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Abstract

We prove the equivalence of several hypotheses that have
appeared recently in the literature for studying left Bousfield
localization and algebras over a monad. We find conditions so
that there is a model structure for local algebras, so that localiza-
tion preserves algebras, and so that localization lifts to the level of
algebras. We include examples coming from the theory of colored
operads, and applications to spaces, spectra, and chain complexes.

1. Introduction

Left Bousfield localization has become a fundamental tool in modern abstract
homotopy theory. The ability to take a well-behaved model category and a pre-
scribed set of maps, and then produce a new model structure where those maps
are weak equivalences, has applications in a variety of settings. Left Bousfield local-
ization is required to construct modern stable model structures for spectra, including
equivariant and motivic spectra. Left Bousfield localization also provides a powerful
computational device for studying spaces, spectra, homology theories, and numerous
algebraic examples of interest (e.g., in the model categories Ch(R) and R-mod that
arise when studying homological algebra and the stable module category, respectively,
for a ring R).

In recent years, several groups of researchers have been applying the machinery
of left Bousfield localization to better understand algebras over (colored) operads,
especially results regarding when algebraic structure is preserved by localization,
e.g., [Batl7, BB17, BH15, HH14, HH16, CGMV10, CRT14, GRSO18,
HW20, Whil4b, WY18]. Unsurprisingly, different approaches have emerged. In
this paper, we will prove that these approaches are equivalent, and will use this
equivalence to provide new structural features that may be used in any of these
settings.

Our setting will be a model category M, with an action of a monad 7', and with a
prescribed set of maps C that we wish to invert. In our applications, M will be suf-
ficiently nice that the left Bousfield localization L¢ (M) exists, and so that the cate-
gory of T-algebras, Alg; (M), admits a transferred semi-model structure (reviewed in
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Section 2). Our main theorem follows (and will be proven as Theorem 5.6). For the
sake of generality, we proved the theorem without requiring strong hypotheses on M.
All of the assumptions in the statement below are introduced in Section 2.

Theorem A. Suppose that M is a model category, C is a set of morphisms in M,
and Le(M) exists and has a sel of generating cofibrations with cofibrant domains.
Suppose that M contains a saturated class of morphisms K such that T is K-semi-
admissible (so Algp(M) has a transferred semi-model structure), M is K-compactly
generated, and Le(M) is KC-compactly generated. Then the following are equivalent:

1. Lc lifts to aleft Bousfield localization Ly ¢y of semi-model categories on Algp(M),
where F(C) is the set of free T-algebra maps on C.

2. The forgetful functor U: Algp(M) — M preserves local equivalences.
3. Algr(Le(M)) has a transferred semi-model structure.
4. Le¢ preserves T-algebras.

Furthermore, any of the above implies that

(5) T preserves C-local equivalences between cofibrant objects.

This theorem unifies all known approaches to studying the homotopy theory of
localization for algebras over a monad. There is also a dual result [WY16], in the
setting of right Bousfield localization, that also has numerous applications [WY20].
In general, all of the statements of Theorem A are hard to verify, but in any particular
setting, usually at least one of them is approachable. Many examples are given in
Example 5.7 where one (hence all) of the equivalent conditions hold. In particular,
the second author has a series of papers [WY18, WY20, WY19, WY 17] providing
conditions on the model category M, the monad T (usually given by a colored operad
in these settings), and the left Bousfield localization L¢ so that (3), and hence all of
the equivalent statements, are satisfied. Theorem A implies that, in all these settings,
the localizations can actually be constructed on the level of algebras (using (1)),
a result that was previously unknown. These settings include simplicial sets and
topological spaces (with the Quillen model structure), chain complexes (with the
projective model structure), symmetric spectra, (equivariant) orthogonal spectra, the
category of small categories, and the stable module category of a ring.

Similarly, in a series of papers [CGMV10, CRT14, GRSO12, GRSO18, JN14]|,
Casacuberta, Gutiérrez, and others provide numerous examples of model categories,
monads, and left Bousfield localizations where conditions (1) or (2) hold, and Theo-
rem A now implies the existence of transferred semi-model structures Alg,(Lc(M))
that were not previously known to exist. These examples include symmetric spectra,
S-modules, abelian localizations, and motivic spectra, with different conditions to
check than in [WY18], that are easier for certain localizations or monads. Finally,
several recent papers have focused on preservation of equivariant multiplicative norms
(encoded by equivariant operads) under left Bousfield localizations of equivariant
spaces and spectra [HH14, HH16, GW18|. In these settings, Theorem A now
implies that localizations can be constructed on the level of algebras, and that trans-
ferred semi-model structures exist.

The authors proved Theorem A (and its partial converse, Theorem 6.2) as part
of a larger research program, with applications to several well-studied conjectures
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in homotopy theory, higher category theory, and mathematical physics [BW20a,
BW20b].

In Section 3, we discuss how to pass from the localized model structure L¢ (M)
to the category Alg,(Lc(M)), needed for item (3) in the theorem. In Section 4,
we discuss lifting the localization L¢ to a localization Lp ) of algebras, where F'(C)
denotes the set of free T-algebra maps on C. This is needed for items (1) and (2) of the
theorem. In Section 5, we compare these two approaches to studying local algebras,
and we also compare them to item (4) above regarding preservation of T-algebras by
localization. After proving our main theorem in Section 5, we prove a partial converse
in Theorem 6.2, i.e., we determine what can be said if we know that item (5) is true.
In particular, we show that item (5), together with mild hypotheses on the monad T,
implies that U reflects local equivalences. Numerous examples are given throughout
the paper, and the motivating applications are explained in Section 6.

2. Preliminaries

We assume that the reader is familiar with the basics of model categories. For
our entire paper, M will denote a cofibrantly generated model category (or, some-
times, semi-model category), and I (resp. J) will denote the generating cofibrations
(resp. generating trivial cofibrations). Semi-model categories are recalled below, and
familiarity with semi-model categories is not assumed.

2.1. Left Bousfield localization

Given a model category M and a set of morphisms C, a left Bousfield localization
of M with respect to C is, if it exists, a new model structure on M, denoted L¢ (M),
satisfying the following universal property: the identity functor M — L¢(M) is a left
Quillen functor taking the morphisms of C to weak equivalences, and for any model
category N and any left Quillen functor F: M — N taking the maps in C to weak
equivalences, there is a unique left Quillen functor Le(M) — N through which F
factors.

For the sake of the following definition, we need to recall [Hir03, Notation 17.4.2].
Given a model category M, and objects X and Y, we denote by Map ((X,Y) (or
just Map(X,Y) if the context is clear) a simplicial set that is a functorial homotopy
function complex (left, right, or two-sided). As shown in [Hir03, Theorem 17.4.13],
the category of homotopy function complexes has contractible classifying space, and
so the choice of a model for Map(X,Y") does not matter up to homotopy. Commonly,
Map(X,Y) is constructed by taking a cofibrant replacement of X and a simplicial
resolution of Y, or a cosimplicial resolution of X and a fibrant replacement of Y.
Neither of these approaches requires (co)fibrancy assumptions on X or Y. Observe,
furthermore, that Map(X,Y") is weakly equivalent to the simplicial set of morphisms
in the hammock localization L (M, W) [Barl0, Scholium 3.64]. We will denote by
Homa(X,Y) the set of morphisms in M from X to Y.

