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RIGIDIFICATION OF DENDROIDAL INFINITY-OPERADS

PETER BONVENTRE and LUÍS A. PEREIRA

(communicated by Brooke Shipley)

Abstract
We give an explicit description of the rigidification of an ∞-

operad as a simplicial operad. This description is based on the
notion of dendroidal necklace, extending work of Dugger and
Spivak from the categorical context to the operadic context,
although with a different framework, which relates construc-
tions involving necklaces to a standard factorization of maps in
the category of trees.

1. Introduction

The notion of ∞-operad is a generalization of the notion of (colored) operad
(also sometimes called multicategories), introduced by Moerdijk–Weiss [MW07],
where composition of operations is only defined “up to a contractible space of choices”,
in the same way that quasi-categories generalize categories. Moreover, just as
quasi-categories are defined as those simplicial sets X ∈ sSet = Set∆

op

(for ∆ the
simplicial category) satisfying a lifting condition against inner horn inclusions, so

too are ∞-operads defined as those dendroidal sets X ∈ dSet = SetΩ
op

(for Ω the
category of trees) satisfying a lifting condition against dendroidal inner horn
inclusions [CM11, §2.1].

There are two main procedures for converting a presheaf X ∈ dSet into a (strict)
operad, given by the left adjoints W!, τ in two adjunctions as below, where Op (resp.
sOp) denotes operads of sets (resp. of simplicial sets).

W! : dSet ⇄ sOp : hcN τ : dSet ⇄ Op : N (1)

Before recalling how these adjunctions are defined, we discuss their importance. First,
in the (τ,N)-adjunction, the right adjoint, the nerve N , is a fully faithful inclusion
whose image consists of (certain)∞-operads, cf. Remark 2.18, thus making precise the
idea that∞-operads generalize operads. On the other hand, the (W!, hcN)-adjunction
is central for the homotopy theory of ∞-operads, as it was shown to be a Quillen
equivalence [CM13] between the model structure on dSet (with fibrant objects the∞-
operads) and the canonical model structure on sOp. Moreover, in [BPb] the authors
established an equivariant version of the Quillen equivalence in [CM13], modeling
the homotopy theory of equivariant operads with norm maps. In particular, our work
here plays a minor but necessary role in the proofs in [BPb], cf. [BPb, Lemma 4.52],
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by giving an explicit description1 of the simplicial operads W!(∂Ω[T ]),W!(Λ
E [T ]), cf.

Examples 4.26, 4.27.
Common to both adjunctions in (1) is that the right adjoints hcN , N are straight-

forward to describe (cf. (2)), while the left adjoints W!, τ are more mysterious, as
they involve colimits in operads (cf. (3)). The main goal of this paper, which is an
offshoot of our work in [BPb], is to give an explicit description ofW!, cf. Theorem 1.2,
generalizing work of Dugger and Spivak [DS11] in the context of quasi-categories.
Additionally, a variation of our main constructions gives a description of the simpler
functor τ (cf. Remark 4.14).

We now recall the definitions of the functors in (1). First, each tree T ∈ Ω has an
associated colored operad Ω(T ) ∈ Op with colors the edges of the tree and operations
generated by the nodes ([MW07, §3]; see also Example 2.16). Moreover, there is a
“fattened” replacementW (T ) ∈ sOp for Ω(T ), which can be built [MW09, Rem. 7.3]
as the Boardman–Vogt construction on Ω(T ) (though here we use a novel description
of W (T ), cf. Proposition 1.1), which replaces the non-empty mapping sets of Ω(T ),
which are all singletons ∗, with larger contractible spaces. The functors hcN and N ,
which are called, respectively, the homotopy coherent nerve and the nerve, are then
given by (where O is in sOp or Op as appropriate)

hcNO(T ) = sOp(W (T ),O), NO(T ) = Op(Ω(T ),O). (2)

Loosely speaking, hcN can thus be regarded as a variant of N obtained by replacing
the notion of strict equality with that of homotopy. Writing Ω[T ] ∈ dSet = SetΩ

op

for the representable functor Ω[T ](−) = dSet(−, T ) associated to T ∈ Ω, by abstract
nonsense one then has the formulas

W!X = colimΩ[T ]→XW (T ), τ = colimΩ[T ]→X Ω(T ). (3)

However, as previously noted, the colimits in (3) take place in sOp, Op, making these
formulas rather opaque. Just as in the work in [DS11] in the categorical context,
the key to obtaining explicit formulas for W!, τ will be the notion of (dendroidal)
necklace, which we now introduce (the reason why necklaces are useful in this process
is explained following (6)).

In the work of Dugger and Spivak in the categorical context [DS11], a necklace is
a simplicial set of the form ∆n1 ∨∆n2 ∨ · · · ∨∆nk where each ∆ni is glued along its
terminal vertex to the initial vertex of ∆ni+1 . Moreover, we demand ni > 0 except
for the necklace ∆0 consisting of a single point. On a terminological note, the initial
and terminal vertices of the ∆ni are called the joints of the necklace, while the ∆ni

with ni > 0 are called beads2. Since the ∆n are simply the representable presheaves
in sSet, their role in the operadic context is naturally played by the representable
presheaves Ω[T ] of dSet for T a tree. However, formulating the notion of necklace in
the dendroidal context requires some care. This is because, while each Ω[T ] does have
a terminal vertex, corresponding to the root of T , it in general has multiple initial

1It is worth noting that the description of these specific operads is well known, yet the extant
references we are aware of seem to leave this description as an exercise to the reader.
2In particular, we consider the exceptional necklace ∆0 to have no beads. This differs slightly from
the convention in [DS11], which regards ∆0 as a bead of the necklace ∆

0. This ultimately makes
little difference, but in our convention beads are always in bijection with vertices of the tree of
joints, cf. Figure 1, as discussed below.
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vertices, corresponding to the leaves of T . As such, when specifying a dendroidal
necklace one must also specify the leaves along which to glue. As an example, the
tree arrangement of the trees T1, T2, T3, T4, T5 on the left in Figure 1 gives rise to a
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Figure 1: Encoding a dendroidal necklace

dendroidal necklace (where ∐e denotes gluing along the edge e)

Ω[T1]∐a (Ω[T2]∐b (Ω[T3]∐c Ω[T4]∐d Ω[T5])) (4)

However, in practice (4) is rather awkward to work with due to the need to include
brackets, as well as the existence of distinct bracketing orders. To address this, we
will prefer a different presentation of dendroidal necklaces. First, note that by gluing
(also known as grafting) the trees Ti in Figure 1 as suggested by the arrangement,
one obtains the tree T therein. In addition, the tree J encodes the arrangement of the
Ti itself. To make this more precise, note that J can be obtained by replacing each
Ti in the left arrangement with the corolla (i.e., tree with a single vertex) with the
same number of leaves, and then performing the grafting. Moreover, this procedure
gives rise to the indicated map n : J → T in Figure 1, which completely encodes the
left arrangement of the Ti: inner edges of J encode the gluing edges; the vertices of
J are in natural bijection with the set of the Ti; the Ti themselves are the (outer)
subtrees of T whose outer edges (i.e., leaves and root) are the image under n of the
corresponding vertex of J . As such, we will regard such maps n : J → T themselves as
our description of a dendroidal necklace, cf. Definition 3.1 (more precisely, necklaces
are then the planar inner face maps in Ω). We note that, should all Ti be linear trees,
so that the dendroidal necklace is one of the simplicial necklaces ∆n1 ∨ · · · ∨∆nk , the
edges of J (which is then also linear) correspond to the joints of the necklace. As
such, we refer to the tree J in a necklace as the tree of joints. Similarly, we call the
Ti the beads of the necklace, where we require that beads Ti always have at least one
vertex (generalizing the ni > 0 requirement in the simplicial context).

We end this introduction by observing that our presentation of necklaces as maps
n : J → T foreshadows our approach throughout the paper. More precisely, all our
main constructions and proofs (e.g. Definition 4.1 and Proposition 4.4) are formal
consequences of a standard factorization of maps in the category Ω of trees, cf. Propo-
sition 2.6. Notably, this is rather different from the approach in [DS11], despite our
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approach broadly paralleling theirs, and we believe this more formal approach is of
intrinsic value, as it may prove easier to generalize to other contexts.

