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Abstract
Hyperoctahedral homology is the homology theory associ-

ated to the hyperoctahedral crossed simplicial group. It is
defined for involutive algebras over a commutative ring using
functor homology and the hyperoctahedral bar construction of
Fiedorowicz. The main result of the paper proves that hyper-
octahedral homology is related to equivariant stable homotopy
theory: for a discrete group of odd order, the hyperoctahedral
homology of the group algebra is isomorphic to the homology of
the fixed points under the involution of an equivariant infinite
loop space built from the classifying space of the group.

Introduction

Hyperoctahedral homology for involutive algebras was introduced by Fiedorowicz
[Fie, Section 2]. It is the homology theory associated to the hyperoctahedral crossed
simplicial group [FL91, Section 3]. Fiedorowicz and Loday [FL91, 6.16] had shown
that the homology theory constructed from the hyperoctahedral crossed simplicial
group via a contravariant bar construction, analogously to cyclic homology, was iso-
morphic to Hochschild homology and therefore did not detect the action of the hype-
roctahedral groups. Fiedorowicz demonstrated that a covariant bar construction did
detect this action and sketched results connecting the hyperoctahedral homology of
monoid algebras and group algebras to May’s two-sided bar construction and infinite
loop spaces, though these were never published.

In Section 1 we recall the hyperoctahedral groups. We recall the hyperoctahedral
category ∆H associated to the hyperoctahedral crossed simplicial group. This cate-
gory encodes an involution compatible with an order-preserving multiplication. We
introduce the category of involutive non-commutative sets, which encodes the same
information by adding data to the preimages of maps of finite sets. We demonstrate
this category is isomorphic to ∆H.

Hyperoctahedral homology is defined in terms of functor homology, sometimes
known as the homology of small categories. In Section 2 we recall the necessary back-
ground on functor homology, including the tensor product of modules over a small
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category, its left derived functors and chain complexes that can be used to compute
them.

In Section 3 we define hyperoctahedral homology for involutive algebras in terms of
the hyperoctahedral bar construction following Fiedorowicz. We discuss the connection
of hyperoctahedral homology to the other homology theories arising from crossed
simplicial groups. We define hyperoctahedral homology with coefficients in a module
and prove a universal coefficient theorem.

In Section 4 we prove that for an augmented, involutive algebra there is a smaller
chain complex that computes hyperoctahedral homology. This smaller complex cal-
culates hyperoctahedral homology using only the epimorphisms in the category ∆H
and the elements of the augmentation ideal.

In Section 5 we use the results of Section 4 to prove a connection between hyper-
octahedral homology and the group homology of a product of hyperoctahedral groups
with coefficients in certain modules. We show that when the ground ring is a field
of characteristic zero, hyperoctahedral homology of an augmented, involutive algebra
can be calculated as the coinvariants of a group action.

In Section 6 we show that by appending an initial object to the category ∆H
we obtain a symmetric strict monoidal category. We extend the hyperoctahedral bar
construction to be defined on this category and demonstrate that we can calculate
hyperoctahedral homology using this more structured category.

In Section 7 we provide a proof of Fiedorowicz’s theorem for the hyperoctahe-
dral homology of a monoid algebra, for a monoid with involution. This result, Theo-
rem 7.20, relates the hyperoctahedral homology of a monoid algebra to May’s two-
sided bar construction and the monads associated to the little intervals and little
∞-cubes operads.

In Section 8 we prove the main result of the paper, Theorem 8.8. Consider a discrete
group of odd order. Consider its group algebra with involution induced by sending a
group element to its inverse. We prove that the hyperoctahedral homology of such a
group algebra is isomorphic to the homology of the fixed points under the involution
of a C2-equivariant infinite loop space built from the classifying space of the group.
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Notational conventions

Throughout the paper k will denote a unital commutative ring. We let C2 =〈
t | t2 = 1

〉
denote the cyclic group of order two. For n > 0 we let Σn+1 denote the

symmetric group on the set [n] = {0, . . . , n}. By abuse of notation we will let idn
denote both the identity element of Σn+1 and the unique order-preserving bijection
[n] → [n]. Unless otherwise stated, homology is taken with coefficients in the ground
ring.
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1. The hyperoctahedral category and the category of involu-

tive non-commutative sets

We recall the definition of the hyperoctahedral groups Hn+1 for n > 0 and describe
the associated category ∆H, following [FL91, Section 3]. We describe the category
of involutive non-commutative sets, IF(as) and show that it is isomorphic to ∆H.

Definition 1.1. For n > 0, the hyperoctahedral group Hn+1 is defined to be the semi-
direct product Hn+1 := Cn+1

2 ⋊ Σn+1 where Σn+1 acts on Cn+1
2 by permuting the

factors.

The group Hn+1 is sometimes denoted as a wreath product Σn+1

∫
C2. An element

of the hyperoctahedral group Hn+1 is written as a tuple (z0, . . . , zn;σ) where each zi ∈
C2 and σ ∈ Σn+1. Let ti denote the element (1, . . . , 1, t, 1, . . . , 1; idn) in Hn+1, where t
occurs in the ith position for 0 6 i 6 n. Let θj denote the element (1, . . . , 1; (j j + 1))
in Hn+1 for 0 6 j 6 n− 1. Methods for deriving a presentation for a semi-direct
product of groups are well-known, see [Joh90, Chapter 10.2] for example. Following
these methods one sees that the Hn+1 is generated by the elements of the form ti
and θj where the θj satisfy the relations of the symmetric group Σn+1; the ti satisfy
the relations of the group Cn+1

2 ; the θj and ti commute for i < j and i > j + 1; and
θi ◦ ti+1 = ti ◦ θi and θi ◦ ti = ti+1 ◦ θi.

The hyperoctahedral groups form a crossed simplicial group [FL91, Section 3].
We recall the associated category ∆H. Recall that the category ∆ has as objects
the sets [n] = {0, . . . , n} for n > 0 and order-preserving maps as morphisms. For
n > 0, 0 6 i 6 n+ 1 and 0 6 j 6 n, let δi ∈ Hom∆ ([n], [n+ 1]) be the unique order-
preserving injection that omits i ∈ [n+ 1] and let σj ∈ Hom∆ ([n+ 1], [n]) be the
unique order-preserving surjection satisfying σ−1

j (j) = {j, j + 1}. Recall that these
face and degeneracy morphisms generate the category ∆ and are subject to the sim-
plicial relations found in [Lod98, Appendix B], for example.

Definition 1.2. The category ∆H has as objects the sets [n] = {0, . . . , n} for n > 0.
An element of Hom∆H ([n], [m]) is a pair (ϕ, g) where ϕ ∈ Hom∆ ([n], [m]) and g ∈
Hn+1.

For (ϕ, g) ∈ Hom∆H ([n], [m]) and (ψ, h) ∈ Hom∆H ([m], [l]) the composite is the
pair (ψ ◦ h⋆(ϕ), ϕ⋆(h) ◦ g) ∈ Hom∆H ([n], [l]) where h⋆(ϕ) and ϕ⋆(h) are determined
by the relations:

(θk)⋆ (δi) = δθk(i), (θk)⋆ (σj) = σθk(j), (tk)⋆ (δi) = δi, (tk)⋆ (σj) = σj

and

δ⋆i (θk) =





θk k < i− 1,

idn k = i− 1,

idn k = i,

θk−1 k > i,

σ⋆j (θk) =





θk k < j − 1,

θjθj−1 k = j − 1,

θjθj+1 k = j,

θk+1 k > j,

δ⋆i (tk) =





tk k < i,

idn k = i,

tk−1 k > i,

σ⋆j (tk) =





tk k < j,

θktk+1tk k = j,

tk+1 k > j,
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where the δi and σj are the face and degeneracy maps of the category ∆ and the θk
and tk are the generators of the hyperoctahedral group.

The hyperoctahedral category encodes the structure of an associative multiplica-
tion with a compatible involution. Intuitively speaking, the hyperoctahedral groups
encode a total ordering via the symmetric group component and an involution via the
cyclic group component whilst the order-preserving maps encode the multiplication.

The category of involutive non-commutative sets encodes the same data as the
hyperoctahedral category by adding structure to the preimages of set maps analo-
gously to the category of non-commutative sets of [FT87, A10] and [PR02, 1.2].
Recent work of the author [Gra20] shows that the categories of involutive monoids
and involutive bimonoids in a symmetric monoidal category are equivalent to cat-
egories of algebras over PROPs constructed from the category of involutive non-
commutative sets.

We provide an isomorphism between the hyperoctahedral category and the cate-
gory of involutive non-commutative sets. The category of involutive non-commutative
sets first appeared in the author’s thesis [Gra19, Part V], where detailed examples
and technical checks can be found.

