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CALCULI
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(communicated by John R. Klein)

Abstract
The orthogonal and unitary calculi give a method to study func-

tors from the category of real or complex inner product spaces to
the category of based topological spaces. We construct functors be-
tween the calculi from the complexification-realification adjunction
between real and complex inner product spaces. These allow for
movement between the versions of calculi, and comparisons between
the Taylor towers produced by both calculi. We show that when the
inputted orthogonal functor is weakly polynomial, the Taylor tower
of the functor restricted through realification and the restricted Tay-
lor tower of the functor agree up to weak equivalence. We further
lift the homotopy level comparison of the towers to a commuta-
tive diagram of Quillen functors relating the model categories for
orthogonal calculus and the model categories for unitary calculus.

1. Introduction

The orthogonal and unitary calculi allow for the systematic study of functors from
either the category of real inner product spaces, or the category of complex inner
product spaces, to the category of based topological spaces. The motivating examples
are BO(−) : V 7−→ BO(V ), where BO(V ) is the classifying space of the orthogonal
group of V , and BU(−) : W 7−→ BU(W ) where BU(W ) is the classifying space of the
unitary group of W . The foundations of orthogonal calculus were originally developed
by Weiss in [9], and later converted to a model category theoretic framework by
Barnes and Oman in [2]. From the unitary calculus perspective, it has long been
known to the experts, with the foundations and model category framework developed
by the author in [8].

In this paper we use the similarity between real and complex vector spaces, namely
the complexification-realification adjunction to give a formal comparison of the calculi
both on the homotopy level by comparing the towers, and on the model category level
by constructing Quillen functors between the model categories for orthogonal calculus
and the model categories for unitary calculus. In particular, this paper will allow for
a more methodical way of using the calculi together, and to transfer calculations
between them.
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We cover the basic background of the calculi in Section 2. With this background in
place, we begin with a comparison of the input functors in Section 3. In particular we
construct two Quillen adjunctions between the input categories with precomposition
with realification and precomposition with complexification respectively being right
Quillen functors.

Denote by EO
0 the category of input functors for orthogonal calculus, that is, Top∗-

enriched functors from the category of real inner product spaces to the category of
based spaces, and denote by EU

0 the unitary calculus analogue. For a full definition of
these categories, see Definition 2.1. The realification of complex vector spaces induces
a functor r∗ : EO

0 → EU
0 , and the complexification of real vector spaces induces a

functor c∗ : EU
0 → EO

0 , full constructions of such are given in Section 3. These functors
behave well with respect to homogeneous and polynomial functors, see Section 4,
where we prove the following as Lemma 4.1 and Lemma 4.2.

Lemma 1.1.

1. If an orthogonal functor F is n-homogeneous, then r∗F is n-homogeneous, where
r∗ : EO

0 → EU
0 is precomposition with the realification functor.

2. If a unitary functor F is n-homogeneous, then c∗F is (2n)-homogeneous, where
c∗ : EU

0 → EO
0 is precomposition with the complexification functor.

Utilising the Taylor tower for an inputted functor F , and the above result on
homogeneous functors, we prove the following. This result appears as Theorem 4.3
and Theorem 4.4 in the text. This result only applies to reduced functors, that is,
those with trivial 0-polynomial approximation.

Theorem 1.2.

1. If a reduced orthogonal functor F is n-polynomial, then r∗F is n-polynomial,
where r∗ : EO

0 → EU
0 is precomposition with the realification functor.

2. If a reduced unitary functor F is n-polynomial, then c∗F is (2n)-polynomial,
where c∗ : EU

0 → EO
0 is precomposition with the complexification functor.

In Section 4 we also construct Quillen adjunctions between the respective n-
polynomial and n-homogeneous model structures for the calculi.

In [8], the author introduced the notion of weakly polynomial functors. These
functors have a good connectivity relationship with their polynomial approximations.
We show, in Section 5, that for weakly polynomial functors, the restricted Taylor tower
through realification agrees with the Taylor tower for the pre-realified functor. The
following is Theorem 5.5. The result does not hold in the complexification induced
case, since restriction through complexification only picks out even degree polynomial
approximations.

Theorem 1.3. Let F be a weakly polynomial reduced orthogonal functor. Then the
unitary Taylor tower associated to r∗F is equivalent to the pre-realification of the
orthogonal Taylor tower associated to F .

We leave the homotopy level comparisons here and turn to comparing the model
categories in Section 6. This section introduces the goal for the remainder of the
paper. We give a complete diagram, Figure 1, of Quillen adjunctions between the
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model categories for the orthogonal and unitary calculi. The remaining sections of
the paper are devoted to demonstrating how Figure 1 commutes.

We start with the categories of spectra in Section 7, and use the change of group
functors of Mandell and May [6], to construct Quillen adjunctions between spectra
with an action of O(n), U(n) and O(2n) respectively. We utilise the Quillen equiva-
lence between orthogonal and unitary spectra of [8, Theorem 6.4] to show that these
change of group functors interact in a homotopically meaningful way with the change
of model functor induced by realification.

In Section 8 we move to comparing the intermediate categories. These are cate-
gories O(n)EO

n and U(n)EU
n constructed by Barnes and Oman [2], and the author

[8], which act as an intermediate in the zig-zag of Quillen equivalences for orthogonal
and unitary calculus respectively. For this, we introduce two new intermediate cate-
gories, O(n)EU

n and U(n)EO
2n between the standard intermediate categories. These are

the standard intermediate categories with restricted group actions through the sub-
group inclusions O(n) →֒ U(n) and U(n) →֒ O(2n). We exhibit Quillen equivalences
between these intermediate categories and the standard intermediate categories, com-
pleting the picture using change of group functors from [6]. The resulting diagram of
intermediate categories is as follows,

O(n)EO
n

r∗
∼ O(n)EU

n

U(n)+∧O(n)(−)r!

U(n)EU
n

ι∗ c∗
U(n)EO

2n

O(2n)+∧U(n)(−)c!
∼ O(2n)EO

2n.
κ∗

where ∼ denotes a Quillen equivalence.

Finally, Section 9 completes the task of showing how Figure 1 commutes by giving
commutation results for sub-diagrams of Figure 1 on the homotopy category level.

Notation and conventions

The use of a superscriptO is to denote the orthogonal calculus, and a superscriptU
is to denote the unitary calculus. When the superscript is omitted, we mean the
statement applies to both orthogonal and unitary calculus.

We will refer to the category of based compactly generated weak Hausdorff spaces
as the category of based spaces and denote this category byTop∗. This is a cofibrantly
generated model category with weak equivalences the weak homotopy equivalences
and fibrations the Serre fibrations. The set of generating cofibrations shall be de-
noted I, and the set of generating acyclic cofibrations, denoted J .
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2. The calculi

In this section we give an overview of the theory of orthogonal and unitary calculi.
Throughout let F denote either R or C and Aut(n) = Aut(Fn) denote either O(n) or
U(n). For full details of the theories, see [9, 2, 8].

2.1. Input functors
Let J be the category of finite-dimensional F-inner product subspaces of F∞, and

F-linear isometries. Denote by J0 the category with the same objects as J and mor-
phism space J0(U, V ) = J (U, V )+. These categories are Top∗-enriched since J (U, V )
may be topologised as the Stiefel manifold of dimF(U)-frames in V . These categories
are the indexing categories for the functors under consideration in orthogonal and
unitary calculus.

Definition 2.1. Define E0 to be the category of Top∗-enriched functors from J0 to
Top∗.

The category EO
0 is category of input functors for orthogonal calculus as studied by

Weiss and Barnes and Oman [9, 2]. Moreover EU
0 is the category of input functors for

unitary calculus, studied by the author in [8]. These input categories are categories
of diagram spaces as in [7] hence they can be equipped with a projective model
structure.

Proposition 2.2. There is a cellular, proper and topological model category structure
on the category E0, with the weak equivalences and fibrations defined to be the levelwise
weak homotopy equivalences and levelwise Serre fibrations respectively. The generating
(acyclic) cofibrations are of the form J0(U,−) ∧ i where i is a generating (acyclic)
cofibration in Top∗.

2.2. Polynomial functors
Arguably the most important class of functors in orthogonal and unitary calculi

are the n-polynomial functors, and in particular the n-th polynomial approximation
functor. Here we give a short overview of these functors, for full details on these
functors see [9, 2, 8].

Definition 2.3. A functor F ∈ E0 is polynomial of degree less than or equal n or
equivalently n-polynomial if the canonical map

F (V ) → holim
0 6=U⊆Fn+1

F (U ⊕ V ) =: τnF (V )

is a weak homotopy equivalence.

Definition 2.4. The n-th polynomial approximation, TnF , of a functor F ∈ E0 is
defined to be the homotopy colimit of the sequential diagram

F
ρ

τnF
ρ

τ2nF
ρ

τ3nF
ρ

· · · .