1.1. Main result
As noted following (1), the nerve N : Op→ dSet is fully faithful. Moreover, its

(essential) image can be characterized as those X ∈ dSet satisfying a strict Segal
condition, recalled in (10), (12). As such, we will throughout make use of the following
trick: rather than describe an operad O ∈ Op, we directly build its nerve NO ∈ dSet

as a presheaf, then check that the described NO satisfies the required strict Segal
condition. The advantage of this trick is that it provides rather compact descriptions
of the main operads we care about (cf. Definition 4.1). For instance, the operad
Ω(T ) appearing in (2), (3) is characterized by the identification NΩ(T ) = Ω[T ] (see
also Example 2.16), where we recall that Ω[T ] ∈ dSet is simply the representable
Ω[T ](−) = Ω(−, T ).

In addition, recalling that sOp can be viewed as the subcategory of Op∆
op

such that
the set of objects is constant in the simplicial direction, one likewise has a fully faithful
inclusionN : sOp→ sdSet = dSet∆

op

with essential image thoseX ∈ sdSet which both
satisfy the strict Segal condition on each simplicial level and have constant object set,
cf. Remark 2.19. Using the trick above, one has the following compact description of
the simplicial operads W (T ) ∈ sOp in (3).

Proposition 1.1. The simplicial operad W (T ) ∈ sOp (cf. [CM13, (4.1)]) has nerve
given by

(NW (T ))n (S)

=
{

composable strings S
t
−→ J0

i,p
−−→ J1

i,p
−−→ · · ·

i,p
−−→ Jn

f,p
−−→ T of arrows in Ω

}

(5)

where we label maps in Ω as t/i/f/p to indicate they are tall/inner faces/faces/planar3

(cf. §2.1).

The description in (5) makes heavy use of the standard factorization of maps in Ω,
recalled in Proposition 2.6. As usual, the simplicial operators simply forget or replace
the Ji. Functoriality of (5) on both S and T is a consequence of the properties of said
factorization, and is described in (18), (20). Likewise, the properties that NW (T )
is levelwise Segal and has constant object set, also following from properties of the
factorization, are discussed in Remark 4.3.

For how (5) recovers the original description ofW (T ) in [CM13, (4.1)], see Exam-
ple 4.25.

By combining Proposition 1.1 and (3) we now have a full definition of the functor
W! : dSet→ sOp, the explicit description of which is the goal of our main result,
Theorem 1.2.

Before stating that result, we need additional notation. For a necklace n : J → T
as in Figure 1, we write Ω[n] ∈ dSet for the dendroidal set in (4) (cf. Definitions 3.1

3We expect most readers will be familiar with inner faces, faces, and planar maps. As for tall maps,
they are defined as those maps in Ω that send the root to the root and leaves to leaves.
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and 3.3), and let Nec ⊂ dSet be the full subcategory spanned by the Ω[n]. The descrip-
tion of W! in Theorem 1.2 will rely on a description of W!(Ω[n]) for n a necklace (this
is elaborated on after (6)). The real appeal of (5) is then that it can easily be modified
to describe W!(Ω[n]).

Specifically, NW!(Ω[n]) is the subpresheaf of NW (T ) in (5) obtained by impos-
ing an additional condition which is closely related to the characterization of maps
between necklaces given in Proposition 3.12(ii). Should the map S → T in (5) be
a tall map, this additional condition is that J0 ⊇ J . Otherwise, one needs a more
complex condition J0 ⊇ JφS (cf. Remark 4.2), related to “outer faces” of the necklace
n : J → T . See (14) for a depiction of this notion of outer face.

The following is our main result, giving an explicit description of the functor
W! : dSet→ sOp based on (5).

Theorem 1.2 (cf. [DS11, Thm. 1.3 and Cor. 4.4]). Let X ∈ dSet. ThenW!(X) ∈ sOp

is the simplicial operad whose nerve is described as follows. The simplices in the n-

th level NW!(X)n(S) are equivalence classes of quadruples (n, S
φ
−→ T,Ω[n]

x
−→ X, J•)

where:

(i) (n : J → T ) ∈ Nec is a necklace;

(ii) S
φ
−→ T is a tall map in Ω such that J ⊇ φ(S);

(iii) Ω[n]
x
−→ X is a map in dSet;

(iv) J• denotes a factorization of φ as below, and for which J0 ⊇ J . Arrow labels
have the same meaning as in Proposition 1.1 (note that the label of the last map
differs from (5)).

S J0 J1 · · · Jn Tt i,p i,p i,p i,p

The equivalence relation is generated by considering (n, φ, x, J•) and (n′, φ′, x′, J ′
•) to

be equivalent if there is a map ϕ : Ω[n]→ Ω[n′] (encoded by a map ϕ : T → T ′, cf.
Proposition 3.12(i)) such that φ′ = ϕφ, x = x′ϕ and J ′

k = ϕJk (i.e. J ′
• is obtained by

pushing J• along ϕ in the sense of (20)).

Moreover, all such data have a representative, unique up to isomorphism, for
which: J• is flanked, i.e., J0 = J and Jn = T , and; x is totally non-degenerate, i.e.,
for all beads Tb, b ∈ V (J) of n the dendrex Ω[Tb]→ Ω[n]→ X is non-degenerate.

In the following, η ∈ Ω denotes the stick tree with one edge and no vertices.

Remark 1.3. The set of objects ofW!X is simply the setNW!X(η) = X(η). Moreover,
for each X(η)-signature, i.e., tuple (x1, · · · , xn;x0) with xi ∈ X(η), the space of maps
(W!X)(x1, · · · , xn;x0) ∈ sSet is read off of Theorem 1.2 by setting S = Cn to be
the n-corolla (i.e. the tree with n leaves and exactly one vertex) and restricting to
those quadruples where the composite

∐

{0,1,··· ,n} Ω[η]→ Sc[Cn]→ Ω[n]→ X is the

signature (x1, · · · , xn;x0).

We now summarize the proof strategy for Theorem 1.2, which can be visualized
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by the following diagram.

Ω Nec dSet

sOp sdSet
W

W W
W

N

(6)

First, we extend (5) to a functor W : Nec→ sOp via direct construction in Defini-
tion 4.1, and then show that this functor is the left Kan extension of its restric-
tion to Ω →֒ Nec, cf. Proposition 4.9. The point of this is then as follows. Defin-
ing W : dSet→ sdSet by making the right rhombus above into a left Kan exten-
sion diagram, one has that: (i) W : dSet→ sdSet actually lands in the essential
image of N : sOp→ sdSet, cf. Proposition 4.11, implicitly defining W : dSet→ sOp

and ensuring that the middle triangle is also a left Kan extension; (ii) the functor
W : dSet→ sdSet is easy to compute, due to being a left Kan extension onto a presheaf
category, so that the description in Theorem 1.2 is then mostly a matter of unpacking
notation, as done in Corollary 4.16. Crucially, we note that (i) would fail if left Kan
extending directly from Ω to dSet. Lastly, the choice of the preferred flanked and
totally non-degenerate representatives is addressed in Corollary 4.24.

2. Preliminaries

2.1. The category of trees
We begin by recalling the Moerdijk–Weiss category Ω of trees [MW07]. First,

each object of Ω can be encoded by a (rooted) tree diagram T as below.

T

e
d

ba

c

r

(7)

Edges with no vertices ◦ above them are called leaves, the unique bottom edge is
called the root, and edges that are neither are called inner edges. In the example
above, a, b and d are leaves, r is the root, and c and e are inner edges. The sets
of edges, inner edges, and vertices of a tree T are denoted E(T ), E i(T ), and V (T ),
respectively.

While the tree diagram description above is helpful for visualizing objects in Ω,
in order to describe the arrows, we will use the algebraic notion of a broad poset,
originally due to Weiss [Wei12] and further developed in [Per18], which we now
briefly recall. For each edge t in a tree topped by a vertex ◦, we write t↑ for the tuple
of edges immediately above t. In (7) one has r↑ = cde, c↑ = ab, and e↑ = ǫ, where ǫ
denotes the empty tuple. Each vertex can then be encoded symbolically as t↑ 6 t,
which we call a generating broad relation. This notation is motivated by a form of
transitivity. For example, in (7) the relations cde 6 r and ab 6 c generate, under broad
transitivity, the relation abde 6 r, and one may similarly obtain relations cd 6 r and
abd 6 r. These relations, together with identity relations t 6 t, then form the broad
poset associated with T .
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A map of trees ϕ : S → T in Ω is then an underlying map of edge sets ϕ : E(S)→
E(T ) which preserves broad relations.