Definition 2.1. Fix a model category M and a set of morphisms C.
1. An object N is called C-local if it is fibrant in M and for all g: X — Y in C,
the induced map on simplicial sets Map(g, N): Map(Y, N) — Map(X,N) is a
weak equivalence.
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2. A morphism f: A — B is a C-local equivalence if for all N as above, the mor-
phism Map(f, N): Map(B, N) — Map(A, N) is a weak equivalence.

3. The left Bousfield localization Le M of M, if it exists, is a model structure
on M defined to have weak equivalences the C-local equivalences, to have the
same cofibrations as M, and to have the fibrations defined via the right lifting
property.

Throughout this paper, we assume that L¢(M) exists, and that its fibrant objects
are precisely the C-local objects in M. This can be guaranteed by assuming that M
is left proper and either cellular [Hir03, Theorem 4.1.1] or combinatorial [Bar10,
Theorem 4.7]. We do not need these conditions in the present paper, other than for
the existence of L¢(M). Throughout this paper, we assume that C is a set of cofi-
brations between cofibrant objects. This can always be arranged by taking cofibrant
replacements of the maps in C.

2.2. Algebras over monads
We now discuss the theory required to transfer (semi-)model structures to cate-
gories of algebras.

Definition 2.2. 1. A monad (T, u,n) on a category M [Mac98, VI.1] consists of a
functor T': M — M and natural transformations p: T ol — T and n: Id — T
satisfying associativity and unitality, i.e. poTu = pouT: T3 — T and
poIn=ponT =Idp:T —T.

2. A monad (T, u,n) is finitary if T preserves filtered colimits.

3. A T-algebra in M is a pair (X, h) consisting of an object X of M and a mor-
phism h: TX — X satisfying associativity (hoTh =ho ux: T?X — X) and
unitality (honyxy = Idx: X — X). A morphism of T-algebras (X,h) — (X', 1/)
is a morphism f: X — X’ € M compatible with the structure morphisms h
and h'.

4. With (T, p,n) abbreviated to T', the category of T-algebras is denoted Alg,(M).
The corresponding free-forgetful adjunction is denoted by

M % Algp(M) .

For example, when (M, ®,1) is a cocomplete monoidal category, the category of
monoids is encoded as T-algebras for the monad TX = Hn>0 X®n, Similarly, for any
colored operad P in M (with color set €), the category of P-algebras is encoded
as T-algebras in M for the free P-algebra monad TX = P o X, where o is Kelly’s
colored circle product [Kel05] (also described in [WY18]).

Definition 2.3. A model structure on the category of T-algebras will be called trans-
ferred from M if a map f of T-algebras is a weak equivalence (resp. fibration) if and
only if U(f) is a weak equivalence (resp. fibration). We also call this structure on
Algp (M) projective.

Most of the model category axioms for the transferred model structure are easy
to check. The difficult one has to do with proving that the trivial cofibrations of
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T-algebras are saturated (that is, closed under transfinite composition, pushout, and
retracts) and contained in the weak equivalences [SS00]. These trivial cofibrations
are generated by the set F(J), and so pushouts in Alg, (M) of the following sort
must be considered:

FK) 2% F(r)

! ! (1)

A B

Often, such pushouts are computed by filtering the map h: A — B as a transfi-
nite composition of pushouts in M. The following definition ensures this works, and
the terminology is borrowed from the language of semi-model categories (recalled in
Section 2.3).

Definition 2.4. Let K be a saturated class of morphisms in a model category M. A
monad on M will be called K-admissible if, for each (trivial) cofibration w: K — L
in M, the pushout (1) has U(h) in K (resp. in K and a weak equivalence). A monad
T will be called K-semi admissible if this holds for pushouts into cofibrant T-algebras
A. A monad T will be called K-semi admissible over M if this holds for pushouts
into T-algebras A for which U A is cofibrant in M.

The value of this definition is that it allows for transferred model structures and
transferred semi-model structures (to be discussed below) on Alg;,(M). To build
these (semi-)model structures, the small object argument [Hov99, Theorem 2.1.14]
is required in Alg;(M). In order to know that the small object argument converges,
we need a smallness condition on the objects of M. Recall that an object A is small
relative to a class of morphisms X if the functor Hom (A, —) takes xk-directed col-
imits of morphisms in X to s-directed colimits of sets [Hov99, Definition 2.1.3].

We next recall a smallness condition on M (from [BB17]) that allows the transfer
theory to work. This condition is not necessary if M is combinatorial.

Definition 2.5. Let K be a saturated class of morphisms in a model category M.
We say M is C-compactly generated if the weak equivalences are closed under filtered
colimits along morphisms in I, and if all objects are small relative to KC-cell (the class
of transfinite compositions of pushouts of maps in K).

We illustrate with an example. One common source of applications is when the
monad T arises from an operad. In this situation, M is often a monoidal model
category (i.e., satisfies the pushout product axiom as in [SS00]), and K is often taken
to be the class (M & I)-cell, i.e., the monoidal saturation of the cofibrations.

We now have all the ingredients required to state our main transfer theorem, which
synthesizes three different transfer theorems already in the literature.

Theorem 2.6. Let T be a finitary, K-admissible (resp. K-semi-admissible, resp. K-
semi-admissible over M) monad on a KC-compactly generated model category M for
some saturated class of morphisms K. Then Algp(M) admits a transferred model
structure (resp. semi-model structure, resp. semi-model structure over M).

This theorem is proven as Theorem 2.11 of [BB17] for model structures, and is a
consequence of [BW20b, Theorem 2.2.1] for semi-model categories (see also [Fre09,
Theorem 12.1.9] and [Spi01, Theorem 2] for the case of semi-model categories over M).
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This theorem has many applications. For example, if M is a cofibrantly generated
monoidal model category, and is (M ® I)-compactly generated (where I is the set
of generating cofibrations), then algebras over any %-cofibrant colored operad inherit
a transferred semi-model structure [GRSO12, Theorem A.8]. Under mild condi-
tions, algebras over entrywise cofibrant colored operads inherit transferred semi-model
structures [WY18, Theorem 6.2.3]. In the absence of the monoid axiom, monoids
inherit a transferred semi-model structure [Hov98, Theorem 3.3|. In the presence of
the commutative monoid axiom but the absence of the monoid axiom, commutative
monoids inherit a transferred semi-model structure [Whil7, Corollary 3.8]. We will
provide an example at the end of Section 2.3 of a category of algebras that only
admits a semi-model structure, not a full model structure. So semi-admissibility for
a monad T occurs much more frequently than admissibility.

2.3. Semi-model categories

There are many different definitions of semi-model categories in the literature, all
involving a weakening of the model category axioms to require certain cofibrancy
conditions on the domains of maps involved in the axioms. The first definition,
called a J-semi model structure, was in [Spi01], and axiomatized precisely the struc-
ture obtained on Algy(M) from Theorem 2.6. What we call semi-model structures
over M (following Spitzweck’s terminology) are called relative semi-model structures
in [Fre09], but note that [Fre09] has a weaker notation of semi-model structure,
called an (I, J)-semi model structure in [Spi01].

The following definition is [Bar10, Definition 1.4] (taking E = C there), and is a
slight abstraction of Spitzweck’s notion of a J-semi model category. The additional
generality allows for semi-model categories to arise from situations other than a trans-
fer, such as [BW20a].