Since an n-polynomial functor is (n+ 1)-polynomial, see [9, Proposition 5.4], these
polynomial approximation functors assemble into a Taylor tower approximating a
given input functor. Moreover there is a model structure on E0 which captures the
homotopy theory of n-polynomial functors.
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Proposition 2.5 ([2, Proposition 6.5], [8, Proposition 2.8]). There is a cellular proper
topological model structure on E0 where a map f : E → F is a weak equivalence if
Tnf : TnE → TnF is a levelwise weak equivalence, the cofibrations are the cofibrations
of the projective model structure and the fibrations are levelwise fibrations such that

E
f

ηE

F

ηF

TnE
Tnf

TnF

is a homotopy pullback square. The fibrant objects of this model structure are precisely
the n-polynomial functors and Tn is a fibrant replacement functor. We call this the
n-polynomial model structure and it is denoted n –poly– E0.

2.3. Homogeneous functors
The n-th layer of the Taylor tower satisfies the property that it is both n-polyno-

mial, and its (n− 1)-st polynomial approximation vanishes, [8, Example 2.10]. The
class of functors which satisfy this property are called n-homogeneous.

Definition 2.6. A functor F ∈ E0 is said to be n-reduced if Tn−1F is trivial, and
is said to be homogeneous of degree n or equivalently n-homogeneous if it is both
n-polynomial and n-reduced.

There is a further model structure on E0 which captures the homotopy theory of
n-homogeneous functors. Denote by DnF the homotopy fibre of the map

TnF −→ Tn−1F.

Proposition 2.7 ([2, Proposition 6.9], [8, Proposition 3.13]). There is a topological
model structure on E0 where the weak equivalences are those maps f such that Dnf is
a weak equivalence in E0, the fibrations are the fibrations of the n-polynomial model
structure and the cofibrations are those maps with the left lifting property with respect
to the acyclic fibrations. The fibrant objects are n-polynomial and the cofibrant-fibrant
objects are the projectively cofibrant n-homogeneous functors.

In [8, §8], the author gave further characterisations of the n-homogeneous model
structure. These will prove useful in our comparisons. The results hold true for the
orthogonal calculus, with all but identical proofs.

Proposition 2.8 ([8, Proposition 8.3]). A map f : E → F is an acyclic fibration in
the n-homogeneous model structure if and only if it is a fibration in the (n− 1)-
polynomial model structure and an Dn-equivalence.

This allows us to characterise the acyclic fibrations between fibrant objects.

Corollary 2.9 ([8, Corollary 8.4]). A map f : E → F between n-polynomial objects
is an acyclic fibration in the n-homogeneous model structure if and only if it is a
fibration in the (n− 1)-polynomial model structure.

We now turn our attention to the cofibrations.



232 NIALL TAGGART

Lemma 2.10 ([8, Lemma 8.5]). A map f : X → Y is a cofibration in the n-homo-
geneous model structure if and only if it is a projective cofibration and an (n− 1)-
polynomial equivalence.

Corollary 2.11 ([8, Corollary 8.6]). The cofibrant objects of the n-homogeneous
model structure are precisely those n-reduced projectively cofibrant objects.

2.4. The intermediate categories
In [9], Weiss constructs a zig-zag of equivalences between the category of n-

homogeneous functors (up to homotopy) and the homotopy category of spectra with
an action of O(n). In [2], Barnes and Oman put this zig-zag into a model category the-
oretic framework via a zig-zag of Quillen equivalences between the n-homogeneous
model structure on EO

0 , and spectra with an action of O(n). This zig-zag moves
through an intermediate category, denote O(n)EO

n . In [8], the author constructs a
similar zig-zag of Quillen equivalences between the unitary n-homogeneous model
structure and spectra with an action of U(n). We give an overview of the construction
of these intermediate categories and how they relate to spectra and the n-homogenous
model structure.

Sitting over the space of linear isometries J (U, V ) the n-th complement vector
bundle, with total space

γn(U, V ) = {(f, x) : f ∈ J (U, V ), x ∈ F
n ⊗F f(U)⊥}

where we have identified the cokernel of f with f(U)⊥, the orthogonal complement
of f(U) in V .

Definition 2.12. Define Jn to be the category with the same objects as J and
morphism space Jn(U, V ) given by the Thom space of the vector bundle γn(U, V ).

With this, we may define the intermediate categories.

Definition 2.13. Define En to be the category of Top∗-enriched functors from Jn

to Top∗, and define the n-th intermediate category Aut(n)En to be the category of
Aut(n)Top∗-enriched functors from Jn to Aut(n)Top∗.

Let nS be the functor given by V 7−→ SnV where nV := F
n ⊗F V . By [2, Propo-

sition 7.4] and [8, Proposition 4.2] the intermediate categories are equivalent to a
category of nS-modules and hence come equipped with an n-stable model structure
similar to the stable model structure on spectra. The weak equivalences of the n-stable
model structure are given by nπ∗-isomorphisms. These are defined via the structure
maps of objects in Aut(n)En, and as such have slightly different forms depending on
whether one is in the orthogonal or unitary setting.

For X ∈ O(n)EO
n ,

nπk(X) = colim
q

πk+qX(Rq),

and for Y ∈ U(n)EU
n ,

nπk(Y ) = colim
q

πk+2qY (Cq).

Proposition 2.14 ([2, Proposition 7.4], [8, Proposition 5.6]). There is a cofibrantly
generated, proper, topological model structure on the category Aut(n)En, where the
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weak equivalences are the nπ∗-isomorphisms, the cofibrations are those maps with the
left lifting property with respect to all levelwise acyclic fibrations and the fibrations
are those levelwise fibrations f : X → Y such that the diagram

X(V ) ΩnWX(V ⊕W )

Y (V ) ΩnWY (V ⊕W ).

is a homotopy pullback square for all V,W ∈ Jn.

The fibrant objects of the n-stable model structure are called nΩ-spectra and have
the property that

X(V ) −→ ΩnWX(V ⊕W )

is a levelwise weak equivalence. This property can clearly be deduced from the above
diagram by considering the map X → ∗.

To give the Quillen equivalence between these intermediate categories and spectra
with an action of Aut(n) we now consider the calculi separately. The constructions
are similar for both calculi but it is convenient to have different notation for the
functors involved. We start with the unitary case. Define αn : J

U
n → JU

1 to be the
functor given on objects by αn(V ) = C

n ⊗C V , and given on morphisms by αn(f, x) =
(Cn ⊗C f, x). This defines a Top∗-enriched functor, for full details see [8, Proposition
6.7].

Proposition 2.15 ([8, Theorem 5.8]). There is a series of Quillen equivalences

U(n)EU
n

(αn)!

SpU[U(n)]
(αn)

∗

r!

SpO[U(n)]
r∗

with (αn)
∗Θ(V ) = Θ(Cn ⊗C V ), and (αn)! is the left Kan extension along αn.

The orthogonal case is similar, full details may be found in [2, §8].

Proposition 2.16 ([2, Proposition 8.3]). There is a Quillen equivalence

(βn)! : O(n)EO
n SpO[O(n)] : (βn)

∗

with (βn)
∗Θ(V ) = Θ(Rn ⊗R V ), and (βn)! is the left Kan extension along βn.

2.5. The derivatives of a functor
We now move on to discussing the derivatives of a functor. The derivatives are

naturally objects in Aut(n)En. Their definition comes from constructing an adjunc-
tion between E0 and Aut(n)En. The inclusion F

m → F
n onto the first m-coordinates

induces a functor inm : Jm → Jn.

Definition 2.17. Define the restriction functor resn0 : En → Em to be precomposition
with inm, and define the induction functor indnm : Em → En to be the right Kan ex-
tension along inm. In the case m = 0, the induction functor indn0 is called the n-th
derivative.
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Combining this adjunction with a change of group action from [6] provides an
adjunction

resn0 /Aut(n) : Aut(n)En E0 : indn0 ε
∗ .

This adjunction is a Quillen equivalence between the n-homogeneous model struc-
ture on E0 and the n-stable model structure on Aut(n)En. We will refer to the right
adjoint as inflation-induction.

Proposition 2.18 ([2, Theorem 10.1], [8, Theorem 6.5]). The adjoint pair

resn0 /Aut(n) : Aut(n)En n –homog– E0 : indn0 ε
∗

is a Quillen equivalence.

2.6. Classification of n-homogeneous functors
For a functor F ∈ EU

0 , inflation-induction and the left adjoint to (αn ◦ r)∗ deter-
mine a spectrum Ψn

F with an action of U(n). That is, Ψn
F = (αn ◦ r)! ind

n
0 ε

∗F . More-
over, for F ∈ EO

0 , inflation-induction and the left adjoint to (βn)
∗ defines a spectrum

with an action of O(n), which we again denote by Ψn
F .

Proposition 2.19 ([9, Theorem 7.3], [8, Theorem 7.1]). Let F ∈ E0 be n-homoge-
neous for some n > 0. Then F is levelwise weakly equivalent to the functor defined as

U 7−→ Ω∞[(SnU ∧Ψn
F )hAut(n)].