If an edge t is pictorially above (or equal to) an edge s, we write t 6d s. Equiva-
lently, t 6d s if there exists a broad relation s1 . . . sn 6 s such that t = si for some i.

Our discussion will be simplified by assuming that Ω has exactly one representative
of each planarized tree, by which we mean a tree together with a planar representa-

tion as in (7). Any map ϕ : S → T in Ω then has a unique factorization S
≃
−→ S′ → T

as an isomorphism followed by a planar map [BP21, Prop. 3.24]. In particular, the
wide subcategory of Ω spanned by planar maps is skeletal, i.e., the only planar iso-
morphisms are the identities.

Notation 2.1. We write η for the stick tree, the unique tree with a single edge and
no vertices.

Example 2.2. The edge labels in each tree Si below determine maps E(Si)→ E(T ),
where T is as in (7). For i 6 5 this encodes maps Si → T in Ω, but not for i = 6.

S1

d

b

a

r

S2

e
d

ba

c

r

S3

e

db

a

r

S4

e

d′

d

ba

c

r

S5

e

d′

d
c

r

S6

d

b

c

r

Definition 2.3. A map of trees ϕ : S → T is called:

� a tall map if ϕ(lS) = lT and ϕ(rS) = rT , with l(−) and r(−) denoting the tuple
of leaf edges and the root edge;

� a face map if it is injective on edges; an inner face if it is also tall; and an outer
face if, for any factorization ϕ ≃ ϕ1ϕ2 with ϕ1, ϕ2 face maps and ϕ2 inner, ϕ2

is an isomorphism;

� a degeneracy if it is surjective on edges and preserves leaves (and is thus tall);

� a convex map if, whenever e <d e
′ <d e

′′ in T and e, e′′ are in the image of ϕ,
then so is e′.

Pictorially, inner face maps S → T remove some edges in T (and merge the vertices
adjacent to those edges), outer face maps remove some vertices of T , and degeneracies
collapse some of the unary vertices of S. Face maps combine inner and outer faces,
tall maps combine inner faces and degeneracies, and convex maps combine outer faces
and degeneracies (cf. Remark 2.8).

Example 2.4. In Example 2.2, S1 → T is an inner face, S2 → T is an outer face,
S3 → T is a face that is neither inner nor outer, S4 → T is a degeneracy, and S5 → T
is a convex map.

Notation 2.5. Throughout the remainder of the paper, we will label a map in Ω
by the letters d/i/o/t/f/p to indicate that the map is a degeneracy/inner face/outer
face/tall/face/planar.
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Proposition 2.6 ([BP20, Prop. 2.2]). A map of trees ϕ : S → T has a strictly unique
factorization

S
≃
−→ Sp

pd
−→ ϕS

pi
−→ ϕS

po
−→ T (8)

as an isomorphism followed by a planar degeneracy, a planar inner face, and a planar
outer face.

Notation 2.7. The notation ϕS is motivated by the fact that this tree has edge set
E(ϕS) = ϕ(E(S)), while the notation ϕS is an instance of the outer closure of a face
notation in [BP20, Not. 2.14] which, for a face F , defines F as the smallest (planar)
outer face containing F .

Remark 2.8 (cf. [BPb, Remarks 2.8, 2.9, 2.13]). For any subset S ⊆ {≃, pd, pi, po} of
the arrow labels in (8), the type of maps whose factors labeled by S are identities is
closed under composition.

In particular, as (non-planar) tall maps (resp. face maps, convex maps) are char-
acterized as those maps such that the component labeled po (resp. pd, pi) in (8) is
the identity, we have that these types of maps (and their planar analogues) are closed
under composition.

Remark 2.9. Modifying (8) by ignoring planarity gives a factorization S
d
−→ U

i
−→ V

o
−→

T , unique up to unique isomorphisms. Moreover, combining the i and o arrows recov-
ers the usual degeneracy-face decomposition in [MW07, Lemma 3.1], while combining
the d and i arrows recovers the tall-outer decomposition in [BP21, Prop. 3.36].

Notation 2.10. A corolla is a tree with a single vertex. For each n > 0, one has a
corolla Cn with n leaves, and we write Σ for the category of corollas and isomorphisms,
which is naturally identified with the category of standard finite sets {1, 2, · · · , n} and
isomorphisms.

For any tree T with n leaves, we write lr(T ), which we call the leaf-root of T , for
the corolla Cn, which comes together with a unique planar tall map lr(T )→ T .

Example 2.11. For the tree T in (7), the corolla lr(T ) is S1 in Example 2.2.

Notation 2.12. For a tree T and v ∈ V (T ), we write Tv → T for the planar outer
face consisting of only this vertex and its adjacent edges. Further, for a map ϕ : J →
T and b ∈ V (J), we write Tb = ϕJb. Compare with the notion of bead in Defini-
tion 3.1(ii) and Figure 1.

2.2. Dendroidal sets and operads

This subsection recalls the definitions of the key categories appearing in the main
adjunctions (1). First, the category of dendroidal sets is the category dSet = SetΩ

op

of presheaves on Ω.

There are a number of presheaves that play a key role in the theory of dendroidal
sets. First, for each tree T ∈ Ω, one has the representable presheaf Ω[T ](S) = Ω(S, T ).
Moreover, one has the following subpresheaves of Ω[T ], called the boundary, inner
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horn, and Segal core

∂Ω[T ] =
⋃

U∈Face(T ),

U 6=T

Ω[U ], ΛE [T ] =
⋃

U∈Face(T ),

U 6 →֒T−E

Ω[U ], Sc[T ] =
⋃

U∈Facesc(T )

Ω[U ],

(9)
where Face(T ) is the poset of planar faces, ∅ 6= E ⊆ E

i(T ) is a non-empty set of inner
edges, and Facesc(T ) is the poset of planar outer faces with no inner edges (i.e., U
with either a single edge or a single vertex). Typically ∂Ω[T ] and ΛE [T ] are the main
objects of interest (see, e.g. [BP20, §4], for further discussion), but in this paper the
Sc[T ] play the central role, partly due to Sc[T ] being a necklace, cf. Remark 3.5, and
partly since they appear in the Segal condition below.

Given X,A ∈ dSet, let us abbreviate X(A) = dSet(A,X). We then say that X
satisfies the strict Segal condition if, for any tree T ∈ Ω, the natural map below is an
isomorphism.

X(T ) = X(Ω[T ])
≃
−→ X(Sc[T ]) (10)

As noted at the start of §1.1, we will identify the category Op of (colored) operads
with its essential image under the nerve N : Op→ dSet, which consists of the objects
satisfying the strict Segal condition (10) (more precisely, this follows from [MW09,
Prop. 5.3 and Thm. 6.1] together with Remark 2.18 below). For the usual description
of Op, see [CM13, §1] or [BPa, Def. 3.44].

Some of our arguments in §4 will be simplified by using an alternative formulation
of (10), which is motivated by the fact that colored operads Op are most commonly
defined using colored trees. As such, we first recall the following, cf. [BPa, Def. 3.21].

Definition 2.13. Let C be a set of colors. The category ΩC of C-trees has objects
pairs (T, c) with T ∈ Ω a tree and c : E(T )→ C a coloring of its edges, and arrows
(S, d)→ (T, c) given by maps ϕ : S → T in Ω such that d = cϕ.

Moreover, any a map of color sets f : C→ D induces a functor f : ΩC → ΩD via
(T, c) 7→ (T, fc).

Notation 2.14. GivenX ∈ dSet, tree T ∈ Ω, and coloring c : E(T )→ X(η), we write
Xc(T ) ∈ Set for the pullback below.

Xc(T ) X(T )

∗
∏

E(T )

X(η)
c

Remark 2.15. The notation above gives a decompositionX(T )≃
∐

{c:E(T )→X(η)}Xc(T )

for any X ∈ dSet. Moreover, the assignment (T, c) 7→ Xc(T ) is functorial on X(η)-
trees (T, c) ∈ ΩopX(η), so that X has an equivalent description as a presheaf on ΩX(η).

In fact, a little more is true. If one writes dSetC ⊂ dSet for the subcategory of those X
such that X(η) = C and maps that are the identity on X(η), there is an equivalence
of categories (cf. [BPb, Eq. (3.21)])

dSetC
≃
−→ Fun∗(Ω

op
C
, Set),

(

T 7→ X(T )
)

7→
(

(T, c) 7→ Xc(T )
)

(11)

where Fun∗ denotes pointed functors, i.e., functorsX such thatXc(η) = ∗ for any c ∈ C.
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Using the Xc(T ) notation, the Segal condition in (10) then decomposes into iso-
morphisms

Xc(T )
≃
−→

∏

v∈V (T )

Xcv (Tv) (12)

for any X(η)-tree (T, c), and with cv the restricted coloring E(Tv)→ E(T )→ X(η).