Definition 2.7. A semi-model structure on a category D consists of classes of weak
equivalences %, fibrations %, and cofibrations 2 satisfying the following axioms:

M1 Fibrations are closed under pullback.
M2 The class # is closed under the two-out-of-three property.
M3 w, 7,2 are all closed under retracts.
M4 i Cofibrations have the left lifting property with respect to trivial fibrations.
ii Trivial cofibrations whose domain is cofibrant have the left lifting property
with respect to fibrations.
M5 i Every map in D can be functorially factored into a cofibration followed by
a trivial fibration.
ii Every map whose domain is cofibrant can be functorially factored into a
trivial cofibration followed by a fibration.

If, in addition, D is bicomplete, then we call D a semi-model category.

In practice, there is often an adjunction F': M = D : U where M is a cofibrantly
generated model category, and weak equivalences (resp. fibrations) in D are defined
as in Definition 2.3. Note that (M1) is automatic in such a setting. We say an object
X of D is cofibrant in M if U(X) is cofibrant. In this setting, it is possible to mod-
ify Definition 2.7 to require a different cofibrancy assumption. On D, a semi-model
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structure over M refers to a triple (#,.%, 2) satisfying the axioms on Definition 2.7
but where ‘cofibrant’ is replaced by ‘cofibrant in M’ ([Bar10, Definition 1.4], [SpiO1,
Definition 1]). This affects (M4ii) and (M5bii). Furthermore, one must assume that the
initial object of D is cofibrant in M (note that one does not need to assume that the
initial object in M is cofibrant in Definition 2.7, as this can easily be deduced from a
factorization, lifting, and retract argument applied to the identity morphism on the
initial object). In practice, it often occurs that cofibrant objects in D are cofibrant
in M [BW20b, Theorem 2.2.2], so that in a semi-model category over M, strictly
more morphisms follow the axioms of a model category. The main source of examples
of semi-model structures over M is Theorem 2.6.

Note that, in a semi-model category D, the axioms of a full model structure are
satisfied on the subcategory of cofibrant objects. Furthermore, D has a cofibrant
replacement functor defined on every object. Consequently, every result about model
categories has a semi-model categorical analogue, usually obtained by cofibrantly
replacing as needed. This includes the Fundamental Theorem of Model Categories
(characterizing morphisms in the homotopy category), left and right Quillen func-
tors, Ken Brown’s lemma, path and cylinder objects, the retract argument, the cube
lemma, simplicial mapping spaces, hammock localization, projective/injective/Reedy
semi-model structures, latching and matching objects, cosimplicial and simplicial res-
olutions, computations of homotopy limits and colimits, and more. In practice, a semi-
model structure is just as useful as a full model structure. In particular, Definition 2.1
can also be made for localizations of semi-model categories, as is done in [BW20a].

We often transfer a semi-model structure from L¢(M) to Algp(Le(M)). The most
general setting for such a transfer to exist is that given by Theorem 2.6 applied to
Le(M). We work in this general setting, but the reader is encouraged to keep the
following examples in mind.

Ezample 2.8. Suppose that M is a monoidal model category [Hov99, Definition
4.2.6], e.g., simplicial sets, compactly generated spaces, chain complexes, symmetric
spectra, or (equivariant) orthogonal spectra. If L¢ (M) satisfies the pushout product
axiom, L¢ is called a monoidal Bousfield localization. Conditions to guarantee this
are given in [Whil4a] and worked out for the model categories just listed, as well as
counterexamples demonstrating it does not come for free.

For monoidal Bousfield localizations, Alg;(L¢(M)) inherits a transferred semi-
model structure whenever 71" comes from a Y-cofibrant colored operad. Similar results
hold for entrywise cofibrant colored operads [WY18]. Results of this nature have
been proven for commutative monoids in [Whil7], and are recalled in Example 5.8.
In [WY20], conditions are given so that such transfers exist in a right Bousfield
localization Ry (M).

Note that another source of semi-model categories is as left Bousfield localizations
of other semi-model categories, or of non-left-proper model categories [BW20a].

We conclude this section with an example of a semi-model structure that is not a
full model structure, to demonstrate that semi-model categories are inescapable when
one studies algebras over operads.

Example 2.9. Consider the colored operad P whose algebras are non-reduced symmet-
ric operads. Consider P-algebras in M = Ch(F3) with the projective model structure,
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from [Hov99]. Because P is Y-cofibrant and M is a cofibrantly generated monoidal
model category, there is a transferred semi-model structure on P-alg, by [WY18,
Theorem 6.3.1] (this result goes back to [Spi01]). This transferred structure does not
form a full model structure, as we now show. Let Com be the operad for commutative
differential graded algebras, so Com(n) is Fy with the trivial ¥, -action for all n.

For any acyclic complex C', the inclusion morphism 0 — C'is a trivial cofibration.
Define a collection K to have Ky = C and K; = 0 otherwise. Then the inclusion from
the 0 collection to K is a trivial cofibration. Thus, P(0) — P(K) is supposed to be a
trivial cofibration, so pushouts of it would need to be weak equivalences if P-alg was
a model category. Yet in the pushout

P(0) —— P(K)

i |

Com —— P(K)]] Com

the coproduct P(K)]] Com always contains a summand of C'® C'/Xs, as explained
in [BB17, Section 12.30]. Thus, whenever C' ® C'/35 is not contractible, the bottom
morphism cannot be a weak equivalence. We now demonstrate an explicit example
of C such that C @ C'/%5 is not contractible, because H;(C ® C/Xy) = Fq. To ease
notation, let k = Fs.

Let C be the complex 0 -k - k® k — k@ k — k — 0 where the differential dg
takes a to (a,a), do takes (a,b) to (a+b,a +b), and d;y takes (a,b) to a + b. Observe
that

kRrk=k ifn=0
(CeC), =S (ke (kok)® (kok)®k) =k ifn=1
(kor(kok) o (kok)or (kk)® (kd k)@ k) =2k® ifn=2

The differential dy takes (u® (a,b),(c,d) ® w) to ua + ub+ cw + dw, while da
takes (u® (a,b), (e, f) ® (s,t), (¢,d) @ w) to (ua+ub+es+et+ fs+ ft,ua+ ub+
es+et+ fs+ ftywe+wd+es+et+ fs+ ftywe+wd+es+et+ fs+ ft).

Now consider (C ® C')/Xs, where the 3y action is induced by swapping C), and
Cy in the formula @7L=p+q Cp ®1 Cy. The action on the degree 1 part swaps the
first two coordinates and swaps the second two coordinates. The differential d; is an
epimorphism, while im(dz) lies in the Yo-invariant subspace, hence goes to zero when
we pass to coinvariants. It follows that H;(C' ® C/%y) 2 k.

This example demonstrates that symmetric operads in Ch(Fs) do not carry a full
model structure, since pushouts of trivial cofibrations need not be weak equivalences.
This example does not rule out the transferred semi-model structure because Com is
not cofibrant, and only pushouts of trivial cofibrations into cofibrant objects need to
be again trivial cofibrations for semi-model categories.

3. Algebras in a localized category

Suppose that M is a cofibrantly generated model category, C is a class of morphisms
such that Le(M) exists, and T is a monad on M such that Alg, (M) inherits a
transferred model structure from M. In practice, T' will often be finitary, and we will
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use Theorem 2.6 to verify the model category axioms on Alg,(M), but our results
do not rely on T being finitary. We also note that the theory of [BW20a] could be
used to weaken the assumption on Alg; (M) to only require a semi-model structure.