2.7. Weak polynomials
An important class of functors, introduced by the author in [8] are the weak poly-

nomial functors. These functors have a good connectivity relationship with the poly-
nomial approximations and result in a convergent Taylor tower. We give an overview
of the theory here, noting that the proofs provided by the author in [8, §9] work in
the orthogonal setting also.

Definition 2.20. A map p : F → G in E0 is an order n agreement if there is some
ρ ∈ N and b ∈ Z such that pU : F (U) → G(U) is ((n+ 1) dimR(U)− b)-connected for
all U ∈ J0, satisfying dimF(U) > ρ. We will say that F agrees with G to order n if
there is an order n unitary agreement p : F → G between them.

When two functors agree to a given order, their Taylor towers agree to a prescribed
level. The first result in that direction is the unitary analogue of [10, Lemma e.3].

Lemma 2.21 ([10, Lemma e.3], [8, Lemma 9.5]). Let p : G → F be a map in E0.
Suppose that there is b ∈ Z such that pU : G(U) → F (U) is ((n+ 1) dimR(U)− b)-
connected for all U ∈ J0 with dimF(U) > ρ. Then

τn(p)U : τn(G(U)) → τn(F (U))

is ((n+ 1) dimR(U)− b+ 1)-connected for all U ∈ J0.

Iterating this result, gives the following.

Lemma 2.22 ([10, Lemma e.7], [8, Lemma 9.6]). If p : F → G is an order n agree-
ment, then TkF → TkG is a levelwise weak equivalence for k 6 n.
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Agreement with the n-polynomial approximation functor for all n > 0 gives con-
vergence of the Taylor tower.

Lemma 2.23 ([8, Lemma 9.10]). If for all n > 0, a unitary functor F agrees with
TnF to order n then the Taylor tower associated to F converges to F (U) at U with
dimF(U) > ρ.

Definition 2.24. A unitary functor F is weakly (ρ, n)-polynomial if the map
η : F (U) → TnF (U) is an agreement of order n whenever dimF(U) > ρ. A functor
is weakly polynomial if it is weakly (ρ, n)-polynomial for all n > 0.

Remark 2.25. In the above definition of weakly polynomial, we require that the func-
tor is weakly (ρ, n)-polynomial for all n. Here ρ is permitted to depend on n, i.e., the
functor may be weakly (ρn, n)-polynomial for all n, so long as, the sequence (ρn)n>0 is
bounded above, in which case, one may take ρ to be the upper bound of this sequence,
hence why we have fixed a ρ in the definition.

3. Comparing the input functors

Let V ∈ JO
0 , then the complexification of V , C⊗R V , is a complex vector space

such that

dimC C⊗R V = dimR V.

Given an R-inner product 〈−,−〉V on V , there is a well defined C-inner product on
C⊗ V , given by

〈(a+ ib)⊗ v, (c+ id)⊗ w〉 = 〈av, cw〉V + 〈bv, dw〉V + i〈bv, cw〉V − i〈av, dw〉V

where a+ ib, c+ id ∈ C, and v, w ∈ V .

The complexification of an R-linear map T is given by TC = C⊗ T . Moreover in
the finite dimensional case the matrices representing T and C⊗ T are equal (corre-
sponding to the inclusion O(n) →֒ U(n)) and we get characterisations of images and
kernels,

ker(C⊗R T ) = C⊗R ker(T ) and im(C⊗R T ) = C⊗R im(T ).

Given an R-linear isometry, T : V →W , C⊗T : C⊗V →C⊗W, c⊗ v 7−→ c⊗T (v),
is a C-linear isometry, that respects the inner product. It follows that complexification
gives a well defined functor c : JO

0 → JU
0 .

The “opposite operation” to complexification is that of realification. Let W be a
complex vector space, then its realification WR is the set W with vector addition and
scalar multiplication by reals inherited unchanged from W and the complex multipli-
cation “forgotten”. If {e1, . . . , en} is a basis for W then {e1, . . . , en, ie1, . . . , ien} is a
basis for WR. It follows that

dimR WR = 2dimC W = dimR W.

Up to isomorphism it suffices to check that there is a well defined inner product
on the realification of Cn induced by the Hermitian inner product on C

n. Recall for
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vectors c = (ci), c
′ = (c′i) in C

n, the Hermitian inner product is given by

〈c, c′〉C =

n
∑

i=1

cic′i.

To obtain a real inner product on R
2n = (Cn)R, we realise the vectors c and c′ as

c = a+ ib and c′ = a′ + ib, where a,a′,b,b′ ∈ R
n. By taking the real part of 〈c, c′〉C,

we then define a real inner product on R
2n as

〈(a,b), (a′,b′)〉R = Re

(

n
∑

i=1

cic′i

)

= Re (〈c, c′〉)

under the identification cj = aj + ibj , c
′
j = a′j + ib′j and where (a,b) is notation for

the vector

(a1, b1, a2, b2, · · · , an, bn) ∈ R
2n.

If T : Ck → C
m is a C-linear map then we may view it as an R-linear map

TR : (C
k)R → (Cm)R. It follows that

ker(TR) = (ker(T ))R and im(TR) = (im(T ))R.

If T : V → W is a C-linear isometry, then TR : VR → WR is an R-linear isometry,
and it follows that realification gives a well defined functor r : JU

0 → JO
0 .

3.1. Realification and complexification induce Quillen functors

For an orthogonal functor F ∈ EO
0 , precomposition with r, which we call “pre-

realification” defines a unitary functor

r∗F : JU

0 → Top∗ .

Hence pre-realification defines a functor r∗ : EO
0 → EU

0 , which has a left adjoint r!
given by the formula,

(r!E)(V ) =

∫ W∈JU

0

E(W ) ∧ JO

0 (WR, V ),

i.e. r! is the left Kan extension along r.

Similarly, complexification defines a functor c∗ : EU
0 → EO

0 , which has left adjoint c!
given by the left Kan extension along c. These functors are homotopically meaningful
when one considers the projective model structures on the categories of input functors.

Lemma 3.1. The adjoint pair

r! : E
U
0 EO

0 : r∗

is a Quillen adjunction, when both categories are equipped with their projective model
structures.

Proof. Let f : E → F be a levelwise fibration (resp. levelwise weak equivalence). Then
by definition r∗f : r∗E → r∗F is a levelwise fibration (resp. levelwise weak equiva-
lence). Hence r∗ preserves fibrations and acyclic fibrations.
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Lemma 3.2. The adjoint pair

c! : E
O
0 EU

0 : c∗

is a Quillen adjunction, when both categories are equipped with their projective model
structures.

Proof. The proof is all but identical to that of Lemma 3.1.

4. Comparing the polynomial and homogeneous functors

4.1. Homogeneous functors

Heuristically, the homogeneous functors are the building blocks of the Taylor towers
of the calculi. As such we start with a direct comparison between these functors. This
comparison is reliant on the classifications of homogeneous functors from orthogonal
and unitary calculi.

Lemma 4.1. If an orthogonal functor F is n-homogeneous, then r∗F is n-homoge-
neous.

Proof. Let F be an n-homogeneous orthogonal functor. Then by the characterisation,
Proposition 2.19, F is levelwise weakly equivalent to the functor

V 7−→ Ω∞[(SR
n⊗RV ∧Ψn

F )hO(n)]

where Ψn
F is an orthogonal spectrum with an O(n)-action. It follows that pre-reali-

fication of F is levelwise weakly equivalent to the functor

W 7−→ Ω∞[(SR
n⊗RWR ∧Ψn

F )hO(n)].

Using the derived change of group functor, we construct an orthogonal spectrum with
an action of U(n),

U(n)+ ∧LO(n) Ψ
n
F := U(n)+ ∧O(n) (EO(n)+ ∧Ψn

F ).

By the classification of n-homogeneous unitary functors, Proposition 2.19, there is an
n-homogeneous functor F ′ associated to the above spectrum, given by

W 7−→ Ω∞[(SC
n⊗CW ∧ (U(n)+ ∧O(n) (EO(n)+ ∧Ψn

F )))hU(n)].

By [6, Proposition V.2.3], F ′(W ) is isomorphic to

Ω∞[U(n)+ ∧O(n) ((ι
∗SC

n⊗CW ∧ (EO(n)+ ∧Ψn
F )))h(U(n)].

The U(n)-action on U(n)+ ∧O(n) ((ι
∗SC

n⊗CW ∧ (EO(n)+ ∧Ψn
F ))) is free ((EO(n)+

is a free O(n)-space), hence taking homotopy orbits equates to taking strict orbits.
Hence there is an isomorphism

F ′(W ) ∼= Ω∞[(U(n)+ ∧O(n) ((ι
∗SC

n⊗CW ∧ (EO(n)+ ∧Ψn
F ))))/U(n)].

The strict U(n)-orbits of the spectrum U(n)+ ∧O(n) ((ι
∗SC

n⊗CW ∧ (EO(n)+ ∧Ψn
F ))

are isomorphic to the O(n)-orbits of the spectrum, ι∗SC
n⊗CW ∧ (EO(n)+ ∧Ψn

F )),
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hence F ′(W ) is isomorphic to

Ω∞[(ι∗SC
n⊗CW ∧ (EO(n)+ ∧Ψn

F )))/O(n)].