Example 2.16. Representables Ω[S] satisfy the strict Segal condition (12). Explicitly,
this Segal condition says that a map T → S in Ω is determined by maps Tv → S, which
is the content of [Per18, Prop. 5.11]. The operad Ω(S) such that Ω[S] = NΩ(S) is
defined in [MW07, §3].

Remark 2.17. Given a map of colors f : C→ D, the identification (11) and precom-
position with f : ΩC → ΩD yield the left functor f∗ below. Moreover, f∗ is clearly
compatible with the Segal condition (12) so that, writing OpC = dSetC ∩ Op, one has
the restricted f∗ functor on the right.

f∗ : dSetD → dSetC f∗ : OpD → OpC

Note that maps X → Y in either dSet or Op over a color map f are then in bijection
with fixed color maps X → f∗Y .

Remark 2.18. Condition (10) has other formulations. Indeed, by [BP20, Props. 3.22,
3.31] one may replace the Segal cores Sc[T ] in (10) with the inner horns ΛE [T ], thus
saying that X has the strict right lifting property against the maps ΛE [T ]→ Ω[T ].
This shows that ∞-operads generalize operads, as the first are defined by the non-
strict version of this property [MW09, §5].

Remark 2.19. When dealing with simplicial operads sOp, we will also have need to
discuss simplicial dendroidal sets sdSet = Set∆

op×Ωop

, whose levels we write as Xn(T )
for T ∈ Ω and [n] ∈ ∆. As noted in §1.1, applying the nerve along each simplicial
direction yields a fully faithful inclusion N : sOp→ sdSet with essential image those
X ∈ sdSet for which X(η) is a discrete simplicial set and which satisfy the Segal
condition (10), (12) on each simplicial level (or equivalently, which satisfy (10), (12)
when regarded as an identification of simplicial sets).

3. Dendroidal necklaces

We now formalize the notion of dendroidal necklace discussed in the introduction,
cf. Figure 1, thus generalizing the key notion in [DS11]. For the meaning of nJb, Tb,
see Notations 2.7, 2.12.

Definition 3.1 (cf. [DS11, §3]). A necklace is a planar inner face map n : J → T in
Ω. Moreover:

(i) J is called the inner face of joints of the necklace;

(ii) for each vertex b ∈ V (J), the outer face nJb = Tb →֒ T is called a bead of the
necklace, and we write B(n) ≃ V (J) for the set of beads.

Example 3.2. For n : J → T the necklace in Figure 1 the beads are the trees Ti
depicted therein.

We now formalize the idea behind (4), thus defining the presheaves Ω[n]. Recall,
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cf. (9), that the Segal core poset Facesc(J) consists of the planar outer faces of J with
no inner edges.

Definition 3.3. Given a necklace n : J → T we define its representable presheaf
Ω[n] ∈ dSet by

Ω[n] = colim
U∈Facesc(J)

Ω[nU ] =
⋃

U∈Facesc(J)

Ω[nU ]

where the union formula is taken inside Ω[T ].
The category Nec of necklaces is then the full subcategory of dSet spanned by the

Ω[n].

Remark 3.4. For any tall map S → T in Ω, [BP21, Cor. 3.75] says that one has a
decomposition

T = colim
U∈Facesc(S)

nU

as a colimit in Ω, which formalizes the grafting procedure in Figure 1. Crucially,
the relevance of Definition 3.3 comes from the fact that the Yoneda Ω[−] does not
preserve this decomposition.

Remark 3.5. The Ω[n] presheaves for necklaces n : J → T interpolate between the
representable and Segal core presheaves Ω[T ] and Sc[T ] in §2.2. More explicitly, each
tree T ∈ Ω gives rise to necklaces T

=
−→ T and lr(T )→ T (cf. Notation 2.10) for which

Ω[T
=
−→ T ] = Sc[T ], Ω[lr(T )→ T ] = Ω[T ].

In particular, one obtains a natural inclusion Ω →֒ Nec given by T 7→ (lr(T )→ T ).
However, we caution that the assignment T 7→ Sc[T ] is not functorial on T (more
precisely, it is functorial only with respect to convex maps of trees, in the sense of
Definition 2.3).

Remark 3.6. IfX ∈ dSet satisfies the Segal condition (12) and n : J → T is a necklace,
then

Xc(T ) ≃
∏

v∈V (T )

Xcv (Tv) ≃
∏

b∈B(n)

∏

v∈V (Tb)

Xcv (Tv) ≃
∏

b∈B(n)

Xcb
(Tb),

so that the natural maps X(T )
≃
−→ X(Ω[n]) are isomorphisms, cf. (10).

Lemma 3.7. Let n : J → T be a necklace. Then

(i) a face U →֒ T is in Ω[n] iff its outer closure U is;

(ii) an outer face U = U →֒ T is in Ω[n] iff E
i(J) ∩E

i(U) = ∅;

(iii) there is a decompositionE(T )≃E(J)∐
∐

b∈V (J) E
i(Tb)=E(J)∐

∐

b∈B(n) E
i(Tb).

Proof. (i) follows since Ω[n] is an union of outer faces.
The arguments for (ii), (iii) are by induction on the number of inner edges E i(J),

with the base case E
i(J) = ∅, so that J = T = η, being obvious. Otherwise, letting

e ∈ E
i(J), since e is an inner edge of both J and T one has grafting decompositions

J = J ′ ∐e J
′′, T = T ′ ∐e R

′′ together with inner face maps n′ : J ′ → T ′, n′′ : J ′′ → T ′′.
One then has that U is in Ω[n] iff it is in either Ω[n′] or in Ω[n′′], yielding the induction
step for (ii). The induction step for (iii) likewise follows.
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Remark 3.8. If S
d
−→ S′ is a degeneracy, the vertices of S′ are identified with the

vertices of S that are not collapsed to edges. Thus, by factoring a tall map ϕ : S
t
−→ T as

a degeneracy followed by inner face S
d
−→ ϕS

i
−→ T , cf. Remark 2.8, the decomposition

(iii) in Lemma 3.7 generalizes to

E(T ) = E(ϕS)∐
∐

v∈V (S)

E
i(ϕSv). (13)

Notation 3.9. Given a necklace n : J→ T and outer face F → T wewrite nF : JF →F
for the necklace characterized by

E
i(JF ) = E

i(J) ∩E
i(F ).

Example 3.10. Letting n : J → T be the necklace in Figure 1, and for F → T the
outer face depicted in the middle below, the following represents nF : JF → F , with
the Fi its beads.

F1

l3

a

F2

b

F4

c

d

F5

d

b

a

r F

c

d

b

l3

a

r
JF

c

d

b

l3

a

rnF

(14)

In general, the nF construction works as follows, where say a bead Tb is outer if it is
connected to at most one other bead Tb′ (equivalently, if all outer edges of the bead
Tb are outer edges of T itself, except at most one). First, nF removes some outer
beads altogether. In this example, T3 from Figure (1) is removed. Then, some of the
resulting outer beads are replaced with outer faces of themselves. In this example,
T1, T2, T4 from Figure (1) are replaced with F1, F2, F4 (note that T4 was initially
not an outer bead, but became so upon removal of T3).

We caution that, just as in this example, one in general does not have a map JF →
J , as E(J) needs not contain E(JF ). Instead, as will follow from Proposition 3.12(ii),
one has a map of necklaces nF → n, which should be thought of as an outer face map
in Nec.

Corollary 3.11. Let n : J → T be a necklace and F → T be an outer face. Then

Ω[nF ] = Ω[n] ∩ Ω[F ]

where the intersection is taken as subpresheaves of Ω[T ].

Proof. Combining (i), (ii) in Lemma 3.7 we see that a face U →֒ F is in Ω[n] iffE(J) ∩
E

i(U) = ∅, where (since F is outer) the outer closure U can be taken in either T or F .
But, since U →֒ F implies E

i(U) ⊆ E
i(F ), this is equivalent to E(JF ) ∩E

i(U) = ∅,
i.e., to U being in Ω[nF ].

