈ S, so h is an epimorphism
by Proposition 3.17.

Since SS,cM is projective for all c ∈ S, we see that
⊕

s∈S SS,sM [MorC(s,−)] is also
projective by Remark 3.19 (as a sum of projectives). Thus the morphism h factors
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through f , and we get a diagram⊕
s∈S SS,sM [Morc(s,−)]

g
//

h
((

N

f

��

M

that commutes. Now f is minimal, so g is an epimorphism. Applying functor SS,c,
where c ∈ S, on the diagram, we see that SS,cf ◦ SS,cg = id, which implies that SS,cg
is a monomorphism, and therefore an isomorphism. Hence SS,cf is an isomorphism for
all c ∈ S. This is equivalent to (Ker f)(c) ⊆ ImλN,c for all c ∈ C by Lemma 3.18.

Remark 3.21. Let M be an S-generated RC-module, where S is Artinian. If SS,cM
is projective for all c ∈ S, the morphism h :

⊕
s∈S SS,sM [Morc(s,−)]→M induced

by sections SS,sM →M(s) is a projective cover of M .
Indeed, as noted earlier, h is an epimorphism with SS,ch = id for all c ∈ S. Then

Lemma 3.18 implies that (Ker f)(c) ⊆ ImλN,c for all c ∈ C, and the rest follows from
Proposition 3.20.

3.4. Minimality of births and deaths
We will now show how the sets of births and deaths relative to a subset S ⊆ C are

in a sense minimal if the module is S-generated or S-presented.

Proposition 3.22. Let M be an S-generated RC-module, where S ⊆ C is Artinian.
Then M is BS(M)-generated. Furthermore, BS(M) is the minimum element of the
set {T ⊆ S |M is T -generated}.

Proof. Let ρ be the natural morphism ρ :
⊕

s∈BS(M)M(s)[MorC(s,−)]→M . Re-
mark 3.15 shows us that applying the S-splitting functor at c ∈ S yields the canon-
ical epimorphism SS,cρ = π : M(c)→ SS,cM . Thus ρ is an epimorphism by Proposi-
tion 3.17.

To show the claimed minimality: If M is T -generated for some T ⊆ S, we have
BS(M) ⊆ BT (M) ⊆ T by Proposition 3.9 and Remark 3.7.

Next, we introduce a technical lemma.

Lemma 3.23. Assume that we have a commutative diagram of R-modules with exact
rows

L

f

��

// N

g

��

// M

h
��

// 0

0 // L′ // N ′ // M ′,

where g is a monomorphism. If f is an epimorphism, then h is a monomorphism. The
converse holds if either the natural morphism Coker g → Cokerh is a monomorphism
or g is an epimorphism.

Proof. The snake lemma gives us an exact sequence

Ker f → Ker g → Kerh→ Coker f → Coker g → Cokerh,
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where Ker g = 0. If Coker f = 0, we get Kerh = 0. If Coker g = 0, we have Kerh ∼=
Coker f , and we are done. If Coker g → Cokerh is a monomorphism, we see that
Coker f maps to 0, so Kerh→ Coker f is an epimorphism. Since Ker g = 0, the mor-
phism Kerh→ Coker f is also a monomorphism.

Lemma 3.24. Let M be an S-presented RC-module, where S ⊆ C is Artinian. As-
sume that we have an exact sequence of RC-modules

0→ L→ N
f→M → 0,

where N is S-generated and DS(N) = ∅. Then DS(M) ⊆ BS(L). Furthermore, if N
is BS(M)-generated, we have BS(L) ⊆ BS(M) ∪DS(M).

Proof. Let c ∈ C. Applying colimd<c, d∈S to the exact sequence above, we get a dia-
gram with exact rows

colimd<c, d∈S L(d)

λL,c

��

// colimd<c, d∈S N(d)

λN,c

��

// colimd<c, d∈SM(d) //

λM,c

��

0

0 // L(c) // N(c)
fc // M(c) // 0

that commutes. Here λN,c is a monomorphism, because DS(N) = ∅. To show that
DS(M) ⊆ BS(L), suppose that c /∈ BS(L). In this case λL,c is an epimorphism, so
λM,c is a monomorphism by Lemma 3.23. Thus c /∈ DS(M).