This last is precisely

Ω∞[(ι∗SC
n⊗CW ∧Ψn

F )hO(n)]

as homotopy orbits is the left derived functor of strict orbits and smashing with
EO(n)+ is a cofibrant replacement in the projective model structure.

Since the action of O(n) on ι∗SC
n⊗CW is equivalent to the O(n) action on SR

n⊗RWR

and the one-point compactification are isomorphic, the above infinite loop space is
isomorphic to

Ω∞[(SR
n⊗RWR ∧Ψn

F )hO(n)].

By the characterisation of n-homogeneous orthogonal functors, we see that this is
levelwise weakly equivalent to F (WR) = (r∗F )(W ).

Lemma 4.2. If a unitary functorE is n-homogeneous, then c∗E is (2n)-homogeneous.

Proof. Since E is n-homogeneous,

E(W ) ≃ Ω∞[(SC
n⊗W ∧Ψn

E)hU(n)].

By definition

(c∗E)(V ) = E(C⊗R V ) ≃ Ω∞[(SC
n⊗CC⊗RV ∧Ψn

E)hU(n)].

Observe that

O(2n)+ ∧LU(n) Ψ
n
E

is an orthogonal spectrum with O(2n)-action. The classification of homogeneous func-
tors in orthogonal calculus, Proposition 2.19 gives a (2n)-homogeneous functor,

V 7−→ Ω∞[(SR
2n⊗V ∧ (O(2n) ∧LU(n) Ψ

n
E))hO(2n)].

A similar argument to Lemma 4.1 yields the result.

4.2. Polynomial functors

Using the above results on pre-realification and pre-complexification of homoge-
neous functors, we can compare polynomial functors. We must add the technical
assumption that F is reduced, i.e., that F (R∞) is weakly contractible. Many of the
functors which one wishes to consider in the calculi are reduced, and in the situations
where they are not, we can take their reduced part to be the homotopy fibre of the
map F → T0F , and work relative to the 0-polynomial approximation.

Theorem 4.3. If an orthogonal functor F is n-polynomial and F (R∞) is weakly
contractible, then r∗F is an n-polynomial unitary functor, that is, the map

r∗TO

n F −→ TU

n (r∗TO

n F )

is a levelwise weak equivalence for every F ∈ EO
0 .
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Proof. We argue by induction on the polynomial degree. The case n = 0 follows by
definition. Assume the map r∗TO

n−1F → TU
n−1(r

∗TO
n−1F ) is a levelwise weak equiva-

lence. There is a homotopy fibre sequence

TO

n F −→ TO

n−1F −→ RO

n F

where RO
n F is n-homogeneous, since F satisfies the conditions of [9, Corollary 8.3].

Lemma 4.1 implies that r∗RO
n F is n-homogeneous in EU

0 , and in particular n-poly-
nomial. As homotopy fibres of maps between n-polynomial objects are n-polynomial,
the homotopy fibre of the map r∗TO

n−1F → r∗RO
n F is n-polynomial. Computation of

homotopy fibres is levelwise, hence the homotopy fibre in question is r∗TO
n F , and it

follows that

r∗TO

n F −→ TU

n (r∗TO

n F )

is a levelwise weak equivalence.

Theorem 4.4. If an unitary functor E is n-polynomial and E(C∞) is weakly con-
tractible, then c∗F is (2n)-polynomial, that is, the map

c∗TU

n E −→ TO

2n(c
∗TU

n E)

is a levelwise weak equivalence for all E ∈ EU
0 .

Proof. The argument follows as in Theorem 4.3 using Lemma 4.2 in place of Lem-
ma 4.1.

4.3. Polynomial model structures
We turn our attention to a model structure comparison. Since Theorem 4.3 only

applies to reduced functors (those F such that F (R∞) is trivial) we have to restrict our
attention to reduced functors. We do this by defining the reduced part of F , denoted
red(F ) to be the homotopy fibre of the map F → T0F . Then red(F ) is reduced, and
defines a functor red(−) : E0 → E0. The composite

EO

0

red(−)
−−−−→ EO

0
r∗

−−−−−→ EU

0 ,

is a right Quillen functor, hence induces a functor on the homotopy categories, al-
though it does not have a left adjoint. In Section 9 we restrict our attention to the
homotopy categories, and do not require the existence of a left adjoint to r∗red(−).

Lemma 4.5. The composite

n –poly– EO

0

red(−)
−−−−→ n –poly– EO

0
r∗

−−−−−→ n –poly– EU

0

preserves acyclic fibrations, and fibrations. In particular, there is an induced functor
on homotopy categories.

Proof. The acyclic fibrations in the n-polynomial model structure are levelwise, hence
both terms in the composite, and resultingly their composite, preserves these. It
suffices by [3, Corollary A.2] to show that the composite preserves fibrations between
fibrant objects, which are the levelwise fibrations by [5, Proposition 3.3.16]. It hence
suffices to show that F preserves fibrant objects. Let F be a n-polynomial orthogonal
functor, then red(F ) is also n-polynomial, and reduced. An application of Theorem 4.3
implies the result.
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Lemma 4.6. The composite

n –poly– EU

0

red(−)
−−−−→ n –poly– EU

0
c∗

−−−−−→ (2n) –poly– EO

0

preserves acyclic fibrations and fibrations. In particular, there is an induced functor
on homotopy categories.

Proof. This follows similarly to Lemma 4.5, using Theorem 4.4 in place of Theo-
rem 4.3.

4.4. Homogeneous model structures

The homogeneous model structures are right Bousfield localisations of the n-
polynomial model structures. This fact, together with the further characterisations of
the homogeneous model structure provided by the author in [8], allows for the con-
struction of Quillen functors between the orthogonal n-homogeneous model structure
and the unitary n-homogeneous model structure.

Proposition 4.7. The composite

n –homog– EO

0

red(−)
−−−−→ n –homog– EO

0
r∗

−−−−−→ n –homog– EU

0

preserves acyclic fibrations and fibrations. In particular, there is an induced functor
on homotopy categories.

Proof. First suppose that f : E → F is a fibration in n –homog– EO
0 . It follows that f

is a fibration in the n-polynomial model structure, and hence r∗red(f) is a fibration
in n –poly– EU

0 by Lemma 4.5, and hence n –homog– EU
0 .

Suppose further that f in an acyclic fibration in n –homog– EO
0 . By Proposition 2.8,

it follows that f is an (n− 1)-polynomial fibration and anDO
n -equivalence. As above it

follows that r∗red(f) is a fibration in (n− 1) –poly– EU
0 . In particular the homotopy

fibre of r∗red(f) is (n− 1)-polynomial. Such objects are trivial in n –homog– EU
0

hence, since n –homog– EU
0 is stable, r∗red(f) is a weak equivalence in n –homog– EU

0 .

Proposition 4.8. The composite

n –homog– EU

0

red(−)
−−−−→ n –homog– EU

0
c∗

−−−−−→ (2n) –homog– EO

0

preserves acyclic fibrations and fibrations. In particular, there is an induced functor
on homotopy categories.

Proof. The proof follows almost verbatim from Proposition 4.7.

Remark 4.9. Without a clearer understanding on how the pre-realification and pre-
complexification functors behave with respect to the polynomial approximations, it is
not possible to say that they preserve all n-homogeneous equivalences. In particular, if
f : X → Y is an n-homogeneous equivalence then DnX is levelwise weakly equivalent
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to DnY , and there is a diagram of homotopy fibre sequences the form

DnX

≃

TnX Tn−1X

DnY TnY Tn−1Y,

which after applying r∗ or c∗ results in diagrams of homotopy fibre sequences (since
fibre sequences are defined levelwise)

r∗DO
n X

≃

r∗TO
n X r∗TO

n−1X

r∗DO
n Y r∗TO

n Y r∗TO
n−1Y.

c∗DU
n X

≃

c∗TU
n X c∗TU

n−1X

c∗DU
n Y c∗TU

n Y c∗TU
n−1Y.

Since we do not have a useful relation between TU
n (r∗X) and r∗TO

n (X), nor between
TO
n (c∗X) and c∗TU

n (X), it is difficult to say anything meaningful about how the
above diagrams relate to the following diagram

DU
n (r∗X) TU

n (r∗X) TU
n−1(r

∗X)

DU
n (r∗Y ) TU

n (r∗Y ) TU
n−1(r

∗Y ).

DO
n (c∗X) TO

n (c∗X) TO
n−1(c

∗X)

DO
n (c∗Y ) TO

n (c∗Y ) TO
n−1(c

∗Y ).

5. Comparing weakly polynomial functors

5.1. Agreement
The notion of agreement plays a central role in the theory or orthogonal and

unitary calculus, for example it is crucial to the proof that the n-th polynomial ap-
proximation in n-polynomial, see [10]. The pre-realification and pre-complexification
functors behave well with respect to functors which agree to a certain order.