We will denote the category of involutive, non-commutative sets by IF(as). It will
have as objects the sets [n] = {0, . . . , n} for n > 0. An element of HomIF(as) ([n], [m])
will be a map of sets such that the preimage of each singleton i ∈ [m] is a totally
ordered set such that each element comes adorned with a superscript label from the
group C2.

Remark 1.3. Henceforth we will say that a morphism in IF(as) is a map of sets
together with a labelled, ordered set for each preimage. In particular, we will use
preimage to mean preimage of a singleton. We will denote composition in IF(as) by
• in order to distinguish from the composition of maps of sets. In particular, we use
◦ for two morphisms in IF(as) if we are referring to the composite of the underlying
maps of sets.

Definition 1.4. We define an action of C2, which will be denoted by a superscript,
on finite, ordered sets with C2-labels by

{
j
αj1
1 < · · · < j

αjr
r

}t
=

{
j
tαjr
r < · · · < j

tαj1
1

}
.

That is, we invert the ordering and multiply each label by t ∈ C2.

Definition 1.5. Given f1 ∈ HomIF(as) ([n], [m]) and f2 ∈ HomIF(as) ([m], [l]), we
define f2 • f1 ∈ HomIF(as) ([n], [l]) to have underlying map of sets f2 ◦ f1. We define
the labelled totally ordered set (f2 • f1)−1(i) to be the ordered disjoint union of
labelled, ordered sets ∐

j
αj∈f−1

2 (i)

f−1
1 (j)

αj .

Definition 1.6. The category of involutive, non-commutative sets, IF(as), has as
objects the sets [n] = {0, . . . , n} for n > 0. An element of HomIF(as)([n], [m]) is a
map of sets with a total ordering on each preimage such that each element of the
domain comes adorned with a superscript label from the group C2. Composition of
morphisms is as defined in Definition 1.5.
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Theorem 1.7. There is an isomorphism of categories ∆H ∼= IF(as).

Proof. We note that IF(as) contains the morphisms of ∆. These are the order-
preserving maps of sets with the canonical total ordering on each preimage with each
label being 1 ∈ C2. Furthermore, IF(as) contains the elements of the hyperoctahedral
groups. These are the bijections in IF(as). The isomorphism of categories is similar
to the proof of [Gra20, 3.11].

2. Functor homology

We recall some constructions from functor homology, or the homology of small
categories, from [PR02] and [GZ67].

Let C be a small category. We define the category of left C-modules, denoted
CMod, to be the functor category Fun (C,Modk). We define the category of right
C-modules, denoted ModC, to be the functor category Fun (Cop,Modk). It is well-
known that the categories CMod and ModC are abelian with enough projectives
and injectives, see for example [PR02, Section 1.6].

Definition 2.1. Let k⋆ denote the right C-module that is constant at the trivial
k-module. We will refer to this functor as the k-constant right C-module.

Definition 2.2. Let G be an object of ModC and F be an object of CMod. We
define the tensor product G⊗C F to be the k-module

⊕
C∈Ob(C)G(C) ⊗k F (C)

〈G(α)(x) ⊗ y − x⊗ F (α)(y)〉
,

where 〈G(α)(x) ⊗ y − x⊗ F (α)(y)〉 is the k-submodule generated by the set

{G(α)(x) ⊗ y − x⊗ F (α)(y) : α ∈ Hom(C), x ∈ src(G(α)), y ∈ src(F (α))} .

This quotient module is spanned k-linearly by equivalence classes of elementary
tensors in

⊕
C∈Ob(C)G(C) ⊗k F (C) which we will denote by [x⊗ y]. One constructs

the tensor product of C-modules as a bifunctor −⊗C − : ModC × CMod → Modk
on objects by (G,F ) 7→ G⊗C F . Given morphisms Θ ∈ HomModC (G,G1) and Ψ ∈
HomCMod (F, F1), the morphism Θ ⊗C Ψ is determined on equivalence classes by
[x⊗ y] 7→ [ΘC(x) ⊗ ΨC(y)]. It is well-known that the bifunctor −⊗C − is right exact
with respect to both variables and preserves direct sums, see for example [PR02,
Section 1.6]. We denote the left derived functors of −⊗C − by TorC⋆ (−,−).

Recall the nerve of C [Lod98, B.12]. N⋆C is the simplicial set such that NnC
for n > 1 consists of all strings of composable morphisms of length n in C and N0C
is the set of objects in C. The face maps are defined to either compose adjacent
morphisms in the string or truncate the string and the degeneracy maps insert identity
morphisms into the string. We will denote an element of NnC by (fn, . . . , f1) where
fi ∈ HomC (Ci−1, Ci).

For a small category C and a functor F ∈ CMod there is a simplicial k-module,
denoted C⋆ (C, F ) due to Gabriel and Zisman [GZ67, Appendix 2] whose nth homol-
ogy is canonically isomorphic to TorCn (k⋆, F ).
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Definition 2.3. Let F ∈ CMod. We define

Cn(C, F ) =
⊕

(fn,...,f1)

F (C0),

where the direct sum is indexed by all elements (fn, . . . , f1) of NnC and the morphism
fi ∈ HomC (Ci−1, Ci). We write a generator of Cn(C, F ) in the form (fn, . . . , f1, x)
where (fn, . . . , f1) ∈ NnC indexes the summand and x ∈ F (C0). The face maps of
the simplicial set, ∂i : Cn(C, F ) → Cn−1(C, F ), are determined by

∂i(fn, . . . , f1, x) =





(fn, . . . , f2, F (f1)(x)) i = 0,

(fn, . . . , fi+1 ◦ fi, . . . , f1, x) 1 6 i 6 n− 1,

(fn−1, . . . , f1, x) i = n.

The degeneracy maps insert identity maps into the string. By abuse of notation we
will also denote the associated chain complex by C⋆ (C, F ). The homology of the
associated chain complex will be denoted H⋆ (C, F ).

Remark 2.4. This construction is analogous to the Bousfield–Kan construction for the
homotopy colimit [BK72, XII.2.1]. This leads to an alternative choice of notation.
We can denote the simplicial k-module C⋆ (C, F ) by

hocolim
C

F.

This leads to an alternative description of the k-modules TorC⋆ (k⋆, F ) in terms of
derived colimits. One can make the definition colimC(F ) := k ⊗C F following [Lod98,
C.10]. One then denotes the left derived functors by colimC

i (F ). We will make of use
of this alternative notation in Section 5.

There is an isomorphic variant of this chain complex constructed using the nerve
of the under-category. For details of the under-category see [ML98, II.6] for instance.
Let (− ↓ C) : Cop → Cat be the functor that sends an object C ∈ C to the under-
category (C ↓ C). For f ∈ HomC (C,C ′), the functor (f ↓ C) : (C ′ ↓ C) → (C ↓ C)
is determined by precomposition with f . Let k[−] : Set → Modk denote the free
k-module functor and, by abuse of notation, its extension to simplicial sets.

Definition 2.5. Let F ∈ CMod. The chain complex k [N⋆ (− ↓ C)] ⊗C F has the
k-module k [Nn (− ↓ C)] ⊗C F in degree n with the boundary map induced from
the alternating sum of the face maps in the nerve. A generator in degree n is an
equivalence class [(fn, . . . , f0) ⊗ x] where f0 ∈ HomC (C,C0), fi ∈ HomC (Ci−1, Ci)
for i > 1 and x ∈ F (C).

The isomorphism of chain complexes k [N⋆ (− ↓ C)] ⊗C F ∼= C⋆ (C, F ) for each
F ∈ CMod is determined by [(fn, . . . , f0) ⊗ x] 7→ (fn, . . . , f1, F (f0)(x)) on generators
in degree n. We will make use of both variants of this chain complex.

3. Hyperoctahedral homology

We define hyperoctahedral homology for involutive k-algebras in terms of functor
homology. We describe the hyperoctahedral homology of the commutative ground
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ring, which is understood to have the trivial involution. We describe the relation-
ship between hyperoctahedral homology and other homology theories arising from
crossed simplicial groups. We prove a universal coefficient theorem for hyperoctahe-
dral homology.

Definition 3.1. We define an involution on an associative k-algebra A to be an anti-
homomorphism of algebras A→ A, which we will denote by a 7→ a, which squares to
the identity. A k-algebra equipped with an involution is called involutive.

3.1. Hyperoctahedral bar construction
We define the hyperoctahedral bar construction following Fiedorowicz [Fie, Section

2]. Intuitively, the hyperoctahedral bar construction for an involutive k-algebra A

sends the object [n] of ∆H to the tensor power A⊗n+1 and acts on a morphism
(ϕ, g) ∈ Hom∆H ([n], [m]) by sending it to the morphism of k-modules that permutes
the factors of the tensor according to the underlying permutation of g, applies the
involution according the labels of g and multiplies tensor factors, or inserts identities,
according to the order-preserving map ϕ.