We next characterize the maps in Nec. See Notations 2.7, 3.9 for the meaning of
ϕJ , J ′

ϕJ
.
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Proposition 3.12. Let n : J → T and n
′ : J ′ → T ′ be necklaces. Then:

(i) A map n→ n
′ in Nec is uniquely determined by some map T → T ′ in Ω. More

precisely, there exists an unique dashed arrow making the following commute.

Ω[n] Ω[T ]

Ω[n′] Ω[T ′]

∃! (15)

(ii) A map of trees ϕ : T → T ′ in Ω induces a map n→ n
′ in Nec iff ϕJ ⊇ J ′

ϕT
.

Proof. For U ∈ Facesc(J) the composite Ω[n]→ Ω[n′]→ Ω[T ′] in (15) gives compat-
ible maps Ω[nU ]→ Ω[T ′] in dSet, and thus compatible maps nU → T ′ in Ω, so (i)
follows from Remark 3.4.

We now turn to (ii). The map ϕ defines a map of necklaces precisely if it induces
maps Ω[Tb]→Ω[n′] for each bead Tb, b∈B(n) and, by Lemma 3.7, this is equivalent to

∅ = E
i(J ′) ∩E

i(ϕTb) = E
i(J ′) ∩E

i(ϕnJb). (16)

Writing ϕ̃ for the composite J
n
−→ T

ϕ
−→ ϕT and noting that ϕ̃ is tall, (13) becomes

E(ϕT ) = E(ϕ̃J)∐
∐

b∈V (J)

E
i(ϕ̃Jb) = E(ϕ̃J)∐

∐

b∈B(n)

E
i(ϕTb).

Thus, (16) amounts to E
i(J ′) ∩E(ϕT ) ⊆ E(ϕJ), which is equivalent to the desired

ϕJ ⊇ J ′
ϕT

(as these trees have the same outer edges).

Remark 3.13. Let n, n′, T, T ′ be as in Proposition 3.12 and suppose ϕ : T → T ′ defines
a map n→ n

′. Then for every outer face F → T it follows from Corollary 3.11 that
the restriction F → ϕF likewise induces a restriction nF → n

′
ϕF

, from which it follows

that ϕJF ⊇
(

J ′
ϕT

)

ϕF
= J ′

ϕF
.

Remark 3.14. Let n, n′, T, T ′, ϕ be as in the previous remark and suppose in addition
that ϕ is a face map. Then, since different beads share at most one edge, for each bead
Tb →֒ T of n, there is a unique bead T ′

ϕ∗b
→֒ T ′ of n′ such that Tb →֒ T → T ′ factors

as Tb → T ′
ϕ∗b
→֒ T ′. In particular, this defines a map of bead sets ϕ∗ : B(n)→ B(n′).

4. The dendroidal W!-construction

This section will establish the description of the W!-construction in (1) given in
Theorem 1.2.

Throughout we make use of the factorizations in Ω given in Proposition 2.6, and
follow Notation 2.5 by labeling a map by the letters d/i/o/t/f/p to indicate that the
map is a degeneracy/inner face/outer face/tall/face/planar. Moreover, we implicitly
use Remark 2.8, stating that for some types of maps the factorization (8) has only cer-
tain factors, as well as Remark 2.9, which combines factors in (8) to obtain simplified
factorizations.

We first build W (T ) for a tree T , cf. Proposition 1.1.
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Definition 4.1. Let T ∈ Ω be a tree. We define W (T ) ∈ sOp to be the simplicial
operad whose nerve is the simplicial dendroidal set NW (T ) ∈ sdSet (cf. Remark 2.19)
with n-simplices given by

NW (T )n(S) =
{

composable strings S
t
−→ J0

i,p
−−→ J1

i,p
−−→ · · ·

i,p
−−→ Jn

i,p
−−→ F

o,p
−−→ T

of arrows in Ω
}

. (17)

Equivalently, it suffices to require that the S → Ji are tall maps and the Ji → T are

planar face maps. We note that F is superfluous, being determined by Jn
f,p
−−→ T , but

including it will make (19) below more readable. See also Remark 4.2.
Functoriality of NW (T ) with respect to a map S∗ → S is described by the diagram

S∗ J∗
0 J∗

1 · · · J∗
n F ∗ T

S J0 J1 · · · Jn F T

t i,p

o

i,p

o

i,p i,p

o

o,p

o

t i,p i,p i,p i,p o,p

(18)

where the maps J∗
k → Jk and F ∗ → F are inductively defined by taking S∗ → J∗

0 →
J0 (resp. J∗

k → J∗
k+1 → Jk+1, J

∗
n → F ∗ → F ) to be the “tall followed by outer face”

factorization of the composite S∗ → S → J0 (resp. J∗
k → Jk → Jk+1, J

∗
n → Jn → F ).

More generally, given a necklace n : J → T , we define NW (n) ⊆ NW (T ) as the
subpresheaf formed by those strings in (17) such that one has J0 ⊇ JF (where JF is
as in Notation 3.9). The fact that this NW (n) is a presheaf follows since, for S∗ → S,
J1, J

∗
i , F, F

∗ as in (18), it is

E
i(J∗

0 ) = E
i(J0) ∩E

i(F ∗) ⊇ E
i(JF ) ∩E

i(F ∗) = E
i(JF∗) (19)

where the first step is [BP20, Lemma 2.5] applied to J∗
0

o
−→ J0

i
−→ F and J∗

0
i
−→ F ∗ o

−→
F , the second is the definition of NW (n), and the third follows from Notation 3.9
and the fact that F ∗ ⊆ F .

Remark 4.2. Writing φ : S → T for the full composite in (17), one has that the F
therein is φS (cf. Notation 2.7) In particular, the condition J0 ⊇ JF defining NW (n)
becomes J0 ⊇ JφS .

Remark 4.3. The NW (n) given by Definition 4.1 are nerves of simplicial operads, cf.
Remark 2.19. Indeed, to verify the Segal condition (12) note that, as the maps S → Ji
in (18) are tall, they are uniquely determined by maps Sv → Ji,v for v ∈ V (S), cf.
[BP21, Cor 3.75] (see also 3.4). Moreover, NW (n)(η) is a discrete simplicial set since
for S = η it must be Ji = η in (17), due to only η receiving tall maps from η.

Next, we discuss the functoriality of NW (T ) with respect to T ∈ Ω. For a map
T → T ′ in Ω we define NW (T )n(S)→ NW (T ′)n(S) via the diagram (where we drop
the superfluous F in (17))

S J0 J1 · · · Jn T

S J ′
0 J ′

1 · · · J ′
n T ′

t i,p

d

i,p

d

i,p f,p

d

t i,p i,p i,p f,p

(20)

where the maps Jk → J ′
k are (backwards) inductively defined by taking Jn → J ′

n → T ′
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(resp. Jk−1 → J ′
k−1 → J ′

k) to be the ”degeneracy followed by face” factorization of
the composite Jn → T → T ′ (resp. Jk−1 → Jk → J ′

k).

Proposition 4.4. For any map T → T ′ in Ω, the induced map NW (T )(S)→
NW (T ′)(S) in (20) is functorial on S.

Proof. First, note that the composite NW (T )(S)→ NW (T )(S∗)→ NW (T ′)(S∗) is
computed by the left diagram below, where S∗ → J∗

i → Ji and J
∗
i → (J∗

i )
′ → T ′ are

the unique factorizations with the indicated properties. On the other hand, the com-
posite NW (T )(S)→ NW (T ′)(S)→ NW (T ′)(S∗) is computed as on the right with
Ji → J ′

i → T ′ and S∗ → (J ′
i)

∗ → J ′
i the unique indicated factorizations.

S Ji T S Ji T

S∗ J∗
i T S J ′

i T ′

S∗ (J∗
i )

′
T ′ S∗ (J ′

i)
∗

T ′

t f,p t f,p

d

t

o,p

d

f,p

f,p t

o,p

(21)

The key to the proof is to show that the planar faces (J∗
i )

′
and (J ′

i)
∗
of T ′ coincide,

since it will then be automatic that all maps connecting the (J∗
i )

′
and (J ′

i)
∗
and S∗,

T ′ likewise match.
To see this, we consider the following diagram which combines the top halves

in (21).

S∗ J∗
i T

S Ji T

S J ′
i T ′

t

o,p

t f,p

d

f,p

Both faces (J∗
i )

′
and (J ′

i)
∗
can be built by factoring the composite J∗

i → Ji → J ′
i ,

with (J∗
i )

′
coming from the degeneracy-face factorization and (J ′

i)
∗
coming from the

tall-outer factorization. But since J∗
i → Ji → J ′

i is a composite of convex maps (cf.
Definition 2.3) it is again convex (see Remark 2.8), so the two factorizations coincide,
finishing the proof.