Lemma 5.1. If a map p : F → G in EO
0 is an order n orthogonal agreement, then

r∗p : r∗F → r∗G in EU
0 is an order n unitary agreement.

Proof. Since p is an order n orthogonal agreement, there is an integer b ∈ Z, such
that pV : F (V ) → G(V ) is (−b+ (n+ 1) dimR V )-connected. It follows by definition
that (r∗p)W = pWR

: F (WR) → G(WR) is (−b+ (n+ 1) dimR WR)-connected. Since
dimR WR = dimR W , it follows that (r∗p)W is (−b+ (n+ 1) dimR W )-connected, and
hence r∗p is an order n unitary agreement.

Lemma 5.2. If a map p : F → G in EU
0 is an order n unitary agreement, then

c∗p : c∗F → c∗G in EO
0 is an order 2n unitary agreement.

Proof. Since p is an order n unitary agreement, there is an integer b, such that
pV : F (V ) → G(V ) is (−b+ (n+ 1) dimR V )-connected. It follows by definition that
(c∗p)W = pC⊗W : F (C⊗W ) → G(C⊗W ) is (−b+(n+1) dimR(C⊗W ))-connected.
Since dimR C⊗W = 2dimC C⊗W = 2dimR W , it follows that (c∗p)W is
(−b+ 2(n+ 1) dimR W )-connected, and hence in particular (−b+ (2n+1) dimR W )-
connected, hence c∗p is an order 2n unitary agreement.
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Remark 5.3. In [1] Barnes and Eldred give a tower level comparison between Good-
willie calculus and orthogonal calculus. This relies on the functor F from Goodwillie
calculus being stably n-excisive, that is, the functor must behave well with respect
to (co)Cartesian cubes, see [4, Definition 4.1] for the precise definition. The key
property gained by a stably n-excisive functor is that the polynomial approximation
map pn : F → PnF in Goodwillie calculus is an agreement of order n in the Good-
willie calculus setting. This allows for a clear comparison between the n-polynomial
approximation functors of Goodwillie and orthogonal calculi. In general, the map
F → TnF is not an agreement of order n in either orthogonal or unitary calculus.

5.2. Weak polynomial

Despite the fact that not all functors agree to a specific order with their polynomial
approximations, there is a large class of functors which do. These functors, which were
introduced in [8], are called weakly polynomial and interact meaningfully with the
comparisons.

Proposition 5.4.

1. If F ∈ EO
0 is reduced and (ρ, n)-polynomial then the map

TU

n (r∗ηn) : T
U

n (r∗F ) → TU

n (r∗TO

n F )

is a levelwise weak equivalence. Thus, the n-th polynomial approximation of r∗F
is given by the map r∗F → r∗(TO

n F ).

2. If F ∈ EU
0 is reduced and (ρ, n)-polynomial then

TO

2n(c
∗ηn) : T

O

2n(c
∗F ) → TO

2n(c
∗TU

n F )

is a levelwise weak equivalence. Thus, the (2n)-th polynomial approximation of
c∗F is given by the map c∗F → c∗(TO

n F ).

Proof. We prove part (1), part (2) is similar. There is a commutative diagram

r∗F r∗(TO
n F )

TU
n (r∗F ) TU

n (r∗TO
n )

in which in right–hand vertical map is a levelwise weak equivalence by Theorem 4.3.
Furthermore, the top horizontal map is an order n orthogonal agreement, since F is
weakly (ρ, n)-polynomial and pre-realification preserves agreements, Lemma 5.1. The
lower horizontal map is then a levelwise weak equivalence by Lemma 2.22. It follows
that the map r∗F → TU

n (r∗F ) is a levelwise weak equivalence if and only if the map
r∗F → r∗(TO

n F ) is a levelwise weak equivalence.

Theorem 5.5. Let F be a weakly polynomial reduced orthogonal functor. Then the
unitary Taylor tower associated to r∗F is equivalent to the pre-realification of the
orthogonal Taylor tower associated to F , that is, for all V ∈ JU

0 , and all n > 0, there
is a zig-zag of weak equivalences between the top and bottom rows of the following
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diagram,

r∗DO
n F (V )

≃

r∗TO
n F (V )

≃

r∗TO
n−1F (V )

≃

F(V ) TU
n (r∗(TO

n F ))(V ) TU
n−1(r

∗(TO
n−1F ))(V )

DU
n (r∗F )(V )

≃

TU
n (r∗F )(V )

≃

TU
n−1(r

∗F )(V ),

≃

where F(V ) is the homotopy fibre of the map TU
n (r∗(TO

n F ))(V )→TU
n−1(r

∗(TO
n−1F ))(V ).

Proof. There is a commutative diagram

r∗(TO
n F )

ηn

TU
n (r∗(TO

n F )) TU
n (r∗F )

TU

n
(r∗ηn)

r∗(TO
n−1F )

ηn−1
TU
n−1(r

∗(TO
n−1F )) TU

n−1(r
∗F )

TU

n−1(r
∗ηn−1)

where the left hand horizontal maps are both weak equivalences by Theorem 4.3
and the right hand horizontal maps are both weak equivalences by Proposition 5.4.
It follows that r∗DO

n F is levelwise weakly equivalent to DU
n (r∗F ), and the result

follows.

Combining Theorem 5.5 with Proposition 4.1 we achieve the following corollary.

Corollary 5.6. If F is weakly polynomial, reduced and Θn
F is the spectrum associated

to the homogeneous functor DO
n F , then U(n)+ ∧L

O(n) Θ
n
F is the spectrum associated

to the homogeneous functor DU
n (r∗F ).

6. A complete model category comparison

Combining the model categories for orthogonal and unitary calculus produces the
following diagram, Figure 1, which gives a complete comparison between the orthog-
onal and unitary calculi. The remainder of this paper is devoted to demonstrating
how this diagram commutes. In Section 7 we consider the comparisons between the
different categories of spectra used throughout the calculi, and show that the top
portion of the diagram commutes. In Section 8, we turn our attention to the inter-
mediate categories for the calculi. Here we introduce two new categories, which act
as intermediate categories between the standard intermediate categories. With these
in place, we demonstrate how the middle portion of Figure 1 commutes. It is then
only left to describe how the lower two pentagons of Figure 1 commute. We deal
with this in Section 9. This is considerably more complex since we are attempting to
compose left and right Quillen functors with each other. Before turning our attention
to proving that Figure 1 commutes, we give an example of how this diagram may be
applied in practice. This will utilise the results of Sections 7 and 8, and especially the
commutation results of Section 9.



244 NIALL TAGGART

SpO[O(n)]

(βn)
∗

∼

U(n)+∧O(n)(−)

r∗

SpO[U(n)]

r∗

∼

O(2n)+∧U(n)(−)

ι∗
SpO[O(2n)]

(β2n)
∗

∼

κ∗

κ∗

SpU[O(n)]

(γn)
∗

∼

U(n)+∧O(n)(−)

r!
∼

SpU[U(n)]

(αn)
∗

∼

r!

ι∗

r!
∼ SpO[U(n)]

(δ2n)
∗

∼
r∗

O(2n)+∧U(n)(−)

O(n)EO
n

resn0 /O(n)

∼

(βn)!

r∗
∼ O(n)EU

n

(γn)!

U(n)+∧O(n)(−)r!

U(n)EU
n

resn0 /U(n)

∼

(αn)!

ι∗ c∗
∼ U(n)EO

2n

O(2n)+∧U(n)(−)c!

(δ2n)!

O(2n)EO
2n

res2n0 /O(2n)

∼

(β2n)!

κ∗

n –homog– EO
0

indn

0 ε∗

r∗red(−)
n –homog– EU

0

indn

0 ε∗

c∗red(−)
(2n) –homog– EO

0

ind2n
0 ε∗

Figure 1: Model categories for orthogonal and unitary calculi

The n-sphere functor interacts well with our comparisons as it is reduced. In fact
the following example works just as well for Jn(V,−), V ∈ JO.

Example 6.1. Let nS be the n-sphere from orthogonal calculus, i.e., the object
JO
n (0,−) in n –homog– EO

0 . Under the Quillen equivalence between n –homog– EO
0

and O(n)EO
n , nS corresponds to O(n)+ ∧ nS in O(n)EO

n , which under the Quillen
equivalence between SpO[O(n)] and O(n)EO

n corresponds to O(n)+ ∧ S, that is,

O(n)+ ∧ S O(n)+ ∧ nS
L(βn)! L resn0 /O(n)

nS

Applying the (derived) change of group functor sends O(n)+ ∧ S to U(n)+ ∧ S. As
before, this is the stable n-th derivative of nS, i.e.

U(n)+ ∧ S U(n)+ ∧ nS
L(αn◦r)! L resn0 /U(n)

nS

It follows that Rr∗(nS) ∼= nS in Ho(n –homog– EU
0 ). Applying the (derived) change

of group functor U(n)+ ∧ S corresponds to O(2n)+ ∧ nS in SpO[O(2n)]. This is the
stable (2n)-th derivative of (2n)S, i.e.