Definition 3.2. Let A be an involutive, associative k-algebra with the involution
denoted by a 7→ a. The hyperoctahedral bar construction is the functor HA : ∆H →
Modk given on objects by [n] 7→ A⊗n+1. Let (ϕ, g) ∈ Hom∆H ([n], [m]). Then ϕ ∈
Hom∆ ([n], [m]) and g = (z0, . . . , zn;σ) ∈ Hn+1. We define

HA (ϕ, g) (a0 ⊗ · · · ⊗ an) =


 ∏<

i∈(ϕ◦σ)−1(0)

azii


⊗ · · · ⊗


 ∏<

i∈(ϕ◦σ)−1(m)

azii




on elementary tensors and extend k-linearly, where the product is ordered according
to the map ϕ and

azi =

{
a zi = 1,

a zi = t.

Note that an empty product is defined to be the multiplicative unit 1A.

Remark 3.3. We note that the notation for the hyperoctahedral bar construction pre-
sented here differs from the notation BoctA used in Fiedorowicz’s preprint [Fie] and
the author’s thesis [Gra19]. We hope the reader will agree that our choice of nota-
tion offers equal clarity (H for “hyperoctahedral bar construction” with a subscript
A to indicate the algebra under consideration) whilst making the typesetting for the
remainder of the paper considerably more pleasant. Proofs that the hyperoctahe-
dral bar construction is well-defined can be found in [Fie, Lemma 2.1] or [Gra19,
Appendix B].

3.2. Hyperoctahedral homology
Recall the k-constant right ∆H-module k⋆ from Definition 2.1.

Definition 3.4. Let A be an involutive, associative algebra. For n > 0, we define the
nth hyperoctahedral homology of A to be

HOn(A) := Tor∆Hn (k⋆,HA) .
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Proposition 3.5. The hyperoctahedral homology of the ground ring k, where k has
the trivial involution, is isomorphic to k concentrated in degree zero.

Proof. The key is to prove that the nerve of the category ∆H is contractible. By
[FL91, Example 6], the hyperoctahedral crossed simplicial group {Hn+1} is con-
tractible as a simplicial set with the inclusion maps Hi → Hi+1 forming a contracting
homotopy. By [FL91, Proposition 5.8] it follows that ΩB∆H, the based loop space
on the classifying space of ∆H, is a contractible space. By considering the long exact
sequence in homotopy associated to the path space fibration we deduce that B∆H is
a contractible space. By definition the classifying space B∆H is the geometric real-
ization of the nerve N⋆∆H. We deduce that N⋆∆H is contractible and, in particular,
its homology is isomorphic to k concentrated in degree zero.

The chain complex C⋆ (∆H,Hk), defined following Definition 2.3 is generated k-
linearly in degree p by elements of the form (fp, . . . , f1, 1k ⊗ · · · ⊗ 1k) where fi ∈
Hom∆H ([xi−1], [xi]).

There is an isomorphism of chain complexes C⋆ (∆H,Hk) → k [N⋆(∆H)] deter-
mined on generators in degree p by (fp, . . . , f1, 1k ⊗ · · · ⊗ 1k) 7→ (fp, . . . , f1), from
which the result follows.

3.3. Relationship to dihedral homology

Dihedral homology for algebras with involution was first studied independently
by Loday [Lod87] and Krasauskas, Lapin and Solov’ev [KLS87]. It is the homol-
ogy theory associated to the dihedral crossed simplicial group [FL91, Example 5]
and is related to O(2)-equivariant homology [Lod90, Theorem 3.3.3] and Hermitian
algebraic K-theory via a dihedral Chern character [KLS87, Section 4].

The category ∆D associated to the dihedral crossed simplicial group is self-dual,
that is ∆D ∼= ∆Dop, see for example [Dun89, Proposition 1.4]. Let A be an involutive
k-algebra. One observes, similarly to [Fie, Lemma 2.2], that the composite

∆Dop ∼=
−→ ∆D →֒ ∆H

HA−−→ Modk

is the dihedral bar construction A† of [Lod90, Definition 1.4.1].

Let DA denote the restriction of HA to the subcategory ∆D. Recall the k-constant
right C-module from Definition 2.1. By abuse of notation we will use k⋆ to denote
both the k-constant right ∆Dop-module and the k-constant right ∆D-module. We
observe that

HD⋆(A) = Tor∆D
op

⋆

(
k⋆, A†

)
∼= Tor∆D⋆ (k⋆,DA) .

It follows that for an involutive k-algebra A, there is a natural map HD⋆ (A) →
HO⋆ (A).

We can obtain similar maps for symmetric homology and cyclic homology. For
an algebra with involution A, the restriction of the hyperoctahedral bar construc-
tion HA to the category ∆S associated to the symmetric crossed simplicial group is
B
sym
A , the symmetric bar construction of [Aul10, Definition 13]. We therefore have

a natural map HS⋆ (A) → HO⋆ (A), constructed similarly to the dihedral case. Pre-
composing with the natural map HC⋆ (A) → HS⋆ (A) of [Aul10, Section 12] yields,
for an involutive k-algebra, a natural map HC⋆ (A) → HO⋆ (A).
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3.4. Universal coefficient theorem

We show that hyperoctahedral homology satisfies a universal coefficient theorem
analogous to that satisfied by symmetric homology [Aul10, Theorem 21].

Definition 3.6. Let A be an involutive k-algebra and let M be a k-module. Let d
denote the boundary map of C⋆ (∆H,HA). We define the hyperoctahedral homology
of A with coefficients in M , denoted HO⋆ (A;M), to be the homology of the chain
complex C⋆ (∆H,HA) ⊗M with boundary map d⊗ idM .

Let A be an involutive k-algebra. One observes that for each n > 0, HOn (A;−) is
a covariant endofunctor on the category of k-modules. Explicitly, let M be a k-module
thought of as a chain complex concentrated in degree zero. The functor HOn (A;−)
is defined by first taking the tensor product of chain complexes C⋆ (∆H,HA) ⊗−
and then taking the nth homology. Since the tensor product of k-modules and taking
homology both commute with direct sums we see that the functors HOn (A;−) are
additive. A standard argument shows that if A is flat over k, given a short exact
sequence of k-modules, the functors HOn (A;−) give rise to a long exact sequence in
homology.

Theorem 3.7. Let A be a flat, involutive k-algebra and let M be a k-module. There
is a spectral sequence with

E
p,q
2

∼= Torkp (HOq (A) ,M)

converging to HO⋆ (A;M).

Proof. This is the “universal coefficient spectral sequence” of [McC01, Theorem
12.11]. We note that the boundedness condition is satisfied since HOq (A;−) = 0
for q < 0. The tensor product of k-modules commutes with arbitrary direct sums as
does taking homology and so the functors HOq (A;−) commute with arbitrary direct
sums.

We recall some definitions from homological algebra [Wei94, 4.1, 4.2]. Recall that
the weak global dimension of a commutative ring k is the largest integer n such that
Torkn (M,N) is non-zero for some k-modules M and N . We will denote it wgd(k).
Furthermore, recall that a commutative ring k is said to be hereditary if every ideal
is projective.

Corollary 3.8. If the ground ring k satisfies wgd(k) 6 1 then the spectral sequence
of Theorem 3.7 reduces to short exact sequences

0 → HOn(A) ⊗M → HOn (A;M) → Tork1 (HOn−1 (A) ,M) → 0.

Furthermore, if k is hereditary and A is projective these short exact sequences split,
although not naturally.

Proof. By definition, if wgd(k) 6 1 then Torkp (HOq (A) ,M) = 0 for all p > 1. The
corollary now follows from [Dol62, Korollar 2.13]. If k is hereditary and A is projective
the splitting follows from [Rot09, Corollary 7.56].
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4. Hyperoctahedral homology of an augmented algebra

We prove that in the case of an augmented involutive k-algebra there exists a
smaller chain complex that computes hyperoctahedral homology. We will do this in
two stages. We will identify a subcomplex of the standard complex which can be used
to calculate the hyperoctahedral homology of an augmented, involutive k-algebra up
to a copy of k in degree zero. This subcomplex contains only those elements of A
that lie in the augmentation ideal. We will then introduce the epimorphism construc-
tion for hyperoctahedral homology. Using this construction we reduce the complex
further, showing that we need only use the epimorphisms in ∆H to calculate the
hyperoctahedral homology. The material in this section first appeared in the author’s
thesis [Gra19, Part VI] and was inspired by the analogous construction for symmetric
homology [Aul10, Section 6]. Throughout this section we will denote an element of
Np ([x] ↓ ∆H) by (fp, . . . , f1, f0). In particular, f0 = (ϕ, g) ∈ Hom∆H ([x], [x0]) and
fi = (ϕi, gi) ∈ Hom∆H ([xi−1], [xi]) for i > 1.