Definition 3.1. The local projective (semi)-model structure, Algp(Le(M)), on the
category Algy (M) is the (semi-)model structure transferred from the model structure
Le(M) along the forgetful functor U: Algp(M) — M. A morphism f is a weak
equivalence (resp. fibration) in Alg;.(Le(M)) if and only if U(f) is a weak equivalence
(resp. fibration) in L¢(M).

There are two ways to define what it means for an algebra Z to be local. We
can define it based on whether U(Z) is local in M, or we can define it based on a
localization of Alg;(M). We now show these two notions agree. We recall that F'(C)
denotes the set of free T-algebra morphisms on C.

Definition 3.2. We will call an algebra Z € Algy (M) local if U(Z) is a local object
in M.

Lemma 3.3. Z € Algp(M) is a local object in Algp(M) with respect to F(C) if and
only if Z is a local algebra.

Proof. An algebra Z is a local object with respect to F(C) if and only if for any
f € F(C), which we denote f: X — Y the morphism of homotopy function complexes

Mapaig,.(m) (s Z): Mapjg () (Vs Z) = Mapa,, () (X, 2)

is a weak equivalence of simplicial sets. It suffices to prove this for any chosen model
of Map [Hir03, Theorem 17.5.31]. Let f = F(g) for some g: V' — W in C. Recalling
that morphisms in C are cofibrations between cofibrant objects, and F' is left Quillen,
it is no loss of generality to assume that X and Y are cofibrant algebras. Thus,
the homotopy function complexes Map j, (aq)(X, Z) and Map . (aq) (Y, Z) can be
constructed as fibrant simplicial sets Homay,, (a)(X; Zx) and Homaye (ag)(Y, Zy)
where Z, is a simplicial resolution of Z in the category of algebras [Hir03, Section
17.1]. Since U preserves limits, fibrations, and weak equivalences, U(Z,) is a simplicial
resolution of U(Z). Hence, a homotopy function complex Map ,,(V,U(Z)) in M can
be computed via Homa (V,U(Z.)).

Finally, by adjointness we have that Map Alg (M) (f, Z) is a weak equivalence if and
only if the morphism

Map (9, U(Z)): Map (W, U(Z)) - Map p(V,U(Z))

is a weak equivalence. This occurs if and only if U(Z) is a local object in M, as
required. O

The proof above also works if Alg; (M) is only a semi-model category, using
[Bar10, Scholium 3.64] instead of the appeal to [Hir03].

Theorem 3.4. Suppose that Algr(M) and Algp(Le(M)) have transferred model
structures. Then LpcyAlgp(M) exists and coincides with Algp(Le(M)). Further-
more, if Algp(M) and Algr(Le(M)) exist as semi-model categories then the local

projective semi-model structure LpcyAlgp(M) exists and coincides with the semi-
model structure Algp(Le(M)).
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This result means that, of the two ways of going around the following diagram to
study local algebras, the ability to go counterclockwise (localize then transfer) implies
the ability to go clockwise (transfer then localize). The opposite is not true: there are
examples where one can go clockwise, but not counterclockwise (see Remark 5.10
below).

Lp
Algr (M) =% Algy(Le(M)) = Ly Algr(M)

| I

M Lc(M)

L¢

The importance of semi-model structures is that transfers to categories of alge-
bras often only result in semi-model structures (see [WY18]), especially when one is
transferring from L¢ (M) where one has lost control over the trivial cofibrations. We
have already seen in Example 2.9 that semi-model categories are unavoidable, and
cannot necessarily be improved to full model structures.

Proof. We first focus on the situation of model structures, delaying discussion of
semi-model structures until the end of the proof. We first show that the identity
functor Id: Algy (M) — Algp(Le(M)) is a left Quillen functor. It is sufficient to
prove that its inverse Id=' : Alg,(Lc(M)) — Algy (M) maps (trivial) fibrations to
(trivial) fibrations. A fibration in Algp(L¢(M)) is a morphism f: X — Y such that
U(f) is a fibration in L¢(M). Hence, Id~1(U(f)) is also a fibration in M because
Id=1': Le(M) — M is a right Quillen functor. Therefore, Id~!(f) is also a fibra-
tion in Alg, (M) because Alg, (M) carries a transferred model structure. The same
argument applies for trivial fibrations.

As a consequence, the class of cofibrations in Alg; (M) coincides with the class
of cofibrations in Algy(L¢(M)). In addition, an adjunction argument shows that the
fibrant objects in Algy(Le(M)) are exactly fibrant F'(C)-local algebras. The machin-
ery of homotopy function complexes may be applied in Alg; (M), and if Z is a fibrant
algebra, a model for Mapj, (rq)(X, Z) is provided by Homajg, (r1)(X™, Z), where
X* denotes a cosimplicial resolution in Alg,(M). Recall that if a morphism induces
weak equivalences on one model for Map, then it induces weak equivalences on all
models for Map [Hir03, Theorem 17.5.31]. So when we write Homayg (a0 (X", Z)
below, it should be read as equivalent to Map,, (n) (X, Z).

To complete the proof, note that f : X — Y is a F'(C)-local equivalence in Alg; (M)
if and only if it induces a weak equivalence between simplicial sets:

HomAlgT(M)(Y*, Z) — HomAlgT(M)(X*a Z)

for all fibrant local objects Z € Algp(M), where X*,Y* are cosimplicial resolutions
of X and Y [Barl0, Scholium 3.64]. But any cosimplicial resolution in Alg,(M) is
also a cosimplicial resolution in Algp(Le(M)) because they have the same class of
cofibrations, and because any weak equivalence in Alg,(M) is also a weak equivalence
in Algy(Le(M)). Hence, we have

HomAlgT(M) (X*, Z) &~ HomAlgT(Lc(M)) ()(*7 Z)
for any local fibrant object Z since it is also a fibrant object in Alg,(L¢e(M)). So, f
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induces a weak equivalence

Map g, (Le(m)(Ys Z) = Mapaye (£0(m)) (X, Z)

for any fibrant object Z in Alg,.(Lc(M)), so f is a weak equivalence in Alg,(L¢(M)),
as required.

For semi-model categories, precisely the same proof works. As the first paragraph
focuses entirely on fibrations and trivial fibrations, it applies verbatim to semi-model
structures and proves that the classes of fibrations in these two semi-model structures
on Alg,(M) coincide. The second paragraph proves that cofibrations coincide, by
lifting. This works for semi-model categories as well.

Lastly, to prove that weak equivalences coincide, note that Scholium 3.64 in [Bar10]
is written to work for semi-model categories (there called left model categories), and
that the machinery to carry out cosimplicial resolutions for cofibrant objects is also
provided (indeed, it goes back to [Spi01]). An analogue of [Hir03, Theorem 17.5.31]
is similarly easy to prove. Thus, F'(C)-local equivalences f: X — Y between cofibrant
objects are weak equivalences in Algy(L¢(M)). We now remove the condition that X
and Y are cofibrant. For a general F'(C)-local equivalence f: A — B, replace f by its
cofibrant replacement Qf in Alg,(Lc(M)). Note that the morphisms QA — A and
QB — B are trivial fibrations in Alg;(L¢(M)), hence in Le(M), hence in M. So the
two-out-of-three property for F(C)-local equivalences (which holds independently of
the existence of a semi-model structure on L pcyAlgy(M)) shows that Qf is a F'(C)-
local equivalence. The argument just given proves that Qf is a weak equivalence in
Algp(Le(M)), as are the morphisms QA — A and QB — B. Thus, by the two-out-
of-three property, so is f, completing our proof. O

The hypotheses of this Theorem are satisfied for the free monoid monad if Le (M)
satisfies the pushout product and monoid axioms. Conditions on M and C are pro-
vided in [Whil4b] so that this occurs. For F' = Sym one must also prove that L¢ (M)
satisfies the commutative monoid axiom, but again conditions for this to occur are
given in [Whil4b].