O(2n)+ ∧ S O(2n)+ ∧ (2n)S
L(β2n)! L res2n0 /O(2n)

(2n)S

It follows that c∗(nS) ∼= (2n)S, in Ho((2n) –homog– EO
0 ) and (rc)∗(nS) ∼= (2n)S in

Ho((2n) –homog– EO
0 ). This is the functor calculus version of complexification fol-

lowed by realification resulting in a vector space of twice the original dimension.
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7. Comparisons of spectra

We have constructed a Quillen adjunction between the orthogonal and unitary n-
homogeneous model structures. To give a complete comparison of the theories we must
address the comparisons between the other two categories in the zig-zag of Quillen
equivalences of Barnes and Oman [2] and the author [8]. We start by addressing the
relationship between the categories of spectra. For this, we recall the definitions and
model structures involved.

Definition 7.1. For a compact Lie group G, the category Sp[G], is the category of
G-objects in Sp and G-equivariant maps, that is, an object in Sp[G] is a continuous
functor X : J F

1 → Top∗ such that there is a group homomorphism G → Aut(X),
where Aut(X) denotes the group of automorphism of X in Sp. We will refer to
Sp[G] as the category of näıve G-spectra.

The category Sp[G] comes with a levelwise and a stable model structure induced
by the standard levelwise and stable model structures of Sp. Importantly these model
structures are defined independently of group actions, we take levelwise weak equiv-
alences, not levelwise weak equivalences on fixed points.

Lemma 7.2. There is a cellular proper and topological model structure on the cat-
egory Sp[G] with the weak equivalences and fibrations defined levelwise. This model
structure is called the projective model structure.

Lemma 7.3. There is a cofibrantly generated topological model structure on the cate-
gory Sp[G] with, weak equivalences the π∗-isomorphisms, and fibrations the levelwise
fibrations f : Θ → Ψ such that the diagram

Θ(V ) Ψ(V )

ΩWΘ(V ⊕W ) ΩWΨ(V ⊕W )

is a homotopy pullback square for all V,W ∈ J1.

The π∗-isomorphism rely on the model of spectra. For example, they are defined as

πk(Θ) = colimq πk+q(Θ(Rq))

for orthogonal spectra, and

πk(Θ) = colimq πk+2q(Θ(Cq))

for unitary spectra, with the difference coming from the fact that the commutative
monoid S for unitary spectra only takes values on even dimensional spheres.

7.1. Change of group
Let H be a subgroup of a compact Lie group G. Then given a spectrum (in any

chosen model) with an action of G, we can restrict through the subgroup inclusion
ι : H → G to give the spectrum an action of H.

Definition 7.4. For a spectrum Θ with an action of G, let ι∗Θ be the same spectrum
Θ with an action of H formed by forgetting structure through ι.
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In detail, let IF be the category of F-inner product subspaces of F∞ with F-linear
isometric isomorphisms. For a spectrum Θ with G-action, the evaluations maps

ΘU,V : IF(U, V ) → Top∗(Θ(U),Θ(V ))

are G-equivariant. We can apply ι∗ to this, to give a map which is H-equivariant by
forgetting structure,

ι∗ΘU,V : ι∗IF(U, V ) → ι∗ Top∗(Θ(U),Θ(V )) = Top∗(ι
∗Θ(U), ι∗Θ(V )).

This functor has a left adjoint G+ ∧H − : Sp[H] → Sp[G], given on an object Θ
of Sp[H] by

(G+ ∧H Θ)(V ) = G+ ∧H Θ(V ),

compare [6, Proposition VI.2.3].

Proposition 7.5. The adjoint pair

G+ ∧H − : Sp[H] Sp[G] : ι∗

is a Quillen adjunction.

Proof. This follows immediately from noting that the π∗-isomorphisms and q-fibra-
tions are defined independently of the group action.

For our particular groups of interest, we achieve the following.

Corollary 7.6. The adjoint pair

U(n)+ ∧O(n) − : Sp[O(n)] Sp[U(n)] : ι∗

is a Quillen adjunction.

Corollary 7.7. The adjoint pair

O(2n)+ ∧U(n) − : Sp[U(n)] Sp[O(2n)] : κ∗

is a Quillen adjunction.

7.2. Change of model
There is also a change of model subtly involved in the theory. This was proven in

[8], where the author produced a Quillen equivalence between orthogonal and unitary
spectra.

Proposition 7.8 ([8, Theorem 6.4]). The adjoint pair

r! : Sp
U SpO : r∗

is a Quillen equivalence.

In [8, Corollary 6.5], the author applied the above Quillen equivalence to a Quillen
equivalence between the categories of U(n)-objects in both models for the stable
homotopy category. The same is true – with analogous proof – for O(n)-objects in
both model for the stable homotopy category.
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Corollary 7.9. The adjoint pair

r! : Sp
U[O(n)] SpO[O(n)] : r∗

is a Quillen equivalence.

The change of group and change of model are compatible in the following sense. Let
H 6 G act as notation for either the subgroup inclusion O(n) 6 U(n) or the inclusion
U(n) 6 O(2n).

Lemma 7.10. The diagram

SpO[H]
G+∧H(−)

r∗

SpO[G]
ι∗

r∗

SpU[H]
G+∧H(−)

r!

SpU[G]
ι∗

r!

commutes up to natural isomorphism.

Proof. It suffices to show that the diagram of right adjoints commutes. Indeed,

ι∗((r∗Θ)(V )) = ι∗Θ(VR) = (ι∗Θ)(VR) = r∗((ι∗Θ)(V )).

8. Comparing the intermediate categories

To achieve the correct correspondences between U(n)EU
n and O(n)EO

n we introduce
two new intermediate categories via the inclusion of subgroups ι : O(n) →֒ U(n) and
κ : U(n) →֒ O(2n). In our consideration of the comparisons between the categories
of spectra, the order in which we changed the group and changed the model was
unimportant, since the indexing categories, JO

1 and JU
1 , are equipped with the trivial

action. However, for the intermediate categories, the diagram categories Jn have a
non-trivial action of Aut(n), hence the order in which one changes group and changes
model is important. This section gives the correct method for such comparisons.

Definition 8.1. Define O(n)EU
n to be the category of O(n)Top∗-enriched functors

from ι∗JU
n to O(n)Top∗ where ι∗JU

n is an O(n)Top∗-enriched category obtained
from JU

n by forgetting structure through the subgroup inclusion ι : O(n) → U(n).
Similarly define U(n)EO

2n to be the category of U(n)Top∗-enriched functors from
κ∗JO

2n to U(n)Top∗ where κ∗JO
2n is an U(n)Top∗-enriched category obtained from

JO
2n by forgetting structure through the subgroup inclusion κ : U(n) → O(2n).

These categories also come with projective and stable model structures constructed
analogously to those of Proposition 2.14. These new intermediate categories will now
act as intermediate categories between the standard intermediate categories of or-
thogonal and unitary calculus. Further, the new intermediate categories equipped
with their n-stable model structure are Quillen equivalent to spectra with an appro-
priate group action. The proofs of the following two results follow similarly to [2,
Proposition 8.3] and [8, Theorem 6.8].
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Proposition 8.2. There is a Quillen equivalence

(γn)! : O(n)EU
n SpU[O(n)] : (γn)

∗

with (γn)
∗Θ(V ) = Θ(Cn ⊗C V ), and (γn)! is the left Kan extension along γn.

Proposition 8.3. There is a Quillen equivalence

(δ2n)! : U(n)E
O
2n SpO[U(n)] : (δ2n)

∗

with (δ2n)
∗Θ(V ) = Θ(R2n ⊗R V ), and (δ2n)! is the left Kan extension along δ2n.

8.1. Change of group
Let E ∈ U(n)EU

n , then E is defined by U(n)-equivariant structure maps of the form

EU,V : JU

n (U, V ) → Top∗(E(U), E(V )).

Forgetting structure through ι : O(n) → U(n) yields an O(n)-equivariant map

ι∗EU,V : ι∗JU

n (U, V ) → ι∗ Top∗(E(U), E(V )) = Top∗(ι
∗E(U), ι∗E(V )).

This induces a functor ι∗ : U(n)EU
n → O(n)EU

n , which has a left adjoint U(n)+ ∧O(n)

(−) given by

(U(n)+ ∧O(n) E)(V ) = U(n)+ ∧O(n) E(V ),

with structure maps

SnW ∧U(n)+ ∧O(n) E(V ) ∼= U(n)+ ∧O(n) (ι
∗SnW ∧ E(V )) → U(n)+ ∧ E(V ⊕W ),

where the isomorphism follows from [6, Proposition V.2.3].
Completely analogous constructions for the subgroup inclusion i : U(n) → O(2n)

yield an adjoint pair

O(2n)+ ∧U(n) (−) : U(n)EO
2n O(2n)EO

2n : κ∗ .

Lemma 8.4. The adjoint pair

U(n)+ ∧O(n) (−) : O(n)EU
n U(n)EU

n : ι∗ .

is a Quillen adjunction.