4.1. Reduced hyperoctahedral homology
An associative k-algebra A is said to be augmented if it is equipped with a k-algebra

homomorphism ε : A→ k. The augmentation ideal I of A is defined to be Ker(ε).
Note that the structure of an augmented algebra is compatible with an involution.
In particular, the augmentation ideal is closed under involution. Recall from [LV12,
Section 1.1.1] that for an augmented k-algebra there is an isomorphism of k-modules
A ∼= I ⊕ k. It follows that every element a ∈ A can be written uniquely in the form
y + λ where y ∈ I and λ ∈ k.

Definition 4.1. Let A be an augmented k-algebra with augmentation ideal I. A
basic tensor in A⊗n is an elementary tensor a1 ⊗ · · · ⊗ an such that either ai ∈ I or
ai = 1k for each 1 6 i 6 n. A tensor factor ai is called trivial if ai = 1k and is called
non-trivial if ai ∈ I.

Note that for an augmented k-algebra A, the k-module A⊗n is generated by all
finite k-linear combinations of its basic tensors.

Henceforth in this section A will denote an augmented, involutive k-algebra with
augmentation ideal I. Consider the chain complex k [N⋆ (− ↓ ∆H)] ⊗∆H HA defined
analogously to Definition 2.5, whose homology is the hyperoctahedral homology
of A. By analysing the quotient module one can show that k [N⋆ (− ↓ ∆H)] ⊗∆H

HA is generated k-linearly in degree n by those equivalence classes of the form
[(fn, . . . , f1, f0) ⊗ Yx] such that Yx is a basic tensor containing no trivial factors and
those equivalence classes of the form [(fn, . . . , f1, f0) ⊗ 1k]. Note that for this last set
of equivalence classes the domain of f0 is the set [0]. We observe that the boundary
map of k [N⋆ (− ↓ ∆H)] ⊗∆H HA preserves these two types of equivalence classes. We
can therefore make the following definition.

Definition 4.2. Let C⋆ (∆H, I) denote the subcomplex of k [N⋆ (− ↓ ∆H)] ⊗∆H HA

generated k-linearly in degree n by all equivalence classes [(fn, . . . , f1, f0) ⊗ Yx]
such that Yx is a basic tensor containing no trivial factors. We denote the homol-
ogy of this subcomplex by H⋆ (∆H, I). Let C⋆ (∆H, k) denote the subcomplex of
k [N⋆ (− ↓ ∆H)] ⊗∆H HA generated k-linearly in degree n by all equivalence classes
of the form [(fn, . . . , f1, f0) ⊗ 1k].
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Proposition 4.3. Let A be an involutive augmented k-algebra with augmentation
ideal I. For each n > 1 there is an isomorphism of k-modules HOn (A) ∼= Hn (∆H, I).
Furthermore, there is an isomorphism of k-modules HO0 (A) ∼= H0 (∆H, I) ⊕ k.

Proof. The inclusion of the subcomplex C⋆ (∆H, I) into k [N⋆ (− ↓ ∆H)] ⊗∆H HA

has a left inverse given by the canonical projection map, the kernel of which is
C⋆ (∆H, k). We therefore have a splitting of k [N⋆ (− ↓ ∆H)] ⊗∆H HA as a direct sum
C⋆ (∆H, I) ⊕ C⋆ (∆H, k). In order to prove the result we will invoke [Wei94, 8.4.6]
to show that the homology of C⋆ (∆H, k) is isomorphic to k concentrated in degree
zero. One defines an augmentation ε : C0 (∆H, k) → k by [f ⊗ 1k] 7→ 1k. One then
checks that the maps hn : Cn (∆H, k) → Cn+1 (∆H, k) determined on generators by
[(fn, . . . , f1, f) ⊗ 1k] 7→ [(fn, . . . , f1, f, id0) ⊗ 1k] for n > 0 and h−1 : k → C0 (∆H, k)
determined by 1k 7→ [id0 ⊗ 1k] satisfy the conditions described in [Wei94, 8.4.6].

Definition 4.4. Let A be an augmented, involutive k-algebra. For n > 0, we define
the nth reduced hyperoctahedral homology of A to be

H̃On(A) := Hn (∆H, I) .

4.2. Epimorphism construction

We begin by noting that a morphism (ϕ, g) in the category ∆H is an epimorphism
if and only if the underlying map of sets is surjective.

Remark 4.5. Consider a morphism (ϕ, g) ∈ Hom∆H ([x], [z]) and let r = |Im (ϕ)|. By
the unique decomposition of morphisms in ∆ [Lod98, Theorem B.2] the morphism
(ϕ, g) can be written uniquely as a composite of the form (iϕ, idr−1) ◦ (πϕ, g) where
(πϕ, g) ∈ HomEpi∆H ([x], [r − 1]) and iϕ : [r − 1] → [z] is a monomorphism in the cat-
egory ∆. Whenever we use this decomposition we will abuse notation and write iϕ
for (iϕ, idr−1) ∈ Hom∆H ([r − 1], [z]).

Definition 4.6. Let Epi∆H denote the subcategory of ∆H whose morphisms are
the epimorphisms in ∆H.

Definition 4.7. Let A be an augmented, involutive k-algebra with augmentation
ideal I. We define a functor HI : Epi∆H → Modk on objects by [n] → I⊗n+1. On
morphisms we define HI to be the restriction of HA to the subcategory Epi∆H.

Remark 4.8. The functor HI is well-defined since we are only taking the epimor-
phisms of ∆H and the augmentation ideal I is closed under the involution and under
multiplication.

We define the chain complex k [N⋆ (− ↓ Epi∆H)] ⊗Epi∆H HI following Defini-
tion 2.5. We note that there is an inclusion of chain complexes

i⋆ : k [N⋆ (− ↓ Epi∆H)] ⊗Epi∆H HI → C⋆ (∆H, I) .

We claim that this inclusion is a chain homotopy equivalence. In order to prove this
we introduce the epimorphism construction for hyperoctahedral homology.
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Lemma 4.9. A morphism

(ψ, h) :

(
[x]

(ϕ1,g1)
−−−−→ [z1]

)
→

(
[x]

(ϕ2,g2)
−−−−→ [z2]

)

in ([x] ↓ ∆H) induces a unique morphism

(ψ, h) :

(
[x]

(πϕ1
,g1)

−−−−−→ [r1 − 1]

)
→

(
[x]

(πϕ2
,g2)

−−−−−→ [r2 − 1]

)

in ([x] ↓ Epi∆H).

Proof. Using Remark 4.5, we have a commutative diagram

[z1] [x] [z2]

[r1 − 1] [r2 − 1]

(ψ,h)

(ϕ1,g1) (ϕ2,g2)

(πϕ1
,g1) (πϕ2

,g2)
iϕ1

iϕ2

in ∆H.
By construction, Im (iϕ1

) = Im ((ϕ1, g1)). From the commutativity of the diagram
one deduces that Im ((ψ, h) ◦ iϕ1

) = Im (iϕ2
).

By Remark 4.5 there exists a unique morphism (ψ, h) : [r1 − 1] → [r2 − 1] in the
category Epi∆H such that (ψ, h) ◦ iϕ1

= iϕ2
◦ (ψ, h).

There is an equality iϕ2
◦ (ψ, h) ◦ (πϕ1

, g1) = iϕ2
◦ (πϕ2

, g2) by the commutativity
of the diagram above and since iϕ2

is a monomorphism in ∆H we can cancel on the

left and deduce that (ψ, h) ◦ (πϕ1
, g1) = (πϕ2

, g2) as required.

A routine check, which can be found in [Gra19, Proposition 27.8.5], demonstrates
that this assignment on morphisms is functorial. We can therefore make the following
definition.

Definition 4.10. For x > 0, we define the functor Ex : ([x] ↓ ∆H) → ([x] ↓ Epi∆H)
on objects by (ϕ, g) 7→ (πϕ, g) and on morphisms by (ψ, h) 7→ (ψ, h). We call Ex the
epimorphism construction for hyperoctahedral homology.

By the functoriality of the nerve construction, the functor Ex induces a map of
simplicial sets N⋆Ex : N⋆([x] ↓ ∆H) → N⋆([x] ↓ Epi∆H). This induced map takes a
string of composable morphisms in ∆H and sends it to the string of composable
morphisms in Epi∆H obtained by applying the epimorphism construction.