We now characterize when this lifted model structure exists. When we say U
preserves local equivalences we mean that U takes F'(C)-local equivalences to C-local
equivalences.

Theorem 3.5. Let M be a K-compactly generated model category where K is a satu-
rated class in M. Let T be a K-admissible monad on M. Assume that the localization
Le(M) is a K-compactly generated model category and, moreover, the domains of gen-
erating trivial cofibrations in Le(M) are cofibrant (for example, if the domains are
cofibrant in M ). Assume also that the projective structure on Algp(M) is left proper.

Then the transferred model structure Algy(Le(M)) exists if and only if U preserves
local equivalences.

Note that conditions are given in [Whil4b] so that L¢ (M) satisfies the hypothesis
of being a K-compactly generated monoidal model category, so that Theorem 2.6 can
be used to put (semi-)model structures on categories of algebras over colored operads.
Furthermore, [Whil4b, Corollary 4.15] provides conditions guaranteeing cofibrancy
for the domains of morphisms in J. Lastly, [BB17] provides conditions guaranteeing
that Alg, (M) is left proper.
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Below, we use U'"¢ to denote the forgetful functor from Alg;(Le(M)) to Le(M).
As a functor, this is of course the same as U from Alg,(M) to M.

Proof. 1f the transfer from L¢ (M) to Algp(Le(M)) exists, then by Theorem 3.4 the
transferred model structure coincides with the lifted localization. So, U!°¢ preserves
weak equivalences. Hence, U preserves local equivalences.

Let us prove the converse. The hypotheses of the theorem allow us to use the
machinery from [BB17] to prove that the transfer exists if we can prove that T
is K-admissible for L¢(M). For this we need to analyze a pushout created from
a generating trivial cofibration f: K — L in Le¢(M), and a morphism of algebras
g: F(K)— X:

F(E) 2L P
o
x—t .p

We must prove that the underlying morphism of f belongs to K and is a local
equivalence. Observe that U(f) is in K because T is K-admissible. We must prove
that it is a local equivalence. Since the transferred model structure on Alg, (M) is
left proper, the pushout (2) is actually a homotopy pushout in Alg;(M). Let Z be
a local fibrant algebra, so that U(Z) is a local fibrant object in Le(M). Apply the
simplicial mapping space functor Map i, (r¢)(—, Z) to the pushout (2). Since F'(K)
and F'(L) are cofibrant, Mapy,, (am)(—,Z) can be constructed as a levelwise Hom
functor Hom g, (A1) (—, Z«), where Z, is a simplicial resolution of Z. Note that U(Z,)
is a simplicial resolution of U(Z) in L¢ (M), so adjunction yields a homotopy pullback
in simplicial sets:

Map g, (M) (f.2)
Map g, (m) (P Z) = Mappjg,. (a1 (X Z)

| l

Map (L, U(Z)) Map (K, U(Z))

Map y (£,U(2))

Note that Map, ) (f,U(Z)) is a trivial fibration since f is a local trivial cofi-
bration and U(Z) is a fibrant local object. Therefore, MapAlgT(M)(f, Z) is a trivial

fibration for all Z, so f is a local equivalence in Alg,(M). Since U preserves local

equivalences, U(f) is a local equivalence and we have completed the proof. O

We now give the semi-model category version of Theorem 3.5. In the following,
an algebra X is said to be relatively cofibrant if U(X) is cofibrant (in either M or
Lc (M), since the two model categories have the same cofibrant objects).

Corollary 3.6. Let M be a K-compactly generated model category, for some sat-
urated class of morphisms IC. Let T be a K-semi-admissible monad (so there is a
transferred semi-model structure Algr(M)). Assume that Le(M) exists as a semi-
model category and that the domains of its generating trivial cofibrations are cofibrant.
Then the transferred semi-model structure on Algyp(Le(M)) exists if and only if U
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preserves local equivalences. In addition, if cofibrant algebras are relatively cofibrant
then we obtain on Algp(Lc(M)) a transferred semi-model structure over Le(M).

Note that conditions such that cofibrant algebras are relatively cofibrant are given
in [WY18] (Theorems 6.2.3 and 6.3.1).

Proof. We proceed as in the proof of the theorem, but assume that the algebra X is
a cofibrant algebra. We form the pushout square

F(x) 2L P

L

and we note that it is a homotopy pushout square even if Alg; (M) is not left proper,
because all objects in the square are cofibrant and F(f) is a cofibration of algebras.
The rest of the proof follows precisely as in the theorem, using that F'(K) and F'(L)
are cofibrant algebras. If cofibrant algebras are relatively cofibrant, then we can do
the same proof starting with an algebra X cofibrant in M and using that F(K)
and F(L) are also cofibrant in M to deduce that the pushout square is a homotopy
pushout. ]

4. Localizing a category of algebras

In the previous section we provided conditions so that we could first localize M
at a set of morphisms C and then transfer the local (semi)-model structure to the
category of T-algebras. An alternative way to study local T-algebras is to lift the
localization L¢ to a localization Lp) on the category of algebras (where F'(C) is
the set of free T-algebra morphisms on C). Conditions for such lifts to exist have
been found in [CRT14], along with an extensive discussion of colocalization and
a comparison between L¢ and Ly (p(c)) with applications to classical localizations
for spaces, abelian groups, and spectra. We will now summarize the main results
of [CRT14] that are related to our results on localizations, and then we deduce
new results regarding preservation of T-algebra structure by L¢ in the next section,
building both on our work above and on [CRT14].

In [CRT14], the localizations under consideration are homotopical localizations.
Usually, such a setting would be a slight generalization of the notion of a left Bous-
field localization, avoiding the need to assume that there is a set of morphisms
being inverted. However, in [CRT14] the focus is on homotopical localizations that
come from left Bousfield localizations L¢, so the setting matches ours. Borrowing
from [CRT14, Section 6], we say that a C-localization of an object X is a trivial
fibration £x: X — L¢(X) in Le(M). This can be taken to be fibrant replacement in
LeM, so the pair (Le, ¢) induces a monad on M that is idempotent on the homotopy
category Ho(M). A key concern of [CRT14] is determining when this endofunctor,
which we also denote L¢, lifts to a localization of algebras in the following sense:

Definition 4.1. We say that L¢ lifts to the homotopy category of T-algebras if there
is an endofunctor LT on Ho(Alg,(M)), and a natural isomorphism h: LeU — ULT
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in Ho(M) such that h o lyg = UlL in Ho(M) for all E, where Ix: X — L¢(X) and
IL: E — LT(E) are the localization morphisms.

The main results from [CRT14] that we will be interested in regard when forgetful
functors preserve local equivalences (as in Theorem 3.4) and when localizations lift
to the category of algebras. The following two results are consequences of Lemma 7.3
and Theorem 7.8 in [CRT14].

Lemma 4.2. If a localization L lifts to the homotopy category of T-algebras, then U
preserves and reflects local objects and equivalences.