Corollary 4.5. Let n : J → T and n
′ : J ′ → T ′ be necklaces and suppose ψ : T → T ′

induces a map n→ n
′. Then the induced map NW (T )→ NW (T ′) restricts to a map

NW (n)→ NW (n′).

Proof. Following Remark 4.2, we need to show that the map NW (T )→ NW (T ′)
sends simplices (17) such that J0 ⊇ JφS to simplices such that J ′

0 ⊇ J
′
φ′S

, where φ, φ′

are the composites of each simplex. This follows since

J ′
0 = ψ(J0) ⊇ ψ(JφS) ⊇ J

′

ψ(φS)
= J ′

ψ′S

where the third step is Remark 3.13.
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We now introduce a notation that plays an important role in two key techni-
cal results, Propositions 4.9 and 4.11. Recall that, for any tree U ∈ Ω, the poset
Faceinn(U) of planar inner faces is in fact a lattice, with the join F ∨ F ′ the charac-
terized by E

i(F ∨ F ′) = E
i(F ) ∪E

i(F ′).

Notation 4.6. Let n : J → T be a necklace, φ : S → T a map in Ω and S
t
−→ F

p,o
−−→ T

its tall-outer factorization. We then write Jφ = φS ∨ JF , where the join is taken in
Faceinn(F ).

Remark 4.7. Following Notation 2.14, we write NW (n)φ(S) ⊆ NW (n)(S) ∈ sSet for
the subsimplicial set over a coloring φ : E(S)→ E(T ). Note that, by the description
in (17), φ must in fact be the map of trees φ : S → T given by the composite therein.

Remark 4.8. In the context of Notation 4.6, and writing φ̄ : S → F , ι : F → T ,
ιφ : Jφ → T , for the natural maps, one has identifications

NW (n)ιφ(J
φ) NW (n)φ(S) NW (nF )φ̄(S) NW (Jφ → F )φ̄(S)

≃ ≃ ≃

induced by the natural maps S → Jφ between trees and (Jφ → F )→ nF → n between
necklaces.

Proposition 4.9. Let n : J → T be a necklace. Then one has an identification

W (n) ≃ colim
U∈Facesc(J)

W (TU ) (22)

where the colimit takes place in sOp.

Proof. We will verify (22) at the level of nerves. More explicitly, we will show that
for any X ∈ sdSet with constant objects and satisfying the strict Segal condition (cf.
Remark 2.19), giving a map NW (n)→ X is the same as giving compatible maps
NW (TU )→ X.

Moreover, clearly both sides of (22) yield E(T ) when evaluated at η. As such, we
are free to fix a coloring c : E(T )→ X(η) and verify the universal property restricted
to maps respecting this color assignment. And, by using the identification (11) and
the last comment in Remark 2.17, we may evaluate NW (n), X on E(T )-colored trees
(S, φ), rather than on uncolored trees.

Given maps NW (TU )→ X we now define the map NW (n)→ X via (where Jφ,
F , φ̄, ι, ιφ are as in Remark 4.8, and ι∗ : B(nF )→ B(n) is the map of bead sets in
Remark 3.14)

NW (n)φ(S) NW (n)ιφ(J
φ)

∏

b∈B(nF )

NW (n)ιφb
(Jφb )

∏

b∈B(nF )

NW (Tι∗b)ιφb
(Jφb )

Xcφ(S) Xcιφ(J
φ)

∏

b∈B(nF )

X
cιφb

(Jφb )

≃

(I)

≃

(II)
≃

(III)

(IV )

≃

(V )(V I)

(23)

where the arrows (II) and (V) are isomorphisms by the Segal condition while (III) is

an isomorphism since Jφb → T factors through Tι∗b.
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Moreover, the arrow (IV) in (23) is induced by the chosen maps NW (TU )→ X,
so clearly (23) denotes the only possible compatible map NW (T )→ X.

It only remains to check that (23) is indeed a map in sdSet, i.e., that it is natural
on (S, φ). To see this, one first readily checks that a map ψ : (S, φ)→ (S∗, φ∗) induces
a compatible inclusion ψ : Jφ →֒ Jφ

∗

showing the naturality of arrows (I), (VI) in the
zigzag. Next, by Remark 3.14 one has a map of bead sets ψ∗ : B(nF )→ B(nF∗) for

which one has further compatible maps Jφb → Jφ
∗

ψ∗b
, showing the naturality of the

arrows (II), (V). Lastly, for any bead b ∈ B(nF ) one has Tι∗b = T(ι∗)∗ψ∗b, showing
naturality of the arrows (III), (IV).

Remark 4.10. Let I
A•−−→ dSet be a diagram of dendroidal sets and let A = colimi∈I Ai.

We will find it useful to describe A in light of the identification (11). For each

A(η)-colored tree ⇀S = (S, c) we write I⇀S/ for the category with objects factorizations

E(S)→ Ai(η)→ A(η) for some i ∈ I, which we represent by E(S)→ Ai(η), together
with maps i→ i′ in I satisfying the obvious compatibility. Then

Ac(S) ≃ colim
(E(S)→Ai(η))∈I⇀S/

Ai,ci(S) (24)

where ci in Ai,ci(S) denotes the coloring given by E(S)→ Ai(η).

Proposition 4.11. Let X ∈ dSet and define NW (X) ∈ sdSet by

NW (X) = colim
(Ω[n]→X)∈Nec/X

NW (n), (25)

where Nec/X = Nec ↓ X is the over category of maps Ω[n]→ X, and the colimit is
taken in sdSet.

Then NW (X) satisfies the strict Segal condition (10), (12), and has constant
objects, cf. Remark 2.19. In particular, since N is fully-faithful one has that NW (X)
is the nerve of the simplicial operad

W (X) = colim
(Ω[n]→X)∈Nec/X

W (n),

where the colimit is now taken in simplicial operads sOp.

Proof. We will evaluate NW (X) at each X(η)-colored tree ⇀S = (S, c) using Re-
mark 4.10. We write Nec⇀S//X =

(

Nec/X
)

⇀S/ for the category whose objects are pairs of

arrows E(S)
φn

−−→ Ω[n]→ X whose composite encodes the coloring c : E(T )→ X(η).
Equation (24) then says that

NW (X)c(S) ≃ colim
(E(S)→Ω[n]→X)∈Nec⇀S//X

NW (n)φn
(S). (26)

To show that NW (X) satisfies the strict Segal condition, we will rewrite (26) by
identifying appropriate subcategories of Nec⇀S//X . First, write NecΩ⇀S//X ⊂ Nec⇀S//X for

the full subcategory of those objects for which, writing n : J→T , the map φn : E(S)→
E(T ) gives a map φn : S → T in Ω.

Next, for φn : S → T as above, and as in Notation 4.6, we write S
φ̄n

−−→ Fn

ι
−→ T for

the tall-outer factorization. We then write Nec
Ω,nor
⇀S//X

⊂ NecΩ⇀S//X for the full subcate-

gory of “normalized factorizations”, defined by the properties that φn : S → T is a
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tall map, i.e., Fn = T , and J ⊇ φnS.
Moreover, there is a retraction NecΩ⇀S//X

n
−→ Nec

Ω,nor
⇀S//X

which sends E(S)Ω[η]→

Ω[J
n
−→ T ]→ X to n(n) = (φnS ∨ JFn

→ Fn) = (Jφn → Fn) (cf. Notation 4.6). Recall
(cf. Remark 4.8) that the natural map n(n)→ n in Nec induces isomorphisms

NW (n(n))φ̄n

(S)
≃
−→ NW (n)φn

(S).

Since NecΩ⇀S//X is a cosieve4 of Nec⇀S//X and NW (n)s(S) = ∅ whenever n is not in

NecΩ⇀S//X one can replace Nec⇀S//X with NecΩ⇀S//X in (26). Moreover, the existence of a

retraction implies that the inclusion Nec
Ω,nor
⇀S//X

⊂ NecΩ⇀S//X is initial, so one can further

replace NecΩ⇀S//X with Nec
Ω,nor
⇀S//X

.