Definition 4.11. We define a map of chain complexes

χ⋆ : C⋆ (∆H, I) → k [N⋆(− ↓ Epi∆H)] ⊗Epi∆H HI

to be determined in degree n by

[(fn, . . . , f1, f0) ⊗ Yx] 7→ [k [NnEx] (fn, . . . , f1, f0) ⊗ Yx] .

Remark 4.12. One must check that the maps χn are well-defined. This consists of
a routine but lengthy check that the epimorphism construction is compatible with
equivalence classes under the tensor products −⊗∆H − and −⊗Epi∆H −. The full
details can be found in [Gra19, Proposition 27.9.1].
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Theorem 4.13. Let A be an augmented, involutive k-algebra with augmentation
ideal I. For n > 0 there exist isomorphisms of k-modules

H̃On(A) ∼= Hn (k [N⋆(− ↓ Epi∆H)] ⊗Epi∆H HI) ∼= Hn (C⋆ (Epi∆H,HI)) .

Proof. We show that the inclusion map of chain complexes

i⋆ : k [N⋆ (− ↓ Epi∆H)] ⊗Epi∆H HI → C⋆ (∆H, I)

is a chain homotopy equivalence with inverse given by χ⋆.
By construction, the composite χ⋆ ◦ i⋆ is equal to the identity map on the chain

complex k [N⋆ (− ↓ Epi∆H)] ⊗Epi∆H HI . One shows that the composite i⋆ ◦ χ⋆ is
homotopic to the identity map on the chain complex C⋆ (∆H, I) by constructing a
presimplicial homotopy between the two maps. We will make use of Remark 4.5.

Let hnj : Cn (∆H, I) → Cn+1 (∆H, I) be determined by

[(fn, . . . , f1, f0) ⊗ Yx] 7→
[(
fn, . . . , fj+1, iϕj

, fj , . . . , f1, Ex(f0)
)
⊗ Yx

]
.

That is, hnj is the map determined by mapping an equivalence class in Cn (∆H, I)
to the equivalence class in Cn+1 (∆H, I) obtained by applying the epimorphism con-
struction to the first j morphisms in the representative, inserting iϕj

from the unique
decomposition of Remark 4.5 and leaving the remaining morphisms unchanged. A
routine check, which can be found in [Gra19, Proposition 27.10.2], demonstrates
that these maps do indeed form a presimplicial homotopy between i⋆ ◦ χ⋆ and the
identity map.

5. Hyperoctahedral homology and group homology

We provide an application of our smaller complex for computing the hyperocta-
hedral homology of an augmented, involutive algebra A. We will show that in this
case we can express the reduced hyperoctahedral homology of A in terms of the
group homology of a product of hyperoctahedral groups with coefficients in modules
constructed from the epimorphisms in ∆H. When the ground ring is a field of char-
acteristic zero one can say more: the reduced hyperoctahedral homology of A can
be computed as the coinvariants of a group action. The key to this construction is
S lomińska’s work on E-I-A-categories [S l91], that is categories for which all endo-
morphisms are isomorphisms and all isomorphisms are automorphisms. We observe
that Epi∆H is just such a category. The results in this section are analogous to the
symmetric homology case [Aul10, Section 7]. The notation throughout this section
is chosen to closely resemble [S l91] and [Aul10, Section 7].

Definition 5.1. Let S0 denote the opposite category of the poset of non-empty finite
subsets of N. The objects are non-empty ordered tuples of non-negative integers
(xr < · · · < x0). There is a unique morphism (xr < · · · < x0) → (x′r′ < · · · < x′0) if
{x′0, . . . , x

′
r′} ⊆ {x0, . . . , xr}.

Definition 5.2. We define a functor A : S0 → Grp, where Grp is the category of
groups, on objects by

A (xr < · · · < x0) =

r∏

i=0

AutEpi∆H ([xi]) =

r∏

i=0

Hxi+1.
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The functor A acts on a morphism of S0 by projecting the factors of the product
corresponding to the elements of the codomain.

Definition 5.3. We define a functor E : S0 → Set on objects by

E (xr < · · · < x0) =

{
{x0} r = 0,∏r
i=1 HomEpi∆H ([xi−1], [xi]) n > 1,

where {x0} is the one element set containing x0. For a morphism f : (xr < · · · <x0) →
(x′r′ < · · · < x′0), E(f) is determined by composing adjacent morphisms in the product
(or projecting factors in the case of x0 and xr) according to the elements present in
the codomain. If the codomain is a tuple with one element, x′0, then E(f) is the unique
set map into {x′0}.

Definition 5.4. Let (xr < · · · < x0) be an object of S0. We define an action µ of the
group A (xr < · · · < x0) on the set E (xr < · · · < x0) by

(gn, . . . , g0) × (fn, . . . , f1) 7→
(
gnfng

−1
n−1, . . . , g1f1g

−1
0

)
.

Remark 5.5. We observe that this action is compatible with morphisms in S0. That
is, for a morphism f : (xr < · · · < x0) → (x′r′ < · · · < x′0), we have an equality µ ◦
(A(f) × E(f)) = E(f) ◦ µ.

Definition 5.6. Let A be an augmented, involutive k-algebra with augmentation
ideal I. We define a functor EI : S0 → Modk on objects by

EI (xr < · · · < x0) = k [E (xr < · · · < x0)] ⊗k HI ([x0]) .

Let f : (xr < · · · < x0) → (x′r′ < · · · < x′0) be a morphism in S0 and suppose x′0 = xj .
The morphism EI(f) is determined by

(fn, . . . , f1) ⊗ x 7→ E(f) (fn, . . . , f1) ⊗ HI (fj ◦ · · · ◦ f1) (x).

Remark 5.7. Observe that k [E (xr < · · · < x0)] ⊗k HI ([x0]) is an A (xr < · · · < x0)-
module via the action of Definition 5.4 and that this construction is functorial by
Remark 5.5. We therefore have well-defined functors Hq (A(−), EI(−)) : S0 → Modk
for q > 0.

We can express these group homology functors in terms of the homology of small
categories. Recall the notation of Remark 2.4. We fix X = (xr < · · · < x0) ∈ S0. Let
GX be the category with one object and endomorphism set A(X). We observe that

Hq (A(X), EI(X)) = Hq (GX, EI) = colimGX
q EI .

Theorem 5.8. Let A be an augmented, involutive k-algebra with augmentation
ideal I. There exists a spectral sequence with

E
p,q
2 = colimS0

p Hq (A(−), EI(−)) ⇒ H̃Op+q(A).

Proof. Recall the notation of Remark 2.4 and consider

Y = hocolim
S0

hocolim
GX

EI .

This is a bisimplicial k-module with the horizontal simplicial structure induced from
the nerve of GX and the vertical simplicial structure induced from the nerve of S0.
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Taking the “horizontal homology first” spectral sequence associated to this bisimpli-
cial k-module we obtain a spectral sequence of the form

E
p,q
2 = colimS0

p colimGX
q EI ⇒ Hp+q(Y ).

By [S l91, Proposition 1.6] and Theorem 4.13 we have

Hp+q(Y ) ∼= colimEpi∆H
p+q HI = H̃Op+q(A)

as required.

Corollary 5.9. Suppose that k is a field of characteristic zero. Then

H̃Op(A) = colimS0
p EI(X)A(X),

where EI(X)A(X) denotes the coinvariants of EI(X) under the action of A(X).

Proof. Recall that H⋆ (G,M) = Tork[G]
⋆ (k,M) for a group G and a left G-module M

[Lod98, C.3]. When k is a field of characteristic zero and G is finite, M is projective
[Bro82, I.8 Exercise 5] and so Hq (A(X), EI(X)) = 0 for all q > 0. Therefore the
spectral sequence of Theorem 5.8 collapses as required.

6. An extension of the hyperoctahedral category

We extend the hyperoctahedral category ∆H by appending an initial object. This
extra data yields the structure of a symmetric strict monoidal category under the dis-
joint union. We can extend the hyperoctahedral bar construction to this new category.
One benefit of this new formulation will become apparent when we prove Fiedorow-
icz’s theorem for the hyperoctahedral homology of monoid algebras in Section 7.

Definition 6.1. Let ∆H+ be the category formed by appending an initial object,
the empty set ∅, to the category ∆H. For n > 0 we will denote the unique morphism
∅ → [n] by in.

Proposition 6.2. ∆H+ is a symmetric strict monoidal category under the disjoint
union of sets.