The following is a uniqueness theorem for the lift, proving that if the lift exists then
it must be the lift we expect to exist, namely Lp ). Note, however, that Lp ) could
exist and not be a lift of L¢; see Example 5.11. Conditions to force Lp(c) to be a lift
of L¢ are given in [GRSO18]. We have weakened the hypothesis in [CRT14] from
requiring full transferred model structures to only requiring semi-model structures:

Theorem 4.3. Suppose that Algp(M) has a transferred semi-model structure, that
LpcyAlgr (M) exists as a semi-model category, and that L lifts to Ho(Algp(M)).
Then:

1. T preserves C-local equivalences between cofibrant objects,

2. there is a natural isomorphism Bx : LeU(X) = ULpe)(X) in Ho(M) for all
algebras X, and

3. U preserves and reflects local equivalences, trivial fibrations, and fibrant objects.

The reason we can weaken the hypothesis to only requiring a semi-model struc-
ture is that the proof in [CRT14] only ever works on the homotopy level or on the
subcategory of cofibrant objects. The argument required to define Bx (recalled in
the next section) requires a lift in L¢ (M), not in a category of algebras. We will see
some consequences of this generalization in Section 5, and the generalization allows
us to apply this theory to the many situations where only semi-model structures are
known.

5. Preservation of algebras by localization

The following definition has appeared in [Whil4b], where M is a model category
and C is a set of morphisms in M. As in the previous section, L¢ is an endofunctor
of Ho(M) induced by fibrant replacement in L¢(M).

Definition 5.1. L¢ is said to preserve T-algebras if

1. When F is a T-algebra there is some T-algebra E that is weakly equivalent in
M to Le(UE).

2. In addition, when F is a cofibrant T-algebra, then there is a choice of E in
Algp(M) with U(E) local in M, a T-algebra homomorphism rg: E — E that
lifts the localization morphism lyg: UE — Le(UE) up to homotopy, and a

weak equivalence fg: Le(UE) — UE such that Beolyg = Urg in Ho(M).
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Observe that, when L¢ lifts to the homotopy category of T-algebras in the sense of
Definition 4.1, it implies the preservation of Definition 5.1 on the homotopy category
level, but does not necessarily imply there is an actual morphism from E to F in
Alg(M). However, Definition 5.1 does imply that L¢ lifts to the homotopy category
of T-algebras, and naturality of £ is deduced as part of Theorem 5.6.

The following is proven in [Whil4b], and provides a host of examples where
preservation occurs, discussed in Example 5.7.

Theorem 5.2. If Algp(M) and Algp(Le(M)) have transferred semi-model struc-
tures then L¢ preserves T-algebras.

Proof. This has already been proven in [Whil4b, Section 3] and [WY 18, Theorem
7.2.3], but for the sake of being self-contained we recall the main points of the proof.
We must verify the statements in Definition 5.1, and of course (1) follows from (2)
after cofibrantly replacing in the category of T-algebras. So, let E' be a cofibrant 7-
algebra, and define E to be R¢ rF, the fibrant replacement in Alg,(L¢(M)). That E
is weakly equivalent to L¢(UE) is proven in [Whil4b] and [WY18] by constructing
local equivalences L¢(UE) ~ R¢UE — Re v E and then observing that a local equiv-
alence between local objects (using that Algy(L¢(M)) is transferred from Le(M)) is
a weak equivalence. Observe that U (E) is local because the semi-model structure on
Algp(Le(M)) is transferred. The morphism rg: E — E is just the fibrant replace-
ment morphism Re r, and the comparison S is the following lift in Le(M):

UE —— > UE
7
~c o
L\ - - BE
Le(UE) * O

We will see in Theorem 5.6 that, under mild hypotheses on M and T, if L¢
preserves T-algebras, then the transferred semi-model structure Alg,(L¢(M)) exists.
Furthermore, this implies the localization L¢ lifts, as we now show.

Proposition 5.3. Suppose that Algr(M) and Algp(Le(M)) have transferred semi-
model structures. Then L lifts to the homotopy category of T-algebras in the sense
of Definition 4.1.

Proof. Define the localization LT to be (the image in Ho(Algy(M)) of) Re 1. The
natural isomorphism % will be the image in Ho(M) of 8. We construct § via lifting
in L¢(M), using Theorem 3.4 to realize that Algy(Le(M)) = Lpc)Algr(M) and so
Rer = Rpey:

UF —— URF(C)E

ReUE —— >

This lift demonstrates immediately that 8o [U = UlT in Ho(M). Note that the top
horizontal morphism is a C-local equivalence because Alg;(L¢(M)) has the trans-
ferred model structure, so the lift is a C-local equivalence by the two-out-of-three
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property. Note that the domain and codomain of the lift are C-local objects (again
using that the fibrations are transferred from L¢(M)). Hence, the lift is a weak
equivalence in M. In addition, the lift is unique in Ho(M) by the universal property
of localization, since any other lift would necessarily be a weak equivalence in M
between the same two C-local objects. Finally, the lift is natural in Ho(M) because
if we began with a morphism E — F' and constructed this lift on its domain and
codomain then we could in addition construct a homotopy unique lift from R.UFE
to URpc)F, and so uniqueness tells us the relevant naturality square commutes in

Ho(M). O
Proposition 5.4. If L¢ preserves T-algebras then U preserves local equivalences.

Proof. Let E be a T-algebra, cofibrant in M. Consider the following diagram, guar-
anteed to exist because L¢ preserves T-algebras:

UE) "~ U(E)

Since lg: U(E) — Le(U(E)) is a local equivalence and g is a weak equivalence,
Urg is a local equivalence. So U preserves local equivalences of the form rg.

Suppose that f: F — B is a F(C)-local equivalence in Alg,(M). Consider the
diagram

U(f)

U(E) U(B)
U<TE>| LeU(B) =YY 1 ou(B) Ulrs)
U(E) ~ U(B)

We proved above that the outside vertical morphisms are local equivalences. The
morphisms in the lower trapezoid are all weak equivalences in M because they are
local equivalences between local objects. Thus, in Ho(M), the dotted arrow exists and
is an isomorphism. It follows that U(f) is a local equivalence because its localization
is an isomorphism in Ho(M). O

We turn now to the consequences we can deduce when preservation occurs. Recall
that semi-admissibility is a weak hypothesis often satisfied in practice by monads
encoding colored operads.

Theorem 5.5. Assume that T is K-semi-admissible, M is K-compactly generated,
and Le(M) is K-compactly generated, and has cofibrant domains of the generating
trivial cofibrations, for some saturated class of morphisms K. If L¢ lifts to the homo-
topy category of T-algebras (as in Definition 4.1) then Algy(Le(M)) has a trans-
ferred semi-model structure, which is a full model structure if T is K-admissible and
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if Algp(M) is left proper. In either case, the lifted homotopy localization LT is induced
by a left Bousfield localization L pcyAlgp(M).

Proof. Lemma 4.2 proves that U: Ho(Algy(M)) — Ho(M) preserves local equiva-
lences. Note that U: Alg; (M) — M also preserves local equivalences. Theorem 3.5
and Corollary 3.6 imply that Algr(Le(M)) exists. Theorem 3.4 implies that
LpcyAlgp (M) exists and coincides with Algr(L¢(M)). The homotopy uniqueness
of 8 in Theorem 4.3 implies that Lpc) is a lift of L¢ to the model category level, i.e.,
agrees with L7 O

Note that the converse to this theorem also holds, i.e., we can deduce that L¢ lifts
to the homotopy category of T-algebras if we know that Alg;(Lc(M)) exists as a
semi-model category, using Proposition 5.3.