Proof. The levelwise fibrations, levelwise weak equivalences and nπ∗-isomorphisms
are defined independently of group actions. It follows that ι∗ preserves these.

This results in a square of adjoint functors,

SpU[O(n)]

U(n)+∧O(n)−

(γn)
∗

SpU[U(n)]
ι∗

(αn)
∗

O(n)EU
n

U(n)+∧O(n)−

(γn)!

U(n)EU
n .

ι∗

(αn)!

Lemma 8.5. The above diagram commutes up to natural isomorphism.
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Proof. Let X be a unitary spectrum with an action of U(n). Then

(ι∗α∗
n)(X)(V ) = ι∗X(nV ) = γ∗

n(ι
∗X)(V ).

The result then follows immediately. Note that the functor ι∗ restricts the group
actions in a compatible way. The restricted action of O(n) on X(nV ) is ι∗(X(σ ⊗ V ) ◦
Xσ(nV )) where σ ∈ U(n). This is equivalent to the action X(ι∗(σ)⊗ V ) ◦Xι∗(σ)(nV )

since X(σ ◦ V ) and Xσ(nV ) commute. This action is precisely the action we get from
first restricting the action and then applying γ∗

n.

Similarly we obtain the following result.

Lemma 8.6. The adjoint pair

O(2n)+ ∧U(n) (−) : U(n)EO
2n O(2n)EO

2n : κ∗ .

is a Quillen adjunction.

This results in a square of adjoint functors,

SpO[U(n)]

O(2n)+∧U(n)−

(δ2n)
∗

SpO[O(2n)]
κ∗

(β2n)
∗

U(n)EO
2n

O(2n)+∧U(n)−

(δ2n)!

O(2n)EO
2n.

κ∗

(β2n)!

Lemma 8.7. The above diagram commutes up to natural isomorphism.

Proof. Let X be an orthogonal spectrum with an action of O(2n). Then

(κ∗β∗
2n)(X)(V ) = κ∗X(nV ) = δ∗2n(κ

∗X)(V ).

The result then follows immediately. The group actions restrict in a compatible way
as in Lemma 8.5.

8.2. Change of model through realification
We define a realification functor r : JU

n → JO
n . This functor induces a right Quillen

functor between O(n)EU
n and O(n)EO

n .
On objects, let r be given by forgetting the complex structure, i.e., Ck 7−→ R

2k.
Morphisms in JU

n are given in terms of the Thom space of the vector bundle

γU

n (V,W ) = {(f, x) : f ∈ JU

0 (V,W ), x ∈ C
n ⊗C f(V )⊥}

over the space of linear isometries JU
0 (V,W ). We then define realification on a pair

(f, x) by

r(f, x) = (fR, rx)

where fR ∈ JO
0 (VR,WR) and rx is the image of x under the R-linear isomorphism

C
n ⊗C f(V )⊥ → R

n ⊗R (fR)(VR)
⊥.

Restricting the U(n) action on JU
n to an action of O(n) through the subgroup
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inclusion ι : O(n) →֒ U(n), induces a functor

r : ι∗JU

n → JO

n

and precomposition defines a functor

r∗ : O(n)EO

n → O(n)EU

n .

To see that r∗ is well defined, we check that the map

(r∗F ) : ι∗JU

n (V,W ) → Top∗((r
∗F )(V ), (r∗F )(V )) = Top∗(F (VR), F (WR))

is O(n)-equivariant where F ∈O(n)EO
n . Indeed, let (f, x) ∈ ι∗JU

n (V,W ) and σ ∈O(n),

(r∗F )(σ(f, x)) = (r∗F )(f, ι(σ)(x)) = F (fR, r(ι(σ)(x))).

For W a complex vector space, the restricted action of U(n) to O(n) on C
n ⊗C W is

compatible with the O(n)-action on R
n ⊗R rW , hence r(ι∗(σ)(x)) = σ(rx), and the

above becomes

F (fR, r(ι
∗(σ)(x))) = F (fR, σ(rx)) = σ(F (fR, rx)) = σ((r∗F )(f, x)).

It follows that the required map is O(n)-equivariant and hence r∗F is a well defined
object of O(n)EU

n .
The structure maps of r∗F are given by iterating the structure maps of F ;

S2n ∧ (r∗F )(Ck)
=
−→ S2n ∧ F (R2k)

σ2

−→ F (R2k+2)
=
−→ (r∗F )(Ck+1),

where σ : Sn ∧ F (Rk) → F (Rk+1) is the structure map of F . As r∗ is defined by
precomposition it has a natural left adjoint, r! given by the left Kan extension along r.

Lemma 8.8. The functor r∗ : O(n)EO
n → O(n)EU

n is a right Quillen functor.

Proof. By definition on objects, r∗ preserves all levelwise weak equivalences and all
levelwise fibrations. The compatibility with r∗ and the structure maps shows that r∗

preserves fibrant objects.

This comparison produces a diagram of adjoint functors

SpO[O(n)]
r∗

(βn)
∗

SpU[O(n)]
r!

(γn)
∗

O(n)EO
n

r∗

(βn)!

O(n)EU
n .

r!

(γn)!

Lemma 8.9. The above diagram commutes up to natural isomorphism.

Proof. Consider the diagram of enriched categories,

JO
1 JU

1
r

JO
n

βn

JU
n

r

γn

It is clear from the definition of these functors that the diagram commutes on objects
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up to natural isomorphism. Now on morphisms, take (f, x) ∈ JU
n . Then

r(γn(f, x)) = r((Cn ⊗ f, x) = (Rn ⊗ fR, rx) = βn((fR, rx)) = βn(r(f, x)).

It follows that rγn = βnr. Since the right adjoints in the required diagram are defined
in terms of precomposition the result follows. Note that the group actions are also
compatible since the unitary γn has been restricted to O(n) actions.

8.3. Change of model through complexification
Define a complexification functor c : JO

2n → JU
n , given on objects by cV = C⊗ V ,

and on morphisms by sending (f, x) ∈ JO
2n(V,W ) to (C⊗ f, cx) ∈ JU

n (cV, cW ), where
cx is the image of x under the composition of isomorphisms,

R
2n⊗Rcoker(f)

ϕ1
−→
∼=

C
n ⊗Rcoker(f)

ϕ2
−→
∼=

C
n ⊗C C⊗R coker(f)

ϕ3
−→
∼=

C
n ⊗C coker(C⊗ f).

where

ϕ1(r1, · · · , r2n, f(v)) = (r1 + ir2, · · · r2n−1 + ir2n, f(v));

ϕ2(c1, · · · , cn, f(v)) = (c1, · · · , cn, 1, f(v)); and

ϕ3(c1, · · · , cn, c, f(v)) = (c1, · · · , cn, (C⊗ f)(c⊗ v)).

Restricting from O(2n) to U(n) through the subgroup inclusion κ : U(n) →֒ O(2n)
gives a functor

c : κ∗JO

2n → JU

n ,

and precomposition defines a functor

c∗ : U(n)EU

n → U(n)EO

2n.

This functor is well defined as for X ∈ U(n)EU
n the map

c∗X : κ∗JO

2n(V,W ) → Top∗((c
∗X)(V ), (c∗X)(W )) = Top∗(X(C⊗ V ), X(C⊗W ))

is U(n)-equivariant. Indeed, for σ ∈ U(n),

(c∗X)(σ(f, x)) = (c∗X)(f, σx) = X(C⊗ f, c(κ∗(σ)x)) = X(C⊗ f, σ(cx))

= X(C⊗ f, σx) = σ((c∗X)(f, x)).

The structure maps of c∗X are induced by those of X, i.e.,

S2n ∧ (c∗X)(V )
=
−→ S2n ∧X(C⊗ V )

σ
−→ X((C⊗ V )⊕ C)

=
−→ (c∗X)(V ⊕ R)

where σ : S2n ∧X(W ) → (W ⊕ C) is the structure map of X ∈ U(n)EO
2n.

The complexification functor c∗ has a left adjoint, c! given by the left Kan extension
along c. We obtain a similar result to the case of realification, Lemma 8.8.

Lemma 8.10. The functor c∗ : U(n)EU
n → U(n)EO

2n is a right Quillen functor.

This produced a diagram of adjoint functors

SpU[U(n)]
r!

(αn)
∗

SpO[U(n)]
r∗

(δ2n)
∗

U(n)EU
n

c∗

(αn)!

U(n)EO
2n.

c!

(δ2n)!
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Lemma 8.11. The above diagram commutes up to natural isomorphism.

Proof. Consider the diagram of enriched categories

JU
1

r
JO
1

JU
n

αn

JO
2n.

δ2n

c

It is clear that this diagram commutes up to natural isomorphism on objects. On
morphisms, let (f, x) ∈ JO

2n(V,W ). Then

r(αn(c(f, x))) ∼= r(αn(C⊗ f, cx)) = r(Cn ⊗C C⊗R f, cx)

∼= r(Cn ⊗ f, cx) = (R2n ⊗ fR, rcx)
∼= δ2n(f, x),

where rcx = x. It follows that rαnc ∼= δ2n. As the right adjoints of the required di-
agram are defined in terms of precomposition, the result follows. The group actions
are compatible by a similar argument to Lemma 8.9.