Proof. On objects we observe that [n] ∐ [m] = [n+m+ 1]. Given elements (ϕ, g) ∈
Hom∆H+

([n], [n1]) and (ψ, h) ∈ Hom∆H+
([m], [m1]) the morphism

(ϕ, g) ∐ (ψ, h) : [n+m+ 1] → [n1 +m1 + 1]

is defined by (ϕ, g) acting on the first n+ 1 elements and (ψ, h) acting on the remain-
ing m+ 1 points. One can check that the disjoint union is associative with the empty
set as a unit. The transposition functor [n] ∐ [m] → [m] ∐ [n] is the identity on objects
and on morphisms is defined by precomposition with the block permutation that
transposes the first n+ 1 elements with the remaining m+ 1 elements.

We can extend the hyperoctahedral bar construction to the category ∆H+.

Definition 6.3. Let HA+ : ∆H+ → Modk be the functor defined as follows. On the
subcategory ∆H we define HA+ = HA. We define HA+ (∅) = k. We define the mor-
phism HA+(in) : k → A⊗n+1 to be the inclusion of k-algebras.
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Theorem 6.4. Let A be an involutive k-algebra. There is an isomorphism of graded
k-modules HO⋆(A) ∼= H⋆ (∆H+,HA+).

Proof. One can easily check that the arguments of [Aul10, Section 4] can be applied
in the hyperoctahedral case.

7. Fiedorowicz’s theorem for monoid algebras

In this section we provide a proof of Fiedorowicz’s theorem for the hyperoctahedral
homology of monoid algebras, Theorem 7.20. This result originally appeared in [Fie,
Proposition 2.3] but was never published. It relates the hyperoctahedral homology
of a monoid algebra for a monoid with involution to the homology of May’s two-
sided bar construction. Throughout this section all topological spaces are assumed to
be compactly generated weak Hausdorff. We will assume that the category of based
topological spaces and the category of based simplicial sets are equipped with the
classical Quillen model structures. In particular, a weak homotopy equivalence is a
map that induces isomorphisms on homotopy groups. Furthermore, a C2-weak homo-
topy equivalence is a C2-equivariant map which induces weak homotopy equivalences
on the fixed point spaces for both subgroups of C2.

7.1. Categories and monoids
Let C2-Set⋆ denote the category of finite based sets with a basepoint-preserving

C2-action. The morphisms are basepoint-preserving, action-preserving maps of sets.
Let C2-Top⋆ denote the category of based topological spaces with a basepoint-
preserving C2-action. The morphisms are basepoint-preserving continuous maps com-
patible with the C2-action.

Definition 7.1. Let G be a discrete group. Let EG be the category whose objects
are the elements of G with a unique morphism from each object to any other. Let
E⋆G denote the nerve of this category. Let EG denote the geometric realization of
E⋆G. Let EG+ denote the space EG with a disjoint basepoint appended. We will
refer to both E⋆G and EG as the total space of G.

Definition 7.2. A monoid with involution is a monoid M , for which the unit element
is a non-degenerate basepoint, together with an anti-homomorphism of monoids M →
M , which will be denoted by m 7→ m. A topological monoid with involution is a
monoid with involution equipped with a topology for which the binary operation and
the involution are continuous.

Remark 7.3. Note that a monoid with involution can be thought of as a topological
monoid with involution by equipping it with the discrete topology.

7.2. The two-sided bar construction
We recall the two-sided bar construction from [May72, Section 9].
A monad in the category Top⋆ is an endofunctor F together with natural trans-

formations µ : FF ⇒ F and η : 1 ⇒ F , where 1 is the identity functor on Top⋆,
satisfying the conditions of [May72, Definition 2.1]. An F -algebra is a based topo-
logical space X together with a map ξ : FX → X, compatible with µ and η in the
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sense of [May72, Definition 2.2]. An F -functor is a functor G, whose source category
is Top⋆, together with a natural transformation λ : GF ⇒ G, compatible with µ and
η in the sense of [May72, Definition 9.4].

Let F be a monad in Top⋆. Let X be an F -algebra and let G be an F -functor. The
two-sided bar construction B⋆ (G,F,X), is the simplicial space defined in degree n by
Bn (G,F,X) = GFnX, with the 0-face being induced by the natural transformation
λ, the n-face induced by the map ξ and the intermediate faces being induced by the
natural transformation µ. The degeneracies are induced by the natural transforma-
tion η.

We denote the based topological space obtained by taking the geometric realization
by B (G,F,X).

7.3. A∞-operads

We recall some facts about A∞-operads in Top⋆, in particular the trivial operad
and the little intervals operad, following [Fie84, 7.4]. Note that we are using the
non-symmetric form of A∞-operad, see [May72, 3.12, 3.14].

An A∞-operad O is a collection of contractible spaces {O(n) : n > 0}, such that
O(0) = ⋆, there is a unit element 1 ∈ O(1) and there exist composition maps

γ : O(n) ×O(k1) × · · · × O(kn) → O(k1 + · · · + kn)

satisfying Conditions 1 and 2 of [May72, Definition 1.1].

An O-space is a based topological space X together with maps θ : O(n) ×Xn → X

satisfying Conditions 1 and 2 of [May72, Lemma 1.4].

The monad associated to an A∞-operad, O, is the functor O : Top⋆ → Top⋆
defined on objects by

O(X) =

∐
n>0 O(n) ×Xn

≈
,

where ≈ denotes the subspace generated by the equivalence relation induced from
the insertion and deletion of basepoints. That is, it is the functor constructed from
O via [May72, Construction 2.4] where we omit the equivariance conditions.

Example 7.4. The first example of a non-symmetric A∞-operad is the trivial operad,
J = {⋆ : n > 0}. A J -space is a topological monoid. The associated monad J is the
James construction, originally defined in [Jam55, Section 1]. For X ∈ Top⋆ with
basepoint e, J(X) is the quotient of

∐
n>1X

n by the equivalence relation generated
by all identifications of the form

(x1, . . . , xi−1, e, xi+1, . . . , xn) ∼ (x1, . . . xi−1, xi+1, . . . , xn) .

For a morphism f : X → Y in Top⋆, J(f) is the morphism defined by applying f

point-wise.

Example 7.5. The second example of an A∞-operad is the little intervals operad, C1,
originally due to Boardman and Vogt [BV68, Example 5]. The space

C1(n) = {([x1, y1], . . . , [xn, yn]) : 0 6 x1 < y1 6 x2 < · · · 6 xn < yn 6 1} ,

where the [xi, yi] are closed subintervals of the unit interval [0, 1], which is the unit
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in C1(1). The composition maps

γ : C1(n) × C1(k1) × · · · × C1(kn) → C1(k1 + · · · + kn)

are defined by embedding the intervals of C1(ki) into the ith interval of an element of
C1(n). The monad C1 associated to C1 is called the little intervals monad.

We can extend the James construction, J , and the little intervals monad, C1, to
functors on the category C2-Top⋆ following [Ryb91] and [Xic06, Section 3] respec-
tively.

Definition 7.6. We extend the James construction of Example 7.4 to a functor
J : C2-Top⋆ → C2-Top⋆ by defining the C2-action t (x1, . . . , xn) = (txn, . . . , tx1).

Definition 7.7. We define a C2-action on C1(n), the nth space of the little intervals
operad, by reflecting the unit interval about its midpoint. That is,

t ([x1, y1], . . . , [xn, yn]) = ([1 − yn, 1 − xn], . . . , [1 − y1, 1 − x1]) .

We extend the little intervals monad to a functor C1 : C2-Top⋆ → C2-Top⋆ by defin-
ing the C2-action

t [([x1, y1], . . . , [xn, yn]) , (x1, . . . , xn)] = [t ([x1, y1], . . . , [xn, yn]) , (txn, . . . , tx1)] .

Proposition 7.8. There is a natural C2-weak homotopy equivalence C1(X) → J(X)
for any X ∈ C2-Top⋆.

Proof. For any A∞-operad, O, there is a unique map of operads O → J into the
trivial operad, which induces a map of monads O → J such that O(X) is naturally
weakly homotopy equivalent to J(X). One observes that the map of monads C1 → J

induced by the unique map of A∞-operads C1 → J , is compatible with the C2-actions
of Definitions 7.6 and 7.7 and the C2-weak homotopy equivalence follows.

7.4. Hyperoctahedral operad
An E∞-operad O consists of a collection of contractible spaces {O(n) : n > 0},

such that there is a free right action of the symmetric group Σn on O(n), O(0) = ⋆,
there is a unit element 1 ∈ O(1) and there exist composition maps

γ : O(n) ×O(k1) × · · · × O(kn) → O(k1 + · · · + kn)

satisfying Conditions 1–3 of [May72, Definition 1.1].
An O-space is a based topological space X together with maps θ : O(n) ×Xn → X

satisfying Conditions 1–3 of [May72, Lemma 1.4].
The monad associated to an E∞-operad, O, is the functor O : Top⋆ → Top⋆

defined on objects by

O(X) =

∐
n>0 O(n) ×Σn

Xn

≈
,

where ≈ denotes the subspace generated by the equivalence relation induced from
the insertion and deletion of basepoints. That is, it is the functor constructed from
O via [May72, Construction 2.4].