Lastly, note that the normalization conditions imply that Nec
Ω,nor
⇀S//X

≃
∏

v∈V (S) Nec
Ω,nor
⇀Sv//X

by a grafting argument. Putting everything together we now

obtain that

NW (X)c(S) ≃ colim
(E(S)→Ω[n]→X)∈Nec

Ω,nor
⇀S//X

NW (n)φn
(S)

≃ colim
(E(Sv)→Ω[nTv ]→X)∈

∏
v∈V (S) Nec

Ω,nor
⇀Sv//X





∏

v∈V (S)

NW (n)φn,v
(Sv)





≃ colim
(E(Sv)→Ω[nTv ]→X)∈

∏
v∈V (S) Nec

Ω,nor
⇀Sv//X





∏

v∈V (S)

NW (nTv
)φn,v(Sv)





≃
∏

v∈V (S)



 colim
(E(Sv)→nTv→X)∈Nec

Ω,nor
⇀Sv//X

NW (nTv
)φn,v

(Sv)





≃
∏

v∈V (S)

NW (X)cv (Sv) (27)

where the first step follows from the previous paragraph, the second step is the iden-
tification of indexing categories above together with the strict Segal condition for
NW (n), the third step uses the middle isomorphisms in Remark 4.6, the fourth step
is the fact that products commute with colimits in each variable, and the last step

simply specifies the first step for ⇀Sv = (Sv, cv).

We have thus established the strict Segal condition for NW (X) so that, as it is
clear that the objects of NW (X) are discrete (this is inherited from the NW (n)),
this finishes the proof.

Remark 4.12. The normalization condition in the previous proof is equivalent to
requiring that φn : S → T is a tall map which induces a map Sc[S]→ Ω[n].

Propositions 4.9 and 4.11 now combine to give the following, establishing (6).

4Recall that a subcategory S ⊆ C is a cosieve if, for any map s → c with s ∈ S, both c and s → c

are also in S.
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Theorem 4.13 (cf. [DS11, Thm. 1.3]). Consider the following diagram, where the
functors labeled W are as defined by Definition 4.1 and Proposition 4.11.

Ω Nec dSet

sOp

W

W
W

Then both triangles in this diagram are left Kan extensions. In particular, the functor
W : dSet→ sOp coincides with the functor W! : dSet→ sOp as defined in (1).

Remark 4.14. Our arguments so far can readily be modified to also describe τ in the
τ : dSet ⇄ Op : N adjunction in (1). First, Remark 3.6 implies that, for any necklace
n : J → T it must be τΩ[n] ≃ τΩ[T ] = Ω(T ), i.e., the operad such thatNΩ(T ) = Ω[T ],
cf. Example 2.16. We note that, in light of Remark 3.4, this last observation is the
analogue of Proposition 22 for τ .

Adapting the proofs of Proposition 4.11 and Theorem 4.13, and writing c, φ as
therein, one then has

(NτX)
c
(S) ≃ colim

(E(S)→Ω[J→T ]→X)∈Nec⇀S//X

Ω[T ]φ(S)

≃ colim
(E(S)→Ω[J→T ]→X)∈Nec

Ω,nor
⇀S//X

Ω[T ]φ(S).

Moreover, the normalization conditions guarantee that one tautologically has
Ω[T ]φ(S) = ∗ in the rightmost formula (as Ω[T ]φ(S) consists of elements lifting the
prescribed φ : S → T ). Thus, by unpacking the left formula and specifying to the case
of S = C a corolla, one has that operations in τX(C) are represented by data of the

form Ω[C]
t
−→ Ω[T ]← Ω[J → T ]→ X subject to the equivalence relation generated

by deeming two such data to be equivalent whenever there exists a map of necklaces
(J → T )→ (J ′ → T ′) making the diagram below commute.

Ω[C] Ω[T ] Ω[J → T ] X

Ω[C] Ω[T ′] Ω[J ′ → T ′] X

t

t

Remark 4.15. The work in this paper can be adapted to the categories dSetG and OpG
of genuine equivariant dendroidal sets and genuine equivariant operads, introduced in
[Per18, §5.4] and [BP21], respectively. In particular, the “genuine operadification”
functor τG : dSetG → OpG from [BPb, Eq. (2.42)] can be described via an analogue
of Remark 4.14.

Briefly, G-trees are defined as follows. First, the category Φ of forests has objects
formal coproducts ∐i∈ITi of trees, with maps ∐i∈ITi → ∐j∈JSj given by a map of
sets ϕ : I → J together with maps Ti → Sϕ(i) of trees. Then, G-forests Φ

G are defined
as the G-objects in Φ, while G-trees ΩG ⊂ ΦG are the full subcategory of G-forests
for which the G-action is transitive on tree components. Extending Proposition 2.6,
maps in ΩG likewise have a standard factorization [BPb, Cor. 2.27], which allows for
a generalization of the work herein.
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For instance, an equivariant necklace is a map n : J → T of G-trees that is a planar
orbital inner face [BPb, Def. A.3]. Explicitly, this means that n is an ordered iso-
morphism on roots/components which is a planar inner face on each tree component.
Moreover, letting Ω[T ] ∈ dSetG for T ∈ ΩG be the representables in [BPb, §2.3], one
may define Ω[J → T ] just as in (3.1). Altogether, adapting Remark 4.14, one has
that for each G-corolla C (i.e., G-tree whose tree components are corollas) the opera-

tions in τGX(C) ∈ OpG can be represented by data Ω[C]
t,r
−−→ Ω[T ]← Ω[J → T ]→ X

(where the map labeled t, r induces an ordered isomorphism on roots which is tall in
each component) subject to the equivalence relation generated by diagrams

Ω[C] Ω[T ] Ω[J → T ] X

Ω[C] Ω[T ′] Ω[J ′ → T ′] X.

t,r

t,r

Theorem 4.13 established that W! : dSet→ sOp is computed by (25), which is the
hard technical step in establishing Theorem 1.2. Thus, the remainder of the paper
will mostly unpack (25) to obtain the description of NW (X) for X ∈ dSet featured in
Theorem 1.2, with the following establishing the non-unique description, reformulated
using the spaces Xc(T ) in Notation 2.14.

Corollary 4.16 (cf. [DS11, Cor. 4.4]). Let X ∈ dSet. Then the simplices in
NW (X)n,c(S) for a coloring c : E(T )→ X(η) are equivalence classes of quadruples

(n, S
φ
−→ T,Ω[n]

x
−→ X, J•) where:

(i) (J
n
−→ T ) ∈ Nec is a necklace;

(ii) S
φ
−→ T is a tall map in Ω such that J ⊇ φS (equivalently, φ induces a map

Sc[S]→ Ω[n]);

(iii) Ω[n]→ X is a map in dSet such that the induced composite E(S)→ E(T )→
X(η) is the coloring c;

(iv) J• denotes a simplex in NW (n)n,φ, i.e., a factorization of φ

S J0 J1 · · · Jn Tt i,p i,p i,p i,p
(28)

such that J0 ⊇ J .

The equivalence relation is generated by considering (n, φ, x, J•) and (n′, φ′, x′, J ′
•)

to be equivalent if there is a map ϕ : Ω[n]→ Ω[n′] such that φ′ = ϕφ, x = x′ϕ and
J ′
k = ϕJk (i.e. J ′

• is obtained by pushing J• along ϕ in the sense of (20)).

Proof. Conditions (i), (iii), (iv) follow by simply unpacking (26) in light of the con-
struction of NW (n) in Definition 4.1 (except with φ then just a map φ : E(S)→ E(S)
and the last map in (iv) only required to be tall rather than inner). The additional
condition (ii) follows by replacing (26) with its reduction to “normalized factoriza-

tions” Nec
Ω,nor
~S//X

, as in the first line of (27).

Our last goal is to complete the proof of Theorem 1.2 by showing that, as claimed
therein, the quadruples in Corollary 4.16 always have a nice suitably unique repre-
sentative.

We first discuss uniqueness of the maps Ω[n]
x
−→ X up to degeneracy.
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Definition 4.17. A map of necklaces (J→T )→ (J ′→T ′) is called a necklace degen-
eracy if the associated map ϕ : T → T ′ is a degeneracy in Ω and ϕJ = J ′.

Definition 4.18 (cf. [DS11, §4]). Let J
n
−→ T be a necklace and X ∈ dSet. A map

Ω[n]→ X is called totally non-degenerate if for all beads Tb, b ∈ B(n) the induced
dendrex Ω[Tb]→ X is non-degenerate (in the sense of, e.g. [Per18, Prop. 5.62]).