We are finally ready for our omnibus theorem relating the notions considered in
this paper and [CRT14].

Theorem 5.6. Suppose that M contains a saturated class of morphisms IC such that
T is KC-semi-admissible, M is IC-compactly generated, C is a set of morphisms in M,
and Le(M) is a K-compactly generated model category with cofibrant domains of the
generating trivial cofibrations. The following are equivalent:

1. Lc¢ lifts to a left Bousfield localization Lgcy of semi-model categories on
Algr (M), where F(C) is the set of free T-algebra maps on C.

2. U: Algp(M) — M preserves local equivalences.
3. Algp(Le(M)) has a transferred semi-model structure.
4. Le¢ preserves T-algebras.

Furthermore, any of the above implies that

(5) T preserves C-local equivalences between cofibrant objects.

Proof. That (1) implies (2) is part of Lemma 4.2. That (2) is equivalent to (3) is
Corollary 3.6, and that (3) implies (1) is Theorem 3.4. That (3) implies (4) is The-
orem 5.2. That (4) implies (2) is Proposition 5.4. That (1) implies (5) is part of
Theorem 4.3. O

In [CRT14, Theorem 7.1], it is shown that (5) is equivalent to the statement
that L, lifts to TQ-algebras in Ho(M), where @ is cofibrant replacement in M.
In [CRT14, Theorem 7.8], it is shown that (2) is equivalent to the statement that
L lifts to Ho(Algy(M)). There are many examples demonstrating that the category
of TQ-algebras in Ho(M) is not equivalent to Ho(Alg,(M)) (e.g., [JN14, Example
5.2]), and so there is no reason to expect that (5) would be equivalent to (1)-(4). We
will discuss in Theorem 6.2 what can be deduced from (5).

Ezample 5.7. The hypotheses regarding K-semi-admissibility (Definition 2.4) and K-
compact generation (Definition 2.5) are satisfied for monads T arising from any col-
ored operad, when the class K is the class of trivial cofibrations, and when M is
the Quillen model structure on simplicial sets or compactly generated spaces, any of
the family model structures on G-equivariant spaces, the Quillen model structure on
chain complexes over a field of characteristic zero, the model structure from Chapter 2
of [Hov99] for the stable module category of a quasi-Frobenius ring, or the folk model
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structure on the category of small categories. The hypotheses are satisfied for the pos-
itive and positive flat model structure on symmetric or orthogonal spectra, for any
monad T arising from a colored operad, when I is the class of trivial h-cofibrations
defined in [BB17]. These statements are proven in [WY18] and [WY20]. With these
statements in hand, we see numerous applications of Theorem 5.6:

1.

When M is the category Chxg(k) of bounded chain complexes over a field
of characteristic zero, then for any left Bousfield localization L¢ (M), and any
colored operad P, there is a transferred model structure on P-algebras in L¢ (M)
[WY18, Corollary 8.1.3], i.e., statement (3) holds. Hence, by Theorem 5.6, such
localizations can be constructed on the level of P-algebras, and such localizations
preserve P-algebras.

When M is the category of simplicial sets, then for any left Bousfield localiza-
tion L¢(M), and any colored operad P, there is a transferred model structure
on P-algebras in Le(M) [WY18, Theorem 8.2.1], i.e., statement (3) holds. This
includes the homology localizations that motivated Bousfield to develop homo-
topical localization theory [Bou75]. Theorem 5.6 implies that such localizations
can be constructed on the level of P-algebras, and such localizations preserve
P-algebras.

When M is the category of simplicial k-modules, for k a field of characteristic
zero, then any left Bousfield localization preserves algebras over any colored
operad [WY20, Example 11.19], i.e., statement (4) holds. This implies that
there is a transferred model structure on local algebras, and that the localization
lifts to the level of algebras.

When M is the category of symmetric spectra with the positive flat model
structure [Shi04], F is any cofibrant ring spectrum, and f is any morphism of
spectra between cofibrant objects, then L lifts to the category of E-modules
(i.e., statement (2) holds) if either F is connective or if Ly commutes with sus-
pension [CRT14, Theorem 8.3]. This includes all of the homology localization
functors considered by Bousfield [Bou79], Miller’s finite localizations [Mil92],
or the localizations with respect to K (n) or the n!* Morava E-theory [Rav92],
so fundamental to chromatic homotopy theory.

When M is the category of motivic symmetric spectra with the positive flat
model structure, then the slice spectral sequence gives rise to an infinite tower of
left and right Bousfield localizations, and the left localizations preserve A,.- and
E-algebra structure [GRS012, Proposition 5.4, Theorem 5.17] (i.e., state-
ment (4) holds). Indeed, [GRSO12, Theorem 4.2] is a preservation result for
algebras over any X-cofibrant operad with respect to monoidal left Bousfield
localizations [Whildb, Definition 4.4], including the motivic analogues of the
localizations listed for symmetric spectra above. By Theorem 5.6, such localiza-
tions can be constructed on the level of algebras, and we now have transferred
semi-model structures with which to study the local algebras.

When M is the category of G-equivariant orthogonal spectra, the machinery of
Theorem 5.6 can be applied to monads arising from equivariant operads. The
main result of [HH14] verifies statement (1) of Theorem 5.6 for the localization
of commutative ring spectra that arises in the Hill-Hopkins-Ravenel proof of
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the Kervaire Invariant One Theorem [HHR16], by using group-theoretic prop-
erties of the group (G =7Z/8) in question to construct the localization at the
level of algebras one cell at a time. This same method has been used in non-
equivariant spectra to lift localizations to E-algebras, e.g., in [EKMM97].
By Theorem 5.6, we now know that there is a transferred model structure on
local commutative ring spectra, and this has been generalized in [GW18] to
the setting of algebras over N-operads. Such algebras have some, but not all,
of the Hill-Hopkins-Ravenel multiplicative norms, and Theorem 5.6 allows us
to lift localizations to such categories of algebras, in analogy to the approach
of [HH14].

7. Algebras over Y-cofibrant colored operads are preserved by any monoidal left
Bousfield localization when M is the category of small categories with the folk
model structure [WY 20, Section 13] (including localizations obtained from sim-
plicial sets, as discussed in [CRT14, Example 6.2]), when M is the category of
R-modules with the stable model structure [WY20, Section 12] (including the
smashing localizations much studied in representation theory, and characterized
in [BIK11]), and when M is Rezk’s category of ©-spaces or the corresponding
model of (m, k)-categories [Rez10]. Localizations in Rezk’s setting are closely
connected to the Baez-Dolan stabilization hypothesis, as shown in [BW20Db].

Ezample 5.8. In [Whil7], the second author introduced the commutative monoid
ariom and proved that it implies the existence of a transferred model structure
on commutative monoids. Let Sym denote the free commutative monoid functor.
In [Whil4b], it was proven that if a monoidal left Bousfield localization L has the
property that Sym(C) is contained in the class of C-local equivalences, then L¢ (M)
inherits the commutative monoid axiom from M, and hence L¢ preserves commu-
tative monoids. Theorem 5.6 implies the converse, i.e., if Le preserves commutative
monoids then Sym must preserve C-local equivalences. This answers a question posed
to the second author by Nitu Kitchloo.