One example of an E∞-operad is the Barratt–Eccles operad [BE74] (see also
[BF04, 1.1]). The nth space of the Barratt–Eccles operad is EΣn, the total space of
the symmetric group Σn. We define the analogous E∞-operad where the symmetric
groups are replaced with the hyperoctahedral groups.
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Definition 7.9. Let H denote the hyperoctahedral operad. For n > 1, let H(n) =
EHn, the total space of Hn. Analogously to the Barratt–Eccles operad, the compo-
sition operations are determined by the natural maps

Hr × (Hn1
× · · · ×Hnr

) → Hn1+···+nr
,

where the elements of the Hni
act in blocks and the element of Hr acts on the blocks.

The right action of Σn on H(n) is the diagonal action.

Definition 7.10. Let Z : Top⋆ → Top⋆ denote the monad associated to the hyper-
octahedral operad H.

Remark 7.11. Since H is an E∞-operad, there exists a natural weak homotopy equiv-
alence Z(X) ≃ C∞(X) for each X ∈ Top⋆, where C∞ is the monad associated to the
little ∞-cubes operad of [May72, Section 4].

7.5. Hyperoctahedral bar construction for monoids
Definition 7.12. For a monoid with involution, M , we define a functor HM : ∆H+ →
C2-Set⋆ on objects by

HM ([n]) =

{
Mn+1 n > 0,

∅ n = −1,

where Mn+1 denotes the (n+ 1)-fold Cartesian product. HM is defined on morphisms
in ∆H analogously to HA. We define HM (in) to be the unique map ∅ →Mn+1. We
call HM the hyperoctahedral bar construction for monoids.

Lemma 7.13. Let M be a monoid with involution. The hyperoctahedral homology of
the monoid algebra k[M ] is isomorphic to the homology of the chain complex associ-
ated to the simplicial set N⋆ (− ↓ ∆H+) ×∆H+

HM .

Proof. Recall that the free k-module functor sends coproducts to direct sums and
products to tensor products. One observes that applying the free k-module functor to
the simplicial set N⋆ (− ↓ ∆H+) ×∆H+

HM and taking the associated chain complex
we obtain k [N⋆ (− ↓ ∆H+)] ⊗∆H+

Hk[M ] whose homology calculates the hyperocta-
hedral homology of the monoid algebra k[M ].

Remark 7.14. By considering M equipped with the discrete topology we note that
the functor HM lands in the category C2-Top⋆ and N⋆ (− ↓ ∆H+) ×∆H+

HM is a
simplicial space whose geometric realization is homeomorphic to the homotopy colimit
of HM . That is,

HO⋆ (k[M ]) ∼= H⋆

(
hocolim

∆H+

HM

)
.

For the rest of this section all homotopy colimits will be taken over the category
∆H+. In order to ease the typesetting we will henceforth omit the category from the
notation.

7.6. Technical lemmata
Fiedorowicz’s theorem, Theorem 7.20, will relate the hyperoctahedral homology

of an involutive monoid algebra of a discrete monoid to the homology of the two-
sided bar construction, involving the C2-equivariant little intervals monad C1 and
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the monad C∞ associated to the little ∞-cubes operad. The method of proof involves
replacing an involutive monoid with a resolution in terms of the bar construction
and the C2-equivariant James construction. One applies the hyperoctahedral bar
construction and the homotopy colimit and analyses the result.

In order to prove this theorem we must first analyse the homotopy colimit of the
functor HJ(X) : ∆H+ → C2-Top⋆ for a discrete based C2-space. The homotopy col-
imit is the geometric realization of the simplicial space N⋆ (− ↓ ∆H+) ×∆H+

HJ(X).
We will show that this homotopy colimit can be expressed in terms of the monad Z

associated to the hyperoctahedral operad.
For ease of indexing we will denote the empty set by [−1] throughout this subsec-

tion. For a based topological space X, we define X0 to be the basepoint of X.
The following lemma shows that we can express the homotopy colimit of the functor

HJ(X) in terms of the underlying space X.

Lemma 7.15. Let X ∈ C2-Top⋆ have the discrete topology. There is an isomorphism
of simplicial spaces

N⋆ (− ↓ ∆H+) ×∆H+
HJ(X)

∼=

∐
n>−1N⋆ ([n] ↓ ∆H+) ×Hn+1

Xn+1

≈
,

where ≈ is the subspace generated by the equivalence relation induced from the inser-
tion and deletion of basepoints.

Proof. The technical content of this proof is analogous to [Aul10, Lemma 33]. We
will motivate the proof here. By definition, the left hand side is equal to

∐
n>−1N⋆ ([n] ↓ ∆H+) × J(X)n+1

〈G(α)(x) ⊗ y − x⊗ F (α)(y)〉
,

where 〈G(α)(x) ⊗ y − x⊗ F (α)(y)〉 is the subspace generated by the relations on
∆H+ morphisms, analogously to Definition 2.2.

A morphism in ∆H+ can be written uniquely as a composite δ ◦ s ◦ g, where g is
an automorphism, that is an element of the hyperoctahedral group, s is a surjective
order-preserving map and δ is an injective order-preserving map.

Taking the quotient of
∐

n>−1

N⋆ ([n] ↓ ∆H+) × J(X)n+1

by the subspace generated by the relation for automorphisms we obtain

V =
∐

n>−1

N⋆ ([n] ↓ ∆H+) ×Hn+1
J(X)n+1.

Extending the argument of [Aul10, Lemma 33] to the hyperoctahedral case one can
show that any element of the quotient space of V by the subspace generated by the
relation for order-preserving surjections can be expressed uniquely as an element of

∐

n>−1

N⋆ ([n] ↓ ∆H+) ×Hn+1
Xn+1.

Finally, one observes that the subspace generated by the relation for injective order-
preserving maps is precisely the subspace generated by the relation induced from the
insertion and deletion of basepoints.
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Lemma 7.16. There exist weak homotopy equivalences of simplicial sets E⋆Σn+1 →
E⋆Hn+1 and E⋆Hn+1 → N⋆ ([n] ↓ ∆H+).

Proof. All three simplicial sets are connected and contractible. The first weak homo-
topy equivalence is determined by the inclusion of the symmetric group into the
hyperoctahedral group. The second is determined by

(
g1g

−1
0 , . . . , gng

−1
n−1

)
7→

(
g0, g1g

−1
0 , . . . , gng

−1
n−1

)

in degree n.

The following lemma demonstrates that the homotopy colimit of the functor HJ(X)

is weakly homotopy equivalent to the monad Z of the hyperoctahedral operad applied
to the based topological space EC2+ ∧C2

X.

Lemma 7.17. Let X ∈ C2-Top⋆ have the discrete topology. There is a natural weak
homotopy equivalence of simplicial spaces
∐
n>−1N⋆ ([n] ↓ ∆H+) ×Hn+1

Xn+1

≈
≃

∐
n>−1E⋆Hn+1 ×Σn+1

(EC2+ ∧C2
X)

n+1

≈
,

where ≈ is the subspace generated by the equivalence relation induced from the inser-
tion and deletion of basepoints.

Proof. Let

S =
∐

n>−1

N⋆ ([n] ↓ ∆H+) ×Hn+1
Xn+1.

The total space EC2+ is a contractible space with a free C2-action and so the
projection map EC2+ ∧X → X is a weak homotopy equivalence. That is, we can
replace X with a free C2-space. Furthermore, by Lemma 7.16, we can replace the
nerve of the under-category with the total spaces of the hyperoctahedral groups. We
obtain weak homotopy equivalences

S ≃
∐

n>−1

N⋆ ([n] ↓ ∆H+) ×Hn+1
(EC2+ ∧X)

n+1

≃
∐

n>−1

E⋆Hn+1 ×Hn+1
(EC2+ ∧X)

n+1
.

We observe that the action of the hyperoctahedral group Hn+1 on (EC2+ ∧X)
n+1

is free. Let (z0, . . . , zn;σ) ∈ Hn+1. This group element acts firstly by applying the free
C2-action point-wise in the product, according to the elements z0, . . . , zn ∈ C2. It then
freely permutes the factors of the product according to the permutation σ ∈ Σn+1.
By the properties of free group actions we observe that

S ≃
∐

n>−1

(EC2+ ∧X)
n+1

Hn+1
≃

∐

n>−1

(EC2+ ∧C2
X)

n+1

Σn+1

≃
∐

n>−1

E⋆Σn+1 ×Σn+1
(EC2+ ∧C2

X)
n+1

.