Lemma 4.19 (cf. [DS11, Prop. 4.7]). Any map Ω[n]→ X has a factorization, unique
up to unique isomorphism, as

Ω[J
n
−→ T ]→ Ω[J ′ n

′

−→ T ′]→ X

where the first map is a degeneracy of necklaces and the second map is totally non-
degenerate.

Proof. The proof is by induction on the size of E
i(J). The base case is that of

E
i(J) = ∅ (note that then it must also be E i(J ′) = ∅), in which case the result reduces

to [CM11, Prop. 6.9] or [Per18, Prop. 5.62].

Otherwise, let e ∈ E
i(J) and consider the grafting decomposition T = R ∐e S. By

the induction hypothesis, one has factorizations, unique up to unique isomorphism,
Ω[nR]→ Ω[n′R]→ X, Ω[nS ]→ Ω[n′S ]→ X. Writing n

′
R = (J ′

R → R′) and n
′
S = (J ′

S →
S′), we then set n′ = (J ′

R ∐e J
′
S → T ′

R ∐e T
′
S). The uniqueness up to unique isomor-

phism property of n′ is readily seen to be inherited from the analogue property for
n
′
R, n

′
S (note that the “unique isomorphism” clause implies that there is no ambiguity

concerning the grafting edge e), finishing the proof.

Next, we also need a preferred form for the tall simplex data in (28).

Definition 4.20 (cf. [DS11, §4]). A tall simplex as in (28) is called flanked if J0 = J
and Jn = T . Further, a quadruple (n, φ, x, J•) is called flanked if J• is.

Remark 4.21. Suppose (n, φ, x, J•) is a flanked quadruple and set nk = (Jk → T ).
Then the structure maps in (28) induce a diagram of maps of necklaces

Sc[T ] Ω[nn] Ω[nn−1] · · · Ω[n0] Ω[n] Sc[S]

Remark 4.22. If both simplices J•, J
′
• in a pushforward diagram (20) are flanked, then

the associated map of necklaces n→ n
′ is a degeneracy.

In what follows we say a quadruple (n, φ, x, J•) as in Corollary 4.16 is flanked if
J• is and totally non-degenerate if x is.

Lemma 4.23 (cf. [DS11, Lemma 4.5]). (i) Any quadruple (n, φ, x, J•) as in Co-
rollary 4.16 is equivalent a flanked one;

(ii) if two flanked quadruples are equivalent, then the equivalence can be described
via a zigzag involving only flanked quadruples.

Proof. The key to (i) is the fact that the map Jn → T induces a map of necklaces
(J0 → Jn)→ (J → T ). This map of necklaces induces a pushforward of simplices (i.e.,
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a diagram as in (20))

S J0 J1 · · · Jn Jn

S J0 J1 · · · Jn T

t i,p i,p i,p

t i,p i,p i,p i,p

(29)

where the top simplex (and thus the associated quadruple) is now flanked, so (i)
follows.

(ii) then follows by noting that the procedure above is natural. More precisely, an
arbitrary pushforward of tall simplices (i.e., simplices whose composite map is a tall
map) along the necklace map (J, T )→ (J∗ → T ∗) as in (20) induces a pushforward
of flanked simplices

S J0 J1 · · · Jn Jn

S J ′
0 J ′

1 · · · J ′
n T ′

t i,p

d

i,p

d

i,p

d

t i,p i,p i,p f,p

along the necklace map (J0 → Jn)→ (J ′
0 → J ′

n).

Corollary 4.24 (cf. [DS11, Cor. 4.8]). Each quadruple (n, φ, x, J•) as in Corol-
lary 4.16 has a representative, unique up to unique isomorphism, which is both flanked
and totally non-degenerate.

Proof. By Lemma 4.23(i) any quadruple is equivalent to a flanked quadruple and, by
Lemma 4.19, any flanked quadruple is equivalent to a flanked quadruple that is also
totally non-degenerate.

As for the uniqueness condition, by Lemma 4.23(ii) we need only consider zigzags
of equivalences of flanked quadruples, which are induced by necklace degeneracies, in
the sense of Definition 4.17, cf. Remark 4.22. Thus, arguing by induction on the size
of the zigzag, Lemma 4.19 implies that all flanked quadruples in the zigzag have the
same totally non-degenerate quotient, so the desired uniqueness claim reduces to the
uniqueness claim in Lemma 4.19.

We conclude the paper by using Theorem 1.2 to describe W! applied to the key
dendroidal sets in §2.2. We first make some useful observations concerningW! applied
to a representable Ω[U ].

Example 4.25. For X = Ω[U ] ∈ dSet, one can describe W!(Ω[U ]) via either Proposi-
tion 1.1 or Theorem 1.2. In preparation for the next examples, which require Theo-
rem 1.2, we will find it useful to work out how Theorem 1.2 recovers Proposition 1.1.
Putting together all the data in the unique representative description in Theorem 1.2,
a simplex of W!(Ω[U ]) is strictly uniquely represented by

S J0 = J J1 · · · Jn = T U.t i,p i,p i,p f,p

φ
(30)

This requires some justification. First, note that the role of φ is to represent a map
φ : Ω[J → T ]→ Ω[U ]. Then, the requirement in Theorem 1.2 that φ is totally non-
degenerate as a map of necklaces reduces to the implied claim in (30) that φ is a
face map of trees. The conditions J0 = J and Jn = T are the flanked conditions.
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Lastly, the assumption in (30) that φ is planar is a choice, which one is free to make,
which turns the “uniqueness up to unique isomorphism” in Theorem 1.2 into strict
uniqueness. We now see that (30) indeed recovers (5) (that this is also compatible
with the simplicial structure follows from the flanking procedure in (29)).

We now apply Remark 1.3 to determine the mapping spaces ofW!(Ω[T ]). Since this
operad has color set E(U), we consider signatures (e1, · · · , en; e0) with ei ∈ E(U),
which can be regarded as a map e(−) : E(C)→ E(U) for C the n-corolla. We now
claim it is (cf. [CM13, §4])

W!(Ω[U ])(e1, · · · , en; e0) =

{

∆[1]×E
i(e(C)) if E(C)

e(−)
−−−→ E(U) defines a map in Ω

∅ otherwise

(31)
where e(C) is the outer closure notation in Notation 2.7. In words, e(C) is the unique
outer face of U with leaves e1, · · · , en and root e0, if such tree exists. The identifica-
tion (31) now follows by setting S = C in (30). Indeed, if e(−) does not define a map
C → U , then no factorizations as in (30) exist. And, otherwise, the only restriction
on the Ji therein is that they must be inner faces of e(C). But then (30) computes
the nerve of the poset Faceinn(e(C)) of inner faces of e(C), which coincides with the

poset (0→ 1)×E
i(e(C)) of subsets of its inner edges, establishing (31).

Example 4.26. We now apply Theorem 1.2 to compute W!(∂Ω[U ]). By the discussion
in Example 4.25, its simplices are uniquely represented just as in (30), except with the
caveat that φ now represents a map φ : Ω[J → T ]→ ∂Ω[U ]. This imposes the following
restriction: U itself can not be a bead of the necklace J → T , which amounts to either
J 6= lr(U) or T 6= U .

As such, for any signature (e1, · · · , en; e0) of E(U) which is not the left-root sig-
nature, one has W!(∂Ω[U ])(e1, · · · , en; e0) =W!(Ω[U ])(e1, · · · , en; e0), since then T is
a proper face of U .

And, for the leaf-root signature (l; r), this restriction amounts to excluding the

boundary of the nerve of the poset Faceinn(U) ≃ (0→ 1)×E
i(U), thus identifying

W!(∂Ω[U ])(l, r) with the domain of the iterated pushout product

({0, 1} → ∆[1])
�E

i(U)
.

Example 4.27. Let U ∈ Ω and ∅ 6= E ⊆ E
i(U), and considerW!(Λ

E [U ]). As in Exam-
ple 4.26, one now requires for φ in (30) to encode a map Ω[J → V ]→ ΛE [U ], which
imposes the restriction that either T 6⊇ U − E or J 6= lr(U).

As in Example 4.26 one has W!(Λ
E [U ])(e1, · · · , en; e0) =W (Ω[U ])(e1, · · · , en; e0)

whenever (e1, · · · , en; e0) 6≃ (l; r), as then T can contain no inner faces.
Lastly, for the leaf-root signature (l, r), the given restrictions identifyW!(Λ

E [U ])(l, r)
with the domain of the iterated pushout product

({0, 1} → ∆[1])
�E

i(U)−E
� ({1} → ∆[1])

�E
.
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