Assume that N is BS(M)-generated. Since f is an epimorphism, Proposition 3.22
implies that BS(M) = BS(N). Suppose that c /∈ BS(M) ∪DS(M). Now λN,c is an
epimorphism, since c /∈ BS(N) = BS(M). Moreover, λM,c is a monomorphism be-
cause c /∈ DS(M). It follows from Lemma 3.23 that λL,c is an epimorphism, so c /∈
BS(L). Thus BS(L) ⊆ BS(M) ∪DS(M).

Proposition 3.25. Let M be an S-presented RC-module, where S ⊆ C is Artinian.
Then M is BS(M) ∪DS(M)-presented. Furthermore, BS(M) ∪DS(M) is the mini-
mum element of the set {T ⊆ S |M is T -presented}.

Proof. Let us examine an exact sequence

0→ L→ N →M → 0,

with N of the form N =
⊕

s∈BS(M)As[MorC(s,−)], where As is an R-module for

all s ∈ BS(M). Note that such N always exists by Proposition 3.22. Since M is S-
presented, Proposition 3.2 2) implies that L is S-generated. Using Proposition 3.2
5), we notice that if L is T -generated for some T ⊆ S, then M is (BS(M) ∪ T )-
presented. Now L is BS(L)-generated by Proposition 3.22, so we deduce that M
is (BS(M) ∪BS(L))-presented. We can now use Lemma 3.24 to see that then M
is(BS(M) ∪DS(M))-presented.

Suppose next that M is also T -presented for some T ⊆ S. As in the proof of
Lemma 3.24, we note that BS(M) = BS(N). The minimality of BS(M) in Proposi-
tion 3.22 implies that BS(N) = BS(M) ⊆ T , so N is T -generated by Proposition 3.22.
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Thus L is T -generated by Proposition 3.2 2). Therefore we must have

BS(M) ⊆ BT (M) ⊆ T and BS(L) ⊆ BT (L) ⊆ T,

by Proposition 3.9 1) and Remark 3.7. We use Lemma 3.24 to conclude that

BS(M) ∪DS(M) = BS(L) ∪BS(M) ⊆ T.

Remark 3.26. Assume that M is an S-presented RC-module, where S ⊆ C is Artinian.
Let f : N →M be a projective cover. Then SS,cf is an isomorphism for all c ∈ C if
and only if SS,cM is projective for all c ∈ C.

To see this, first suppose that SS,cf is an isomorphism for all c ∈ C. Since SS,c
preserves projectives for all c ∈ C, we see that SS,cN is projective, and thus SS,cM is
projective.

Conversely, suppose that SS,cM is projective for all c ∈ C. We may now apply
Proposition 3.20 and Lemma 3.18 to get isomorphisms SS,cf : SS,cN → SS,cM for all
c ∈ C.

Remark 3.27. In [5], Carlsson and Zomorodian define multiset-valued invariants ξ0
and ξ1 for a finitely generated Zn-graded k[X1, . . . , Xn]-module M , where k is a field.
The multisets ξ0(M) and ξ1(M) indicate the degrees in Zn where the elements of M
are born and where they die, respectively. In more algebraic terms, ξ0(M) and ξ1(M)
consist of the degrees of minimal generators and minimal relations of M equipped
with the multiplicities they occur. Consider an exact sequence

0→ L→ N
f→M → 0,

where N is a free module and f a minimal homomorphism. Since M is S-presented
for some finite S ⊆ Zn, it is easy to see that ξ0(M) is a multiset where the underlying
set is BS(M) and the multiplicity of c ∈ BS(M) is the dimension of M(c). Note that
the choice of S does not matter here, since BS(M) = BC(M) by Proposition 3.10.
We note that L is S-generated by Proposition 3.2 3), so we may apply a similar
argument to conclude that ξ1(M) is a multiset with BS(L) as the underlying set and
the dimension of L(c) as the multiplicity of c ∈ BS(L). The next theorem will show
that DS(M) is the underlying set of ξ1(M).

Theorem 3.28. Let M be an S-presented RC-module, where S ⊆ C is Artinian. As-
sume that SS,cM is projective for all c ∈ BS(M). If

0→ L→ N
f→M → 0

is an exact sequence where f is a projective cover, then BS(L) = DS(M).