9. A homotopy category level comparison

We have shown previously that all but the bottom pentagons of Figure 1 commute.
Moreover, since all of the commutation results for the sub-diagrams – excluding the
lower pentagons – involve composing left (resp. right) Quillen functors with left (resp.
right) Quillen functors those sub-diagrams commute on the homotopy category level.
Hence, the only sections of Figure 1 left to consider are the lower pentagons. The
commuting of diagrams of adjoint functors (up to natural isomorphism) means that
the respective diagrams of left and right adjoints commute. These pentagons are built
from a mixture of left and right adjoints, so we must address how it commutes in a
different manner.

Lemma 9.1. The diagram

O(n)EO
n

resn0 /O(n)

r∗
O(n)EU

n

U(n)+∧O(n)(−)
U(n)EU

n

resn0 /U(n)

n –homog– EO
0 r∗

n –homog– EU
0

commutes up to natural isomorphism.

Proof. Consider the diagram of enriched categories

JO
n JU

n
r

JO
0

in0

JU
0r

in0

where in0 is the identity on objects and f 7−→ (f, 0) on morphisms. This diagram
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clearly commutes on objects and morphisms. Let X ∈ O(n)EO
n . Then

resn0 (U(n)+ ∧O(n) (r
∗X))/U(n) = (U(n)+ ∧O(n) (X ◦ r ◦ in0 ))/U(n)

∼= (X ◦ r ◦ in0 )/O(n) ∼= (X ◦ in0 ◦ r)/O(n)

= r∗((resn0 X)/O(n))

where the first isomorphism comes from the fact that for any O(n)-space Y ,
(U(n)+ ∧O(n) Y )/U(n) ∼= Y/O(n), and the second isomorphism follows from the com-
mutation of the above diagram of enriched categories.

Lemma 9.2. The diagram

U(n)EU
n

c∗

resn0 /U(n)

U(n)EO
2n

O(2n)+∧U(n)(−)
O(2n)EO

2n

res2n0 /O(2n)

n –homog– EU
0 c∗

(2n) –homog– EO
0

commutes up to natural isomorphism.

Proof. This proof follows similarly to the above, starting with the diagram of enriched
categories

JU
n JO

2n
c

JU
0

in0

JO
0c

i2n0

which commutes.

These squares are built using alternating left and right adjoints, hence no clean
model category commutation is possible. We start with a larger diagram of homotopy
categories and then restrict to our required diagram. On the homotopy category level
we obtain the following result.

Lemma 9.3. The following diagram of homotopy categories

Ho(SpO[O(n)])
U(n)+∧LO(n)(−)

R(βn)
∗

Ho(SpO[U(n)])
Rr∗

Ho(SpU[U(n)])

R(αn)
∗

Ho(O(n)EO
n )

L resn0 /O(n)

Ho(U(n)EU
n )

L resn0 /U(n)

Ho(n –homog– EO
0 )

Rr∗red(−)
Ho(n –homog– EU

0 )

commutes up to natural isomorphism.

Proof. By the zig-zag of Quillen equivalences, [2, Proposition 8.3 and Theorem 10.1]
the composite

L resn0 /O(n) ◦R(βn)
∗

applied to an orthogonal spectrum Θ with an action of O(n), is levelwise weakly
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equivalent to the functor F , defined by the formula

V 7−→ Ω∞[(SR
n⊗V ∧Θ)hO(n)].

This functor is n-homogeneous, hence also reduced, so Rr∗red(F ) is levelwise weakly
equivalent to Rr∗F . The zig-zag of Quillen equivalences from unitary calculus, [8,
Theorems 6.8 and 7.5], together with inflating Θ to a spectrum with an action of
U(n) gives a similar characterisation in terms of an n-homogeneous functor. The
result then follows by Proposition 4.1.

A similar result holds true for similar diagram on the right of Figure 1, utilising
Lemma 4.2, rather than Proposition 4.1.

Lemma 9.4. The following diagram of homotopy categories

Ho(SpU[U(n)])
Lr!

R(αn)
∗

Ho(SpO[U(n)])
O(2n)+∧LU(n)(−)

Ho(SpO[O(2n)])

R(β2n)
∗

Ho(U(n)EU
n )

L resn0 /U(n)

Ho(O(2n)EO
n )

L resn0 /O(2n)

Ho(n –homog– EU
0 )

Rc∗red(−)
Ho((2n) –homog– EO

0 )

commutes up to natural isomorphism.

Corollary 9.5. The following diagram of homotopy categories

Ho(SpO[O(n)])
U(n)+∧LO(n)(−)

Ho(SpO[U(n)])
Rr∗

Ho(SpU[U(n)])

R(αn)
∗

Ho(O(n)EO
n )

L(βn)!

L resn0 /O(n)

Ho(U(n)EU
n )

L resn0 /U(n)

Ho(n –homog– EO
0 )

Rr∗red(−)
Ho(n –homog– EU

0 )

commutes up to natural isomorphism.

Proof. By Lemma 9.3, there is a natural isomorphism

Rr∗red(−) ◦ L(resn0 /O(n)) ◦R(βn)
∗ ∼=

L(resn0 /U(n)) ◦R(αn)
∗ ◦Rr∗ ◦ (U(n)+ ∧LO(n) (−)).

By the equivalence of the homotopy categories of SpO[O(n)] and O(n)EO
n we have

that R(βn)
∗ ◦ L(βn)!

∼= 1. It follows that

Rr∗red(−) ◦L(resn0 /O(n)) ◦R(βn)
∗ ◦ L(βn)!

∼= Rr∗red(−) ◦ L(resn0 /O(n))

∼= L(resn0 /U(n)) ◦R(αn)
∗ ◦Rr∗ ◦ (U(n)+ ∧LO(n) (−)) ◦ L(βn)!.
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Corollary 9.6. The following diagram of homotopy categories

Ho(SpU[U(n)])
Lr!

Ho(SpO[U(n)])
O(2n)+∧LU(n)(−)

Ho(SpO[O(2n)])

R(β2n)
∗

Ho(U(n)EU
n )

L(αn)!

L resn0 /U(n)

Ho(O(2n)EO
n )

L resn0 /O(2n)

Ho(n –homog– EU
0 )

Rc∗red(−)
Ho((2n) –homog– EO

0 )

commutes up to natural isomorphism.

Proof. Using the same argument as Corollary 9.5 using Lemma 9.4 and the equiva-
lence of the homotopy categories of SpU[U(n)] and U(n)EU

n .

By restricting these larger diagrams, we obtain a homotopy category level commu-
tation result for the lower pentagons of Figure 1.

Lemma 9.7. The diagram

Ho(O(n)EO
n )

Rr∗

L(resn0 /O(n))

Ho(O(n)EU
n )

U(n)∧LO(n)(−)

Ho(U(n)EU
n )

L(resn0 /U(n)

Ho(n –homog– EO
0 )

Rr∗red(−)
Ho(n –homog– EU

0 )

of derived functors commutes up to natural isomorphism.

Proof. By Lemma 7.10, Lemma 8.5 and Lemma 8.9, the composite

L(resn0 /U(n)) ◦ (U(n)+ ∧LO(n) (−)) ◦Rr∗,

is naturally isomorphic to the composite

L(resn0 /U(n)) ◦R(αn)
∗ ◦Rr∗ ◦ (U(n)+ ∧LO(n) (−)) ◦R(βn)!.

The result then follows by Corollary 9.5.

Lemma 9.8. The diagram

Ho(U(n)EU
n )

Rc∗

L(resn0 /U(n))

Ho(U(n)EO
2n)

O(2n)∧LU(n)(−)

Ho(O(2n)EO
2n)

L(res2n0 /O(2n))

Ho(n –homog– EU
0 )

Rc∗red(−)
Ho((2n) –homog– EO

0 )

of derived functors commutes up to natural isomorphism.
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Proof. We have to show that

Rc∗red(−) ◦ L(resn0 /U(n))
∼= L(res2n0 /O(2n)) ◦ (O(2n) ∧LU(n) (−)) ◦Rc∗.

By Lemma 8.11 and Lemma 8.7 we can replace (up to natural isomorphism) the
composite (O(2n) ∧LU(n) (−)) ◦Rc∗ with the composite

R(β2n)
∗ ◦ (O(2n) ∧LU(n) (−)) ◦Rr∗ ◦ L(αn)!.

Corollary 9.6 and the fact that the homotopy categories of SpU[O(n)] and U(n)EU
n

are equivalent yields that the composite

L(res2n0 /O(2n)) ◦R(β2n)
∗ ◦ (O(2n) ∧LU(n) (−)) ◦Rr∗ ◦ L(αn)!

is naturally isomorphic to the composite

Rc∗red(−) ◦ L(resn0 /U(n))

and the result follows.
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