By Lemma 7.16 we can replace the total spaces of the symmetric groups with the
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total spaces of the hyperoctahedral groups:

S ≃
∐

n>−1

E⋆Hn+1 ×Σn+1
(EC2+ ∧C2

X)
n+1

.

A routine check shows that these weak homotopy equivalences are compatible with
taking the quotient by the subspace generated by the equivalence relation induced
from the insertion and deletion of basepoints.

Corollary 7.18. Let X ∈ C2-Top⋆ have the discrete topology. There are natural weak
homotopy equivalences of based topological spaces

hocolimHJ(X) ≃ Z (EC2+ ∧C2
X) ≃ C∞ (EC2+ ∧C2

X) ,

where Z is the monad associated to the hyperoctahedral operad and C∞ is the monad
associated to the little ∞-cubes operad.

Proof. The first weak homotopy equivalence follows from Lemma 7.17 upon taking
geometric realization. The second follows from Remark 7.11.

Lemma 7.19. Let M be a monoid with involution. The weak homotopy equivalence
of Corollary 7.18 induces a weak homotopy equivalence

B⋆
(
hocolimHJ(−), J,M

)
→ B⋆ (Z (EC2+ ∧C2

−) , J,M) .

Proof. One observes that the only simplicial map in the bar construction that the
equivalence interacts with is the 0-face. Since the equivalence of Corollary 7.18 is
natural we have a commuting square

hocolimHJ(J(M)) Z (EC2+ ∧C2
J(M))

hocolimHJ(M) Z (EC2+ ∧C2
M)

≃

∂0 ∂0

≃

induced by the map J(M) →M as required.

7.7. Fiedorowicz’s theorem for monoid algebras

For ease of notation for the remainder of the paper let E denote the functor
EC2+ ∧C2

−.

Theorem 7.20. Let M be a discrete monoid with involution. There is an isomor-
phism of graded k-modules HO⋆ (k[M ]) ∼= H⋆ (B (C∞E,C1,M)).

Proof. Recall the C2-equivariant James construction J from Definition 7.6. There
is a C2-equivariant weak homotopy equivalence B (J, J,M) →M , given by [Dun89,
Lemma 2.5], where B (J, J,M) is the geometric realization of the based simplicial
C2-space B⋆ (J, J,M) given by the two-sided bar construction. We therefore have
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isomorphisms

HO⋆ (k[M ]) ∼= H⋆ (hocolimHM ) ∼= H⋆

(
hocolimHB(J,J,M)

)
.

By [May72, Lemma 9.7] we can take the hyperoctahedral bar construction and the
homotopy colimit inside the bar construction and apply Corollary 7.18 to obtain

hocolimHB(J,J,M)
∼= B

(
hocolimHJ(−), J,M

)
≃ B (ZE, J,M) .

Finally, there is a weak homotopy equivalence B (ZE, J,M) ≃ B (C∞E,C1,M) by
Corollary 7.18 and Proposition 7.8.

8. Hyperoctahedral homology of group algebras

We begin this section by demonstrating that hyperoctahedral homology of a group
algebra, where the involution is induced from sending a group element to its inverse,
is the homology of an infinite loop space on the two-sided bar construction. We
will then show that in the case where this involution is a free C2-action away from
the basepoint one can say more; the hyperoctahedral homology in this case is the
homology of the C2-fixed points under the involution of an equivariant infinite loop
space. In particular, this holds for all discrete groups of odd order.

Let Q denote the free infinite loop space functor Ω∞Σ∞ : Top⋆ → Top⋆.

Proposition 8.1. Let G be a discrete group. Let the group algebra k[G] have involu-
tion determined by sending a group element to its inverse. There is an isomorphism
of graded k-modules HO⋆ (k[G]) ∼= H⋆ (QB (E,C1, G)).

Proof. Since G is a group, B (C∞E,C1, G) is group-like. We can therefore apply the
version of the recognition principle given in [May77, VII, Theorem 3.1(ii)] to deduce
a weak homotopy equivalence B (C∞E,C1, G) ≃ B (QE,C1, G). By [May72, Lemma
9.7] there is an isomorphism B (QE,C1, G) ∼= QB (E,C1, G). The proposition then
follows from Theorem 7.20.

Let Φ: C2-Top⋆ → Top⋆ denote the C2-fixed point functor.

Let ΣC2
: C2-Top⋆ → C2-Top⋆ denote the C2-equivariant suspension functor. For

X ∈ C2-Top⋆, we equip ΣC2
(X) = S1 ∧X with the involution defined by [(t, x)] =

[(1 − t, x)].

Let ΩC2
: C2-Top⋆ → C2-Top⋆ denote the C2-equivariant loop functor. For X ∈

C2-Top⋆, the space ΩC2
(X) = HomTop⋆

(
S1, X

)
has involution defined by f(t) =

f(1 − t).

Let QC2
: C2-Top⋆ → C2-Top⋆ denote the C2-equivariant free infinite loop space

functor. That is, QC2
= Ω∞

C2
Σ∞
C2

.

Remark 8.2. Similarly to the non-equivariant case there is a natural C2-weak homo-
topy equivalence ΩC2

QC2
ΣC2

(X) ≃ QC2
(X).

Proposition 8.3. Let X ∈ C2-Top⋆ have a free C2-action away from the basepoint.
There is a natural weak homotopy equivalence of topological spaces Φ (QC2

(X)) ≃
QE(X).
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Proof. A theorem of tom Dieck [Car92, Corollary 2.3] tells us that for a based C2-
space X there is a weak homotopy equivalence Φ (QC2

(X)) ≃ QE(X) ×Q (Φ(X)).
Since we are assuming that the C2-action on X is free, the fixed points Φ(X) are
trivial and so Q (Φ(X)) is trivial. We therefore deduce the required weak homotopy
equivalence.

In the non-equivariant case, Fiedorowicz [Fie84, Corollary 7.9] showed that for any
topological monoid M there is a weak homotopy equivalence B (Σ,C1,M) → BM ,
between the bar construction and the classifying space of M . We will show that this
extends to a C2-equivariant weak homotopy equivalence when M is a topological
monoid with involution.

Definition 8.4. For a topological monoid with involution M , we define an invo-
lution on Bn (ΣC2

,C1,M) = S1 ∧ C
n
1M , the nth level of the bar construction, by

[(t, x)] = [(1 − t, x)] where t ∈ S1 and x ∈ C
n
1M . We define the geometric realization

B (ΣC2
,C1,M) to have the involution induced by the level-wise involution.

Definition 8.5. Let M be a topological monoid with involution. We define an invo-
lution on the classifying space BM by

[(t0, . . . , tn) , (m1, . . . ,mn)] = [(tn, . . . , t0) , (mn, . . . ,m1)] .

Remark 8.6. Let G be a discrete group with involution given by sending an element
to its inverse. The involution on G induces an involution on the classifying space
BG which is equivariantly homotopic to the involution of Definition 8.5 by [BF84,
Construction 3.1].

Proposition 8.7. Let M be a topological monoid with involution. There exists a C2-
weak homotopy equivalence B (QC2

,C1,M) → ΩC2
QC2

BM .

Proof. A routine check shows that the chain of equivalences present in [Fie84, Theo-
rems 7.3 and 7.8] are equivariant with respect to the actions defined in [Ryb91, Sec-
tion 1], yielding a weak C2-equivariant weak homotopy equivalence B (ΣC2

,C1,M) →
BM , which sends the involution of Definition 8.4 to the involution of Definition 8.5.
Apply the functor ΩC2

QC2
to both sides of the equivalence. By [May72, Lemma

9.7] we can take these functors inside the bar construction on the left hand side. The
result then follows from Remark 8.2.

Theorem 8.8. Let G be a discrete group of odd order. Let the group algebra k[G]
and the classifying space BG have the involution induced by sending a group ele-
ment to its inverse. There is an isomorphism of graded k-modules HO⋆ (k[G]) ∼=
H⋆ (ΦΩC2

QC2
BG).

Proof. We have an isomorphism HO⋆(k[G]) ∼= H⋆(B(C∞E,C1, G)), by Theorem 7.20.
Since G is a group, B (C∞E,C1, G) is group-like and so by [May77, VII, Theorem
3.1(ii)] there is a weak homotopy equivalence B (C∞E,C1, G) ≃ B (QE,C1, G). Since
G has odd order, the involution is free away from the basepoint and we can apply
Proposition 8.3, followed by [May72, Lemma 9.7] and Proposition 8.7 to obtain the
following chain of equivalences

B (QE,C1, G) ≃ B (ΦQC2
,C1, G) ∼= ΦB (QC2

,C1, G) ≃ ΦΩC2
QC2

BG

from which the theorem follows.
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