Proof. By Lemma 3.24, it is enough to show that BS(L) ⊆ DS(M). If c /∈ BS(M),
then c ∈ BS(L) implies c ∈ DS(M) by Lemma 3.24. Let c ∈ BS(M). Suppose that
c /∈ DS(M). Then λM,c is a monomorphism. Since f is minimal, by Proposition 3.20
and Lemma 3.18 there exists a natural isomorphism

SS,cf : SS,cN = CokerλN,c → CokerλM,c = SS,cM.

It now follows from Lemma 3.23 that λL,c is an epimorphism, which is equivalent to
c /∈ BS(L).
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4. Presentations with finite support

In this section we will prove our main result, Theorem 4.15, which gives a char-
acterization for finitely presented modules. We will assume that C is a poset and
R a commutative ring.

4.1. S-determined RC-modules

Let M be an RC-module. If S ⊆ C is a finite set such that M is S-presented, we
say that S is a finite support of a presentation (FSP) of M . In what follows, we are
trying to find a condition equivalent for M having an FSP.

Definition 4.1. An RC-module M is S-determined if there exists a subset S ⊆ C
such that Supp(M) ⊆ ↑S, and for every c 6 d in C

S ∩ ↓c = S ∩ ↓d ⇒ M(c 6 d) is an isomorphism.

Remark 4.2. Let M be an RC-module and S ⊆ C a subset. Denote T := ↑S. Then the
condition Supp(M) ⊆ T of Definition 4.1 is equivalent to the following conditions:

1) M is T -generated;

2) M is T -presented;

3) If S ∩ ↓c = ∅, then M(c) = 0.

To show this, we first note that 1) implies 3), because ↑S = T . Taking the contrapos-
itive of 3), we get Supp(M) ⊆ T . Next, note that below every c ∈ DT (M) there must
be some d ∈ Supp(M) such that d < c. Thus DT (M) ⊆ ↑Supp(M). Obviously also
BT (M) ⊆ Supp(M). We now observe that if Supp(M) ⊆ T , we get

BT (M) ∪DT (M) ⊆ ↑Supp(M) ⊆ ↑T = T.

This means that Supp(M) ⊆ T implies 2) by Proposition 3.9. Finally, 1) trivially
follows from 2).

Proposition 4.3. Let M be an S-presented RC-module, where S ⊆ C. Then M is
S-determined.

Proof. Trivially Supp(M) ⊆ ↑S. If c 6 d in C, we have a commutative diagram

colime6c, e∈SM(e)

∼=
��

// colime6d, e∈SM(e)

∼=
��

M(c)
M(c6d)

// M(d)

with the vertical isomorphisms being components of the canonical isomorphism of
Proposition 3.2, 1). This immediately shows us that M is S-determined.

4.2. Minimal upper bounds

Let S ⊆ C. We would like to find conditions under which S-determined implies S-
presented. In general this is false (see Example 4.17), so we first need to apply some
technical limitations on the poset C to guarantee that it is ”small” enough.
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Notation 4.4. Let S ⊆ C be a subset. An element c ∈ C is an upper bound of S, if
c > s for all s ∈ S. We denote the set of minimal upper bounds of S by mubC(S).

Definition 4.5. The poset C is weakly bounded from above if every finite S ⊆ C has
a finite number of minimal upper bounds in C.

Definition 4.6. The poset C is mub-complete if given a finite non-empty subset S ⊆ C
and an upper bound c of S, there exists a minimal upper bound s of S such that
s 6 c.

Remark 4.7. A poset that is weakly bounded from above and mub-complete is called
a poset with propertyM in [14]. In contrast to [14], we do not require the empty set
to have minimal upper bounds for a poset to be mub-complete.

Example 4.8. Let L be a poset where every finite non-empty subset K ⊆ L has an
infimum and a supremum (i.e. L is a lattice). Then L is weakly bounded from above
and mub-complete.

A ‘good’ monoid G in [6] is a cancellative monoid that is weakly bounded from
above as a poset (with the natural order). If G is also commutative, we get the
following description of mub-completeness.

Proposition 4.9. Let G be a commutative cancellative monoid that is weakly boun-
ded from above as a poset (with the natural order). Then G is mub-complete if and
only if there exists a maximal common divisor for each g, h ∈ G.