Remark 5.9. The main result of [GRSO18] complements Theorem 5.6. The result
states that, if M is a simplicial monoidal model category, if T" comes from a col-
ored operad O, if Alg,(M) inherits a transferred model structure from M, if L¢
is a monoidal left Bousfield localization and O(cy, ..., cy;¢) ® — preserves C-local
equivalences, and if the model category Lp(cyAlgy (M) exists, then U preserves local
equivalences (and hence, all (1)-(5) of the statements in Theorem 5.6 are true). The
authors wonder if the results of this paper can be made to work with only semi-model
structures. If so, the existence of Lp()Algr(M) appears to occur more frequently
than the existence of Alg;(L¢(M)), so this result might give easier to check conditions
such that the five equivalent statements in Theorem 5.6 hold. Note that [GRSO18]
also considers colocalizations.

We conclude this section with an example that demonstrates how the conditions
of Theorem A may fail to be satisfied.

Remark 5.10. In [BW20a], we prove that, for combinatorial semi-model categories
M where the domains of the generating cofibrations are cofibrant, L p)Algy (M)
exists as a semi-model category whenever Alg; (M) does. However, this does not
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mean that preservation comes for free, because one does not know that the resulting
localization lifts L¢e unless one also knows that U preserves local equivalences, as the
next example shows.

Example 5.11. Let M be the category of symmetric spectra, with the stable model
structure [HSS00], and let S denote the sphere spectrum. Recall that the n'" Post-
nikov section functor P, is the Bousfield localization L, corresponding to the mor-
phism g = ¥°°(f) where f: S"*! — x is the unique map from the space S"*! to the
space *. It was shown in [CGMV10, Section 6] that P_; does not preserve monoids,
because if R is a monoid (i.e., a ring spectrum), P_1 R cannot be a ring spectrum
(not even up to homotopy), since [S, P_1R] =0, but the unit map of a ring spec-
trum cannot be nullhomotopic. Thus, none of the 5 conclusions of Theorem 5.6 can
be satisfied. Let T denote the free monoid monad on M, and let f: S® —  be the
unique morphism (so Ly yields P_; on Ho(M)). There is a left Bousfield localization
Lp(g) on the category of ring spectra (which is left proper by [BB17]), yielding a
homotopical localization on the homotopy category of ring spectra. This localization
cannot be a lift of P_y, because it would violate Theorem 5.6. In fact, L (g4 is homo-
topically trivial, since g is a retract of F(g) and so Lp(g)(S) = *. This implies that
the unit map S — Lp(y) R is nullhomotopic for every ring spectrum R, so Lp,) R is
contractible for all R.

6. Reflection of local equivalences

We conclude the paper with a partial converse to the last implication in Theo-
rem 5.6, i.e., we state what can be deduced from knowing that a monad 7: M — M
preserves C-local equivalences. We use this result in our companion paper [BW20b],
and we anticipate further applications in future work. Recall that, for any monad
(T, pi,¢) on M and any X € M, there is an augmented cosimplicial object defined as
follows:

Te -
T*(X) =X T(X) X)) =T3(X)...

€T

The morphisms going left are multiplication g on T'. The morphisms going right are
induced by the unit e.

Similarly we have a comonad (7,A,7n), on the category of T-algebras, where
T(X)=FU(X), and we have the classical simplicial bar resolution in Alg,(M):

FT Y UX) = X~—TX) =T?’X) =T3X)... (3)
For our partial converse to Theorem 5.6, we will need the following definition,

which goes back to [Bat98].

Definition 6.1. We will say that the monad (7, i, €) on M is pointwise Reedy cofi-
brant if, for any cofibrant X € M, the augmented cosimplicial object 7*(X) is Reedy
cofibrant.

Many monads we come across in practice are pointwise Reedy cofibrant. For exam-
ple, if O is any nonsymmetric operad acting on a monoidal model category M, and if
1 — O(1) is a cofibration (where 1 is the unit of M), then the free O-algebra functor
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is pointwise Reedy cofibrant [Bat98]. If T" is a polynomial monad and the unit of M
is cofibrant then T is pointwise Reedy cofibrant [BB17]. Work in progress of Mark
Johnson and Donald Yau provides even more examples. With this definition in hand,
we are ready for our partial converse to Theorem 5.6. We do not expect a full converse
to be true in general, as we intend to show in the future using the results of [JN14].
Theorem 6.2. Suppose that Algp(M) admits a transferred semi-model structure and
that:

e T is a pointwise Reedy cofibrant monad,

e T preserves local equivalences between cofibrant objects, and

e U sends cofibrant algebras to cofibrant objects.
Then U reflects local equivalences between cofibrant algebras.
Proof. Suppose that U preserves cofibrant objects. Let f: X — Y be a morphism
between cofibrant algebras such that U(f) is a local equivalence. We must show
f is a local equivalence. Let Z be a local fibrant algebra. We need to show that
the induced map f*: Mapyj, (i) (Ys Z) = Mapa,, (a) (X, Z) is a weak equivalence.
Since X is cofibrant, the mapping space MapAlgT(M)(X, Z) can be constructed as
Homajg,. () (X, Zi) where Z, is a simplicial resolution of Z, again using [Bar10]
[3.64]. Observe that Z, is a local algebra for each Z because Z is local. Observe
that in the bar resolution (3) all terms T%(U(X)) are cofibrant in M (since U(X)

is cofibrant). After applying Map . (aq)(—, Z) to this resolution we have, therefore,
an augmented cosimplicial simplicial set:

MapAlgT(M)(X, Z) ~ I‘IOI’HAlgT(./\/[)()(7 Z*) — HOI’HAlgT(M)(F(T*il)(U(X)), Z*)
Then the cosimplicial simplicial set
Hom g, (s (F(T"1)(U (X)), Zx) = Homp (T*7H(U (X)), U(Z.))
is Reedy fibrant by the Homotopy Lifting Extension Theorem [Hir03, Corollary
16.5.14] applied in M, using that 7" is pointwise Reedy cofibrant. Moreover, this

cosimplicial simplicial set has an extra degeneracy (precomposing with X — T'(X))
which shows that the augmentation

MapAlgT(M)(X, Z) ~ HomAIgT(M)(X, Z) — HomM(T**l(U(X)), U(Z,))
induces a deformation retraction (Lemma 2.1, [Bat93]) of fibrant simplicial sets
Map g, () (X, Z) = Tot(Homp (T* 1 (U (X)), U(Z,))).
Hence, it suffices to show that f induces a weak equivalence
Hom(T*(U(Y)), U(Z4)) = Hompm (T*(U(X)), U(Z.))

for all k > 0. As we have assumed that U(f) is a local equivalence between cofibrant
algebras, and that such local equivalences are preserved by T, the morphism g is a
weak equivalence, since all Z,, are local fibrant algebras. Hence, f is a local equivalence
as required. ]

Our main interest in Theorems 5.6 and 6.2 is their application to localizations of
categories of n-operads, which are connected to the Baez-Dolan stabilization hypoth-
esis [BD95] as explained in [Bat17]. In a companion paper, we improve on the main
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result of [Batl7] and prove a stronger form of Baez-Dolan stabilization, using the
results of the previous sections [BW20b]. We also have plans to apply the dual to
Theorem 5.6 (proven in [WY16]) to prove the McClure-Smith conjecture [MS04b)]
regarding Quillen equivalences between E,,-algebras and certain structured cosimpli-
cial spaces. We anticipate many more applications of Theorem 5.6 in the years to
come.
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