Proof. Assume first that G is mub-complete. Let g, h ∈ G. Since gh is an upper bound
of g and h, there exists a minimal upper bound j ∈ G of g and h such that lj = gh
for some l ∈ G. We claim that l is a maximal common divisor of g and h. We may
write j = ag = bh, where a, b ∈ G. Now

gh = lj = lag = lbh,

so that g = lb and h = la by cancellativity. Thus l is a common divisor of g and h. For
the maximality, let k ∈ G be another common divisor of g and h such that l divides k.
We may then write k = k′l, where k′ ∈ G. Furthermore, we have g = ck and h = dk
for some c, d ∈ G. Combining these equations, we get

lj = gh = ck′lh = gdk′l.

Cancelling l, we see that j = k′ch = k′dg. Furthermore, cancelling k′ yields ch = dg,
another upper bound for g and h. Since j is a minimal upper bound of g and h, we
must have k′ = 1, proving the maximality of l.

For the other direction, assume that each pair g, h ∈ G has a maximal common
divisor. Let H := {h1, . . . , hn} ⊆ G be a finite non-empty set, and let d be an upper
bound of H. We now have

d = g1h1 = · · · = gnhn

for some g1, . . . , gn ∈ G. Let g′ ∈ G be a maximal common divisor of g1, . . . , gn. Hence
there exists g′i ∈ G such that gi = g′ig

′ for all i ∈ {1, . . . , n}. Also, d = d′g′ for some
d′ ∈ G. It is now easy to see that the maximal common divisor of g′1, . . . , g

′
n is 1, and

that d′ is a minimal upper bound of H.
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Notation 4.10. Let S ⊆ C be a finite subset. We denote the set of minimal upper
bounds of non-empty subsets of S by

Ŝ :=
⋃

∅6=S′⊆S

mubC(S
′).

We notice that if C is weakly bounded from above, then Ŝ is finite.

Using the terminology from [6], a set S ⊆ C is a framing set of M if every c ∈
↑Supp(M) has an element s ∈ S ∩ ↓c, called a frame of c, such that M(s 6 c′) is an
isomorphism for all s 6 c′ 6 c.

Lemma 4.11. If an RC-module M has a framing set S, then M is S-determined.
Conversely, if C is weakly bounded from above and mub-complete, and M is S-

determined for some finite set S ⊆ C, then Ŝ is a finite framing set of M . In particular,
if c ∈ C, then there exists a frame s ∈ mub(S ∩ ↓c) ⊆ Ŝ of c such that S ∩ ↓c = S ∩ ↓s.

Proof. Assume first that S is a framing set for M . If c ∈ Supp(M), then there exists
a frame s ∈ S of c, and therefore c ∈ ↑S. Thus Supp(M) ⊆ ↑S. Let c 6 d in C such
that S ∩ ↓c = S ∩ ↓d. If d /∈ ↑Supp(M), we have M(c) = M(d) = 0, and we are done.
Otherwise, there exists a frame s ∈ S of d. Since S ∩ ↓c = S ∩ ↓d, we see that s 6 c 6
d. Therefore M(c 6 d) is an isomorphism.

Assume next that C is weakly bounded from above and mub-complete, and M is
S-determined for some finite set S. Since C is weakly bounded from above, Ŝ is finite.
Let c ∈ ↑Supp(M). Now there exists an element b 6 c such that M(b) 6= 0. Since M
is S-determined, we see that S ∩ ↓c ⊇ S ∩ ↓b 6= ∅. Thus c is an upper bound of the
non-empty set S ∩ ↓c, so by mub-completeness there exists a minimal upper bound
s ∈ mub(S ∩ ↓c) ⊆ Ŝ such that s 6 c. It follows that S ∩ ↓c ⊆ S ∩ ↓s. Obviously s 6 c
implies S ∩ ↓s ⊆ S ∩ ↓c. Hence S ∩ ↓s = S ∩ ↓c. If s 6 c′ 6 c, then trivially S ∩ ↓s =
S ∩ ↓c′, so M(s 6 c′) is an isomorphism.

4.3. Finitely presented RC-modules in mub-complete posets
In the next proposition we find out how the minimal upper bounds connect to

births and deaths relative to S. This allows us to prove our main result, Theorem 4.15.

Proposition 4.12. Let C be weakly bounded from above and mub-complete. Let M
be an RC-module that is S-determined for some finite S ⊆ C. If BŜ(M) ⊆ S, then

DŜ(M) ⊆ Ŝ.

Proof. Suppose that BŜ(M) ⊆ S. This implies that M is Ŝ-generated by Proposi-
tion 3.9, so M is BŜ(M)-generated by Proposition 3.22. Let c ∈ DŜ(M), so that

λM,c is not a monomorphism. This means that there exist d1, . . . , dn ∈ Ŝ such that
di < c for all i = {1, . . . , n}, and elements x1 ∈M(d1), . . . , xn ∈M(dn) with a non-
zero sum in the colimit, but

∑n
i=1M(di 6 c)(xi) = 0. If there exists c′ ∈ Ŝ such that

di 6 c′ < c for all i ∈ {1, . . . , n}, we may assume that
∑n
i=1M(di 6 c′)(xi) 6= 0, since

the homomorphism
n⊕
i=1

M(di)→ colimd<c, d∈ŜM(d)

factors through M(c′). Because M is BŜ(M)-generated, we may also assume that
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di ∈ BŜ(M) ⊆ S for all i ∈ {1, . . . , n}.
On the other hand, by Lemma 4.11, we have S ∩ ↓s = S ∩ ↓c for some frame s ∈ Ŝ

of c. This implies that di 6 s for all i ∈ {1, . . . , n}. If s < c, we get a contradiction∑n
i=1M(di 6 s)(xi) = 0. Therefore c = s ∈ Ŝ.

Corollary 4.13. Let C be weakly bounded from above and mub-complete. Let M be

an S-determined RC-module, where S ⊆ C is a finite subset. Then
ˆ̂
S is an FSP of M .

Proof. Obviously M is Ŝ-determined, since S ⊆ Ŝ. By Proposition 4.12, it is enough

to show that B ˆ̂
S

(M) ⊆ Ŝ, because then D ˆ̂
S

(M) ⊆ ˆ̂
S. The rest now follows from

Proposition 3.9. Since Ŝ ⊆ ˆ̂
S, by Remark 3.7 we have B ˆ̂

S
(M) ⊆ BŜ(M). Let c ∈ C.

If c /∈ Ŝ, then c has a frame s ∈ Ŝ by Lemma 4.11. This means that c /∈ BŜ(M), and

thus BŜ(M) ⊆ Ŝ.

We sum up Proposition 4.3 and Corollary 4.13 in the next corollary.

Corollary 4.14. Let C be weakly bounded from above and mub-complete. An RC-
module M has an FSP if and only if M is S-determined for some finite S ⊆ C.

Finally, we get our new characterization of finitely presented modules.

Theorem 4.15. Let M be an RC-module. If M is finitely presented, then

1) M(c) is finitely presented for all c ∈ C
2) M is S-determined for some finite S ⊆ C.

Furthermore, if C is weakly bounded from above and mub-complete, and M satisfies
conditions 1) and 2), then M is finitely presented.

Proof. Using Proposition 3.4, the first part immediately follows from Proposition 4.3
and the second part from Corollary 4.13.

Remark 4.16. Let G be a monoid. Theorem 4.15 and Lemma 4.11 show us that the
RG-modules of finitely presented type of Corbet and Kerber ([6, p. 19, Def. 15]) are
the same thing as finitely presented RG-modules.

Furthermore, let A be a free G-act that is mub-complete and weakly bounded
from above as a poset. Starting from the isomorphism RA-Mod ∼= A-gr R[G]-Mod
of Corollary 2.10, and using the fact that being finitely presented is a categorical
property, we get an isomorphism between finitely presented RA-modules and finitely
presented A-graded R[G]-modules. Taking A = G now gives the commutative case of
[6, p. 25, Thm. 21].

Example 4.17. Let C = {a, b} ∪ Z, where a < n and b < n for all n ∈ Z, and Z has
the usual ordering. Then the RC-module M := R[MorC(a,−)]⊕R[MorC(b,−)] is ob-
viously finitely presented, but M does not have a finite framing set even though it is
{a, b}-determined. Caution is required here: If we define an RC-module N by

N(a) = N(b) = R and N(n) = R3,

for all n ∈ Z, then N satisfies the conditions 1) and 2) in Theorem 4.15 but is not
finitely presented. This follows from the fact that C is not mub-complete.
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